NEET - 2025

MODEL TEST

CENTRE FOR EDUCATIONAL DEVELOPMENT OF MINORITIES OSMANIA UNIVERSITY

Minorities Welfare Department, Government of Telangana Nizam College Campus, Gunfoundry, Hyderabad – 500001.

PHYSICS

SECTION-A

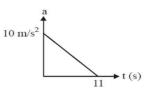
In $S = a + bt + ct^2$, S is measured in meters and t in seconds. The unit of c is 1.

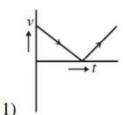
1) ms^{-2}

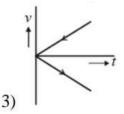
2)	m
<i>∠</i> ,	111

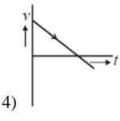
$$3) \,\mathrm{ms}^{-1}$$

4) No units

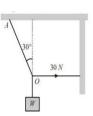

A particle starts from rest. Its acceleration (a) versus time (t) graph 2. is as shown in the figure. The maximum speed of the particle will be


1) $110 \, \text{m/s}$


2) 55 m/s


 $3)550 \, \text{m/s}$

- $4)660 \, \text{m/s}$
- 3. A ball is thrown vertically upwards. Which of the following graphs represent velocity-time graph of the ball during its flight? (air resistance is neglected)



4. As shown in figure the tension in the horizontal cord is 30 N. The weight W and tension in the string OA in Newtons are

1) $30\sqrt{3}$, 30

2) $30\sqrt{3}.60$ 3) $60\sqrt{3}.30$ 4) None of these

5. A ball is thrown from ground level so as to just clear a wall 4 metres high at a distance of 4 metres and falls at a distance of 14 metres from the wall. The magnitude of velocity of the ball will be

1) $\sqrt{182}m/s$

2) $\sqrt{175}m/c$

3) $\sqrt{165}m/s$

4)
$$\sqrt{155}m/s$$

6. A particle is moving in a circular path with velocity varying with time as $v = 1.5t^2 + 2t$. If the radius of circular path is 2 cm, the angular acceleration at t = 2 sec will be

1) $4 rad/sec^2$

 $2) 40 rad/sec^2$

3) 400 rad/sec²

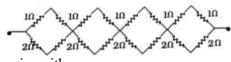
4) 0.4 rad/sec²

7. A body of mass m tied at the end of a string of length is projected with velocity $\sqrt{4\ell g}$, at what height will it leave the circular path

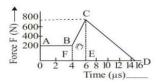
1) $\frac{5}{3}\ell$

2) $\frac{3}{5}\ell$

3) $\frac{1}{3}\ell$


8. The equivalent resistance between A and B is

1) $16/3\Omega$

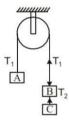

 $2) 16\Omega$

3) 8Ω

4) $3/16\Omega$

9. The magnitude of the force (in Newton) acting on a body varies with time t (in microsecond) as shown in fig. AB, BC, and CD are straight line segments. The magnitude of the total impulse on the body from $t=4 \mu s to to 16 \mu s is$

1) $5 \times 100^{-4} N.s$

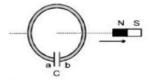

2) $5 \times 10^{-3} N.s$

3) 5×10^{-5}

N.s

4) $5 \times 10^{-2} N.s$

10. Three equal weights of mass m each are hanging on a string passing over a fixed pulley as shown in fig. The tensions in the string connecting weights A to B and B to C will respectively be



1) $\frac{2}{3}mg$, $\frac{2}{3}mg$ 2) $\frac{2}{3}mg$, $\frac{4}{3}mg$ 3) $\frac{4}{3}mg$, $\frac{2}{3}mg$ 4) $\frac{3}{2}mg$, $\frac{3}{4}mg$

- A block of mass 2 kg is on a horizontal surface. The co-efficient of static & kinetic frictions are 0.6 11. & 0.2 The minimum horizontal force required to start the motion is applied and if it is continued, the velocity acquired by the body at the end of the 2nd second is $(g = 10 \text{ms}^{-2})$ 1) 8N, 8ms⁻¹ 2) 8N, 4 ms^{-1} 3) 8N, 2 ms^{-1} 4) 8N, zero Two satellites S₁, and S₂, revolve round a planet in the same direction in circular orbits. Their 12. periods of revolutions are 1 hour and 8 hour respectively. The radius of S₁, is 10⁴ km. The velocity of S_2 , with respect to S_1 , will be 1) $\pi \times 10^4$ km/hr 2) $\pi/3 \times 10^4$ km/hr 3) $2\pi \times 10^4$ km/hr 4) $\pi/2 \times 10^4$ km/hr 13. A uniform steel wire of density $7800 \text{kg/}m^3$ is 2.5 m long and weighs 15.6×10^{-3} kg. It extends by 1.25 mm when loaded by 8kg. Calculate the value of young's modulus of elasticity for steel. 2) $19.6 \times 10^{11} N/m^2$ 3) $196 \times 10^{11} N/m^2$ 4) None of these 1) $1.96 \times 10^{11} N/m^2$ An ideal gas expands isothermally from a volume $\boldsymbol{V_1}$ to $\boldsymbol{V_2}$ and then compressed to original volume 14. V₁adiabatically. Initial pressure is Pand final pressure is P₃. The total work done is W. Then 1) $P_3 > P_1$, W > 02) $P_3 < P_1$, W < 03) $P_2 > P_1, W < 0$ 4) $P_2 = P_1, W = 0$ A charged ball B hangs from a silk thread S, which makes an angle with a large charged conducting 15. sheet P, as shown in the figure. The surface charge density σ of the sheet is proportional to 4) $\cot \theta$ 1) $\sin \theta$ 2) $\tan \theta$ 3) $\cos \theta$ Figure given below shows two identical parallel plate capacitors connected to a 16. battery with switch S closed. The switch is now opened and the free space between the plates of capacitors is filled with a dielectric of dielectric constant 3. What will be the ratio of total electrostatic energy stored in both capacitors before and after the introduction of the dielectric? 1)3:1 3)3:5 4)5:3 2)5:117. In the fig. shown, Calculate the current through 3 ohm resistor. The emf of battery is 2 volt and its internal resistance is 2/3 ohm. 1) 0.33 amp2) 0.44 amp 3) 1.22 amp 4) 0.88 amp $v \pm$ B $A \equiv$ 18. A thin circular wire carrying a current I has a magnetic moment M. The shape of the wire is changed to a square and it carries the same current. It will have a magnetic moment 2) $\frac{4}{\pi^2} M$ 3) $\frac{4}{\pi}M$ 1) M 4) $\frac{\pi}{4}M$ 19. Consider the arrangements shown in figure in which the north pole of a magnet is moved away from a thick conducting loop containing capacitor. Then excess positive charge will arrive on 1) plate a 2) plate b

 - 3) both plates a and b
- 4) None of the plates a and b

A current 10 A in the primary coil of a circuit is reduced to zero at a 20. uniform rate in 10^{-3} second. If the coefficient of mutual inductance is 3H, the induced e. m.f. in the secondary coil will be

1) 3 kV

- 2) 30 kV
- 3) 2 kV

4) 20 kV

21. An alternating current is given by the equation $i = i_1 \cos \omega t + i_2 \sin \omega t$. The r.m.s. current is given by

1) $\frac{1}{\sqrt{2}}(i_1+i_2)$

2) $\frac{1}{\sqrt{2}}(i_1+i_2)^2$ 3) $\frac{1}{\sqrt{2}}(i_1^2+i_2^2)^{1/2}$ 4) $\frac{1}{2}(i_1^2+i_2^2)^{1/2}$

A light beam travelling in the X-direction is described by the electric field E_y , (300V/m) 22. $\sin \omega (t - x/c)$. An electron is constrained to move along the Y - direction with a speed of 2.0×10^7 m/s. The maximum magnetic force (in N) on the electron is.

1) 3.2×10^{-18}

2) 5.1×10^{-16}

3) 6.5×10^{-11}

 $4)7.8 \times 10^{-12}$

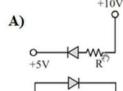
23. In Bohr model of atom an electron of charge (-e) and mass m is revolving around a nucleus of charge +ze. If \overline{L} is the orbital angular momentum of electron, then its magnetic moment is given by

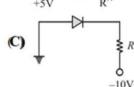
1) $-\frac{e}{2m}\overline{L}$

2) $\frac{e}{2m}\overline{L}$

3) $\frac{-Ze}{2m}\overline{L}$

4) $\frac{Ze}{2m}\bar{L}$

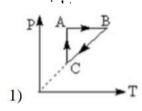

Energy levels A, B, C of a certain atom corresponding to increasing values of energy i. e. $E_A \le E_B$ 24. $< E_C$. If $\lambda_1, \lambda_2, \lambda_3$ are the wavelengths of radiations corresponding to the transitions C to B, B to A and C to A respectively, which of the following statements is correct?

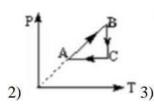

1) $\lambda_3 = \lambda_1 + \lambda_2$

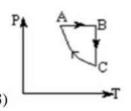
2) $\lambda_3 = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$ 3) $\lambda_1 + \lambda_2 + \lambda_3 = 0$ 4)

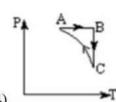
Here in forward biased are

In the given figure, the diodes in forward biased are 25.




1) A. B. C only


3) A, C only


4) A only

- An ideal gas undergoes a thermodynamics cycle as shown in figure. Which of the following graphs 26. represents the same cycle?
- A uniform rope of mass m and length L is hung freely from stationary ceiling. If the cross 27. sectional area of rope is A and Young's modulus Y, then net elongation in the rope due to its

28. Two soap bubbles to form a single large drop (r = radius of small bubbles R = radius of large drop)

Column: I

A) surface energy in the process

B) pressure of the soap bubble inside will be

C) temperature of drop will be

D) radius of final single drop

1) A-Q,B-Q,C-S,D-P

3) A-P,B-Q,C-P,D-S

Column - II

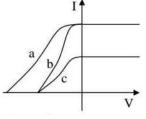
P) $2^{1/3}$ r

Q) Decreases

R) $4^{1/3}$ r

S) increases.

2) A-Q,B-P,C-S,D-P


- 4) A-P.B-O.C-P.D-S
- 29. In a photo electric experiment, I(current)-V (voltage) graph is as shown. Curves a,b,c correspond to three different metal surfaces irradiated with monochromatic light of same frequency. Assuming the ratio of number of electrons emitted per second to the number of photons incident per second is the same for all the three surfaces, choose the INCORRECT statement:

1) the work function of metals b and c are equal

- 2) the intensities of light incident on a and b are same
- 3) the work functions of metals a and b are not equal
- 4) the intensities of light incident on a, b and c are all different
- 30. The value of L, C and R in an LCR series circuit are 4 mH, 40 pF and 100_{Ω} respectively. The quality factor of the circuit is

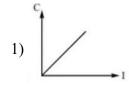
4) 10

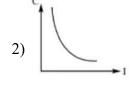
31. Two coherent sources of light emit waves with wavelength with constant phase difference of 180°. The intensity due to each at a point on a screen is I. At a point on the screen where the path

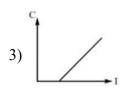
difference between two waves is $\frac{3\lambda}{2}$ the total intensity will be:

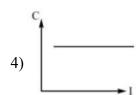
1)
$$2I_0$$

2)
$$4I_{0}$$


3)
$$6I_0$$


4)
$$3I_{0}$$


32. Statement - A: A diver under water, looks obliquely at a fisherman standing on the bank of a lake. The fisherman look shorter to the diver than what he actually is


Statement - B: A convex mirror always produces a virtual image independent of location of the real object

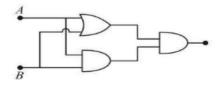
- 1) Both statements A & B are true 2) Statement A is true and Statement B is false
- 3) Statement A is false and Statement B is true 4) Both statements A & B are false
- 33. In photoelectric effect experiment, the intensity of light is varied by changing the distance of light source from emitter. Which of the following graphs depict he variation of photoelectric current 'C' with intensity of light 'I'?

34. Assertion (A): The Bohr model is not applicable to atoms having many electrons.

Reason (R): In atoms having many electrons, each electron interacts not only with positively charged nucleus but also with all other electrons.

- 1) Both assertion and reason are true and reason is correct explanations of assertion.
- 2) Both assertion and reason are true but reason is not correct explanation of essertion.

2)		•	4	1		•	C 1
3	Assertion	1S	true ai	าต	reason	1S	Taise


- 4) Assertion is false and reason is true
- 35. The combination of gates shown in the diagram is equivalent to

2) AND

4) NOR

PHYSICS

SECTION - B

36. Two identical capacitors have the same capacitance C. One of them is charged to a potential Vi and the other to V2. If they are connected with their unlike plates together, the decrease in energy of the combined system is

1)
$$\frac{1}{4}C(V_1^2-V_2^2)$$

1) $\frac{1}{4}C(V_1^2 - V_2^2)$ 2) $\frac{1}{4}C(V_1^2 + V_2^2)$ 3) $\frac{1}{4}C(V_1 - V_2)^2$ 4) $\frac{1}{4}C(V_1 + V_2)^2$

37. Some relations and laws related to fluids are given in column A, While the reasons behind them are given in column B. Match A and B

Column - I

Column - II

(a) Stoke's law energy	e) Surface potential	
(b) Equation of continuity	f) Viscosity	
(c) Bernoulli's theorem	g) Conservation of mass	
(d) Velocity efflux	h) Conservation of energy	
1) (a) – (e), (b) – (f), (c) – (g),	(d) - (h) 2) $(a) - (f)$, $(b) - (f)$	h), (c) – (g), (d) – (e)
$\overline{3)(a)-(f),(b)-(g),(c)-(h),}$	(d) - (e) 4) $(a) - (e)$, $(b) - (e)$	(h), (c) - (g), (d) - (f)

- 38. When two identical batteries of internal resistance 10 each are connected in series across a resistor R, the rate of heat produced in R is P₁. When the same batteries are connected in parallel across R, the rate is P_2 . If $P_1=2.25 P_2$, the value of R is
 - 1) 2Ω

2) 40.

- $3) 10\Omega$
- 4) 120
- If θ is the angle of projection and H, R are the maximum height, range of a projectile, then Tan θ 39. is
 - 1) 4H/R

2) 4R/H

- 3) 2H/R
- 40. The force per unit length on a wire carrying current of 8A making an angle of 30° with a uniform magnetic field of 0.15 T is
 - 1) 1.2 N
- 2) 1.02 N
- 3) 0.6 N
- 4) 2.4 N
- 41. A body of mass of 0.5kg travels in a straight line with velocity $V = 5X^{3/2}$. Work done by the net force during its displacement from x=0 to x=2m is
 - 1) 10 J

2) 12 J

- 3) 40 J
- 4) 50 J
- From a uniform disc of radius R, a circular hole of radius R/2 is cut out. The centre of the hole 42. is at R/2 from the centre of the original disc. The shift in centre of gravity of the resulting body 1) R/32) R/43) R/124) R/6
- 43. A body weights 63N on the surface of earth. The gravitational force on the earth at a height equal to half of the radius earth is

	1) 28N	2) 32 N	3) 126N	4) 7N		
44.	Statement (A): T	The stretching of a coil is dete	ermined by its shear modulus	5.		
	Statement (B): O gases.	of the three states of matter th	e bulk modulus of elasticity	is maximum for		
	2) Statement A is 3) Statement - A i	nts - A & B are true true and Statement B is false s false and Statement - B is ats A & B are false				
45.	Excess pressure i 4.65×10 ⁻¹ Nm ⁻¹)	nside the drop of mercury o	fradius 3.00mm is (surface	tension of mercury is		
	1) 860 Pa	2) 1240 Pa	3) 620 Pa	4) 310 Pa		
46.	For an ideal gas at is	absolute temperature T, the c	oefficient of volume expansion	on at constant pressure		
	1) 2/T	2) 3/T	3) 1/T	4) 1/T2		
47.		fresistance R is uniformly co al radius. Now resistance of	mpressed along its length, un the wire becomes	itil its radius becomes		
	1) $\frac{R}{n^4}$	$2) \frac{R}{n^2}$	P(Nm ⁻²)		
	3) $\frac{R}{n}$	4) <i>nR</i>	600A	\ .		
48.	A gas undergoes a thermodynamic process ABC. The total work done by the gas is $V(m^3)$					
	1) 200 J	2) 300 J	2	5 ()		
	3) 900 J	4) 450 J				
49.	A body describes displacement is 30	-	cm and period 0.2s. Velocity	of the body when the		
	1) $5\pi^2$	2) 40π	3) 50π	4) $3\pi^2$		
50.	_	A string of mass 2.5kg is under a tension of 200N. The length of stretched string is 20m. If a transverse jerk is struck at one end of the string, the time taken by the jerk to reach the other end				
	1) 0.5 s	2) 1.5 s	3)2 s	4) 2.5 s		
		CHEMIS	STRY			
		SECTIO	N-A			
51.	A mixture of gase the two gases in th	2 2	n the ratio of 1:4 (w/w). What	at is the molar ratio of		
	1) 16 : 1	2) 2 : 1	3) 1 : 4	4) 4 : 1		
52.	•	2 2	xcited state to 1st excited stat and Paschen series respectiv			
	1) 10, 4, 3	2) 15,0,4	3) 15, 4, 5	4) 10,0,3		
53.	The angular mom	entum of electron in 'd' orbita	al is equal to:			
	1) $2\sqrt{3}h$	2) h	3) $\sqrt{6}h$	4) $\sqrt{2}h$		

54.	Which of the following is correct with respect to -I effect of the substituents? $[R = alkyl]$						
	1) $-NH_2 > -OR > -F$		$2) - NR_2 < -OR <$	2) $-NR_{2} < -OR < -F$			
	$3) - NH_2 < -OR < -F$		4) $-NR_2 > -OR >$	· –F			
55.	The species, having bond	angles of 120° is:					
	1) PH ₃	(b) CIF ₃	(c) NC1 ₃	BCl_3			
56.	The species Ar, K ⁺ and Caincrease?	a ²⁺ contain the same number	er of electrons. In which	h order do their radii			
	1) $Ca^{2+} < K^+ < Ar$	2) $K^+ < Ar < Ca^{2+}$					
	3) $Ar < K^+ < Ca^{2+}$	4) $Ca^{2+} < Ar < K^+$					
57.		The solubility of BaSO ₄ , in water is $2.42 \times 10^{-3} \text{gL}^{-1}$ at 298K. The value of solubility product (K_{sp}) will be [Given molar mass of BaSO ₄ = 233 g mol ⁻¹]					
	1) $1.08 \times 10^{-2} mol^2 L^{-1}$	2) 1.08 x 10 ⁻¹² mol ² L ⁻²					
	3) $1.08 \times 10^{-14} mol^2 L^{-2}$	4) 1.08 x 10 ⁻⁸ mol ² L ⁻²					
58.	What is the activation energy for a reaction if its rate doubles when the temperature is raised from 20°C to 35°C ? (R= 8.314J mol ⁻¹ K ⁻¹)						
	1) 342 kJ mol ⁻¹	2) 269 kJ mol ⁻¹	3) 34.7 kJ mol ⁻¹	4) 15.1 kJ mol ⁻¹			
59.	In which of the following options the order of arrangement does not agree with the variation of property indicated against it?						
	2) Li $<$ Na $<$ K $<$ Rb (inca 3) Al ³⁺ $<$ Mg ²⁺ $<$ Na ⁺ $<$ F)				
60.	Aqueous solution of which of the following compounds is the best conductor of electric current?						
	1) Hydrochloric acid, HC	CI	2) Ammonia, NH ₃				
	3) Fructose, $C_6H_{12}O_6$		4) Acetic acid, C ₂ F	H_4O_2			
61.	The rate of first-order reaction is 0.04 mol L^{-1} s ⁻¹ at 10 seconds and 0.03 mol L^{-1} s ⁻¹ at 20 seconds after initiation of the reaction. The half-life period of the reaction is:						
	1) 44.1 s	2) 54.1 s	3) 24.1 s	4) 34.1 s			
62.	In acidic medium, $\rm H_2O_2$ changes $\rm Cr_2O_7^{2-}$ to $\rm CrO_5$ which has two (–O–O–) bonds. Oxidation state of $\rm Cr$ in $\rm CrO_5$ is:						
	1) +5	2) +3	3) +6	4) -10			
63.	The reaction of H ₂ O ₂ with	n hydrogen sulphide is an ex	xample of reaction	:			
	1) addition	2) oxidation	3) reduction	4) redox acidic			
64.	The enthalpy of vaporization mol. Enthalpy of formation	ion of $H_2O(l)$ is x kJ/mol and on of $H_2O(l)$. would be	l enthalpy of formation	of water vapour y kJ/			
	1) $(y - x)$ kJ mol ⁻¹	2) $(x - y)$ kJ mol ⁻¹	3) $(x + y)$ kJ mol ⁻¹	4) $(2x-y)$ kJ mol ⁻¹			
65.	Equal volumes of four a concentration of hydroger	cid solutions having pH 1 nion in the mixture of.	, 2, 3 and 4 are mixed	l in a container. The			
	1) 4.25×10^{-4} M	2) $2.78 \times 10^{-2} \text{ M}$	3) $2.30 \times 10^{-3} \text{ M}$	4) $1.35 \times 10^{-2} \text{ M}$			

66. A button cell used in watches functions as following:

$$Zn(s) + Ag_{2}O(s) + H_{2}O(l) \rightarrow 2 Ag(s) + Zn^{2+}(aq) + 20H^{-}(aq)$$

If half-cell potentials are: $Zn^{2+}(aq) + 2e^{-}Zn(s) E^{\circ} = -0.76 V$

$$Ag_2O(s) + H_2O(l) + 2e^- \rightarrow 2Ag(s) + 2OH^-(aq), E^\circ = 0.34 \text{ V}$$

The cell potential will be:

4) 1.34 V

The correct order of increasing bond length of C-H, C-O, C-C and C=C is: 67.

1)
$$C - C < C = C < C - O < C - H$$

2)
$$C - O < C - H < C - C < C = C$$

3)
$$C - H < C - O < C - C < C = C$$

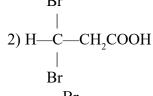
4)
$$C - H < C = C < C - O < C - C$$

Which one of the following orders is correct for the bond dissociation enthalpy of halogen molecules? 68.

1)
$$Br_2 > I_2 > F_2 > Cl_2$$

2)
$$F_2 Cl_2 > Br_2 > I_2$$

2)
$$F_2 Cl_2 > Br_2 > I_2$$
 3) $I_2 > Br_2 > Cl_2 > F_2$ 4) $Cl_2 > Br_2 > F_2 > I_2$


Gadolinium belongs to 4f series. It's atomic number is 64. Which of the following is the correct 69. electronic configuration of gadolinium?

1) [Xe]
$$4f^8 6s^2$$

2) [Xe]
$$4f^9 5s^1$$

3) [Xe]
$$4f^7 5d^1 6s^2$$
 4) [Xe] $4f^6 5d^2 6s^2$

Propionic acid with Br₂/P yields a dibromo product. Its structure would be: 70.

At 25°C and 730 mm pressure, 380 ml of dry oxygen was collected. If the temperature is constant, 71. what volume will the oxygen occupy at 760 mm pressure?

 $(d) 20 \, ml$

72. Predict the product C obtained in the following reaction of 1-butyne.

$$CH_3CH_2$$
— $C \equiv CH + HCI \longrightarrow B \stackrel{HI}{\longrightarrow} C$

$$CH_{3}CH_{2}-C = CH + HCI \longrightarrow B \longrightarrow C$$
1)
$$CH_{3}-CH-CH_{2}CH_{2}I$$
2)
$$CH_{3}-CH_{2}-CH_{2}-CH$$
3)
$$CH_{3}-CH_{2}-CH-CH_{2}CI$$
4)
$$CH_{3}CH_{2}-C-CH_{3}$$
Following compounds are given:

Following compounds are given: 73.

(ii)
$$CH_3COCH_3$$
 (iii) CH_3 — $CHOH$ (iv) CH_3OH CH_3

Which of the above compound(s), on being warmed with iodine solution and NaOH, will give iodoform?

	1) (i), (iii) and (iv)	2) Only (ii)	3) (i), (ii) and (iii)	4) (i) and (ii)		
74.	Consider the following s	statements.				
	(1) XeF ₄ is colourless cr	ystalline solid and underg	goes sub-limation.			
	(2) XeOF ₄ is colourless	volatile liquid.				
	(3) XeO ₄ is colourless ex	xplosive solid.				
	The correct statements a	are:				
	1)(1) and (2) only	2) (2) and (3) only	3) (1) and (3) only	4) (1), (2) and (3)		
75.		Hg for pentane and 120	e. The vapour pressure of the distance of the			
	1) 0.549	2) 0.200	3) 0.786	4) 0.478		
76.	One mole of Al3 ⁺ discha	arged completely by using	g charge?			
	1) 3F	2) 1F	3) 0.3F	4) 2F		
77.	In which of the follow hybridised?	ing molecules/ions BF ₃ ,	NO_2^- , NH_2^- and H_2O , the	e central atom is sp ²		
	1) NO_2^- and NH_2^-	2) NH_2^- and H_2O	3) NO_2^- and H_2O	4)BF $_3$ and NO $_2^-$		
78.	Which one of the follow	ing is a free-radical substi	itution reaction?			
	1) CH ₂ CI + AgNO ₂ →	CH ₂ NO ₂	2) CH ₃ CHO+HCN—	→CH ₃ —CH—CN OH		
	3) CH ₃ + Cl ₂ Boiling	CH ₂ CI	4) + CH ₂ CI -	anhy. AICl ₃		
79.	Consider the following r	eaction:				
	Ethanol $\xrightarrow{PBr_3} X \xrightarrow{\text{alc. KOH}} Y \xrightarrow{\text{H}_2SO_4, room temperature}} Z$					
				~ ~ **		
	1) CH ₃ CH ₂ O—CH—C	CH ₃	2) CH ₃ —CH ₂ —C	−SO ₃ H		
0.0	3) CH ₃ CH ₂ OH		4) CH2=CH2			
80.	Which of the following i	s an ideal solution?	0) 377. 1			
	1) Ethanol + water		2) Nitric acid + water			
0.4	3) Ethanol + benzene		4) Benzene + tolue	ne		
81.	The efficiency of a fuel c	ell is given by:				
	1) $\frac{\Delta G}{\Delta S}$	2) $\frac{\Delta G}{\Delta H}$	3) $\frac{\Delta S}{\Delta G}$	4) $\frac{\Delta H}{\Delta G}$		
82.	_ ~	will not show cis-trans iso	_	Δσ		
02.	1) CH_3 — $CH = CH$ — CH		2) CH ₃ —CH ₂ —C	н=сн сн сн		
	, and the second	3				
	3) CH ₃ —C = CH—CH	12————3	+) CII ₃ —C—CH	$= CH - CH_2 - CH_3$		
0.5	CH ₃		CH_3			
83.	Among the following co	mpounds, one that is most	reactive towards electroph	ilic nitration is		

	1) benze	oic acid.		2) nitrobenzene.	3) toluene.	4) benzene.
84.		-		constant of a base, Boution of the base wo	OH is 1.0×10^{-12} . The conclude be:	centration of hydroxyl
	1) 2.0 ×	10 ⁻⁶ mol	L^{-1}	2) $1.0 \times 10^{-5} \text{ mol I}$	1	
	(c) 1.0	× 10 ⁻⁶ mo	$1 L^{-1}$	(d) 1.0×10^{-7} mol	L^{-1}	
85.		nthalpy cha for the pro	_	-	vater to steam is 30 kJmol	¹ at 27°C. The entropy
	1) 1.0J	mol ⁻¹ K ⁻¹		2) 0.1 J mol ⁻¹ K ⁻¹	3) 100 J mol ⁻¹ K	-1 4) 10J mol ⁻¹ K ⁻¹
				SECTION	N - B	
86.	In which	h electropl	hilic subs	titution reaction slov	v step is breaking of C—H	bond?
	1) Sulphonation of benzene 2) Nitration of benzene					
	3) Chlor	rination of	benzene	4) All of these		
87.	Acetone	e and ethar	nol can be	e chemically distingu	ished by:	
	(a) I ₂ /N	аОН		(b) 2,4 DNP	3) Tollen's reager	nt 4) Both (a) and (b)
88.	In which	h of the fo	llowingr	reaction C—C bond	formation does not take pla	ace?
	(1) Gattermann-Koch react			tion	(2) Étard reaction	l
	(3) Benz	zoin conde	ensation		(4) Swarts reaction	on
89.	The val	ue of $_{\Delta}$ A	H and AS	S for the reaction,		
	$C_{(gradually)}(s)+CO_2(g) \rightarrow 2CO(g)$ are 170 kJ and 170 JK ⁻¹ , respectively. This reaction will be spontaneous at:				This reaction will be	
	1) 710	K		2) 910 K	3) 1110 K	4) 510 K
90.	The exp	perimental	l data for	the reaction $2A + B_2$	\longrightarrow 2AB	
	Exp.	[A]	[B]	Rate (Ms ⁻¹)		
	1.	0.50	0.50	1.6×10^{-4}		
	2.	0.50	1.00	3.2×10^{-4}		
	3.	1.00	1.00	3.2×10^{-4}		
	The rate	e equation	for the a	bove data is:		
	1) rate =	$= k[B_2]$		2) rate = $k[B_2]^2$	$3) rate = k[A]^2[B]$	$[a]^{2}$ (c) rate = $k[A]^{2}[B]$
91.	Given b	elow are t	wo stater	ments		
	Statem	ent I: SF ₆	exists bu	ıt SH ₆ does not.		
	Statem	ent II: dπ	z – pπ bo:	nding cannot take p	lace in SH ₆	
	Choose	the correc	et answer	from the options giv	en below:	
	1) State	ment I is i	ncorrect	but Statement II is tr	ue.	
	2) Both	statemen	t I and St	atement II are true.		
	3) Both	Statemen	t I and St	atement II are false.		
	4) State	ment I is c	correct bu	ıt statement II is fals	e.	
92.	What is	the correc	t IUPAC	name of the followi	ng coordination compound	1.

$[Cr(py)_3Ch_3]$

2) Tripyridiniumtrichloro chromium (III)

1) Trichlorotripyridinium chromium (III)

	3) Trichlorotripyridine chr	romium (III) 4) Trichlo	rotripyridine chromium (Π)		
93.	The incorrect statements ar	nong the following is:				
	1) Glucose on oxidation w	ith Br ₂ /H ₂ O gives gluconic a	acid.			
	2) The pentaacetate of glue	cose does not react with hyd	lroxyl amine.			
	3) The six membered cycli	c structure of glucose is call	ed furanose structure.			
	4) The two cyclic hemiace	etal forms of glucose are and	o- mers of each other.			
94.	How many isomers are po	ssible for coordination com	plex [Co(NH ₃)(NO ₂)](N	$O_3^{}$		
	1)6	2) 10	3) 4	4) 12		
95.	The numbers of mole of ph	enylhydrazine needed to forr	n fructosazone when react	with fructose is:		
	1) 1	2) 2	3) 3	(d) 4		
96.	Indicate the coordination i	number and oxidation state	of the complex [Ni(en) ₂ ($C_2O_4)NO_2$		
	1) +1	2) +2	3) -2	4) +3		
97.	Give the IUPAC nomencla	ture of the final product(z) for $y \xrightarrow{Br/KOH} z$	formed in the following rea	actions.		
	1)Aniline	2) Chlorobenzne	3) Benzamide 4) Benz	zoyl chloride		
98.	Match list I with List II.			•		
	List I	List II				
	(A) Protein	(i) DNA,				
	(B) Nucleic acid	(ii) Polymer of α-amino ac	eids			
	(C) Polysaccharides	(iii) glucogen				
	(D) Enzymes	(iv) maltase				
	Choose the correct answer from the options given below.					
	1) (A)-(ii), (B)-(i), (C)-(iii)), (D)-(iv)	2) (A)-(i), (B)-(ii), (C)-((iv), (D)-(iii)		
	3) (A)-(iv), (B)-(iii), (C)-(i	i), (D)-(i)	4) (A)-(iii), (B)-(ii), (C)	-(iv), (D)-(i)		
99.	Which of the following sta	tement(s) is correct?				
	 (a) [Fe(CN)₆]⁴⁻ is diamagnetic but [Fe(CN)₆]³⁻ is paramagnetic. (b) Fe³⁺ ions always form tetrahedral complexes. (c) In a compound with an octahedral structure, the d_{xy} and d_{yz} orbitals of a metal ion should be vacant. (d) The ferric ammonium alum is a complex salt. 					
100.	The fluoride of xenon with	zero dipole moment is				
	1) XeF ₆	2) XeO ₃	3) XeF ₄	(d) XeF ₂		

BIOLOGY

101.	The term taxon refers to						
	1) Name of a species		2) Name of genus				
	3) Name of family		4) A taxonomic group of any rank.				
102.	Class is present between						
	1) Kindom & Phyllum		2) Phylum and order				
	3) Order and family		4) family & genus.				
103.	Descending arrangement	of Categories is called					
	1) Key	3) Heirarchy	3) Taxonomy	4) Classification			
104.	The label of a herbarium S	Sheet dres not carry info	ormation on				
	1) Date Collection	2) Name the collector	3) Local names	4) Height of the plant			
105.	Viroids differ from viruses	is having					
	1) DNA molecules without	ıt.					
	2) RNA molecules with pr	rotein coat					
	3) RNA molecules without	it protein coat					
	4) DNA molecules with p	rotein coat					
106.	After Karyogamy followe	ed by meiosis, spores ar	re produced exogenously	<i>i</i> n			
	1) Agarious	1)Alternaria	3) Neurosppra	4) Sacharomyces			
107.	Bacillus thuringiensis (Bt)	strains have been used	for designing novel				
	1) Bioinsecticidal plants		2) Bio-mineralizations				
	3) Biofuertizers		4) Bio-metallurgical tec	hniques			
108.	Cry protein is obtained from						
	1) Bacillus thuringiensis		2) Bacillus subtilis				
	3) Clostridium Welchi		4) E-coli				
109.	In primary settling tank, al	ll sediments that settle	are termed as				
	1) Primary sludge	2) Effluent	3) Activated sludge	4) Flocs			
110.	The term poly adelphous	is related to					
	1) Gyroceium	2) Androecium	3) Corella	4) Calyx			
111.	Coconut fruit is a						
	1) Berry	2) Nut	3) Capsule	4) Drupe			
112.	When Stamens are attached	ed to perianth, Conditi	on is known as				
	1) Epipetalous	2) Epiphyllous	3) Polyandrous	4) Diadelphous			
113.	Tricarpellary syncarpous g	gynoecium is found in f	lowers of				
	1) Fabaceae	2) Poaceoe	3) Liliacee	4) Solanaceoe			
114.	Placentation in tomato and	d Lemon is					
	1) Marginal	2)Axile	3) Parietal	4) Free Central			
115.	Cork is formed from						
	1) Cork combium	2) Vascular combium	3) Phloem	4) Xylem			
116.	Companion cells are associ	ated with					
		2) Trichomes	3) Guard celle	4) Sieve elements			
117.	The most primitive type of	f stele is					
	1) Eustete	2) Solenostele	3) Protostele	4) Siphonostele.			

118.	The functional xylem o	f dicet tree is					
	1) Sap wood	2) Hard wood	13) Heartwood	4) Autumn			
119.	Age of a tree Can be es	timated by					
	1) Number of annual ris	ngs	2) Diameter of its hear	twood			
	3) Its height and girth		4) Biomass				
120.	Infloresence is racemos	se in					
	1) Brinjal	2) Tulip	3)Aloe	4) Soyabean			
121.	l The mechanism that ca	uses a gene is called to 1	move from one linkage gr	oup to another			
	1) Inversion	2) Duplication	3) Translocation	4) Crossing-over			
122.	Which of the following	most appropriately desc	cribes haemophilia.				
	1) Cchromosomal diso	rder	2) Dominant gene diso	rder			
	3) Recessive gene diso	rder	4) Recessive gene disc	order			
123.	The ratio of compleme	ntary genes in F, generat	tion				
	1) 12:3:1	2) 9:8	3) 9:3:4	4) 9:6:1			
124.	Wich one is the incorre	ct statement with regard	l to the importance of Ped	igree analysis.			
	1) It confirms that DNA	is the Carries of genes	information				
	2) It helps to understand	d whether the trait quest	ion is dominant of recessi	ve			
	3) It confirms that the t	3) It confirms that the trait is linked to one of the autosome					
	4) It helps to trace the in	nheritance of a specific	trait				
125.	Down's Syndrome in h	umans is due to					
	1) The X chromosom		2) Three copies of Chr	ome of chromosomes			
	3) Monosomy		4) Two Y chromosome	es.			
126.	Uridine, present only ir	RNA is a					
	10 Nucleoside	2) Nucleotide	3) Purine	4) Pyrimidine			
127.	Which of the following	is the starter codon					
	1)UAA	2) UAG	3)AUG	4) UGA			
128.	The final proof of DNA	as the genetic Material	Came from the experime	nts of			
	1) Hershey & Chase		2) Avery, Mcleod & M	I cCarty			
	3) Hangdoind Khorana	,	4)Griffith				
129.	Which of the following	is codons codes for Pro	line				
	1) CCC, CCU, CCG	2) UCC, UGU, CCI	U 3) CUG, CUU, CUA	4) CGC, CGG, CCA			
130.	Which one of the follow	ving is a restriction endo	nuclease				
	1) DN asel	2) R Nase	3) Hind II	4) Protease			
131.	=	=	use possible with the disco				
100	1) Selectable maskers	2) Ligases	3) RE	4) Probes			
132.	Which organism is use		2) A 1 4	C			
	1) Streptomycis hygros	copices	2) Agrobacterium tume4) E-coli	Tacium			
133	3) Salmonella typhi A gene whose expressi	on helps to transformed	,				
133.	1) Vector	2) Plasmid	3) Structural gene	4) Selectable markers			
134.	Natality refers to	2) 1 10011114	o, additional gene	., colours markets			
	1) Number of individua	ls leaving the habitat	2) Birth rate				
	3) Death rate	S	4) Number of individua	als entering a habitat			

135.	35. Mycorrhizae are the example of				
	1)Ammensalism 2)Antibiosis 3		3) Mutalism	4) Fungistasis	
136.	The age pyramid with br	oad base indicates			
	1) High percentage of old	individuals	2) Low Percentage of y	oung individuals	
	3) A stable population		4) High Percentage of Y	oung individuals.	
137.	The term ecosystem was	coined by			
	1) Haeckel	2) E. Warming	3) E. P. Odun	4) A.G. Tansley	
138.	Which ecosystem has the	maximum biomass			
	1) Grassland ecosystem	2) Pond ecosystem	3) Lake ecosystem	4) Forect ecosystem	
139.	What is the National Aqu	atic Animal of India?			
	1) Blue Whale	2) Sea Horse	3) Gangetic Shark	4) River Dolphin	
140.	Which of the following s	tructures is not found in	a prokaryotic cell		
	1) Mesosome	2) Plasmamembrane	3) Nuclear enuelope	4) Ribesome	
141.	A cell organelle containin	g hydrolytic enzmes			
	1) Lysosome	2) Microsone	3) Ribosome	4) Mesosome	
142.	The Golgi Complex parti	cipates in			
	1) Respiration in bacteria	2) Formation of secret	ory Vesicles		
	3) Fatty acid breakdown	l	4) Activation of Amino acid		
143.	Which of the following an	= -			
	1) Proteins	2) Polysaccharides	3) Lipids	4) Nucleic acids	
144.	Which of the following is protein	the least likely to be invol	lved in stabilising the 3-di	mensional folding in most	
	1) Hydrogen bonds		2) Electrostatic Interact	ion	
	3) Hydrophobic Interacti	on	4) Ester bonds		
145.	In cell cycle, changes of v	which stage are not visib	ole inder microscope		
	1) Interphase	2) Prophase	3)Metaphase	4) Anaphase	
146.	Duplication of DNA occu	ars in			
	1) GI-phase	2) S-phase	3) G2-Phase	4) M-phase	
147.	In meiosis Crossing over	is initiated at			
	1) Zygotene	2) Diplotene	3) Pachytene	4) Leptotene	
148.	Which is the longest phase	se of the cell cycle			
	1) M-phase	2) Interphase	3) Leptotene	4) S-phase	
149.	During Cell growth, DNA	A synthesis takes place i	n		
	1) S-phase	2) Inteçkinesis	3) Diploteme	4) Interphase	
150.	Chromosome can be see	_			
	1) Prophase	2) Metaphase	3) Anaphase	4) Telophase	

ZOOLOGY

151.	. Branch of Zoology connected with the improvement of Human Race through laws of heredity is									
	1) Eu	agenic	S		2) Eu	thenics	3) Euphenics	4) Eithology		
152.	. Father of Taxonomy is									
	1) William Harvey 2) Carolous Lineus						s 3)Aristotle	4) Theophrastus		
153.	Inter	conve	rtibilit	ty of So	l-gel is					
	1) N	atural	chang	e			2) Physical change			
	3) C	hemica	al char	nge			4) Physico-Chemic	al change		
154.	Whi	ch of tl	he foll	owing	coelente	erate does not o	exhibit metagenesis			
	1) O	belic			2)Au	ırelia	3) Hydra	4) Physalia		
155.	Mate	ch the	follow	ing col	lumns a	nd choose the	correct answer			
	Colu	ımn –	A			Column - B				
		olyeml		y			a hasmatobium			
		iver flu				II. Dibothricep				
		ilharzia				III. Trematod				
		argest	-			IV. Hymenole	pis nana			
	E. Sı	malles	-		_	V. Fasciola				
	4.	A	В	C	D	E				
	1)	II	I	III	IV	V				
	2)	III	V	I	IV	II				
	3)	III	V	I	II	IV				
1.5.6	4) T1	III	IV	I	II	V				
156.			vhich j	pertorn		urnal periodici	•			
		anula	• _			nabiditi form la	ırva			
157		icrofile			, •	sticercus	** CANADA			
157.		ımn –		ing an	u choos	e the correct a	nswer C olumn – B			
				sidal en	itheliun		Ducts of Paratid			
				al epith			I. Thyroid gland			
		-		-	helium		II. Cornea of eyes			
		_		_	thelium		V. Conjuctiva of eyes			
		1	1	1			7. Trachea and Bronchi			
		A	В	C	D					
	1)	V	III	II	I					
	2)	IV	II	I	V					
	3)	II	IV	I	III					
	4)	V	II	III	IV					
158.	Find	out th	e corre	ect seri	es of di	agram				
	1) ar	tery, la	cunae	, canali	culi		2) Canaliculi, volkn	nan's canal, vein		
	3) Vo	olkmaı	n's can	nal, lacu	ınae, bo	one lamellae	4) Vollkman's canal	, lacunae, canaliculi		
159.										

	1) Alimentary organ	2) Supplementary org	gan 3) Mastigatory organ	n 4)All				
160.	Aquatic organism with li	mited power of locomo	tion are called					
	1) Plankton	2) Nektons	3) Neustons	4) Periphytons				
161.	One of the following is u adolescents	seful measures for prev	ention and control of TD	A abuse among the				
	A) Avoid undue parental	l pressure, and by Respo	onsibility of parents and t	teachers				
	B) Seeking help from pe	ers, education and coun	seling					
	C) Seeking help from professional, alcohol and drug consumptive persons							
	1) A and C are true, B is false 2) B and C are true, A is false							
	3) A and B are true, C is	false	4) A, B and C are true,	None is false				
162.	In earthworm lateral Hea	art can be differentiated	from lateral oesophagea	l Hearts by the presence				
	1) 2 pairs of valves	2) 3 pairs of valves	3) 4 pairs of valves	4)All				
163.	Rapid increase in the nu known as	mber of cells in the orga	an of host due to the pres	ence of a parasite is				
	1) Hyperplasia	2) Hypertrophy	3) Over growth	4) Necrosis				
164.	The body cavity of cock	roach is not a true body	cavity, filled with blood	is called				
	1) Haemato fluid	2) Haemalymph	3) Haemocoel	4) Pseudocuel				
165.	Read the following state	ment and choose the co	orrect answer					
	A. In Phereretima dorsal Blood vessel is collecting and distributing Blood vessel.							
	B. Dorsal Blood vessel i	s considered as true hea	art in earthworm.					
	1) A & B are false	1) A & B are false 2) A is correct and B is correct explainaihen to A.						
	3) A is false and B is true	e. 4) A is correct explain	nation to B, But B is false	;				
166.	Choose the Correct Statement regarding malaria and its parasite.							
	I. Malaria Caused in man by plasmodium vivax.							
	II. Every year world Mosquito day is celebrated on 20th August							
	IIL. Sexual Cycle of plasmocdium discovered by Ronald Ross in female Anopheles.							
	IV. Anisogamy and Isogamy are the Naturally Seen Reproduction in plasmodium vivax.							
	1) I, II, & III	2) II, III, IV	3) I, II & III	4d) III, IV, II				
167.	Choose the Correct statement of the following regarding circulation in frog.							
	I. Heart is 3 Chambered.							
	II. Heart Situated in pericardial Cavity							
	IIII. Conus arteriosus is absent							
	IV. Blood contains erythrocytes, leucocyles and thrombocytes.							
	V. Sinus venosus is not a Pacemaker.							
	1) I, II & V,	2) I, III & IV	3) I, II & III	4) I, II, IV				
168.	The Mass of eggs are rel	eased by the female fro	g is named					
	1)milt	2) Spawn	3) 1 & 2	4) ova				
169.	The arrangements of Abo							
	1) 1,2,3,5,6,7	2) 1, 2, 3, 4, 6, 7	3) 1, 3, 4, 5, 6, 7	4) 1, 2, 3, 4, 5, 7				
170.	Fat bodies in Cockroach	are Similar to						
	1) The liver of Invertebr	ates stores food & uric	acid					

- 2) The liver of vertrebrates stores food & uric and, Symbioses & Synthesize lipids.
- 3) The heart of vertebrates, filter the blood & Circulation,
- 4) The Brain of Invertebrate & co-ordinate the all body functions.
- 171. Mouth parts of Insects are
 - 1) Homologous organs 2) Analogous organs. 3) Vestigeal organs. 4) Atavistic organs.
- 172. Break-bone fever is also known as
 - 1) yellow fever
- 2) Malaria
- 3) Filariasis
- 4) Dengue fever

- 173. Chikungunya transmit to man by
 - 1) Infected person

- 2) Mosquito
- 3) infected female Aedes aegyptimosquito
- 4) Culex female
- 174. The Symptoms of Dengue fever are are begins after biting of mosquito to man is
 - 1) 1 to 2 days
- 2) 2 to 4 days
- 3) 7 to 10 days
- 4) 4 to 10 days.

3

- 175. One of the following are Symptoms & Signs of dengue fever.
 - 1) Headach & muscular pain

- 2) Bone or Joint pains
- 3) High fever, Rash & Swollen glands
- 4)All
- 176. Look the diagram & find out the correct Series of Names
 - 1) Posterier thoracic air sac, Inter claricle, Abdominal, trachea
 - 2) Cervical, Inter claricle, Right lung, Abdominal
 - 3) Cervical, Inter claricle, Abdominal & Posterier thoracic air sac.
 - 4)
- 177. M

4) Cervical, Inter claricle, left lung, posterier therocic						
Match the t	following columns.					
S.NO	Food Substances.	Enzyme	Products.			
I	Carbohydrates.	Amylase	maltose, Sucrose & lactose			
II	Maltose	Maltase	Glucose & Galaclose			
III	Sucrose	Invertrase	Glucose + Cellulose			

Lactase

Lactose which of the Above are Correct.

1) I & II

IV

- 2) II & III
- 3) III & IV
- 4) I & IV

- 178. A Healthy human breaths normally per minute.
 - 1) 12 to 13 times
- 2) 12 to 15 times
- 3) 12 to 16 times

Glucose & Galaclose

4) 13 to 18 times.

- 179. Match the following and choose the correct Answer
 - A. Asbestosis
- I. in halation of coal dust
- B. Silicosis
- II in halation of cold dust
- C. Siderosis
- III. Hyper ferremia
- D. Black lung disease
- IV. Asbestos industry
- V. Silica dust
- A В \mathbf{C} D
- 1) I II IIIIV
- 2) IV V IIIII
- IV V II I 3)
- V Ш 4)
- 180. In human being Heart beat is initiated by
 - 1) A. V.node
- b) S. A node
- 3) Sinus venosus
- 4) Purkenji fibres.

	2) Auricular systole \rightarrow ventricular systole \rightarrow ventriculer diastole									
	3) A	uricula	ar systole \rightarrow ventricular systole \rightarrow diastole of Complete Heart							
	4) N	one of	fthese	:						
182.	One	of the	follow	ing hig	gh, B.P is	fatal to hur	nan's Kidney & Brain.			
	1) 1	$\frac{190}{110}H$	<i>Ig</i>		2) $\frac{120}{190}$	Hg	3) $\frac{150}{90}$ Hg	4) $\frac{120}{80}$ Hg		
183.	Asse	ertion	(A) In	fection	of the uri	nery fract	is more common in wo	man than in man.		
	Reas	sen (F	R) Due	to Sho	rt urethra	a, which is	more close to the Ana	l aperture.		
	1)A	1) A is true, R is false								
	2)A	2) A is true, R is true, but R is not the correct explaination of A.								
	3)A	is true	, R is t	rue and	R is the	correct ex	plaination of A.			
	4)A	is fals	e R is t	false an	d R is the	correct ex	plainaitien of A.			
184.	Mate	ch the	follow	ing &	choose th	e correct A	inswer			
		lotor u					a & set of the Muscle	fibres innervated by		
	B. N	leuro l	Muscu	ıler Jun	ction	teloden	drites & constitute.			
	C. Fu	unction	nal uni	t		II. Sarcomere of striated muscle.				
	D. V	olunta	ry mus	scle		III. Cardiac muscle				
]	IV. Junction between a motor neuron and Sarcolemma				
						V. Skeletal muscles.				
		A	В	C	D					
	1)	I	II	III	IV					
		II	I	III	IV					
	3) 4)	I	IV IV	V II	II V					
185	. Smallest bone in human's body									
103.	•					4) Patella				
186. Match the following & choose the correct Answer					i) i atelia					
100.						ın - II	ans wer			
	A. Myocuel B. Diacoel				I. Ol factory lobe					
				II. Cerebral hemisphere.						
C. Lateral ventricle				ele	III. Foramen of monro					
	D. Rhinocoel				IV. Diencephalon					
					V. Medulla oblengata					
		A	В	С	D		5			
	1)	V	IV	III	I					
	2)	V			I					
	3)	V		I	II					
	4)	IV	V	II	I					
187	Rea	hearn	tion of	`H O ₩	Nenhro	ns is contro	alled by			
10/.		osorpi CTH	11011 UI	11 ₂ O II	2) STE		3) Vasopressin	4) Oxytocin		
	1,11	~ 111			2,511	-	5) Tabopiessiii	i) Onywoni		

181. Steps involve in Heart beat are

1) Auricular systole \rightarrow ventricular diastole \rightarrow ventricular Systole

1) 24 weeks in third trimester 2) 24 weeks in 2nd trimester 3) 36 weeks in 2nd trimester 4) 36 weeks in 3rd trimester 190. Formation & Development of blastocyst and its attachment to the uterine wall is called 1) Pertirution 2) Puberty 3) Implantation 4) Gestation 191. Match the following & chose the correct Answer. Column-I A. Gonorrhea I. Trichomonas vaginalis. B. Hepatitis II. Troponena pallidium C. Trichomoniasis III. HBV D. Syphlis IV. Neisseria gonorrles V. Typhi Salmonella A B C D 1) IV V I II 2) IV III V I 3) IV III I I 4) IV III I I 192. A man known to be a victim of Haemophilia marries a normal woman, whose father was known to be ableader then this expected that 1) one fourth of their children will be bleeders. 2) All their children will be bleeders. 3) Half of their children will be bleeders 4) None of these. 193. A Colourblind man married a woman who is the daughter of a Colourblind father and mother is homogenous Normal vision. What is the probability of their daughters being colorblind. 1) 50% 2) 100% 3) 75% 4) 25% 194. DNA finger printing is a method for Identifying individuals, paternity & forensicwork. The DNA can be obtained from 1) Blood, Semen & Hairs 2) Vaginal fluid 3) 1 & 2 4) None of these. 195. One of the following is sex influence trait. 1) albinism 2) Baldness 3) Blood Group inheitance 4) All	188.	Hormone	which	stops ov	ulation is							
1) 24 weeks in third trimester 2) 24 weeks in 2nd trimester. 3) 36 weeks in 2nd trimester 4) 36 weeks in 3rd trimester. 190. Formation & Development of blastocyst and its attachment to the uterine wall is called 1) Pertirution 2) Puberty 3) Implantation 4) Gestation Match the following & chose the correct Answer. Column-I A. Gonorrhea I. Trichomonas vaginalis. B. Hepatitis II. Troponema pallidium C. Trichomoniasis III. HBV D. Syphlis IV. Neisseria gonorrles V. Typhi Salmonella A B C D 1) IV V I I II 2) IV III V II 3) IV III I I 192. A man known to be a victim of Haemophilia marries a normal woman, whose father was known to be ableader then this expected that 1) one fourth of their children will be bleeders. 2) All their children will be bleeders. 3) Half of their children will be bleeders 4) None of these. 193. A Colourblind man married a woman who is the daughter of a Colourblind father and mother is homogenous Normal vision. What is the probability of their daughters being colorblind. 1) 50% 2) 100% 3) 75% 4) 25% 194. DNA finger printing is a method for Identifying individuals, paternity & forensiework. The DNA can be obtained from 1) Blood, Semen & Hairs 2) Vaginal fluid 3) 1 & 2 4) None of these. 195. One of the following is sex influence trait. 1) albinism 2) Baldness 3) Blood Group inheitance 4) All		1) F.S.H			2) L. H		3) Prolactin	1	4) Progesterone			
3) 36 weeks in 2nd trimester 4) 36 weeks in 3rd trimester 190. Formation & Development of blastocyst and its attachment to the uterine wall is called 1) Pertirution 2) Puberty 3) Implantation 4) Gestation 191. Match the following & chose the correct Answer. Column-I A. Gonorrhea I. Trichomonas vaginalis. B. Hepatitis II. Troponema pallidium C. Trichomoniasis III. HBV D. Syphlis IV. Neisseria gonorrles V. Typhi Salmonella A. B. C. D. 1) IV. V. I. II. 2) IV. III. V. II. 3) IV. III. I. II. 4) IV. III. I. II. 4) IV. III. II. II. 1) One fourth of their children will be bleeders. 2) All their children will be bleeders. 3) Half of their children will be bleeders. 4) None of these. 193. A Colourblind man married a woman who is the daughter of a Colourblind father and mother is homogenous Normal vision. What is the probability of their daughters being colorblind. 1) 50% 2) 100% 3) 75% 4) 25% 194. DNA finger printing is a method for Identifying individuals, paternity & forensiework. The DNA can be obtained from 1) Blood, Semen & Hairs 2) Vaginal fluid 3) 1 & 2 4) None of these. 195. One of the following is sex influence trait. 1) albinism 2) Baldness 3) Blood Group inheitance 4) All 196. Match the following Columns & Choose the correct Answer	189.	The body is covered by fine hair, eye lids, ey lashes are formed by the end of										
190. Formation & Development of blastocyst and its attachment to the uterine wall is called 1) Pertirution 2) Puberty 3) Implantation 4) Gestation 191. Match the following & chose the correct Answer. Column-I A. Gonorrhea I. Trichomonas vaginalis. B. Hepatitis II. Troponema pallidium C. Trichomoniasis III. HBV D. Syphlis IV. Neisseria gonorrles V. Typhi Salmonella A B C D 1) IV V I II 2) IV III V I 3) IV III I I 4) IV III II 192. A man known to be a victim of Haemophilia marries a normal woman, whose father was known to be ableader then this expected that 1) one fourth of their children will be bleeders. 2) All their children will be bleeders. 3) Half of their children will be bleeders 4) None of these. 193. A Colourblind man married a woman who is the daughter of a Colourblind father and mother is homogenous Normal vision. What is the probability of their daughters being colorblind. 1) 50% 2) 100% 3) 75% 4) 25% 194. DNA finger printing is a method for Identifying individuals, paternity & forensiework. The DNA can be obtained from 1) Blood, Semen & Hairs 2) Vaginal fluid 3) 1 & 2 4) None of these. 195. One of the following is sex influence trait. 1) albinism 2) Baldness 3) Blood Group inheitance 4) All		1) 24 weeks in third trimester					2) 24 week	s in 2nd trin	nester			
1) Pertirution 2) Puberty 3) Implantation 4) Gestation 191. Match the following & chose the correct Answer. Column-I A. Gonorrhea I. Trichomonas vaginalis. B. Hepatitis II. Troponema pallidium C. Trichomoniasis III. HBV D. Syphlis IV. Neisseria gonorrles V. Typhi Salmonella A B C D 1) IV V I II 2) IV III V II 3) IV III I II 4) IV III II 192. A man known to be a victim of Haemophilia marries a normal woman, whose father was known to be ableader then this expected that 1) one fourth of their children will be bleeders. 2) All their children will be bleeders. 3) Half of their children will be bleeders 4) None of these. 193. A Colourblind man married a woman who is the daughter of a Colourblind father and mother is homogenous Normal vision. What is the probability of their daughters being colorblind. 1) 50% 2) 100% 3) 75% 4) 25% 194. DNA finger printing is a method for Identifying individuals, paternity & forensicwork. The DNA can be obtained from 1) Blood, Semen & Hairs 2) Vaginal fluid 3) 1 & 2 4) None of these. 195. One of the following is sex influence trait. 1) albinism 2) Baldness 3) Blood Group inheitance 4) All		3) 36 wee	3) 36 weeks in 2nd trimester					s in 3rd trim	iester			
191. Match the following & chose the correct Answer. Column-I A. Gonorrhea I. Trichomonas vaginalis. B. Hepatitis II. Troponema pallidium C. Trichomoniasis III. HBV D. Syphlis IV. Neisseria gonorrles V. Typhi Salmonella A B C D 1) IV V I II 2) IV III V I 3) IV III I II 4) IV III II 192. A man known to be a victim of Haemophilia marries a normal woman, whose father was known to be ableader then this expected that 1) one fourth of their children will be bleeders. 2) All their children will be bleeders. 3) Half of their children will be bleeders. 4) None of these. 193. A Colourblind man married a woman who is the daughter of a Colourblind father and mother is homogenous Normal vision. What is the probability of their daughters being colorblind. 1) 50% 2) 100% 3) 75% 4) 25% 194. DNA finger printing is a method for Identifying individuals, paternity & forensicwork. The DNA can be obtained from 1) Blood, Semen & Hairs 2) Vaginal fluid 3) 1 & 2 4) None of these. 195. One of the following is sex influence trait. 1) albinism 2) Baldness 3) Blood Group inheitance 4) All 196. Match the following Columns & Choose the correct Answer	190.	Formatic	n & De	velopme	ent of blasto	eyst and its	attachment to	the uterine	wall is called			
Column-I A. Gonorrhea I. Trichomonas vaginalis. B. Hepatitis II. Troponema pallidium C. Trichomoniasis III. HBV D. Syphlis IV. Neisseria gonorrles V. Typhi Salmonella A B C D 1) IV V I III 2) IV III V I 3) IV III I I II 4) IV III II I 192. A man known to be a victim of Haemophilia marries a normal woman, whose father was known to be ableader then this expected that 1) one fourth of their children will be bleeders. 2) All their children will be bleeders. 3) Half of their children will be bleeders 4) None of these. 193. A Colourblind man married a woman who is the daughter of a Colourblind father and mother is homogenous Normal vision. What is the probability of their daughters being colorblind. 1) 50% 2) 100% 3) 75% 4) 25% 194. DNA finger printing is a method for Identifying individuals, paternity & forensicwork. The DNA can be obtained from 1) Blood, Semen & Hairs 2) Vaginal fluid 3) 1 & 2 4) None of these. 195. One of the following is sex influence trait. 1) albinism 2) Baldness 3) Blood Group inheitance 4) All		1) Pertiru	tion		2) Puberty		3) Implanta	tion	4) Gestation			
A. Gonorrhea B. Hepatitis II. Troponema pallidium C. Trichomoniasis III. HBV D. Syphlis IV. Neisseria gonorrles V. Typhi Salmonella A B C D 1) IV V I II 2) IV III V I 3) IV III I II 4) IV III II II 4) IV III II II 192. A man known to be a victim of Haemophilia marries a normal woman, whose father was known to be ableader then this expected that 1) one fourth of their children will be bleeders. 2) All their children will be bleeders. 3) Half of their children will be bleeders. 4) None of these. 193. A Colourblind man married a woman who is the daughter of a Colourblind father and mother is homogenous Normal vision. What is the probability of their daughters being colorblind. 1) 50% 2) 100% 3) 75% 4) 25% 194. DNA finger printing is a method for Identifying individuals, paternity & forensicwork. The DNA can be obtained from 1) Blood, Semen & Hairs 2) Vaginal fluid 3) 1 & 2 4) None of these. 195. One of the following is sex influence trait. 1) albinism 2) Baldness 3) Blood Group inheitance 4) All	191.	Match th	e follow	ving & c	hose the cor	ose the correct Answer.						
B. Hepatitis II. Troponema pallidium C. Trichomoniasis III. HBV D. Syphlis IV. Neisseria gonorrles V. Typhi Salmonella A B C D 1) IV V I III 2) IV III V III 3) IV III I I II 4) IV III II I II 4) IV III II I II 192. A man known to be a victim of Haemophilia marries a normal woman, whose father was known to be ableader then this expected that 1) one fourth of their children will be bleeders. 2) All their children will be bleeders. 3) Half of their children will be bleeders 4) None of these. 193. A Colourblind man married a woman who is the daughter of a Colourblind father and mother is homogenous Normal vision. What is the probability of their daughters being colorblind. 1) 50% 2) 100% 3) 75% 4) 25% 194. DNA finger printing is a method for Identifying individuals, paternity & forensicwork. The DNA can be obtained from 1) Blood, Semen & Hairs 2) Vaginal fluid 3) 1 & 2 4) None of these. 195. One of the following is sex influence trait. 1) albinism 2) Baldness 3) Blood Group inheitance 4) All		Column-I			Column-II	[
C. Trichomoniasis III. HBV D. Syphlis IV. Neisseria gonorrles V. Typhi Salmonella A B C D 1) IV V I III 2) IV III V III 3) IV III I I II 4) IV III II I II 4) IV III II II 192. A man known to be a victim of Haemophilia marries a normal woman, whose father was known to be ableader then this expected that 1) one fourth of their children will be bleeders. 2) All their children will be bleeders. 3) Half of their children will be bleeders. 4) None of these. 193. A Colourblind man married a woman who is the daughter of a Colourblind father and mother is homogenous Normal vision. What is the probability of their daughters being colorblind. 1) 50% 2) 100% 3) 75% 4) 25% 194. DNA finger printing is a method for Identifying individuals, paternity & forensicwork. The DNA can be obtained from 1) Blood, Semen & Hairs 2) Vaginal fluid 3) 1 & 2 4) None of these. 195. One of the following is sex influence trait. 1) albinism 2) Baldness 3) Blood Group inheitance 4) All 196. Match the following Columns & Choose the correct Answer		A. Gonor	rrhea		I. Trichomonas vaginalis.							
D. Syphlis IV. Neisseria gonorrles V. Typhi Salmonella A B C D 1) IV V I III 2) IV III V I II 3) IV III I I II 4) IV III I I II 4) IV III II I I 192. A man known to be a victim of Haemophilia marries a normal woman, whose father was known to be ableader then this expected that 1) one fourth of their children will be bleeders. 2) All their children will be bleeders. 3) Half of their children will be bleeders. 4) None of these. 193. A Colourblind man married a woman who is the daughter of a Colourblind father and mother is homogenous Normal vision. What is the probability of their daughters being colorblind. 1) 50% 2) 100% 3) 75% 4) 25% 194. DNA finger printing is a method for Identifying individuals, paternity & forensicwork. The DNA can be obtained from 1) Blood, Semen & Hairs 2) Vaginal fluid 3) 1 & 2 4) None of these. 195. One of the following is sex influence trait. 1) albinism 2) Baldness 3) Blood Group inheitance 4) All 196. Match the following Columns & Choose the correct Answer		B. Hepati	itis		II. Troponema pallidium							
V. Typhi Salmonella A B C D 1) IV V I III 2) IV III V I 3) IV III I I II 4) IV III I I II 4) IV III I I II 192. A man known to be a victim of Haemophilia marries a normal woman, whose father was known to be ableader then this expected that 1) one fourth of their children will be bleeders. 2) All their children will be bleeders. 3) Half of their children will be bleeders. 4) None of these. 193. A Colourblind man married a woman who is the daughter of a Colourblind father and mother is homogenous Normal vision. What is the probability of their daughters being colorblind. 1) 50% 2) 100% 3) 75% 4) 25% 194. DNA finger printing is a method for Identifying individuals, paternity & forensicwork. The DNA can be obtained from 1) Blood, Semen & Hairs 2) Vaginal fluid 3) 1 & 2 4) None of these. 195. One of the following is sex influence trait. 1) albinism 2) Baldness 3) Blood Group inheitance 4) All		C. Tricho	moniasi	is	III. HBV							
A B C D 1) IV V I III 2) IV III V I II 3) IV III I I II 4) IV III I I II 4) IV III I I II 192. A man known to be a victim of Haemophilia marries a normal woman, whose father was known to be ableader then this expected that 1) one fourth of their children will be bleeders. 2) All their children will be bleeders. 3) Half of their children will be bleeders. 4) None of these. 193. A Colourblind man married a woman who is the daughter of a Colourblind father and mother is homogenous Normal vision. What is the probability of their daughters being colorblind. 1) 50% 2) 100% 3) 75% 4) 25% 194. DNA finger printing is a method for Identifying individuals, paternity & forensicwork. The DNA can be obtained from 1) Blood, Semen & Hairs 2) Vaginal fluid 3) 1 & 2 4) None of these. 195. One of the following is sex influence trait. 1) albinism 2) Baldness 3) Blood Group inheitance 4) All		D. Syphli	is		IV. Neisser	ria gonorrle	es					
1) IV V I III 2) IV III V I 3) IV III I I II 4) IV III II I II 4) IV III II I I 192. A man known to be a victim of Haemophilia marries a normal woman, whose father was known to be ableader then this expected that 1) one fourth of their children will be bleeders. 2) All their children will be bleeders. 3) Half of their children will be bleeders 4) None of these. 193. A Colourblind man married a woman who is the daughter of a Colourblind father and mother is homogenous Normal vision. What is the probability of their daughters being colorblind. 1) 50% 2) 100% 3) 75% 4) 25% 194. DNA finger printing is a method for Identifying individuals, paternity & forensicwork. The DNA can be obtained from 1) Blood, Semen & Hairs 2) Vaginal fluid 3) 1 & 2 4) None of these. 195. One of the following is sex influence trait. 1) albinism 2) Baldness 3) Blood Group inheitance 4) All					V. Typhi Sa	lmonella						
2) IV III V I 3) IV III I II 4) IV III II II 4) IV III II I 192. A man known to be a victim of Haemophilia marries a normal woman, whose father was known to be ableader then this expected that 1) one fourth of their children will be bleeders. 2) All their children will be bleeders. 3) Half of their children will be bleeders 4) None of these. 193. A Colourblind man married a woman who is the daughter of a Colourblind father and mother is homogenous Normal vision. What is the probability of their daughters being colorblind. 1) 50% 2) 100% 3) 75% 4) 25% 194. DNA finger printing is a method for Identifying individuals, paternity & forensicwork. The DNA can be obtained from 1) Blood, Semen & Hairs 2) Vaginal fluid 3) 1 & 2 4) None of these. 195. One of the following is sex influence trait. 1) albinism 2) Baldness 3) Blood Group inheitance 4) All												
3) IV III I II 4) IV III II II 192. A man known to be a victim of Haemophilia marries a normal woman, whose father was known to be ableader then this expected that 1) one fourth of their children will be bleeders. 2) All their children will be bleeders. 3) Half of their children will be bleeders 4) None of these. 193. A Colourblind man married a woman who is the daughter of a Colourblind father and mother is homogenous Normal vision. What is the probability of their daughters being colorblind. 1) 50% 2) 100% 3) 75% 4) 25% 194. DNA finger printing is a method for Identifying individuals, paternity & forensicwork. The DNA can be obtained from 1) Blood, Semen & Hairs 2) Vaginal fluid 3) 1 & 2 4) None of these. 195. One of the following is sex influence trait. 1) albinism 2) Baldness 3) Blood Group inheitance 4) All 196. Match the following Columns & Choose the correct Answer		,										
 4) IV III II I 192. A man known to be a victim of Haemophilia marries a normal woman, whose father was known to be ableader then this expected that 1) one fourth of their children will be bleeders. 2) All their children will be bleeders. 3) Half of their children will be bleeders. 4) None of these. 193. A Colourblind man married a woman who is the daughter of a Colourblind father and mother is homogenous Normal vision. What is the probability of their daughters being colorblind. 50% 100% 100%<td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td>												
192. A man known to be a victim of Haemophilia marries a normal woman, whose father was known to be ableader then this expected that 1) one fourth of their children will be bleeders. 2) All their children will be bleeders. 3) Half of their children will be bleeders. 4) None of these. 193. A Colourblind man married a woman who is the daughter of a Colourblind father and mother is homogenous Normal vision. What is the probability of their daughters being colorblind. 1) 50% 2) 100% 3) 75% 4) 25% 194. DNA finger printing is a method for Identifying individuals, paternity & forensicwork. The DNA can be obtained from 1) Blood, Semen & Hairs 2) Vaginal fluid 3) 1 & 2 4) None of these. 195. One of the following is sex influence trait. 1) albinism 2) Baldness 3) Blood Group inheitance 4) All 196. Match the following Columns & Choose the correct Answer		,										
be ableader then this expected that 1) one fourth of their children will be bleeders. 2) All their children will be bleeders. 3) Half of their children will be bleeders 4) None of these. 193. A Colourblind man married a woman who is the daughter of a Colourblind father and mother is homogenous Normal vision. What is the probability of their daughters being colorblind. 1) 50% 2) 100% 3) 75% 4) 25% 194. DNA finger printing is a method for Identifying individuals, paternity & forensicwork. The DNA can be obtained from 1) Blood, Semen & Hairs 2) Vaginal fluid 3) 1 & 2 4) None of these. 195. One of the following is sex influence trait. 1) albinism 2) Baldness 3) Blood Group inheitance 4) All 196. Match the following Columns & Choose the correct Answer	192.	,										
 2) All their children will be bleeders. 3) Half of their children will be bleeders. 4) None of these. 193. A Colourblind man married a woman who is the daughter of a Colourblind father and mother is homogenous Normal vision. What is the probability of their daughters being colorblind. 1) 50% 2) 100% 3) 75% 4) 25% 194. DNA finger printing is a method for Identifying individuals, paternity & forensicwork. The DNA can be obtained from 1) Blood, Semen & Hairs 2) Vaginal fluid 3) 1 & 2 4) None of these. 195. One of the following is sex influence trait. 1) albinism 2) Baldness 3) Blood Group inheitance 4) All 196. Match the following Columns & Choose the correct Answer 						1		,				
3) Half of their children will be bleeders 4) None of these. 193. A Colourblind man married a woman who is the daughter of a Colourblind father and mother is homogenous Normal vision. What is the probability of their daughters being colorblind. 1) 50% 2) 100% 3) 75% 4) 25% 194. DNA finger printing is a method for Identifying individuals, paternity & forensicwork. The DNA can be obtained from 1) Blood, Semen & Hairs 2) Vaginal fluid 3) 1 & 2 4) None of these. 195. One of the following is sex influence trait. 1) albinism 2) Baldness 3) Blood Group inheitance 4) All 196. Match the following Columns & Choose the correct Answer												
 4) None of these. 193. A Colourblind man married a woman who is the daughter of a Colourblind father and mother is homogenous Normal vision. What is the probability of their daughters being colorblind. 1) 50% 2) 100% 3) 75% 4) 25% 194. DNA finger printing is a method for Identifying individuals, paternity & forensicwork. The DNA can be obtained from 1) Blood, Semen & Hairs 2) Vaginal fluid 3) 1 & 2 4) None of these. 195. One of the following is sex influence trait. 1) albinism 2) Baldness 3) Blood Group inheitance 4) All 196. Match the following Columns & Choose the correct Answer 		2) All the										
193. A Colourblind man married a woman who is the daughter of a Colourblind father and mother is homogenous Normal vision. What is the probability of their daughters being colorblind. 1) 50% 2) 100% 3) 75% 4) 25% 194. DNA finger printing is a method for Identifying individuals, paternity & forensicwork. The DNA can be obtained from 1) Blood, Semen & Hairs 2) Vaginal fluid 3) 1 & 2 4) None of these. 195. One of the following is sex influence trait. 1) albinism 2) Baldness 3) Blood Group inheitance 4) All 196. Match the following Columns & Choose the correct Answer												
homogenous Normal vision. What is the probability of their daughters being colorblind. 1) 50% 2) 100% 3) 75% 4) 25% 194. DNA finger printing is a method for Identifying individuals, paternity & forensicwork. The DNA can be obtained from 1) Blood, Semen & Hairs 2) Vaginal fluid 3) 1 & 2 4) None of these. 195. One of the following is sex influence trait. 1) albinism 2) Baldness 3) Blood Group inheitance 4) All 196. Match the following Columns & Choose the correct Answer		4) None	of these	: .								
What is the probability of their daughters being colorblind. 1) 50% 2) 100% 3) 75% 4) 25% 194. DNA finger printing is a method for Identifying individuals, paternity & forensicwork. The DNA can be obtained from 1) Blood, Semen & Hairs 2) Vaginal fluid 3) 1 & 2 4) None of these. 195. One of the following is sex influence trait. 1) albinism 2) Baldness 3) Blood Group inheitance 4) All 196. Match the following Columns & Choose the correct Answer	193.											
1) 50% 2) 100% 3) 75% 4) 25% 194. DNA finger printing is a method for Identifying individuals, paternity & forensicwork. The DNA can be obtained from 1) Blood, Semen & Hairs 2) Vaginal fluid 3) 1 & 2 4) None of these. 195. One of the following is sex influence trait. 1) albinism 2) Baldness 3) Blood Group inheitance 4) All 196. Match the following Columns & Choose the correct Answer		homogen										
 194. DNA finger printing is a method for Identifying individuals, paternity & forensicwork. The DNA can be obtained from Blood, Semen & Hairs 2) Vaginal fluid 1 & 2 None of these. 195. One of the following is sex influence trait. albinism Baldness Blood Group inheitance 4) All 196. Match the following Columns & Choose the correct Answer 		What is t	he proba	ability of	f their daugh	ters being o	colorblind.					
can be obtained from 1) Blood, Semen & Hairs 2) Vaginal fluid 3) 1 & 2 4) None of these. 195. One of the following is sex influence trait. 1) albinism 2) Baldness 3) Blood Group inheitance 4) All 196. Match the following Columns & Choose the correct Answer		/			/		,					
195. One of the following is sex influence trait. 1) albinism 2) Baldness 3) Blood Group inheitance 4) All 196. Match the following Columns & Choose the correct Answer	194.					rensicwork. The DNA						
1) albinism 2) Baldness 3) Blood Group inheitance 4) All 196. Match the following Columns & Choose the correct Answer		1) Blood	, Semen	& Hairs	s 2) Vaginal t	fluid	3) 1 & 2		4) None of these.			
196. Match the following Columns & Choose the correct Answer	195.	One of th	e follow	ing is se	x influence t	rait.						
-		1) albinis	m		2) Baldnes	S	3) Blood G	roup inheita	nce 4) All			
S.NO. Sex Chromosomes Haplord Seb Sex Ratio Phenotype	196.	Match the following Columns & Choose the correct Answer										
		S.NO.	Sex Cl	nromoso	mes	Haplord	Seb	Sex Ratio	Phenotype			
of Auto Seames						of Auto S	leames					
I XX AA 1.0 female												
II XX AA 0.5 female												
III XXY AA 1.0 female IV XXXY AA 1.5 meta female				7								
V XO AAA 0.33 meta male				-								
which one of the above is correct match.				above i	s correct ma			-	··			
1) I, II & III 2) I, II, III & IV 3) I, III, IV, V 4) II, III, IV & V							3) I, III, IV	, V	4) II, III, IV & V			

197.	A woman's father shows IP (Incontinentia pigmenti). But her Mother & Husband are normally
	pigmented. What will be the phenotypic ratio of her children of I.P.

- 1) 50%, Sons
- 2) 50%. daughters
- 3) 100% Sons.
- 4) 1 & 2

198. Match the following & Choose the Correct Answer.

Col	umn-I		Column-II		
A. E	Biogene	etic lav	I. August Weismann		
B. N	Iutatio	n	II. Darwin		
C. C	Germ p	lasm		III. Louis Pasture	
D. P	angen	esis	IV. Ernst Haukle		
				V. Hugo Devries	
	A	В	C	D	
1)	IV	V	II	I	
2)	IV	V	I	II	
3)	IV	V	I	III	
4)	IV	I	II	III	

- 199. Hyper Sensitivity is
 - 1) Produced by Antigen
 - 2) Produced by Immune Complexe called Allergy.
 - 3) Produced by high temperature of the body,
 - 4) None of these.
- 200. Match the following & choose the Correct Answer.

Column-I				Column-II
A. CAT				I. Electro Encephalography
B. E	EG			II. Magnetic Resonance Image
C. M	ſRI			III. Computerised Axial Tomography
D. ECG				IV. Electro Crdio graphy
				V. Electro Angio graphy.
	A	В	C	D
1)	III	II	I	IV
2)	III	I	II	V
3)	III	I	II	IV
4)	III	II	I	V