NEET – 2024

MODEL TEST

CENTRE FOR EDUCATIONAL DEVELOPMENT OF MINORITIES Osmania University

Minorities Welfare Department, Government of Telangana Nizam College Campus, Gunfoundry, Hyderabad – 500001.

PHYSICS

SECTION - A

- 1. In $S = a + bt + ct^2$, S is measured in meters and t in seconds. The unit of c is 1) ms^{-2} 2) m 3) ms⁻¹
- A particle starts from rest. Its acceleration (a) versus time (t) graph is as shown in the figure. The maximum speed of the particle will be 1) 110 m/s
 3) 550 m/s
 4) 660 m/s
- 3. A ball is thrown vertically upwards. Which of the following graphs represent velocity-time graph of the ball during its flight? (air resistance is neglected)

4. As shown in figure the tension in the horizontal cord is 30 N. The weight W and tension in the string OA in Newtons are

1) $30\sqrt{3},30$ 2) $30\sqrt{3},60$ 3) $60\sqrt{3},30$ 4) None of these

5. A ball is thrown from ground level so as to just clear a wall 4 metres high at a distance of 4 metres and falls at a distance of 14 metres from the wall. The magnitude of velocity of the ball will be

1)
$$\sqrt{182}m/s$$
 2) $\sqrt{175}m/s$ 3) $\sqrt{165}m/s$

4)
$$\sqrt{155}m/s$$

- 6. A particle is moving in a circular path with velocity varying with time as $v = 1.5t^2+2t$. If the radius of circular path is 2 cm, the angular acceleration at t = 2 sec will be 1) $4 rad/sec^2$ 2) $40 rad/sec^2$ 3) $400 rad/sec^2$ 4) $0.4 rad/sec^2$
- 7. A body of mass m tied at the end of a string of length is projected with velocity $\sqrt{4\ell g}$, at what height will it leave the circular path

1)
$$\frac{5}{3}\ell$$

- 8. The equivalent resistance between A and B is
 - 1) $16/3\Omega$ 2) 16Ω 3) 8Ω 4) $3/16\Omega$ 2 The magnitude of the force (in Newton) acting on a body varies with

9. The magnitude of the force (in Newton) acting on a body varies with time t (in microsecond) as shown in fig. AB, BC, and CD are straight line segments. The magnitude of the total impulse on the body from $t=4 \mu$ s to to 16μ s is

2) $\frac{3}{5}\ell$

1) $5 \times 100^{-4} N.s$ N.s 2) $5 \times 10^{-3} N.s$ 3) 5×10^{-5} 4) $5 \times 10^{-2} N.s$

10. Three equal weights of mass m each are hanging on a string passing over a fixed pulley as shown in fig. The tensions in the string connecting weights A to B and B to C will respectively be

1)
$$\frac{2}{3}mg$$
, $\frac{2}{3}mg$ 2) $\frac{2}{3}mg$, $\frac{4}{3}mg$ 3) $\frac{4}{3}mg$, $\frac{2}{3}mg$ 4) $\frac{3}{2}mg$, $\frac{3}{4}mg$
1

800

Force F (N).

30 /

4) No units

t (s)

 10 m/s^2

11. A block of mass 2 kg is on a horizontal surface. The co-efficient of static & kinetic frictions are 0.6 & 0.2 The minimum horizontal force required to start the motion is applied and if it is continued, the velocity acquired by the body at the end of the 2nd second is $(g = 10 \text{ ms}^{-2})$

12. Two satellites S_1 , and S_2 , revolve round a planet in the same direction in circular orbits. Their periods of revolutions are 1 hour and 8 hour respectively. The radius of S_1 , is 10^4 km. The velocity of S_2 , with respect to S_1 , will be

1)
$$\pi \times 10^4$$
 km/hr 2) $\pi/3 \times 10^4$ km/hr 3) $2\pi \times 10^4$ km/hr 4) $\pi/2 \times 10^4$ km/hr

13. A uniform steel wire of density $7800 \text{kg/}m^3$ is 2.5 m long and weighs 15.6×10^{-3} kg. It extends by 1.25 mm when loaded by 8kg. Calculate the value of young's modulus of elasticity for steel.

1)
$$1.96 \times 10^{11} N/m^2$$
 2) $19.6 \times 10^{11} N/m^2$ 3) $196 \times 10^{11} N/m^2$ 4) None of these

14. An ideal gas expands isothermally from a volume V_1 to V_2 and then compressed to original volume V₁ adiabatically. Initial pressure is Pand final pressure is P₃. The total work done is W. Then

1)
$$P_3 > P_1, W > 0$$
 2) $P_3 < P_1, W < 0$ 3) $P_3 > P_4, W < 0$ 4) $P_3 = P_1, W = 0$

15. A charged ball B hangs from a silk thread S, which makes an angle with a large charged conducting sheet P, as shown in the figure. The surface charge density σ of the sheet is proportional to

1)
$$\sin \theta$$
 2) $\tan \theta$ 3) $\cos \theta$ 4) $\cot \theta$

16. Figure given below shows two identical parallel plate capacitors connected to a battery with switch S closed. The switch is now opened and the free space between the plates of capacitors is filled with a dielectric of dielectric constant 3. What will be the ratio of total electrostatic energy stored in both capacitors before and after the introduction of the dielectric?

17. In the fig. shown, Calculate the current through 3 ohm resistor. The emf of battery is 2 volt and its internal resistance is 2/3 ohm.

18. A thin circular wire carrying a current I has a magnetic moment M. The shape of the wire is changed to a square and it carries the same current. It will have a magnetic moment

2) $\frac{4}{\pi^2}M$

4)
$$\frac{\pi}{4}M$$

- 19. Consider the arrangements shown in figure in which the north pole of a magnet is moved away from a thick conducting loop containing capacitor. Then excess positive charge will arrive on
- plate a
 plate b
 both plates a and b
 None of the plates a and b
 A current 10 A in the primary coil of a circuit is reduced to zero at a uniform rate in 10⁻³ second. If the coefficient of mutual inductance is 3H, the induced e. m.f. in the secondary coil will be

 3 kV
 3 kV
 30 kV
 30 kV
 30 kV
 30 kV
 30 kV

21. An alternating current is given by the equation $i = i_1 \cos \omega t + i_2 \sin \omega t$. The r.m.s. current is given by

1)
$$\frac{1}{\sqrt{2}}(i_1 + i_2)$$
 2) $\frac{1}{\sqrt{2}}(i_1 + i_2)^2$ 3) $\frac{1}{\sqrt{2}}(i_1^2 + i_2^2)^{1/2}$ 4) $\frac{1}{2}(i_1^2 + i_2^2)^{1/2}$

22. A light beam travelling in the X-direction is described by the electric field E_y , (300V/m) $\sin \omega (t - x/c)$. An electron is constrained to move along the Y - direction with a speed of 2.0×10^7 m/s. The maximum magnetic force (in N) on the electron is.

1)
$$3.2 \times 10^{-18}$$
 2) 5.1×10^{-16} 3) 6.5×10^{-11} 4) 7.8×10^{-12}

23. In Bohr model of atom an electron of charge (-e) and mass m is revolving around a nucleus of charge +ze. If \overline{L} is the orbital angular momentum of electron, then its magnetic moment is given by

1)
$$-\frac{e}{2m}\overline{L}$$
 2) $\frac{e}{2m}\overline{L}$ 3) $\frac{-Ze}{2m}\overline{L}$ 4) $\frac{Ze}{2m}\overline{L}$

24. Energy levels A, B, C of a certain atom corresponding to increasing values of energy i. e. $E_A < E_B$ $< E_C$. If $\lambda_1, \lambda_2, \lambda_3$ are the wavelengths of radiations corresponding to the transitions C to B, B to A and C to A respectively, which of the following statements is correct?

1)
$$\lambda_3 = \lambda_1 + \lambda_2$$

2) $\lambda_3 = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$
3) $\lambda_1 + \lambda_2 + \lambda_3 = 0$
4) $\lambda_3^2 + \lambda_1^2 + \lambda_2^2$

25. In the given figure, the diodes in forward biased are

- 26. An ideal gas undergoes a thermodynamics cycle as shown in figure. Which of the following graphs represents the same cycle?
- 27. A uniform rope of mass m and length L is hung freely from stationary ceiling. If the cross sectional area of rope is A and Young's modulus Y, then net elongation in the rope due to its

28. Two soap bubbles to form a single large drop (r = radius of small bubbles R = radius of large drop)

Column: I	Column - II
A) surface energy in the process	P) $2^{1/3}$ r
B) pressure of the soap bubble inside will be	Q) Decreases
C) temperature of drop will be	R) $4^{1/3}$ r
D) radius of final single drop	S) increases.
1) A-Q,B-Q,C-S,D-P	2) A-Q,B-P,C-S,D-P
3) A-P,B-Q,C-P,D-S	4) A-P,B-Q,C-P,D-S

- 29. In a photo electric experiment, I(current)-V (voltage) graph is as shown. Curves a,b,c correspond to three different metal surfaces irradiated with monochromatic light of same frequency. Assuming the ratio of number of electrons emitted per second to the number of photons incident per second is the same for all the three surfaces, choose the INCORRECT statement:
 - 1) the work function of metals b and c are equal
 - 2) the intensities of light incident on a and b are same
 - 3) the work functions of metals a and b are not equal

4) the intensities of light incident on a, b and c are all different

- 1) 10,000 2) 100 3) 1000 4) 10
- 31. Two coherent sources of light emit waves with wavelength with constant phase difference of 180°. The intensity due to each at a point on a screen is I. At a point on the screen where the path

difference between two waves is
$$\frac{3\lambda}{2}$$
 the total intensity will be:
1) $2I_0$ 2) $4I_0$ 3) $6I_0$ 4) $3I_0$

32. Statement - A: A diver under water, looks obliquely at a fisherman standing on the bank of a lake. The fisherman look shorter to the diver than what he actually is

Statement - B: A convex mirror always produces a virtual image independent of location of the real object

1) Both statements A & B are true 2) Statement A is true and Statement B is false

3) Statement A is false and Statement B is true 4) Both statements A & B are false

33. In photoelectric effect experiment, the intensity of light is varied by changing the distance of light source from emitter. Which of the following graphs depict he variation of photoelectric current 'C' with intensity of light T'?

34. Assertion (A): The Bohr model is not applicable to atoms having many electrons.

Reason (R): In atoms having many electrons, each electron interacts not only with positively charged nucleus but also with all other electrons.

1) Both assertion and reason are true and reason is correct explanations of assertion.

2) Both assertion and reason are true but reason is not correct explanation of essertion.

3) Assertion is true and reason is false4) Assertion is false and reason is true

35. The combination of gates shown in the diagram is equivalent to

1) OR	2) AND
3) NAND	4) NOR

~ -

PHYSICS

SECTION - B

36. Two identical capacitors have the same capacitance C. One of them is charged to a potential Vi and the other to V2. If they are connected with their unlike plates together, the decrease in energy of the combined system is

1)
$$\frac{1}{4}C(V_1^2 - V_2^2)$$
 2) $\frac{1}{4}C(V_1^2 + V_2^2)$ 3) $\frac{1}{4}C(V_1 - V_2^2)^2$ 4) $\frac{1}{4}C(V_1 + V_2^2)^2$

37. Some relations and laws related to fluids are given in column A, While the reasons behind them are given in column B. Match A and B

Column - I	Column - II	
(a) Stoke's law energy	e) Surface potential	
(b) Equation of continuity	f) Viscosity	
(c) Bernoulli's theorem	g) Conservation of mass	
(d) Velocity efflux	h) Conservation of energy	
1) (a) – (e), (b) – (f), (c) – (g),	(d) $-$ (h) 2) (a) $-$ (f), (b) $-$ (h), (c) – (g), (d) – (e)
3) (a) – (f), (b) – (g), (c) – (h),	$(d) - (e) \qquad 4) (a) - (e), (b) - (b)$	n), (c) – (g), (d) – (f)

38. When two identical batteries of internal resistance 10 each are connected in series across a resistor R, the rate of heat produced in R is P_1 . When the same batteries are connected in parallel across R, the rate is P_2 . If $P_1=2.25 P_2$, the value of R is

2) 4Ω 3) 10Ω 4) 12Ω 1) 2Ω 39. If θ is the angle of projection and H, R are the maximum height, range of a projectile, then Tan θ is 1) 4H/R2) 4R/H 3) 2H/R 4) 2R/H 40. The force per unit length on a wire carrying current of 8A making an angle of 30° with a uniform magnetic field of 0.15 T is 1) 1.2 N 2) 1.02 N 3) 0.6 N 4) 2.4 N 41. A body of mass of 0.5kg travels in a straight line with velocity $V = 5X^{3/2}$. Work done by the net force during its displacement from x=0 to x=2m is 1) 10 J 2) 12 J 3) 40 J 4) 50 J From a uniform disc of radius R, a circular hole of radius R/2 is cut out. The centre of the hole 42. is at R/2 from the centre of the original disc. The shift in centre of gravity of the resulting body 1) R/32) R/4 3) R/12 4) R/6

43. A body weights 63N on the surface of earth. The gravitational force on the earth at a height equal to half of the radius earth is

	1) 28N	2) 32 N	3) 126N	4) 7N
44.	Statement (A): The	stretching of a coil is deter	mined by its shear modulus	3.
	Statement (B): Of t gases.	he three states of matter the	e bulk modulus of elasticity	is maximum for
	 Both Statements Statement A is tru Statement - A is fa Both Statements 	- A & B are true e and Statement B is false alse and Statement - B is tr A & B are false	ue	
45.	Excess pressure insi 4.65×10 ⁻¹ Nm ⁻¹)	de the drop of mercury of	radius 3.00mm is (surface	tension of mercury is
	1) 860 Pa	2) 1240 Pa	3) 620 Pa	4) 310 Pa
46.	For an ideal gas at abais	solute temperature T, the co	efficient of volume expansio	on at constant pressure
	1) 2/T	2) 3/T	3) 1/T	4) 1/T2
47.	A uniform wire of re n times the original r	sistance R is uniformly com adius. Now resistance of th	pressed along its length, un e wire becomes	til its radius becomes
	1) $\frac{R}{r^4}$	2) $\frac{R}{r^2}$	P(Nex-2)
	n R	n	r(Nm)
	$3) - \frac{1}{n}$	4) nR	000	7
48.	A gas undergoes a th work done by the ga	ermodynamic process ABC s is	C. The total 300	$B \longrightarrow V(m^3)$
	1) 200 J	2) 300 J	2	5
	3) 900 J	4) 450 J		
49.	A body describes S.I displacement is 3cm	H.M. with an amplitude 5cr is (in cm s1)	n and period 0.2s. Velocity	of the body when the
	1) 5π ²	2) 40π	3) 50π	4) 3π ²
50.	A string of mass 2.5 transverse jerk is stru	kg is under a tension of 20 uck at one end of the string,	00N. The length of stretch the time taken by the jerk t	ed string is 20m. If a to reach the other end
	1) 0.5 s	2) 1.5 s	3)2 s	4) 2.5 s
		CHEMIST	TRY	
		SECTION	[- A	
51.	A mixture of gases c the two gases in the r	ontains H_2 and O_2 gases in nixture?	the ratio of 1:4 (w/w). What	at is the molar ratio of
	1) 16 : 1	2) 2 : 1	3) 1 : 4	4) 4 : 1
52.	In H-atom spectrum spectral lines, numbe	electron jumps from 5th exc er of lines in Lyman series a	cited state to 1st excited stat nd Paschen series respectiv	e then total number of ely are:
	1) 10, 4, 3	2) 15,0,4	3) 15, 4, 5	4) 10,0,3
53.	The angular moment	tum of electron in 'd' orbital	is equal to:	
	1) $2\sqrt{3}h$	2) <i>h</i>	3) $\sqrt{6}h$	4) $\sqrt{2}h$

54. Which of the following is correct with respect to -I effect of the substituents? [R = alkyl]

1) $-NH_2 > -OR > -F$	2) $-NR_2 < -OR < -F$
3) $-NH_2 < -OR < -F$	4) $-NR_2 > -OR > -F$

- 55. The species, having bond angles of 120° is:
 - 1) PH_3 (b) CIF_3 (c) $NC1_3$ BCl_3
- 56. The species Ar, K⁺ and Ca²⁺ contain the same number of electrons. In which order do their radii increase?

$$\begin{array}{ll} \mbox{1)} \ Ca^{2+} < K^+ < Ar & \mbox{2)} \ K^+ < Ar < Ca^{2+} \\ \mbox{3)} \ Ar < K^+ < Ca^{2+} & \mbox{4)} \ Ca^{2+} < Ar < K^+ \\ \end{array}$$

57. The solubility of BaSO₄, in water is 2.42×10^{-3} gL⁻¹ at 298K. The value of solubility product (K_{sp}) will be [Given molar mass of BaSO₄ = 233 g mol⁻¹]

1) 1.08 x 10 ⁻² mol ² L ⁻¹	2) 1.08 x 10 ⁻¹² mol ² L ⁻²
3) $1.08 \times 10^{-14} \text{ mol}^2 \text{L}^{-2}$	4) $1.08 \times 10^{-8} \text{ mol}^2 \text{L}^{-2}$

58. What is the activation energy for a reaction if its rate doubles when the temperature is raised from 20° C to 35° C? (R= 8.314J mol⁻¹ K⁻¹)

59. In which of the following options the order of arrangement does not agree with the variation of property indicated against it?

1) I < Br< Cl< F (increasing electron gain enthalpy) 2) Li < Na < K < Rb (increasing metallic radius) 3) $AI^{3+} < Mg^{2+} < Na^+ < F^-$ (increasing ionic size) 4) B < C <N<O (increasing first ionization enthalpy)

- 60. Aqueous solution of which of the following compounds is the best conductor of electric current?
 - 1) Hydrochloric acid, HCI 2) Ammonia, NH₃
 - 3) Fructose, $C_6 H_{12} O_6$

4) Acetic acid, $C_2H_4O_2$

61. The rate of first-order reaction is 0.04 mol L^{-1} s⁻¹ at 10 seconds and 0.03 mol L^{-1} s⁻¹ at 20 seconds after initiation of the reaction. The half-life period of the reaction is:

1) 44.1 s 2) 54.1 s 3) 24.1 s 4) 34.1 s

62. In acidic medium, H_2O_2 changes $Cr_2O_7^{2-}$ to CrO_5 which has two (-O-O-) bonds. Oxidation state of Cr in CrO_5 is:

1)
$$+5$$
 2) $+3$ 3) $+6$ 4) -10

- 63. The reaction of H_2O_2 with hydrogen sulphide is an example of reaction:
 - 1) addition2) oxidation3) reduction4) redox acidic
- $64. \qquad \text{The enthalpy of vaporization of } H_2O(l) \text{ is x kJ/mol and enthalpy of formation of water vapour y kJ/mol. Enthalpy of formation of } H_2O(l) \text{ . would be}$

1)
$$(y - x)$$
 kJ mol⁻¹ 2) $(x - y)$ kJ mol⁻¹ 3) $(x + y)$ kJ mol⁻¹ 4) $(2x-y)$ kJ mol⁻¹

65. Equal volumes of four acid solutions having pH 1, 2, 3 and 4 are mixed in a container. The concentration of hydrogen ion in the mixture of.

1) 4.25×10^{-4} M 2) 2.78×10^{-2} M 3) 2.30×10^{-3} M 4) 1.35×10^{-2} M

66. A button cell used in watches functions as following: $Zn(s) + Ag_2O(s) + H_2O(l) \rightarrow 2Ag(s) + Zn^{2+}(aq) + 20H^{-}(aq)$ If half-cell potentials are: $Zn^{2+}(aq) + 2e^{-}Zn(s) E^{\circ} = -0.76 V$ $Ag_2O(s) + H_2O(l) + 2e^- \rightarrow 2Ag(s) + 2OH^-(aq), E^\circ = 0.34 V$ The cell potential will be: 1) 1.10 V 2) 0.42 V 3) 0.84 V 4) 1.34 V The correct order of increasing bond length of C-H, C-O, C-C and C = C is: 67. 1) C - C < C = C < C - O < C - H2) C—O < C—H < C—C < C = C 4) C—H < C = C < C—O < C—C 3) C—H < C—O < C—C < C = C Which one of the following orders is correct for the bond dissociation enthalpy of halogen molecules? 68. 2) $F_2 Cl_2 > Br_2 > I_2$ 3) $I_2 > Br_2 > Cl_2 > F_2$ 4) $Cl_2 > Br_2 > F_2 > I_2$ 1) $Br_{2} > I_{2} > F_{2} > Cl_{2}$ 69. Gadolinium belongs to 4f series. It's atomic number is 64. Which of the following is the correct electronic configuration of gadolinium? 1) [Xe] $4f^{8} 6s^{2}$ 3) [Xe] $4f^7 5d^16s^2$ 4) [Xe] $4f^6 5d^26s^2$ 2) [Xe] $4f^9 5s^1$ Propionic acid with Br,/P yields a dibromo product. Its structure would be: 70. Br 2) H—C—CH₂COOH 1) CH₂Br—CHBr—COOH Br Br 3) CH₃—C—COOH 3) CH₂Br—CH₂—COBr Br At 25°C and 730 mm pressure, 380 ml of dry oxygen was collected. If the temperature is constant, 71. what volume will the oxygen occupy at 760 mm pressure? 1) 365 ml (b) 2 ml (c) 10 ml (d) 20 ml72. Predict the product C obtained in the following reaction of 1-butyne. 1) $CH_3 - CH - CH_2CH_2I$ 3) $CH_3 - CH_2 - CH_2CH_2CH_2I$ (i) CH_3CH_2OH (ii) CH_3CH_2OH $CH_3CH_2 \longrightarrow C \Longrightarrow CH + HCl \longrightarrow B \xrightarrow{HI} C$ 73. (ii) CH_3COCH_3 (iii) CH_3 —CHOH (iv) CH_3OH (i) CH₂CH₂OH

Which of the above compound(s), on being warmed with iodine solution and NaOH, will give iodoform?

	1) (i), (iii) and (iv)	2) Only (ii)	3) (i), (ii) and (iii)	4) (i) and (ii)
74.	Consider the following stat	tements.		
	(1) XeF_4 is colourless crys	talline solid and underg	oes sub-limation.	
	(2) $XeOF_4$ is colourless vo	latile liquid.		
	(3) XeO_4 is colourless exp	losive solid.		
	The correct statements are	:		
	1) (1) and (2) only	2) (2) and (3) only	3) (1) and (3) only 4) (1), (2) and (3)
75.	A solution has 1 : 4 mole ra at 20°C are 440 mm of H pentane in the vapour phase	tio of pentane to hexane Ig for pentane and 120 Se would be:	e. The vapour pressure of the) mm of Hg for hexane. Th	pure hydrocarbons he mole fraction of
	1) 0.549	2) 0.200	3) 0.786	4) 0.478
76.	One mole of AI3 ⁺ discharg	ged completely by using	charge?	
	1) 3F	2) 1F	3) 0.3F	4) 2F
77.	In which of the following hybridised?	g molecules/ions BF ₃ ,	NO_2^- , NH_2^- and H_2O , the	central atom is sp ²
	1) NO_2^- and NH_2^-	2) $\rm NH_2^-$ and $\rm H_2O$	3) NO_2^- and H_2O	4)BF ₃ and NO ₂ ⁻
78.	Which one of the following	g is a free-radical substi	tution reaction?	
	1) $(+ AgNO_2 \rightarrow)$,CH ₃ NO ₂	2) $CH_3CHO + HCN \longrightarrow$	CH3-CH-CN OH
	3) $(1 + Cl_2 \xrightarrow{\text{Boiling}} (1 + Cl_2 \xrightarrow{\text{Boiling}} ($		4) $+ CH_3CI - \frac{ar}{AI}$	dhy, Cl ₃
79.	Consider the following read	ction:		
	Ethanol $\xrightarrow{\operatorname{PBr}_3} X \xrightarrow{\operatorname{alc. K}}$	$\xrightarrow{\text{KOH}} Y \xrightarrow{\text{H}_2\text{SO}_4, \text{room tempe}}_{\text{H}_2\text{O}, \text{ heat}}$	$\xrightarrow{rature} Z$	
	1) CH ₃ CH ₂ O—CH—CH	[₃	2) CH ₃ —CH ₂ —O-	–SO ₃ H
	3) CH ₃ CH ₂ OH		4) CH ₂ =CH ₂	
80.	Which of the following is a	in ideal solution?		
	1) Ethanol + water		2) Nitric acid + wate	er
	3) Ethanol + benzene		4) Benzene + toluene	e
81.	The efficiency of a fuel cell	l is given by:		
	1) $\frac{\Delta \mathbf{G}}{\Delta \mathbf{S}}$	2) $\frac{\Delta G}{\Delta H}$	3) $\frac{\Delta S}{\Lambda C}$	4) $\frac{\Delta H}{\Delta C}$
0 1	US	لمن من من الك	DD	20
82.	1) CH = CH = CH = CH	I HOUSHOW CIS-ITAIIS ISO. I		
	$1) CH_{3} - CH - CH - CH$	CH	$2) CH_{3} - CH_{2} - CH_{3}$	CH CU CU
		— C 11 ₃	$+) CII_3 - C - CII = $	
	CH ₃		CH ₃	

83. Among the following compounds, one that is most reactive towards electrophilic nitration is

	1) benze	oic acid.		2) nitrobenzene.	3) toluen	ne.	4) benzene.
84.	At 25°C ions in (C, the diss 0.01 M aq	ociation o ueous sol	constant of a base, B lution of the base we	OH is 1.0×10^{-12} . ould be:	The concen	tration of hydroxyl
	1) 2.0 ×	< 10 ⁻⁶ mo	L^{-1}	2) 1.0×10^{-5} mol	L ⁻¹		
	(c) 1.0	$ imes 10^{-6} \mathrm{mc}$	ol L^{-1}	(d) 1.0×10^{-7} mol	L^{-1}		
85.	If the er change	nthalpy ch for the pro	ange for	transition of liquid v uld be:	vater to steam is 3	0 kJmol ⁻¹ at	27°C. The entropy
	1) 1.0J	$mol^{-1} K^{-1}$		2) 0.1 J mol ⁻¹ K ⁻¹	3) 100 J	$mol^{-1} K^{-1}$	4) 10J mol ⁻¹ K ⁻¹
				SECTIO	N - B		
86.	In whic	h electrop	hilic subs	titution reaction slo	w step is breaking	of C—H bo	nd?
	1) Sulpl	honation c	of benzen	e 2) Nitration of ben	zene		
	3) Chlor	rination of	fbenzene	4) All of these			
87.	Aceton	e and etha	nol can b	e chemically distingu	ished by:		
	(a) I ₂ /N	aOH		(b) 2,4 DNP	3) Toller	1's reagent 4) Both (a) and (b)
88.	In whic	h of the fo	ollowing r	reaction C—C bond	formation does no	ot take place	??
	(1) Gatt	termann-H	Koch reac	tion	(2) Étarc	l reaction	
	(3) Benzoin condensation (4) Swarts reaction						
89.	The val	ue of ΔA	H and AS	S for the reaction,			
	$C_{(gradually)}(s) + CO_2(g) \rightarrow 2CO(g)$ are 170 kJ and 170 JK ⁻¹ , respectively. This reaction will be spontaneous at:						
	1) 710	K		2) 910 K	3) 1110	K	4) 510 K
90.	The exp	perimenta	l data for	the reaction 2A + B	$_2 \longrightarrow 2AB$		
	Exp.	[A]	[B]	Rate (Ms ⁻¹)			
	1.	0.50	0.50	$1.6 imes 10^{-4}$			
	2.	0.50	1.00	$3.2 imes 10^{-4}$			
	3.	1.00	1.00	$3.2 imes 10^{-4}$			
	The rate	e equatior	for the a	bove data is:			
	1) rate =	$= k[B_2]$		2) rate = $k[B_2]^2$	3) rate =	$k[A]^{2}[B]^{2}$	(c) rate = $k[A]^2[B]$
91.	Given b	elow are t	two states	ments			
	Statement I : SF_6 exists but SH_6 does not.						
	Statement II: $d\pi - p\pi$ bonding cannot take place in SH ₆						
	Choose the correct answer from the options given below:						
	1) Statement I is incorrect but Statement II is true.						
	2) Both	statemen	t I and St	atement II are true.			
	3) Both	Statemer	nt I and S	tatement II are false			
	4) State	ement I is o	correct b	ut statement II is fals	e.		
92.	What is	the corre	ct IUPAC	c name of the follow:	ng coordination co	ompound.	

		[Cr(p	by) ₃ Ch ₃]	
	1) Trichlorotripyridinium	chromium (III)	2) Tripyridiniumtrichloro c	hromium (III)
	3) Trichlorotripyridine ch	romium (III)	4) Trichlorotripyridine chr	omium (II)
93.	The incorrect statements a	mong the followi	ing is:	
	1) Glucose on oxidation w	with Br ₂ /H ₂ O give	es gluconic acid.	
	2) The pentaacetate of glu	cose does not re	act with hydroxyl amine.	
	3) The six membered cycl	ic structure of glu	acose is called furanose struc	cture.
	4) The two cyclic hemiace	etal forms of glue	cose are ano- mers of each o	ther.
94.	How many isomers are po	ossible for coord	ination complex $[Co(NH_3)($	$NO_{2})](NO_{3})_{2}$
	1)6	2) 10	3) 4	4) 12
95.	The numbers of mole of ph	nenylhydrazine ne	eded to form fructosazone w	hen react with fructose is:
	1) 1	2) 2	3) 3	(d) 4
96.	Indicate the coordination	number and oxic	lation state of the complex [$Ni(en)_2(C_2O_4)NO_2$
	1)+1	2) +2	3) -2	4) +3
97.	Give the IUPAC nomencla	ature of the final j	product(z) formed in the follo	owing reactions.
	$\xrightarrow{\text{COOH}}$ $\xrightarrow{\text{SOCl}_2} x \xrightarrow{\text{NH}_3}$	$y \xrightarrow{Br_2/KOH} z$		
	1)Aniline	2) Chlorobenz	ne 3) Benzamide	4) Benzoyl chloride
98.	1) Aniline Match list I with List II.	2) Chlorobenz	me 3) Benzamide	4) Benzoyl chloride
98.	1) Aniline Match list I with List II. List I	2) Chlorobenz List II	me 3) Benzamide	4) Benzoyl chloride
98.	1) Aniline Match list I with List II. List I (A) Protein	2) Chlorobenz List II (i) DNA,	me 3) Benzamide	4) Benzoyl chloride
98.	1) Aniline Match list I with List II. List I (A) Protein (B) Nucleic acid	2) Chlorobenz List II (i) DNA, (ii) Polymer of	ne 3) Benzamide fα-amino acids	4) Benzoyl chloride
98.	1) Aniline Match list I with List II. List I (A) Protein (B) Nucleic acid (C) Polysaccharides	2) Chlorobenz List II (i) DNA, (ii) Polymer of (iii) glucogen	ne 3) Benzamide fα-amino acids	4) Benzoyl chloride
98.	1) Aniline Match list I with List II. List I (A) Protein (B) Nucleic acid (C) Polysaccharides (D) Enzymes	2) Chlorobenz List II (i) DNA, (ii) Polymer of (iii) glucogen (iv) maltase	ne 3) Benzamide fα-amino acids	4) Benzoyl chloride
98.	 Aniline Match list I with List II. List I (A) Protein (B) Nucleic acid (C) Polysaccharides (D) Enzymes Choose the correct answer 	2) Chlorobenz List II (i) DNA, (ii) Polymer of (iii) glucogen (iv) maltase	ne 3) Benzamide f α-amino acids	4) Benzoyl chloride
98.	 Aniline Match list I with List II. List I (A) Protein (B) Nucleic acid (C) Polysaccharides (D) Enzymes Choose the correct answer 1) (A)-(ii), (B)-(i), (C)-(iii) 	2) Chlorobenz List II (i) DNA, (ii) Polymer of (iii) glucogen (iv) maltase er from the option (), (D)-(iv)	ne 3) Benzamide f α-amino acids ns given below. 2) (A)-(i), (B)-	4) Benzoyl chloride .(ii), (C)-(iv), (D)-(iii)
98.	 Aniline Match list I with List II. List I (A) Protein (B) Nucleic acid (C) Polysaccharides (D) Enzymes Choose the correct answer 1) (A)-(ii), (B)-(i), (C)-(iii) (A)-(iv), (B)-(iii), (C)-(iii) 	2) Chlorobenz List II (i) DNA, (ii) Polymer of (iii) glucogen (iv) maltase er from the option (), (D)-(iv) ii), (D)-(i)	ne 3) Benzamide f α-amino acids ns given below. 2) (A)-(i), (B)- 4) (A)-(iii), (B)-	4) Benzoyl chloride •(ii), (C)-(iv), (D)-(iii))-(ii), (C)-(iv), (D)-(i)
98. 99.	 Aniline Match list I with List II. List I (A) Protein (B) Nucleic acid (C) Polysaccharides (D) Enzymes Choose the correct answer (A)-(ii), (B)-(i), (C)-(iii) (A)-(iv), (B)-(iii), (C)-(iii) 	2) Chlorobenz List II (i) DNA, (ii) Polymer of (iii) glucogen (iv) maltase er from the option (), (D)-(iv) (ii), (D)-(i) tement(s) is corr	the 3) Benzamide f α -amino acids hs given below. 2) (A)-(i), (B)- 4) (A)-(iii), (B)- ect?	4) Benzoyl chloride •(ii), (C)-(iv), (D)-(iii))-(ii), (C)-(iv), (D)-(i)
98.	1) Aniline Match list I with List II. List I (A) Protein (B) Nucleic acid (C) Polysaccharides (D) Enzymes Choose the correct answer 1) (A)-(ii), (B)-(i), (C)-(iii) 3) (A)-(iv), (B)-(iii), (C)-(iii) 3) (A)-(iv), (B)-(iii), (C)-(iii) (a) $[Fe(CN)_6]^{4-}$ is diamag (b) Fe^{3+} ions always form (c) In a compound with an be vacant. (d) The ferric ammonium	2) Chlorobenz List II (i) DNA, (ii) Polymer of (iii) glucogen (iv) maltase er from the option (), (D)-(iv) (ii), (D)-(i) tement(s) is corr netic but [Fe(CN tetrahedral comp n octahedral strue alum is a comple	The 3) Benzamide f α -amino acids f α -amino acids f α -amino acids (A)-(i), (B)- (A)-(ii), (B)- (A)-(iii), (B)- (A)-(iii), (B)- (B)	4) Benzoyl chloride •(ii), (C)-(iv), (D)-(iii))-(ii), (C)-(iv), (D)-(i) of a metal ion should
98. 99. 100.	1) Aniline Match list I with List II. List I (A) Protein (B) Nucleic acid (C) Polysaccharides (D) Enzymes Choose the correct answer 1) (A)-(ii), (B)-(i), (C)-(iii) 3) (A)-(iv), (B)-(iii), (C)-(iii) 3) (A)-(iv), (B)-(iii), (C)-(iii) Which of the following stat (a) $[Fe(CN)_6]^{4-}$ is diamag (b) Fe^{3+} ions always form (c) In a compound with any be vacant. (d) The ferric ammonium	2) Chlorobenz List II (i) DNA, (ii) Polymer of (iii) glucogen (iv) maltase er from the option (), (D)-(iv) ii), (D)-(i) tement(s) is corr netic but [Fe(CN tetrahedral completion n octahedral strue alum is a completion n zero dipole more	The 3) Benzamide f α -amino acids f α -amino acids f α -amino acids (A) (A)-(i), (B)-(A) (A)-(ii), (B)-(A) (A)-(ii), (B)-(A)-(ii), (B)-(A)-(ii), (B)-(A)-(A)-(A)-(A)-(A)-(A)-(A)-(A)-(A)-(A	4) Benzoyl chloride (ii), (C)-(iv), (D)-(iii))-(ii), (C)-(iv), (D)-(i) of a metal ion should

BIOLOGY

101.	The term taxon refers to			
	1) Name of a species		2) Name of genus	
	3) Name of family		4) A taxonomic group	of any rank.
102.	Class is present between	l		
	1) Kindom & Phyllum		2) Phylum and order	
	3) Order and family		4) family & genus.	
103.	Descending arrangement	t of Categories is called		
	1) Key	3) Heirarchy	3) Taxonomy	4) Classification
104.	The label of a herbarium	Sheet dres not carry info	ormation on	
	1) Date Collection	2) Name the collector	3) Local names	4) Height of the plant
105.	Viroids differ from viruse	s is having		
	1) DNA molecules witho	ut.		
	2) RNA molecules with p	protein coat		
	3) RNA molecules witho	ut protein coat		
	4) DNA molecules with p	protein coat		
106.	After Karyogamy follow	red by meiosis, spores ar	re produced exogenously	y in
	1) Agarious	1) Alternaria	3) Neurosppra	4) Sacharomyces
107.	Bacillus thuringiensis (Bt) strains have been used	for designing novel	
	1) Bioinsecticidal plants		2) Bio-mineralizations	
	3) Biofuertizers		4) Bio-metallurgical tec	hniques
108.	Cry protein is obtained fi	com		
	1) Bacillus thuringiensis		2) Bacillus subtilis	
	3) Clostridium Welchi		4) E-coli	
109.	In primary settling tank,	all sediments that settle a	are termed as	
	1) Primary sludge	2) Effluent	3) Activated sludge	4) Flocs
110.	The term poly adelphous	s is related to		
	1) Gyroceium	2) Androecium	3) Corella	4) Calyx
111.	Coconut fruit is a			
	1) Berry	2) Nut	3) Capsule	4) Drupe
112.	When Stamens are attack	hed to perianth, Conditi	on is known as	
	1) Epipetalous	2) Epiphyllous	3) Polyandrous	4) Diadelphous
113.	Tricarpellary syncarpous	gynoecium is found in f	lowers of	
	1) Fabaceae	2) Poaceoe	3) Liliacee	4) Solanaceoe
114.	Placentation in tomato an	nd Lemon is		
	1) Marginal	2) Axile	3) Parietal	4) Free Central
115.	Cork is formed from			
	1) Cork combium	2) Vascular combium	3) Phloem	4) Xylem
116.	Companion cells are assoc	ciated with		
	1) Vessel elements	2) Trichomes	3) Guard celle	4) Sieve elements
117.	The most primitive type of	of stele is		
	1) Eustete	2) Solenostele	3) Protostele	4) Siphonostele.

118.	The functional xylem of	dicet tree is		
	1) Sap wood	2) Hard wood	13) Heartwood	4) Autumn
119.	Age of a tree Can be est	imated by		
	1) Number of annual ring	gs	2) Diameter of its heart	twood
	3) Its height and girth		4) Biomass	
120.	Infloresence is racemose	in		
	1) Brinjal	2) Tulip	3) Aloe	4) Soyabean
121.	1The mechanism that cau	ses a gene is called to m	ove from one linkage gro	oup to another
	1) Inversion	2) Duplication	3) Translocation	4) Crossing-over
122.	Which of the following n	nost appropriately descr	ibes haemophilia.	
	1) Cchromosomal disord	der	2) Dominant gene disor	rder
	3) Recessive gene disord	ler	4) Recessive gene diso	rder
123.	The ratio of complement	tary genes in F ₂ generation	on	
	1) 12:3:1	2) 9:8	3) 9:3:4	4) 9:6:1
124.	Wich one is the incorrect	t statement with regard t	to the importance of Ped	igree analysis.
	1) It confirms that DNA	is the Carries of genes in	nformation	
	2) It helps to understand	whether the trait question	on is dominant of recessi	ve
	3) It confirms that the tra	ait is linked to one of the	autosome	
	4) It helps to trace the in	heritance of a specific tr	ait	
125.	Down's Syndrome in hu	mans is due to		
	1) The X chromosom		2) Three copies of Chr	ome of chromosomes
	3) Monosomy		4) Two Y chromosome	es.
126.	Uridine, present only in	RNA is a		
	10 Nucleoside	2) Nucleotide	3) Purine	4) Pyrimidine
127.	Which of the following is	s the starter codon		
	1) UAA	2) UAG	3) AUG	4) UGA
128.	The final proof of DNA	as the genetic Material (Came from the experiment	nts of
	1) Hershey & Chase		2) Avery, Mcleod & M	IcCarty
	3) Hangdoind Khorana		4)Griffith	
129.	Which of the following i	s codons codes for Proli	ne	
	1) CCC, CCU, CCG	2) UCC, UGU, CCU	3) CUG, CUU, CUA	4) CGC, CGG, CCA.
130.	Which one of the follow	ing is a restriction endon	uclease	
	1) DN asel	2) R Nase	3) Hind II	4) Protease
131.	The cutting of DNA at s	pecific Locations becaus	se possible with the disco	overy of
100	1) Selectable maskers	2) Ligases	3) RE	4) Probes
132.	Which organism is used	to transfer T-DNA	2) A ana haatariyya tuma	facium
	 Supporting type Salmonella typhi 	opices	4) E-coli	
133	A gene whose expressio	n helps to transformed (ell is known as	
155.	1) Vector	2) Plasmid	3) Structural gene	4) Selectable markers
134.	Natality refers to	_,		
	1) Number of individuals	s leaving the habitat	2) Birth rate	
	3) Death rate	-	4) Number of individua	als entering a habitat
				č

135.	Mycorrhizae are the example.	mple of		
	1)Ammensalism	2) Antibiosis	3) Mutalism	4) Fungistasis
136.	The age pyramid with br	oad base indicates		
	1) High percentage of old	d individuals	2) Low Percentage of y	oung individuals
	3) A stable population		4) High Percentage of Y	Young individuals.
137.	The term ecosystem was	s coined by		
	1) Haeckel	2) E. Warming	3) E. P. Odun	4) A.G. Tansley
138.	Which ecosystem has the	e maximum biomass		
	1) Grassland ecosystem	2) Pond ecosystem	3) Lake ecosystem	4) Forect ecosystem
139.	What is the National Aqu	atic Animal of India?		
	1) Blue Whale	2) Sea Horse	3) Gangetic Shark	4) River Dolphin
140.	Which of the following st	tructures is not found in	a prokaryotic cell	
	1) Mesosome	2) Plasmamembrane	3) Nuclear enuelope	4) Ribesome
141.	A cell organelle containin	g hydrolytic enzmes		
	1) Lysosome	2) Microsone	3) Ribosome	4) Mesosome
142.	The Golgi Complex parti	icipates in		
	1) Respiration in bacteria 2) Formation of secretory Vesicles			
	3) Fatty acid breakdown	1	4) Activation of Amino	acid
143.	Which of the following a	re not polymeric		
	1) Proteins	2) Polysaccharides	3) Lipids	4) Nucleic acids
144.	Which of the following is protein	the least likely to be invo	lved in stabilising the 3-di	imensional folding in most
	1) Hydrogen bonds		2) Electrostatic Interact	tion
	3) Hydrophobic Interacti	ion	4) Ester bonds	
145.	In cell cycle, changes of	which stage are not visil	ble inder microscope	
	1) Interphase	2) Prophase	3)Metaphase	4) Anaphase
146.	Duplication of DNA occ	urs in		
	1) GI-phase	2) S-phase	3) G2-Phase	4) M-phase
147.	In meiosis Crossing over	is initiated at		
	1) Zygotene	2) Diplotene	3) Pachytene	4) Leptotene
148.	Which is the longest pha	se of the cell cycle		
	1) M-phase	2) Interphase	3) Leptotene	4) S-phase
149.	During Cell growth, DN	A synthesis takes place i	in	
	1) 0 1	$\mathbf{O} \mathbf{I} \leftarrow \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I}$	$2) \mathbf{D}_{i=1}^{i} + \cdots + \mathbf{D}_{i=1}^{i}$	1) Internhese
	1) S-phase	2) Inteçkinesis	3) Diploteme	4) milerphase
150.	1) S-phase Chromosome can be see	2) Inteçkinesis n best during	3) Diploteme	4) interphase

ZOOLOGY

151.	Bran	ch of Z	Zoolog	gy conn	ected	with the impro	ovem	ent of Human Race thro	ough laws of heredity is	
	1)Et	ugenics	5		2) E	uthenics		3) Euphenics	4) Eithology	
152.	Fathe	er of T	axono	my is						
	1) W	illiam	Harve	у	2) C	arolous Line	us	3) Aristotle	4) Theophrastus	
153.	Inter	conve	ertibilit	y of Sol	l-gel is	5				
	1) Na	atural	change	e				2) Physical change		
	3) Chemical change							4) Physico-Chemical c	hange	
154.	Which of the following coelenterate does not						t exhi	bit metagenesis		
	1) O	belic			2) A	urelia		3) Hydra	4) Physalia	
155.	Mate	ch the f	follow	ing colı	umns a	and choose the	e cori	rect answer		
	Colu	ımn –	A			Column – B	3			
	A. Po	olyemł	oryony	/		I. Schistosor	ma ha	smatobium		
	B. Li	ver flu	ke			II. Dibothric	ephul	us		
	C. Bi	ilharzia	asis			III. Tremato	da			
	D. La	argest	tape v	vorm		IV. Hymeno	lepis	nana		
	E. Sr	nallest	tape v	worm	_	V. Fasciola				
		A	В	C	D	E				
	1)	II 	I	III -	IV	V				
	2)	III	V	I	IV	II 				
	3)	III	V	I	11 	IV				
	4)		IV	l	II N	V	•			
156.	The	larva w	vhichp	perform	s Noc	turnal periodi	city			
	1) Pla	anula			2) R	habiditi form	larva			
167	3) M	1crofila	aria	• •	4) C	ysticercus				
157.	Mate	ch the i	IOIIOW	ing and	choo	se the correct	answ	er D		
		Imn –	A dauka	:do1 am:	41 1			mn - B		
	A. SI	mplo o	ucubo	ol opith		111		wroid gland		
		mple c		ar epitik				Cornea of eves		
		imple c	auam	ous epit	heliun	n		Conjuctive of eves		
	D. 51	mpic s	quant	ousepi	nenun	11	V Tr	achea and Bronchi		
		А	в	С	D		v. 11	dened and Drohem		
	1)	V	Ш	П	I					
	2)	ĪV	П	I	V					
	3)	П	IV	I	Ш					
	4)	V	Π	Ш	IV					
158.	Find	out th	e corre	ect serie	es of d	iagram				
	1) ar	tery, la	cunae	, canalio	culi	-		2) Canaliculi, volkman	's canal, vein	
	3) Vo	olkmar	n's can	al, lacu	nae, b	one lamellae		4) Vollkman's canal. la	cunae, canaliculi	
159.	Arist	otle's	lanten	in echir	noids i	s known as		, ,		

	1) Alimentary organ	2) Supplementary org	gan 3) Mastigatory orga	n 4) All
160.	Aquatic organism with li	mited power of locomo	tion are called	
	1) Plankton	2) Nektons	3) Neustons	4) Periphytons
161.	One of the following is us adolescents	seful measures for preve	ention and control of TD	A abuse among the
	A) Avoid undue parental	l pressure, and by Respo	onsibility of parents and t	teachers
	B) Seeking help from per	ers, education and coun	seling	
	C) Seeking help from pro	ofessional, alcohol and o	drug consumptive persor	18
	1) A and C are true, B is	false	2) B and C are true, A	is false
	3) A and B are true, C is	false	4) A, B and C are true	, None is false
162.	In earthworm lateral Heat of	art can be differentiated	from lateral oesophagea	ll Hearts by the presence
	1) 2 pairs of valves	2) 3 pairs of valves	3) 4 pairs of valves	4) All
163.	Rapid increase in the nur known as	mber of cells in the orga	n of host due to the pres	ence of a parasite is
	1) Hyperplasia	2) Hypertrophy	3) Over growth	4) Necrosis
164.	The body cavity of cock	roach is not a true body	cavity, filled with blood	is called
	1) Haemato fluid	2) Haemalymph	3) Haemocoel	4) Pseudocuel
165.	Read the following state	ment and choose the co	rrect answer	
	A. In Phereretima dorsal	Blood vessel is collecti	ng and distributing Blood	d vessel.
	B. Dorsal Blood vessel is	s considered as true hea	rt in earthworm.	
	1) A & B are false	2) A is correct and I	B is correct explainaiher	n to A.
	3) A is false and B is true	e. 4) A is correct explain	ation to B, But B is false	
166.	Choose the Correct State	ement regarding malari	a and its parasite.	
	I. Malaria Caused in ma	n by plasmodium vivax		
	II. Every year world Mo	squito day is celebrated	l on 20th August	
	IIL. Sexual Cycle of plas	smocdium discovered b	y Ronald Ross in female	Anopheles.
	IV. Anisogamy and Isoga	amy are the Naturally Se	een Reproduction in plas	modium vivax.
	1) I, II, & III	2) II, III, IV	3) I, II & III	4d) III, IV, II
167.	Choose the Correct state	ement of the following r	egarding circulation in fr	og.
	I. Heart is 3 Chambered			
	II. Heart Situated in perio	cardial Cavity		
	IIII. Conus arteriosus is	absent		
	IV. Blood contains eryth	rocytes, leucocyles and	thrombocytes.	
	V. Sinus venosus is not a	Pacemaker.		
	1) I, II & V,	2) I, III & IV	3) I, II & III	4) I, II, IV
168.	The Mass of eggs are rel	leased by the female fro	og is named	
	1) milt	2) Spawn	3) 1 & 2	4) ova
169.	The arrangemeats of Abo	dominal ganglia in Segu	ments cockroach is	
	1) 1,2,3,5,6,7	2) 1, 2, 3, 4, 6, 7	3) 1, 3, 4, 5, 6, 7	4) 1, 2, 3, 4, 5, 7
170.	Fat bodies in Cockroach	are Similar to		
	1) The liver of Invertebra	ates stores food & uric	acid	

	2) The l	iver	ofve	rtrebrat	tes stores fo	od & uric an	nd, Syn	nbioses & Synthes	size lipids.
	3) The heart of vertebrates, filter the blood & Circulation,								
	4) The Brain of Invertebrate & co-ordinate the all body functions.								
171.	Mouth parts of Insects are								
	1) Hom	olog	gous o	rgans	2) Analog	ous organs.	3) Ve	stigeal organs.	4) Atavistic organs.
172.	Break-l	oon	e fevei	r is also	known as				
	1) yello	w fe	ever		2) Malaria	ı	3) Fil	ariasis	4) Dengue fever
173.	Chikung	gun	ya tran	nsmit to	man by				
	1) Infec	ted	perso	n			2) M	osquito	
	3) infec	ted	female	Aedes	aegyptimos	squito	4) Cu	ılex female	
174.	The Syr	npt	oms o	f Deng	ue fever are	are begins af	fter bit	ing of mosquito to	o man is
	1) 1 to	2 da	ays		2) 2 to 4 d	lays	3)71	to 10 days	4) 4 to 10 days.
175.	One of	thef	follow	ing are	Symptoms	& Signs of d	lengue	fever.	
	1) Head	lach	n & mu	ıscular	pain		2) Bo	one or Joint pains	
	3) High	fev	er, Ras	sh & Sv	wollen gland	ls	4) Al	1 108 pm	耳
176.	Look th	ne di	iagran	n & fino	l out the con	rrect Series of	of Nan	nes	八副子》
	1) Poste	eriei	r thora	cic air	sac, Inter cla	aricle, Abdoi	minal,	trachea	70
	2) Cerv	ical,	Inter	claricle	, Right lung	, Abdominal			May
	3) Cervical, Inter claricle, Abdominal & Posterier thoracic air sac.							FU DO	
	4) Cerv	ical	, Inter	claricle	, left lung, p	osterier ther	rocic	No Calence	7 7_0
177.	Match t	he f	ollowi	ng colu	mns.				
	S.NO		Food	d Subs	tances.	Enzyme		Products.	
	Ι		Carb	ohydra	ites.	Amylase		maltose, Sucrose	e & lactose
	II		Malt	ose		Maltase		Glucose & Galac	lose
	III		Sucr	ose		Invertrase		Glucose + Cellule	ose
	IV		Lact	ose		Lactase		Glucose & Galac	lose
	which c	of th	e Abo	ve are (Correct.				
	1) I & I	Ι			2) II & II	I	3) III	[& IV	4) I & IV
178.	A Healt	hy ł	numan	breath	s normally p	er minute.			
	1) 12 to	13	times		2) 12 to 1	5 times	3) 12	to 16 times	4) 13 to 18 times.
179.	Match t	he f	ollow	ing and	choose the	correct Answ	wer		
	A. Asbe	esto	sis		I. in halati	on of coal du	ıst		
	B. Silico	osis			II in halati	on of cold du	ust		
	C. Side	rosi	S		III. Hyper	ferremia			
	D. Black lung disease IV			IV. Asbest	IV. Asbestos industry				
			Ð	a	V. Silica d	ust			
	1) I		В П	С ш	D W				
	1) Г 2) Г	V	и V	Ш	П				
	з) Г	V	V	Π	Ι				
	4) Γ	V	V	Ш	Ι				
180.	In huma	an b	eing H	leart be	at is initiate	d b v			
			U			u Uy			

181. Steps involve in Heart beat are

- 1) Auricular systole \rightarrow ventricular diastole \rightarrow ventricular Systole
- 2) Auricular systole \rightarrow ventricular systole \rightarrow ventriculer diastole
- 3) Auricular systole \rightarrow ventricular systole \rightarrow diastole of Complete Heart

4) None of these

182. One of the following high, B.P is fatal to human's Kidney & Brain.

1)
$$1\frac{190}{110}Hg$$
 2) $\frac{120}{190}Hg$ 3) $\frac{150}{90}Hg$ 4) $\frac{120}{80}Hg$

183. Assertion (A) Infection of the urinery fract is more common in woman than in man.Reasen (R) Due to Short urethra, which is more close to the Anal aperture.

- 1) A is true, R is false
- 2) A is true, R is true, but R is not the correct explaination of A.
- 3) A is true, R is true and R is the correct explaination of A.
- 4) A is false R is false and R is the correct explainaitien of A.
- 184. Match the following & choose the correct Answer

A. Motor unit I. Neuron & set of the Muscle fibres innervated	l by
---	------

- B. Neuro Musculer Junction telodendrites & constitute.
- C. Functional unit II. Sarcomere of striated muscle.
- D. Voluntary muscle III. Cardiac muscle

IV. Junction between a motor neuron and Sarcolemma.

V. Skeletal muscles.

	Α	В	С	D
1)	Ι	Π	III	IV
2)	Π	Ι	III	IV
3)	Ι	IV	V	Π
4)	Ι	IV	Π	V

185. Smallest bone in human's body

1) Atlas	2) Malleus	3) Stepes	4) Patella

186. Match the following & choose the correct Answer

Col	umn-I			Column - II		
A.N	Луоси	el		I. Ol factory lobe		
B. E	Diacoel	l		II. Cerebral hemisphere.		
C. Lateral ventricle				III. Foramen of monro		
D. Rhinocoel				IV. Diencephalon		
				V. Medulla oblengata		
	А	В	С	D		
1)	V	IV	III	Ι		
a >	T 7	TT 7	-	т		

2) V IV II I 3) V IV I II 4) IV V II I

187. Re absorption of H_2O in Nephrons is controlled by

I)ACTH	2) STH

3) Vasopressin

4) Oxytocin

188. Hormone which stops ovulation is

1) F.S.H2) L. H3) Prolactin4) Progesterone

189. The body is covered by fine hair, eye lids, ey lashes are formed by the end of1) 24 weeks in third trimester2) 24 weeks in 2nd trimester

3) 36 weeks in 2nd trimester 4) 36 weeks in 3rd trimester.

190. Formation & Development of blastocyst and its attachment to the uterine wall is called1) Pertirution2) Puberty3) Implantation4) Gestation

191. Match the following & chose the correct Answer.

Col	umn-I			Column-II		
A. (Gonorr	hea		I. Trichomonas vaginalis.		
B. F	Iepatiti	is		II. Troponema pallidium		
С. 7	Frichon	nonias	is	III. HBV		
D. 5	Syphlis			IV. Neisseria gonorrles		
				V. Typhi Salmonella		
	А	В	С	D		

1) IV V Ι Π V 2) IV Ш Ι 3) Ш П IV Ι IV 4) Ш Π Ι

192. A man known to be a victim of Haemophilia marries a normal woman, whose father was known to be ableader then this expected that

1) one fourth of their children will be bleeders.

2) All their children will be bleeders.

3) Half of their children will be bleeders

4) None of these.

193. A Colourblind man married a woman who is the daughter of a Colourblind father and mother is homogenous Normal vision.

1) 50%2) 100%3) 75%4) 25%

194. DNA finger printing is a method for Identifying individuals, paternity & forensicwork. The DNA can be obtained from

1) Blood, Semen & Hairs 2) Vaginal fluid3) 1 & 24) None of these.195. One of the following is sex influence trait.

1) albinism 2) Baldness 3) Blood Group inheitance 4) All

196. Match the following Columns & Choose the correct Answer

S.NO.	Sex Chromoson	nes Haplord Seb	Sex Ratio	Phenotype
		of Auto Seame	S	
Ι	XX	AA	1.0	female
Π	XX	AA	0.5	female
III	XXY	AA	1.0	female
IV	XXXY	AA	1.5	meta female
V	XO	AAA	0.33	meta male
which of	ne of the above is	correct match.		
1) I, II &	k III	2) I, II, III & IV 3) I	, III, IV, V	4) II, III, IV & V

197. A woman's father shows IP (Incontinentia pigmenti). But her Mother & Husband are normally pigmented. What will be the phenotypic ratio of her children of I.P.

1) 50%, Sons	2) 50%. daughters	3) 100% Sons.	4) 1 & 2
--------------	-------------------	---------------	----------

198. Match the following & Choose the Correct Answer.

Column-I			Column-II		
A. Biogen	etic la	W	I. August Weismann		
B. Mutatic	n		II. Darwin		
C. Germ p	lasm		III. Louis Pasture		
D. Pangen	esis		IV. Ernst Haukle		
			V. Hugo Devries		
А	В	С	D		

			-	
1)	IV	V	Π	Ι
2)	IV	V	Ι	Π
3)	IV	V	Ι	Ш
4)	IV	Ι	II	III

- 199. Hyper Sensitivity is
 - 1) Produced by Antigen
 - 2) Produced by Immune Complexe called Allergy.
 - 3) Produced by high temperature of the body,
 - 4) None of these.
- 200. Match the following & choose the Correct Answer.

Colu	mn-I			Column-II
A.C	AT			I. Electro Encephalography
B. EEG				II. Magnetic Resonance Image
C. MRI				III. Computerised Axial Tomography
D. E	CG			IV. Electro Crdio graphy
				V. Electro Angio graphy.
	А	В	С	D
1)	Ш	Π	Ι	IV
2)	III	Ι	Π	V
3)	III	Ι	Π	IV
4)	Ш	Π	Ι	V