EAPCET (E) - 2025

(Engineering, Agriculture and Pharmacy Common Entrance Test)

MODEL TEST

CENTRE FOR EDUCATIONAL DEVELOPMENT OF MINORITIES OSMANIA UNIVERSITY

Minorities Welfare Department, Government of Telangana Nizam College Campus, Gunfoundry, Hyderabad – 500001.

MATHEMATICS

				4 10 2 7	
1.	The Coefficient of ex	xpansion of x^6 in the Po	ower Series expantion	of $\frac{x^4 - 12x^2 + 7}{(x^2 + 1)^3}$	
	1) 149	2) –253	3) –145	4) 253	
1.	$1 - \frac{3}{16} + \frac{1.4}{1.2} \left(\frac{3}{16}\right)^2 -$	$\frac{1.4.7}{1.2.3} \left(\frac{3}{16}\right)^3 + \dots$			
	$1)\left(\frac{15}{6}\right)^{2/8}$	$2)\left(\frac{4}{5}\right)^{2/3}$	$3)\left(\frac{7}{4}\right)^{1/16}$	$4)\left(\frac{4}{15}\right)^{-2/5}$	
3.	The number of posi 1) 16	tive divisors of 360 to 2) 15	nultiples of 3 is 3) 24	4) 23	
4.		rent permutations of		med by taking 4 letters at	a time
	1) 210	2) 720	3) 1398	4) 5040	
5.	If $A = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}$ and	$\alpha, \beta \in R$ are such that	at $\alpha A^2 - \beta A = 2I$ the	$en \alpha^2 + \beta =$	
	1) -8	2) 16	3) 12	4) 20	
6.			C be a 3×3 Unit M, Consider the follow	atrix such that AB –C is a ring Statements.	a non-
		$A = \det(BA - C) \det(A)$			
	Statement II: ABD =	= DAB.			
	Which of the absove	Statement is true?			
	1) Statement I is tru	e, but Statement II is	false.		
	2) Statement I is tru	e, but Statement II is	false.		
	3) Both Statement I	and Statement II is t	rue.		
	4) Both Statement I	and Statement II is f	alse.		
7.	If the System of equ K is equal to	ations $x + y + z = 1, x$	+2y+4z=k and $x+$	$4y + 10z = k^2$ is Consister	ıt then
	1) 1, –2	2)-1, 2	3) 1, 2	4)-1,-2	
8.	If $Z = x + i\beta$ satisfies	the equation $ z - z =$	$2i \text{ and } z = \sqrt{\alpha^2 + \beta^2}$	then $z\overline{z} =$	
	1) $\frac{5}{2}$	2) $\frac{25}{4}$	3) $\frac{16}{9}$	4) $\frac{36}{25}$	
9.	If $\cos \alpha$ is the com	non Value of $(-1)^4$ as	nd $(-i)^2$, then $\tan x =$		
	1) –1	2) 1	3) $\sqrt{3}$	4) $\frac{1}{\sqrt{3}}$	
10.	The real part of z th	at satisfies $iz^4 + 1 = 0$	0 is		
	1) $\sin \frac{\pi}{4}$	2) $\cos \frac{\pi}{8}$	3) 0	4) –1	
11.	The quadratic equat	ion whose roots are	sin ² 18° and cos ² 36°	is	

1) $16x^2 - 12x - 1 = 0$ 2) $16x^2 - 12x + 4 = 0$ 3) $16x^2 - 12x + 1 = 0$ 4) $16x^2 + 12x + 1 = 0$

			\mathbf{r}^2 \bot	-14v±0	o o		
12.	If x is real, then the Maximum and M	inimum val	ue of $\frac{x^{-1}}{x^2}$	+2x+3	respe	ctively	
	1) 4,-5 2) 5,-4		3) 9, 3			4) 24, 6	
13.	If α , β , γ are the roots of the equat	ion $2x^3 + 3$	$x^2 - 13x +$	$-6 = 0^{-1}$	then $lpha$	$^{3}+\beta^{3}+\gamma^{3}=$	
	1) $-\frac{161}{8}$ 2) 36		3) 99			4) $-\frac{151}{8}$	
14.	If $2 + 2^{2/3} + 2^{1/3}$ then $x^3 - 6x^2 + 6x$ 1) 3 2) 2	is euqal to	3) 1			4) 0	
15.	The equation $\sin^4 x - (k+3)\sin^2 x$	-k-4=0	has a Solu	tion if			
	1) k > 43) k is any positive integer		2) $-4 \le$ 4) $k = 0$	<i>k</i> ≤ −3			
16.	The range of $f(x) = -\sqrt{-x^2 - 6x}$	5 is					
	1) [0, 2] 2) [-2, 0]		3) [-2, 2	2]		$4)\left[-\infty ,2\right]$	
17.	Let R be the set of all real numbers, l	et $f: R \to$	R be a fur	nction d	efined	by	
	$f(x) = \begin{cases} 2x - 5, & \text{if } x < -3\\ x + 2, & \text{if } -3 \le x < 5\\ 3x + 1, & \text{if } x \ge 5 \end{cases}$						
	Match the following.						
	List-I	List-II					
	A. $f(-5) + f(0) + f(-1) =$ B. $f((f(5)+10f(-3)) =$	I. 16					
		II. 40					
	C. $f(f(-4) =$	III. –32					
	D. $f(f(f(1)))=$	IV12					
	A B C D	V. 19	A	В	С	D	
	A B C D 1) III II V I 3) IV V II I		A 2) V 4) IV	IV	I	III	
	•		4) IV	V	111	1	
18.	If $\frac{x^2 - 2}{(x^2 + 1)(x^2 + 3)} = \frac{Ax + B}{x^2 + 1} + \frac{(x + 1)}{x^2 + 3}$	then D =					
	1) $\frac{-3}{2}$ 2) $\frac{-1}{2}$		3) 2			4) $\frac{5}{2}$	
19.	If $\frac{x^5 - 5}{x^3 + x^2} = f(x) + \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x + 1}$			e of K	for wh		=1 is
20.	1) 3 2) 2 If a , b , c are real numbers such that	t a - b = 1.		3, then	the nur	4) 4 nber of Matrices o	of the

from $A = \begin{bmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{bmatrix}$ such that |A| = -12 is

21.	1) 1 The Mean deviation from	2) 2 m the mean of the discr	3) 3 rete data 1, 3, 4, 7, 11, 18	4) Infinitely many 8, 29, 47, 78 is
	1) 22	2) 24	3) $\frac{176}{9}$	4) $\frac{182}{9}$
22.	The Variance of the data 1) 6.258	a 2, 3, 5, 11, 13, 17, 19 2) 24.25	9 is nearly 3) 4.95	4) 39.71
23.	If x is a Poisson Variate s 3P(x=2) = P(x=4) th	atisfying the Condition	3) 11,75	1, 35.71
	1) $\frac{162}{5e^6}$	2) $\frac{108}{5e^6}$	3) $\frac{324}{5e^6}$	4) $\frac{648}{5e^6}$
24.	A and B are two indepe	indent events $P(A) = \frac{2}{5}$	$\frac{2}{3}$, P(B) = $\frac{1}{3}$	
	Match the following.			
	List - I	List - II		
	A. $P(\overline{A} \cup B)$	I. 2/3		
	B. $P\left(\frac{A}{B}\right)$	II. 11/2		
	C. $P(A \cup B)$	III. 3/5		
	D. $P\left(\frac{\overline{B}}{A}\right)$	IV. 2/5		
		V. 1/3		
	The Correct match is	_		_
	A B C	D	A B C	D
	1) I III IV	II	2) II IV V	I
25.	3) II IV III If two dice are thrown a	V and if Y denotes the su	4) II IV III	I shown up on the faces
23.	of the dice, then mean of			shown up on the faces
	1) 27/4	2) 35/6	3) 41/3	4) 7
26.	If $P(A/B) = \frac{3}{10} P(B/A)$	$=\frac{4}{5}$ and $P(A \cup B) =$	K.P(B), then $\frac{1}{k}$ is equ	al to
	40	40	100	
	1) $\frac{40}{49}$	2) $\frac{40}{43}$	3) $\frac{100}{101}$	4) 1
27.	If $\tan A = \frac{2}{3}$ then $\sin h = \frac{2}{3}$	4A =		
	1) $\frac{8}{27}$	$2) \frac{120}{169}$	3) $\frac{144}{169}$	4) $\frac{16}{27}$
28.	If $\left \sin\alpha - \cos\alpha\right = \frac{3}{4}$ th	en $\left \sec 2\alpha - \tan 2\alpha\right =$		
	1) $\frac{12}{17}$	2) $\frac{4}{\sqrt{23}}$	3) $\frac{3}{\sqrt{23}}$	4) =
		$\sqrt{23}$	$\sqrt{23}$	4) $\frac{1}{\sqrt{23}}$
29.	$\frac{1}{\sin 250^{\circ}} + \frac{\sqrt{3}}{\cos 290^{\circ}} =$			

	1) $\frac{1}{\sqrt{3}}$	2) 4	3) $\frac{4}{\sqrt{3}}$	4) 1
30.	Assertion (A) If A = 15 2B Cot 2C	5°, B=17° and C = 13°	then Ccos 2A + Cos 2B	$+ \cot 2C = \cot 2A \cot 2A$
	Reason (R) In a $\triangle PQR$			
	$\tan \frac{P}{2} \tan \frac{Q}{2} + \tan \frac{Q}{2} \tan$			
31.	The Correct option am 1) (A) is true, (R) is true 2) (A) is true, (R) is true 3) (A) is true but (R) is 4) (A) is false but (R) if The Period Cos (3x + 5)	te and (R) is the correct te but (R) is not the confalse strue.	ct explanation for (A) orrect explanation for (A	A)
	$1) \frac{2\pi}{5}$	2) $\frac{2\pi}{3}$	3) $\frac{2\pi}{15}$	4) $\frac{2\pi}{7}$
32.	$\cos\frac{\pi}{7} - \cos\frac{2\pi}{7} + \cos\frac{3\pi}{7}$	$\frac{\pi}{7}$ - $\cos\frac{4\pi}{7}$ + $\cos\frac{5\pi}{7}$ -	$\cos\frac{6\pi}{7} =$	
	1) 0	2) 3/2	3) 3/4	4) 1
33.	If $\frac{\sin^4 x}{2} + \frac{\cos^4 x}{3} = \frac{1}{5}$	then $27 \sec^6 \alpha + 8 \cos^6 \alpha$	$ec^6 \alpha$	
	1) 250	2) 125	3) 175	4) 350
34.	If $\sin A (A + B) \sin (A - B)$	$-B) + \cos (A + B) \cos$	$(A - B) = \frac{1}{2}$ and $0 < B$	$<\frac{\pi}{2}$ then B =
	1) $\frac{\pi}{6}$	2) $\frac{\pi}{4}$	3) $\frac{\pi}{3}$	4) $\frac{5\pi}{12}$
35.	If $\frac{\sin(x+y)}{\sin(x-y)} = \frac{a+b}{a-b}$ th	$\tan \frac{\tan x}{\tan y} =$		
	1) $\frac{b}{a}$	2) $\frac{a}{b}$	3) <i>ab</i>	4) <i>a</i> ^b
36.		values of k for which	the equation $7\cos x + 3$	$5\sin x = 2k + 1 \text{ has a}$
	solution is 1) 4	2) 6	3) 8	4) 10
37.	In ΔABC , if $a = 7$, $b =$	= 8, c = 9 then $\frac{1}{r_1^2} + \frac{1}{r_2^2}$	$\frac{1}{r_3^2} + \frac{1}{r_3^2} =$	
	1) $\frac{97}{360}$	2) $\frac{5}{72}$	3) $\frac{169}{360}$	4) $\frac{67}{72}$
38.	In ΔABC , if BC is the	hypotenuse, then r_2 +	$-r_3 =$	
	1) $r_1 + r$	2) <i>a</i>	3) $r - r_1$	4) $2(R+r)$
39.	In $\triangle ABC$, if $a = 7$, $b =$	= 10, c = 11 then $\frac{R}{r}$ =		
	1) 14	2) 77	3) $\frac{24}{11}$	4) $\frac{55}{24}$

40.	In-centre of the triangle having the vertices $(1, \sqrt{3})(0,0)(2,0)$ is				
	1) $(1, \frac{\sqrt{3}}{2})$	2) $(\frac{2}{3}, \frac{1}{\sqrt{3}})$	3) $(\frac{2}{3}, \frac{\sqrt{3}}{2})$	4) $(1, \frac{1}{\sqrt{3}})$	
41.	If 4 times the area of a	$\triangle ABC$ is $c^2 - (a-b)^2$	then sinc=		
	1) $\frac{\sqrt{3}}{2}$	2) $\frac{1}{\sqrt{2}}$	3) $\frac{1}{2}$	4) 1	
42.	In $\triangle ABC$, if $rr_2 = r_1r_3$	then cos2B=			
	1) –1	2) 1	3) 0	4) $\frac{1}{2}$	
43.	If $\sin^{-1}\left(\frac{x}{5}\right) + \cos ec^{-1}$	$\left(\frac{5}{4}\right) = \frac{\pi}{2}$ then $5 + x =$			
	1) 6	2) 5	3) 7	4) 8	
44.	$\sec\left(\tan^{-1}\left(\frac{y}{2}\right)\right) =$				
	$1) \sqrt{\frac{4+y^2}{2}}$	$2) \sqrt{\frac{4-y^2}{2}}$	3) $\frac{\sqrt{4+y^2}}{2}$	4) $\frac{\sqrt{4-y^2}}{2}$	
45.	If $x = \log\left(y + \sqrt{y^2 + 1}\right)$	then $y =$			
46.	1) $\tanh x$ If $\sinh x = \tan A$, then t	$2) \coth x$ $\tanh x =$	3) $\sinh x$	4) $\cosh x$	
	1) sin A	2) cos A	3) sec A	4) cosec A	
47.	If $\sinh x = \frac{3}{4}$ and $\cosh x$	$y = \frac{5}{3}$, then $x + y =$			
48.	1) log 2 A rod of length 6 units midpoint of the rod is	2) log 6 slides with its ends on	3) log 3 the coordinate axes. The	4) log 5 he locus of the	
	1) $x^2 + y^2 = 9$	2) $x + y = 3$	$3) x^2 + y^2 = 36$	4) $x + y = 6$	
49.	The transformed equation	on of $3x^2 - 4xy = r^2$.	When the coordinate ax	xes are related through	
	an angle $tan^{-1}(2)$ is				
	1) $x^2 - 4y^2 = r^2$	2) $2xy + r^2 = 0$	$3) 4y^2 - x^2 = r^2$	$4) xy = r^2$	
50.	If $ax^2 - xy - 3y^2 - 5x +$ then $a - c =$	20y + c = 0 represents	s a pair of lines passing	through the points (2, 3)	
	1) –23	2) 27	3) 23	4) –27	
51.	If the lines $x + y - 1 = 0$				
52.	1) 2 If P is a part of equidister	2) 13/2 ant from all the vertices	3) -13/2 A (-1,3), B(3,5), C(5,7	4) -2) of $\triangle ABC$, then $PA =$	

	1) 11	2) $\sqrt{140}$	3) 13	4) $\sqrt{130}$
53.	IF (h, k) is the image of t	the point $(2, -3)$ with re	spect to the line line $5x$	-3y = 2, then $h + k =$
	1) –3	2) -3/34	3) -3/34	4) 5
54.	The points A (2, 1) B (3, on CD produced, then 5		es of the rectangle ABCI	O. If the point $P(3, 4)$ lies
	1) 41		3) 45	4) –15
55.				Common line, then $a = \frac{1}{2}$
56.	1) 1/2 If the Circle passing the	2) 1 rough (1 -2) has r - 1		4) 4
50.	radius of the Circle is	$(1, 2) \operatorname{mas} \lambda $	y = 2 and $2x + 3y = 14$	is its diameter, then the
	1) 2 If the angle between the	2) 3	3) 3	4) 5
57.	If the angle between the =	e Circles $x^2 + y^2 - 2x - 4$	$4y + C = $ and $x^2 + y^2 - 4x -$	$-2y + 4 = 0$ is 60° then C
	1) $\frac{3 \pm \sqrt{5}}{2}$	2) $\frac{6 \pm \sqrt{5}}{2}$	3) $\frac{7 \pm \sqrt{5}}{2}$	4) $\frac{9 \pm \sqrt{5}}{2}$
58.	Let the Circle $S = x^2 + y^2$ Let (2, 4) be a point on areas is			and the position Y-axis. n the difference of their
	1) 104π	2) 96π	3) 9π	4) 41π
59.	If the angle between the	Circles $x^2 + y^2 - 4x - 6$	$6y + K = 0 \text{ and } x^2 + y^2$	$+8x-4y+11=0$ is $\frac{\pi}{2}$,
	then k =			
	1) –3	2) 3	3) –15	4) 15
60.	The Value of C such that	at the line $y = 4x + C$ t	ouches the ellipse $\frac{x^2}{4}$ +	$\frac{y^2}{1} = 1 \text{ is}$
	1) ±13	2) ±1	3) $\pm \sqrt{65}$	4) $\pm \sqrt{74}$
61.	The Cartesian equation of	of the Parabola $x = -2$	$+2t^2$, $y = 2 + 4t$ is	
	1) $y^2 - 8x - 4y + 12 = 0$		2) $y^2 - 8x - 4y - 12 = 0$	0
	3) $y^2 + 8x - 4y - 12 = 0$)	4) $y^2 - 8x + 4y - 12 =$	0
62.	The equation of hyperb	ole, whose eccentricity	y is $\sqrt{2}$ and whose foci	are 16 units apart, is
	1) $9x^2 - 4y^2 = 36$	$2) \ 2x^2 - 3y^2 = 37$	3) $x^2 - y^2 = 16$	4) $x^2 - y^2 = 32$
63.	Let $a = 2i - 3j + k$, $b = i$	i+2j-3k, $C=i-j$ and	$\operatorname{ad} d = i + j + xk. \text{ If } (a \times$	$b) \times C$ is \perp to d , then x
	is equal to	2) 2	2) 2/2	4) 1
64.	1) $3/2$ If a , b and c are three nor	- 2) 2 n-Collinear points and .	3) $2/3$ ka + 2b + 3c is a point in	4) 1 the plane of a b c then
0	K.	ar commean points and		i die piane of a, o, e dien
	1) 4	2) 5	3) –5	4) -4
65.	If $OA = 6i + 3j - 4k$, OF then the height of the p			lges of a parallelopiped,
	1) 85/3	2) $\sqrt[5]{\sqrt{32}}$	3) $\frac{85}{\sqrt{257}}$	4) $\frac{17}{\sqrt{6}}$

66. If (2,-1,3) is the fort of perpendicular drawn from the origin to a plane, then the equation of that Plane is.

1)
$$2x + y - 3z + 6 = 0$$

2)
$$2x - y + 3z - 14 = 0$$

3)
$$2x - y + 3z - 13 = 0$$

4)
$$2x + y + 3z - 10 = 0$$

67. If
$$f(x) = -(\sin^2 + \cos^5 x)$$
 then $\lim_{x \to 0} \frac{1}{x} f'(x)$

1) exist and is equal to O

2) exist and is equal to 7

3) exist and is equal to 3

4) does not exist.

68.
$$Lt_{x\to 0} \frac{1-\cos(1-\cos x)}{\sin^2 x}$$

1) 1/2

- 2) 1/4
- 3) 1/6
- 4) 1/8

69.
$$Lt_{x \to \infty} x \left(\log \left(1 + \frac{x}{2} \right) - \log \frac{x}{2} \right)$$

1) 0

2) 1

- 3) 2
- 4) e

70. If
$$2x^2 + 3x - y^2 + 4x - 5y + 6 = 0$$
 then $\frac{dy}{dx}$ at $(x, y) = (0, -2)$ is

1) 1

- $2)_{-1}$
- 3) 7/2
- 4) 0

71. If
$$f(x) = \frac{1 + \sec x}{2(\sec x - 1)}$$
 for $0 < x < \frac{\pi}{2}$ and $f'(x) = f(x).g(x)$ then $g(x) = \frac{\pi}{2}$

- 1) $\csc x$
- 2) -cosec x
- 3) $2\csc x$
- 4) $-2\csc x$

72. An angle between the curve
$$x^2 - y^2 = 4$$
 and $x^2 + y^2 = 4\sqrt{2}$

1) $\frac{\pi}{6}$

- 2) $\frac{\pi}{4}$
- 3) $\pi/2$
- 4) $\frac{\pi}{2}$

73. Slope of the tangent at (1, 2) to the curve
$$x = t^2 - 7t + 7$$
 and $y = t^2 - 4t - 10$ is

1) $\frac{8}{5}$

- 2) $\frac{5}{8}$
- 3) $-\frac{8}{5}$
- 4) $-\frac{5}{8}$

$$74. \qquad \int \frac{dx}{\sqrt{\left(5+2x+x^2\right)^3}} =$$

1)
$$\frac{1}{4} \int \frac{1}{\sqrt{5+2x+x^2}} + c$$
 2) $\int \frac{1}{\sqrt{5+2x+x^2}} + c$ 3) $\frac{x+1}{\sqrt{5+2x+x^2}} + C$ 4) $\frac{1}{4} \frac{x+1}{\sqrt{5+2x+x}} + C$

- 75. Let $\operatorname{In} = \int \sec^n x dx$ If $5I_6 4I_4 = f(x)$ then $f\left(\frac{\pi}{4}\right) =$
 - 1) 2

2) 4

3)]

4) 4/5

$$76. \quad \int_{0}^{\pi/2} \sin^4\theta \cos^3\theta d\theta =$$

- 1) 1/35
- 2) 2/35
- 3) 4/35
- 4) 8/35

77.
$$\int_{0}^{4} ||x-2|-x|| dx =$$

1)2

2) 3

4) 6

4) 12

78. If
$$y = f(x)$$
 is the solution of the differental equation $x \frac{dy}{dx} = x^2 + 3y$, $x > 0$, $y(2) = 4$, then $f(x) = x^2 + 3y$.

1)	48

4) 36

The solution of the differental equation $(x+2y^3)\frac{dy}{dx} = y$ is 79.

1)
$$x = v^3 + c$$

2)
$$x = y^3 + cy$$
 3) $y = x^3 + c$

3)
$$y = x^3 + a^3$$

4)
$$y = x^3 + cx + d$$

The differental equation for which $y = ax^2 + bx = c$ is the general solution is 80.

1)
$$\frac{d^4y}{dx^4} = 0$$

2)
$$\frac{d^3y}{dx^3} = 0$$

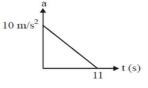
$$3) \frac{d^5y}{dx^5} = 0$$

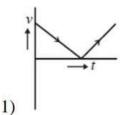
4)
$$\frac{d^3y}{dx^3} + \frac{d^4y}{dx^4} = 0$$

PHYSICS

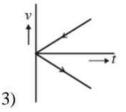
81. In $S = a + bt + ct^2$, S is measured in meters and t in seconds. The unit of c is

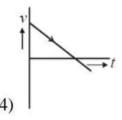
4) No units


A particle starts from rest. Its acceleration (a) versus time (t) graph 82. is as shown in the figure. The maximum speed of the particle will


 $2)55 \, \text{m/s}$

$$3)550 \text{ m/s}$$


 $4)660 \, \text{m/s}$



83. A ball is thrown vertically upwards. Which of the following graphs represent velocity-time graph of the ball during its flight? (air resistance is neglected)

2)

84. As shown in figure the tension in the horizontal cord is 30 N. The weight W and tension in the string OA in Newtons are

1)
$$30\sqrt{3},30$$

2)
$$30\sqrt{3},60$$

3)
$$60\sqrt{3},30$$

2)
$$30\sqrt{3}$$
, 60 3) $60\sqrt{3}$, 30 4) None of these

85. A ball is thrown from ground level so as to just clear a wall 4 metres high at a distance of 4 metres and falls at a distance of 14 metres from the wall. The magnitude of velocity of the ball will be

1)
$$\sqrt{182}m/s$$

2)
$$\sqrt{175}m/s$$

3)
$$\sqrt{165}m/s$$

4)
$$\sqrt{155}m/s$$

- A particle is moving in a circular path with velocity varying with time as $v = 1.5t^2 + 2t$. If the radius 86. of circular path is 2 cm, the angular acceleration at t = 2 sec will be
 - 1) $4 rad/sec^2$
- $2) 40 rad/sec^2$
- 3) $400 \, rad/sec^2$
- 4) 0.4 rad/sec²⁸
- A body of mass m tied at the end of a string of length is projected with velocity $\sqrt{4\ell g}$, at what 87. height will it leave the circular path

1)
$$\frac{5}{3}\ell$$

2)
$$\frac{3}{5}\ell$$

3)
$$\frac{1}{3}\ell$$

4)
$$\frac{2}{3}\ell$$

- 88. The equivalent resistance between A and B is
 - 1) $16/3\Omega$
- $2) 16\Omega$
- $3) 8\Omega$
- 4) $3/16\Omega$
- 89. The magnitude of the force (in Newton) acting on a body varies with time t (in microsecond) as shown in fig. AB, BC, and CD are straight line segments. The magnitude of the total impulse on the body from t=4 μ s to to 16 μ s is

	1) 5×100 ⁻⁴ <i>N.s</i>	2) 5×	$10^{-3} N.s$	3) $5 \times 10^{-5} N.s$	4) $5 \times 10^{-2} N.s$
90.	in fig. The tension	s in the string co	nnecting weights	a a string passing over a s A to B and B to C will a	- · · · · · · · · · · · · · · · · · · ·
	1) $\frac{2}{3}mg$, $\frac{2}{3}mg$ 2	$\frac{2}{3}mg, \frac{1}{3}mg = 3$	3) $\frac{1}{3}mg, \frac{2}{3}mg$	4) $\frac{3}{2}mg, \frac{3}{4}mg$	
91.	& 0.2 The minimu	um horizontal for	rce required to st	co-efficient of static & kart the motion is applied 2nd second is $(g = 10n)$	and if it is continued,
	1) $8N$, $8ms^{-1}$	2) 8N	4 ms^{-1}	3) 8N, 2 ms^{-1}	4) 8N, zero
92.		ions are 1 hour ar		n the same direction in ively. The radius of S ₁ , i	
	1) $\pi \times 10^4$ km/hr	2) $\pi/3$	$\times 10^4$ km/hr	3) $2\pi \times 10^4$ km/hr	4) $\pi/2 \times 10^4$ km/hr
93.		•	•	n long and weighs 15.6> of young's modulus of e	•
	1) 1.96×10 ¹¹ N/m	2) 19.	$6 \times 10^{11} \ N/m^2$	3) 196×10 ¹¹ N/m ²	2 4) None of these
94.				I_1 to V_2 and then compressure is P_3 . The total work	
	1) $P_3 > P_1$, $W > 0$	$2) P_3$	$< P_1, W < 0$	3) $P_3 > P_1, W < 0$	4) $P_3 = P_1$, $W = 0$
95.	_	-		nakes an angle with a large density σ of the sheet is	
	1) $\sin \theta$	2) $\tan \theta$	3) $\cos \theta$	4) $\cot \theta$	
96.	switch S closed. T filled with a dielection	The switch is now ctric of dielectric	v opened and the constant 3. Wha	plate capacitors conne free space between the at will be the ratio of tot fuction of the dielectric	plates of capacitors is al electrostatic energy
	1) 3:1	2)5:1	3)3:5	4)5:3	
97.	In the fig. shown, internal resistance		rrent through 3 ol	hm resistor. The emf of	battery is 2 volt and its
	1) 0.33 amp	2) 0.44 amp	3) 1.22 amp	4) 0.88 amp	
98.				gnetic moment M. The It will have a magnetic	•
	1) M	2) $\frac{4}{\pi^2}$	- M	3) $\frac{4}{\pi}M$	4) $\frac{\pi}{4}M$
99.				ch the north pole of a m Then excess positive ch	
100.		the primary coil	ne of the plates a of a circuit is red ance is 3H, the ind	a and b luced to zero at a unifor duced e. m.f. in the seco 3) 2 kV	
101.	An alternating cur	rrent is given by	the equation $i = i$	$i_1 \cos \omega t + i_2 \sin \omega t$. The	er.m.s. current is

given by

1)
$$\frac{1}{\sqrt{2}}(i_1+i_2)$$

2)
$$\frac{1}{\sqrt{2}}(i_1+i_2)^2$$

2)
$$\frac{1}{\sqrt{2}}(i_1+i_2)^2$$
 3) $\frac{1}{\sqrt{2}}(i_1^2+i_2^2)^{1/2}$ 4) $\frac{1}{2}(i_1^2+i_2^2)^{1/2}$

4)
$$\frac{1}{2}(i_1^2+i_2^2)^{1/2}$$

102. A light beam travelling in the X-direction is described by the electric field E_v, (300V/m) $\sin \omega (t - x/c)$. An electron is constrained to move along the Y - direction with a speed of 2.0×10^7 m/s. The maximum magnetic force (in N) on the electron is.

1)
$$3.2 \times 10^{-18}$$

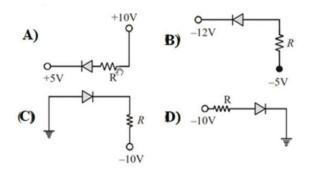
103. In Bohr model of atom an electron of charge (-e) and mass m is revolving around a nucleus of charge +ze. If \overline{L} is the orbital angular momentum of electron, then its magnetic moment is given by

$$1) - \frac{e}{2m}\overline{L}$$

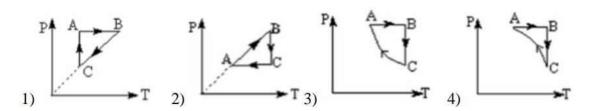
2)
$$\frac{e}{2m}\overline{L}$$

3)
$$\frac{-Ze}{2m}\overline{L}$$

4)
$$\frac{Ze}{2m}\overline{L}$$


Energy levels A, B, C of a certain atom corresponding to increasing values of energy i. e. $E_A < E_B$ 104. $< E_C$. If $\lambda_1, \lambda_2, \lambda_3$ are the wavelengths of radiations corresponding to the transitions C to B, B to A and C to A respectively, which of the following statements is correct?

1)
$$\lambda_3 = \lambda_1 + \lambda_2$$


$$2) \lambda_3 = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$$

2)
$$\lambda_3 = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$$
 3) $\lambda_1 + \lambda_2 + \lambda_3 = 0$ 4) $\lambda_3^2 + \lambda_1^2 + \lambda_2^2$

105. In the given figure, the diodes in forward biased are

- 1) A, B, C only
- 2) B, C only
- 3) A, C only
- 4) A only
- An ideal gas undergoes a thermodynamics cycle as shown in figure. Which of the following graphs 106. represents the same cycle?

- A uniform rope of mass m and length L is hung freely from stationary ceiling. If the cross 107. sectional area of rope is A and Young's modulus Y, then net elongation in the rope due to its own weight
 - 1) $\frac{mgL}{4V}$

- 2) $\frac{mgL}{2 \Delta V}$
- 3) $\frac{mgL}{3AY}$
- 4) $\frac{mgL}{4 4 V}$
- Two soap bubbles to form a single large drop (r = radius of small bubbles R = radius of large 108. drop)

Column: I

- A) surface energy in the process
- B) pressure of the soap bubble inside will be
- C) temperature of drop will be
- D) radius of final single drop
- 1) A-Q,B-Q,C-S,D-P
- 3) A-P,B-Q,C-P,D-S

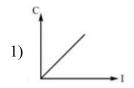
Column - II

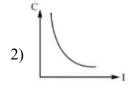
- P) $2^{1/3}$ r
- Q) Decreases
- R) $4^{1/3}$ r
- S) increases.
- 2) A-Q,B-P,C-S,D-P
- 4) A-P,B-Q,C-P,D-S
- 109. In a photo electric experiment, I(current)-V (voltage) graph is as shown. Curves a,b,c correspond to three different metal surfaces irradiated with monochromatic light of same frequency. Assuming the ratio of number of electrons emitted per second to the number of photons incident per second is the same for all the three surfaces, choose the INCORRECT statement:
 - 1) the work function of metals b and c are equal
 - 2) the intensities of light incident on a and b are same
 - 3) the work functions of metals a and b are not equal
 - 4) the intensities of light incident on a, b and c are all different
- 110. The value of L, C and R in an LCR series circuit are 4 mH, 40 pF and 100_{Ω} respectively. The quality factor of the circuit is
 - 1) 10,000
- 2) 100

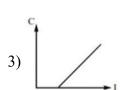
- 3) 1000
- 4) 10
- 111. Two coherent sources of light emit waves with wavelength with constant phase difference of 180°. The intensity due to each at a point on a screen is I. At a point on the screen where the path

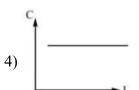
difference between two waves is $\frac{3\lambda}{2}$ the total intensity will be:

1) $2I_{0}$


 $2) 4I_{0}$


3) $6I_{0}$


- 4) $3I_{0}$
- 112. Statement A: A diver under water, looks obliquely at a fisherman standing on the bank of a lake. The fisherman look shorter to the diver than what he actually is


Statement - B: A convex mirror always produces a virtual image independent of location of the real object

- 1) Both statements A & B are true 2) Statement A is true and Statement B is false
- 3) Statement A is false and Statement B is true 4) Both statements A & B are false
- 113. In photoelectric effect experiment, the intensity of light is varied by changing the distance of light source from emitter. Which of the following graphs depict he variation of photoelectric current 'C' with intensity of light 'I'?

114. Assertion (A): The Bohr model is not applicable to atoms having many electrons.

Reason (R): In atoms having many electrons, each electron interacts not only with positively charged nucleus but also with all other electrons.

- 1) Both assertion and reason are true and reason is correct explanations of assertion.
- 2) Both assertion and reason are true but reason is not correct explanation of essertion.
- 3) Assertion is true and reason is false
- 4) Assertion is false and reason is true

115.	The combination of gates shown in the diagram is equivalent to					
	1) OR	2) AND				
	3) NAND	4) NOR				
116.	Two identical capacitors hand the other to V2. If they of the combined system is	_	_	_		
	$1) \frac{1}{4}C(V_1^2 - V_2^2)$	2) $\frac{1}{4}C(V_1^2 + V_2^2)$ 3)	$(\frac{1}{4}C(V_1 - V_2)^2)$	$\frac{1}{4}C(V_1 + V_2)^2$		
117.	Some relations and laws relations in column B. Match	_	olumn A, While the rease	ons behind them are		
	Column - I	Column - II				
	(a) Stoke's law energy	e) Surface potenti	al			
	(b) Equation of continuity f) Viscosity					
	(c) Bernoulli's theorem	g) Conservation of	mass			
	(d) Velocity efflux h) Conservation of energy					
	1) (a) $-$ (e), (b) $-$ (f), (c) $-$ (g), (d) $-$ (h) 2) (a) $-$ (f), (b) $-$ (h), (c) $-$ (g), (d) $-$ (e)					
	3) (a) $-$ (f), (b) $-$ (g), (c) $-$	-(h), (d) - (e) 4) (a) -	(e), (b) - (h), (c) - (g)	(d)-(f)		
118.	When two identical batterior R, the rate of heat produce R, the rate is P_2 . If $P_1=2.25$	d in R is P ₁ . When the sam				
	1) 2Ω	2) 4Ω	3) 10Ω	4) 12Ω		
119.	If θ is the angle of projection is	on and H, R are the maxim	um height, range of a pr	rojectile, then $\operatorname{Tan} \theta$		
	1) 4H/R	2) 4R/H	,	4) 2R/H		
120.	The force per unit length on a wire carrying current of 8A making an angle of 30° with a uniform magnetic field of 0.15 T is					
	1) 1.2 N	2) 1.02 N CHEMISTRY	3) 0.6 N	4) 2.4 N		
121.	A mixture of gases contain the two gases in the mixtur		tio of 1:4 (w/w). What	is the molar ratio of		
	1) 16:1	2) 2 : 1	3) 1 : 4	4) 4:1		
122.	In H-atom spectrum electronspectral lines, number of lines	• •				
	1) 10, 4, 3	2) 15,0,4	3) 15, 4, 5	4) 10,0,3		
123.	The angular momentum of	felectron in 'd' orbital is equ	ıal to:			
	1) $2\sqrt{3}h$	2) h	3) $\sqrt{6}h$	4) $\sqrt{2}h$		
124.	Which of the following is	correct with respect to -I ef	fect of the substituents?	[R=alkyl]		
	1) $-NH_{2} > -OR > -F$	•	2) -NR ₂ < -OR < -			
	3) $-NH_2 < -OR < -F$		4) $-NR_2 > -OR > 0$			
	-		<u> </u>			

125.	The species, having bond	angles of 120° is:				
	1) PH ₃	(b) CIF ₃	(c) NC1 ₃	BCl ₃		
126.	The species Ar, K ⁺ and Ca increase?	²⁺ contain the same numbe	er of electrons. In which	h order do their radii		
	1) $Ca^{2+} < K^+ < Ar$	2) $K^+ < Ar < Ca^{2+}$				
	3) $Ar < K^+ < Ca^{2+}$	4) $Ca^{2+} < Ar < K^+$				
127.	The solubility of BaSO ₄ , in water is $2.42 \times 10^{-3} \text{gL}^{-1}$ at 298K. The value of solubility product (K _{sp}) will be [Given molar mass of BaSO ₄ = 233 g mol ⁻¹]					
	1) $1.08 \times 10^{-2} mol^2 L^{-1}$					
	3) $1.08 \times 10^{-14} mol^2 L^{-2}$	4) 1.08 x 10 ⁻⁸ mol ² L ⁻²				
128.	What is the activation ener 20°C to 35°C? (R= 8.314	gy for a reaction if its rate d $J \mod^{-1} K^{-1}$	oubles when the temp	erature is raised from		
	1) 342 kJ mol ⁻¹	2) 269 kJ mol ⁻¹	3) 34.7 kJ mol ⁻¹	4) 15.1 kJ mol ⁻¹		
129.	In which of the following property indicated against	options the order of arrang	gement does not agree	with the variation of		
	1) I < Br < Cl < F (increasing 2) Li < Na < K < Rb (increasing 3) Al ³⁺ < Mg ²⁺ < Na ⁺ < F ⁻ (4) B < C < N < O (increasing 4)	easing metallic radius)				
130.	Aqueous solution of which	n of the following compour	nds is the best conductor	or of electric current?		
	1) Hydrochloric acid, HC	I	2) Ammonia, NH ₃			
	3) Fructose, C ₆ H ₁₂ O ₆		4) Acetic acid, C ₂ I	H_4O_2		
131.		action is 0.04 mol L^{-1} s ⁻¹ he reaction. The half-life pe				
	1) 44.1 s	2) 54.1 s	3) 24.1 s	4) 34.1 s		
132.	In acidic medium, H_2O_2 changes $Cr_2O_7^{2-}$ to CrO_5 which has two (-O-O-) bonds. Oxidation state of Cr in CrO_5 is:					
	1) +5	2) +3	3)+6	4) -10		
133.	The reaction of H ₂ O ₂ with	hydrogen sulphide is an ex	cample of reaction	:		
	1) addition	2) oxidation	3) reduction	4) redox acidic		
134.	The enthalpy of vaporization of $H_2O(l)$ is x kJ/mol and enthalpy of formation of water vapour y kJ/mol. Enthalpy of formation of $H_2O(l)$, would be					
	1) $(y - x)$ kJ mol ⁻¹	2) $(x - y)$ kJ mol ⁻¹	3) $(x + y)$ kJ mol ⁻¹	4) (2 <i>x</i> – <i>y</i>) kJ mol ⁻¹		
135.	Equal volumes of four acconcentration of hydrogen	eid solutions having pH 1, ion in the mixture of.	, 2, 3 and 4 are mixed	l in a container. The		
	1) $4.25 \times 10^{-4} \mathrm{M}$	2) $2.78 \times 10^{-2} \mathrm{M}$	3) $2.30 \times 10^{-3} \text{ M}$	4) $1.35 \times 10^{-2} \mathrm{M}$		
136.	A button cell used in watch	nes functions as following:				
	Zn(s) + Ag2O(s) + H2O(l)	$\rightarrow 2 \operatorname{Ag}(s) + \operatorname{Zn}^{2+}(aq) + 2$	$0\mathrm{H}^-(aq)$			
	If half-cell potentials are:	$\operatorname{Zn^{2+}}(aq) + 2e^{-}\operatorname{Zn}(s) E^{\circ}$	=-0.76 V			

 $Ag_2O(s) + H_2O(l) + 2e^- \rightarrow 2Ag(s) + 2OH^-(aq), E^\circ = 0.34 \text{ V}$

The cell potential will be:

1) 1.10 V

2) 0.42 V

3) 0.84 V

4) 1.34 V

The correct order of increasing bond length of C–H, C–O, C–C and C = C is: 137.

1) C - C < C = C < C - O < C - H

2) C - C < C - H < C - C < C = C

3) C - H < C - O < C - C < C = C

4) C - H < C = C < C - O < C - C

138. Which one of the following orders is correct for the bond dissociation enthalpy of halogen molecules?

1) $Br_2 > I_2 > F_2 > Cl_2$

2) $F_2 Cl_2 > Br_2 > I_2$ 3) $I_2 > Br_2 > Cl_2 > F_2$ 4) $Cl_2 > Br_2 > F_2 > I_2$

Gadolinium belongs to 4f series. It's atomic number is 64. Which of the following is the correct 139. electronic configuration of gadolinium?

1) [Xe] $4f^8 6s^2$

2) [Xe] $4f^9 5s^1$

3) [Xe] $4f^7 5d^1 6s^2$ 4) [Xe] $4f^6 5d^2 6s^2$

Propionic acid with Br₂/P yields a dibromo product. Its structure would be: 140.

1) CH₂Br—CHBr—COOH

2) H—C—CH,COOH Br

3) CH₂Br—CH₂—COBr

At 25°C and 730 mm pressure, 380 ml of dry oxygen was collected. If the temperature is constant, 141. what volume will the oxygen occupy at 760 mm pressure?

1) 365 ml

(b) 2 ml

(c) 10 ml

 $(d) 20 \, ml$

142.

Predict the product C obtained in the CH₃CH₂—C=CH+HCl \longrightarrow B $\stackrel{\text{HI}}{\longrightarrow}$ C

1) CH₃—CH—CH₂CH₂I

2) CH₃—CH₂—CH₂—CH

3) CH₃—CH₂—CH—CH₂CI

4) CH₃CH₂—C—CH₃

143.

(i) CH₂CH₂OH

(ii) CH_3COCH_3 (iii) CH_3 —CHOH (iv) CH_3OH

Which of the above compound(s), on being warmed with iodine solution and NaOH, will give iodoform?

1) (i), (iii) and (iv)

2) Only (ii)

3) (i), (ii) and (iii)

4) (i) and (ii)

144. Consider the following statements.

(1) XeF₄ is colourless crystalline solid and undergoes sub-limation.

(2) XeOF ₄ is colourless v			
(3) XeO ₄ is colourless ex			
The correct statements a			
	2) (2) and (3) only		
	ratio of pentane to hexand Hg for pentane and 120 ase would be:		- •
1) 0.549	2) 0.200	3) 0.786	4) 0.478
One mole of Al3 ⁺ discha	rged completely by using	g charge?	
1) 3F	2) 1F	3) 0.3F	4) 2F
In which of the following hybridised?	ng molecules/ions BF ₃ ,	NO_2^- , NH_2^- and H_2O , t	the central atom is sp ²
1) NO_2^- and NH_2^-	2) NH_2^- and H_2O	3) NO_2^- and $H_2O_2^-$	O 4)BF ₃ and NO_2^-
Which one of the follow	ing is a free-radical substi	tution reaction?	
1) $+ AgNO_2 \rightarrow $	CH ₂ NO ₂	2) CH ₃ CHO+HCN	—→CH ₃ —CH—CN OH
3) CH ₃ + Cl ₂ Boiling	· CH ₂ CI	4) + CH ₂ Cl	I anhy CH ₃
Consider the following re	eaction:		
Ethanol $\xrightarrow{PBr_3} X$ \xrightarrow{al}	$Y \xrightarrow{\text{H}_2\text{SO}_4, \text{room tempe}} H_2\text{O, heat}$	$\xrightarrow{\text{erature}} Z$	
1) CH ₃ CH ₂ O—CH—C	'H ₃	2) CH ₃ —CH ₂ —	-O—SO ₃ H
3) CH ₃ CH ₂ OH		4) CH2=CH2	
Which of the following is	s an ideal solution?		
1) Ethanol + water		2) Nitric acid + v	vater
3) Ethanol + benzene		4) Benzene + tolu	uene
The efficiency of a fuel c	ell is given by:		
ΔG	ΔG	ΔS	ΔH
1) $\frac{\Delta G}{\Delta S}$	2) $\frac{\Delta G}{\Delta H}$	3) $\frac{\Delta S}{\Delta G}$	4) $\frac{\Delta H}{\Delta G}$
Which of the following v	vill not show cis-trans ison	merism?	
1) CH CH CH	TT.	2) CH CH	CII_CII CII CII

152.

145.

146.

147.

148.

149.

150.

151.

1) CH₃—CH = CH—CH₃
3) CH₃—C = CH—CH₂—CH₃
|
CH₃ 2) CH₃—CH₂—CH=CH—CH₂CH₃
4) CH₃—C—CH = CH—CH₂—CH₃

CH₃

153. Among the following compounds, one that is most reactive towards electrophilic nitration is

- 1) benzoic acid. 2) nitrobenzene. 3) toluene. 4) benzene.
- At 25°C, the dissociation constant of a base, BOH is 1.0×10^{-12} . The concentration of hydroxyl 154. ions in 0.01 M aqueous solution of the base would be:
 - 1) $2.0 \times 10^{-6} \, \text{mol L}^{-1}$ 2) $1.0 \times 10^{-5} \text{ mol L}^{-1}$

(c) $1.0 \times 10^{-6} \text{ mol } L^{-1}$ (d) $1.0 \times 10^{-7} \, \text{mol L}^{-1}$

155. If the enthalpy change for transition of liquid water to steam is 30 kJmol⁻¹ at 27°C. The entropy change for the process would be:

1) 1.0J mol⁻¹ K⁻¹

2) 0.1 J mol⁻¹ K⁻¹

3) $100 \text{ J mol}^{-1} \text{ K}^{-1}$ 4) $10 \text{ J mol}^{-1} \text{ K}^{-1}$

156. In which electrophilic substitution reaction slow step is breaking of C—H bond?

1) Sulphonation of benzene 2) Nitration of benzene

3) Chlorination of benzene 4) All of these

Acetone and ethanol can be chemically distinguished by: 157.

(a) I₂/NaOH

(b) 2,4 DNP

3) Tollen's reagent 4) Both (a) and (b)

158. In which of the following reaction C—C bond formation does not take place?

(1) Gattermann-Koch reaction

(2) Étard reaction

(3) Benzoin condensation

(4) Swarts reaction

159. The value of Λ AH and AS for the reaction,

> $C_{\text{(gradually)}}(s) + CO_2(g) \rightarrow 2CO(g)$ are 170 kJ and 170 JK⁻¹, respectively. This reaction will be spontaneous at:

1) 710 K

2) 910 K

3) 1110 K

4) 510 K

160. The experimental data for the reaction $2A + B_2 \longrightarrow 2AB$

> Exp. [A] [B] Rate (Ms⁻¹)

0.50 0.50 1.6×10^{-4}

1. 2. 0.50 3.2×10^{-4} 1.00

3. 3.2×10^{-4} 1.00 1.00

The rate equation for the above data is:

1) rate = $k[B_3]$

2) rate = $k[B_2]^2$

3) rate = $k[A]^2[B]^2$ (c) rate = $k[A]^2[B]$