EAPCET (E) – 2024 (Engineering, Agriculture and Pharmacy Common Entrance Test)

MODEL TEST

CENTRE FOR EDUCATIONAL DEVELOPMENT OF MINORITIES Osmania University *Minorities Welfare Department, Government of Telangana* Nizam College Campus, Gunfoundry, Hyderabad – 500001.

MOCK TEST – 2024 MATHEMATICS

			~ ⁴	$12x^2 + 7$				
1.	The Coefficient of expa	nsion of x^6 in the Power	Series expantion of $\frac{x}{0}$	$\frac{(x^2+1)^3}{(x^2+1)^3}$				
	1) 149	2) –253	3) -145	4) 253				
1.	$1 - \frac{3}{16} + \frac{1.4}{1.2} \left(\frac{3}{16}\right)^2 - \frac{1.4}{1.2}$	$\frac{4.7}{2.3}\left(\frac{3}{16}\right)^3 + \dots$						
	$1)\left(\frac{15}{6}\right)^{2/8}$	$2)\left(\frac{4}{5}\right)^{2/3}$	$3)\left(\frac{7}{4}\right)^{1/16}$	$4)\left(\frac{4}{15}\right)^{-2/5}$				
3.	The number of positive		-					
4.	1) 16 The number of differen	2) 15 t permutations of letter	3) 24 is that can be formed by	4) 23 taking 4 letters at a time				
4.	from the word "REPET	-	s that can be formed by	taking 4 letters at a time				
	1) 210	2) 720	3) 1398	4) 5040				
5.	If $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}$ and α ,	$\beta \in R$ are such that αR	$\mathbf{A}^2 - \beta \mathbf{A} = 2\mathbf{I}$ then α^2 .	$+\beta =$				
	1) -8	2) 16	3) 12	4) 20				
6.				uch that AB–C is a non-				
	Singular Matrix. Let D		•	atements.				
	Statement I: det (BA) =		A)					
	Statement II: $ABD = D$ Which of the absove Sta							
	1) Statement I is true, 1		a					
	2) Statement I is true, but Statement II is false.3) Both Statement I and Statement II is true.							
	4) Both Statement I and Statement II is false.							
7.	If the System of equations $x + y + z = 1$, $x + 2y + 4z = k$ and $x + 4y + 10z = k^2$ is Consistent then							
	K is equal to							
	1) 1, -2	2) -1, 2	3) 1, 2	4) -1, -2				
8.	If $Z = x + i\beta$ satisfies the	equation $ z - z = 2i$ and	d $ z = \sqrt{\alpha^2 + \beta^2}$ then	$z\overline{z} =$				
	1) $\frac{5}{2}$	2) $\frac{25}{4}$	3) $\frac{16}{9}$	4) $\frac{36}{25}$				
9.	If $\cos \alpha$ is the common	4	3	25				
9.			(-1) , then $\tan x =$	1				
	1) –1	2) 1	3) $\sqrt{3}$	4) $\frac{1}{\sqrt{3}}$				
10.	The real part of z that	satisfies $iz^4 + 1 = 0$ is						
	1) $\sin\frac{\pi}{4}$	2) $\cos\frac{\pi}{8}$	3) 0	4) _1				
11.	The quadratic equation	h whose roots are $\sin^2 f$	18° and $\cos^2 36^{\circ}$ is					
	1) $16x^2 - 12x - 1 = 0$	2) $16x^2 - 12x + 4 = 0$	3) $16x^2 - 12x + 1 = 0$	4) $16x^2 + 12x + 1 = 0$				
		1						

12.	If x is real, then the Max	imum and Minimum va	lue of $\frac{x^2 + 14x + 9}{x^2 + 2x + 3}$ respectively.	ectively	
	1) 4,-5	2) 5,-4	3) 9, 3	4) 24,6	
13.	If α , β , γ are the roots	of the equation $2x^3 +$	$x^2 - 13x + 6 = 0$ then α	$\beta^3 + \beta^3 + \gamma^3 =$	
	1) $-\frac{161}{8}$	2) 36	3) 99	4) $-\frac{151}{8}$	
14.	If $2 + 2^{2/3} + 2^{1/3}$ then x	$x^3 - 6x^2 + 6x$ is equal to)		
	1) 3	2) 2	3) 1	4) 0	
15.	The equation $\sin^4 x - (k+3)\sin^2 x - k - 4 = 0$ has a Solution if				
	1) k > 4		2) $-4 \le k \le -3$		
	3) k is any positive inte	eger	4) k =0		
16.	The range of $f(x) = -$	$\sqrt{-x^2-6x-5}$ is			
	1) [0, 2]	2) [-2, 0]	3) [-2, 2]	4) $[-\infty, 2]$	

17. Let R be the set of all real numbers, let $f : R \to R$ be a function defined by

$$f(x) = \begin{cases} 2x - 5, \text{ if } x < -3\\ x + 2, \text{ if } -3 \le x < 5\\ 3x + 1, \text{ if } x \ge 5 \end{cases}$$

Match the following.

List-I	List-II
A. $f(-5) + f(0) + f(-1) =$	I. 16
B. $f((f(5)+10f(-3)) =$	II. 40
C. $f(f(-4) =$	III. –32
D. $f(f(f(1))) =$	IV12
	V. 19
A B C D	A B C D
1) III II V I	2) V IV I III
3) IV V II I	4) IV V III I
2	

18. If
$$\frac{x^2 - 2}{(x^2 + 1)(x^2 + 3)} = \frac{Ax + B}{x^2 + 1} + \frac{(x + 1)}{x^2 + 3}$$
 then D =
1) $\frac{-3}{2}$ 2) $\frac{-1}{2}$ 3) 2 4) $\frac{5}{2}$

19. If $\frac{x^5-5}{x^3+x^2} = f(x) + \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+1}$ then the largest value of K for which f(K) + A + B + C = 1 is 1) 3 2) 2 3) -2 4) 4

20. If a, b, c are real numbers such that
$$a - b = 1$$
, $b - c = 3$, then the number of Matrices of the

from
$$A = \begin{bmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{bmatrix}$$
 such that $|A| = -12$ is

21.	1) 1 The Mean deviation from	2) 2 m the mean of the discre	3) 3 ete data 1, 3, 4, 7, 11, 1	4) Infinitely many 8, 29, 47, 78 is		
	1) 22	2) 24	3) $\frac{176}{9}$	4) $\frac{182}{9}$		
22. 23.	The Variance of the data 1) 6.258 If x is a Poisson Variate s 3P(x = 2) = P(x = 4) the	2) 24.25 satisfying the Condition	3) 4.95	4) 39.71		
	1) $\frac{162}{5e^6}$	2) $\frac{108}{5e^6}$	3) $\frac{324}{5e^6}$	4) $\frac{648}{5e^6}$		
24.	A and B are two indepe	endent events $P(A) = \frac{2}{5}$	$\frac{2}{5}$, P(B) = $\frac{1}{3}$			
	Match the following. List - I A. $P(\overline{A} \cup B)$ B. $P\left(\frac{A}{B}\right)$ C. $P(A \cup B)$ D. $P\left(\frac{\overline{B}}{A}\right)$ The Correct match is	List - II I. 2/3 II. 11/2 III. 3/5 IV. 2/5 V. 1/3				
	A B C	D	A B C	D		
25.	1) I III IV 3) II IV III If two dice are thrown a of the dice, then mean of 1) 27/4			I I shown up on the faces 4) 7		
26.	If $P(A/B) = \frac{3}{10} P(B/A)$	$=\frac{4}{5}$ and $P(A \cup B) =$	K.P(B), then $\frac{1}{k}$ is equ	ial to		
	1) $\frac{40}{49}$	2) $\frac{40}{43}$	3) $\frac{100}{101}$	4) 1		
27.	If $\tan A = \frac{2}{3}$ then $\sin h 4A =$					
	1) $\frac{8}{27}$	2) $\frac{120}{169}$	3) $\frac{144}{169}$	4) $\frac{16}{27}$		
28.	If $ \sin \alpha - \cos \alpha = \frac{3}{4}$ th	en $ \sec 2\alpha - \tan 2\alpha =$				
	1) $\frac{12}{17}$	2) $\frac{4}{\sqrt{23}}$	3) $\frac{3}{\sqrt{23}}$	4) $\frac{1}{\sqrt{23}}$		
29.	$\frac{1}{\sin 250^0} + \frac{\sqrt{3}}{\cos 290^0} =$					

1)
$$\frac{1}{\sqrt{3}}$$
 2) 4 3) $\frac{4}{\sqrt{3}}$ 4) 1

30. Assertion (A) If A = 15° , B= 17° and C = 13° then Ccos 2A + Cos 2B + Cot 2C = Cot 2A Cot 2B Cot 2C

Reason (R) In a $\triangle PQR$

$$\tan\frac{P}{2}\tan\frac{Q}{2} + \tan\frac{Q}{2}\tan\frac{R}{2} + \tan\frac{P}{2}\tan\frac{R}{2} = 1$$
The Correct option among the following is

The Correct option among the following is

- 1) (A) is true, (R) is true and (R) is the correct explanation for (A)
- 2) (A) is true, (R) is true but (R) is not the correct explanation for (A)
- 3) (A) is true but (R) is false
- 4) (A) is false but (R) is true.
- 31. The Period Cos (3x + 5) + 7 is

1)
$$\frac{2\pi}{5}$$
 2) $\frac{2\pi}{3}$ 3) $\frac{2\pi}{15}$ 4) $\frac{2\pi}{7}$

32.
$$\cos \frac{\pi}{7} - \cos \frac{2\pi}{7} + \cos \frac{3\pi}{7} - \cos \frac{4\pi}{7} + \cos \frac{5\pi}{7} - \cos \frac{6\pi}{7} =$$

1) 0 2) 3/2 3) 3/4 4) 1

33. If
$$\frac{\sin^4 x}{2} + \frac{\cos^4 x}{3} = \frac{1}{5}$$
 then $27 \sec^6 \alpha + 8 \csc^6 \alpha$
1) 250 2) 125 3) 175 4) 350

34. If
$$\sin A(A+B) \sin (A-B) + \cos (A+B) \cos (A-B) = \frac{1}{2}$$
 and $0 < B < \frac{\pi}{2}$ then $B =$

1)
$$\frac{\pi}{6}$$
 2) $\frac{\pi}{4}$ 3) $\frac{\pi}{3}$ 4) $\frac{5\pi}{12}$

35. If
$$\frac{\sin(x+y)}{\sin(x-y)} = \frac{a+b}{a-b}$$
 then $\frac{\tan x}{\tan y} =$
1) $\frac{b}{a}$ 2) $\frac{a}{b}$ 3) ab 4) a^{b}

36. The number of integral values of k for which the equation $7\cos x + 5\sin x = 2k + 1$ has a solution is 1) 4 2) 6 3) 8 4) 10

37. In
$$\triangle ABC$$
, if $a = 7$, $b = 8$, $c = 9$ then $\frac{1}{r_1^2} + \frac{1}{r_2^2} + \frac{1}{r_3^2} =$

1)
$$\frac{97}{360}$$
 2) $\frac{5}{72}$ 3) $\frac{169}{360}$ 4) $\frac{67}{72}$

38. In $\triangle ABC$, if BC is the hypotenuse, then $r_2 + r_3 =$ 1) $r_1 + r$ 2) a 3) $r - r_1$ 4) 2(R + r)

39. In $\triangle ABC$, if a = 7, b = 10, c = 11 then $\frac{R}{r}$ =

1) 14 2) 77 3)
$$\frac{24}{11}$$
 4) $\frac{55}{24}$

40. In-centre of the triangle having the vertices $(1,\sqrt{3})(0,0)(2,0)$ is

1)
$$(1, \frac{\sqrt{3}}{2})$$
 2) $(\frac{2}{3}, \frac{1}{\sqrt{3}})$ 3) $(\frac{2}{3}, \frac{\sqrt{3}}{2})$ 4) $(1, \frac{1}{\sqrt{3}})$

41. If 4 times the area of a $\triangle ABC$ is $c^2 - (a-b)^2$ then sinc=

1)
$$\frac{\sqrt{3}}{2}$$
 2) $\frac{1}{\sqrt{2}}$ 3) $\frac{1}{2}$ 4) 1

42. In $\triangle ABC$, if $rr_2 = r_1r_3$ then $\cos 2B =$

1)
$$_{-1}$$
 2) 1 3) 0 4) $\frac{1}{2}$

43. If
$$\sin^{-1}\left(\frac{x}{5}\right) + \cos ec^{-1}\left(\frac{5}{4}\right) = \frac{\pi}{2}$$
 then $5 + x =$
1) 6 2) 5 3) 7 4) 8

44. $\sec\left(\tan^{-1}\left(\frac{y}{2}\right)\right) =$ 1) $\sqrt{\frac{4+y^2}{2}}$ 2) $\sqrt{\frac{4-y^2}{2}}$ 3) $\frac{\sqrt{4+y^2}}{2}$ 4) $\frac{\sqrt{4-y^2}}{2}$

45. If
$$x = \log(y + \sqrt{y^2 + 1})$$
 then $y =$
1) $\tanh x$ 2) $\coth x$ 3) $\sinh x$ 4) $\cosh x$
46. If $\sinh x = \tan A$, then $|\tanh x|=$
1) $|\sin A|$ 2) $|\cos A|$ 3) $|\sec A|$ 4) $|\operatorname{cosec} A|$

- 47. If $\sinh x = \frac{3}{4}$ and $\cosh y = \frac{5}{3}$, then x + y =1) log 2 2) log 6 3) log 3 4) log 5
- 48. A rod of length 6 units slides with its ends on the coordinate axes. The locus of the midpoint of the rod is

1)
$$x^2 + y^2 = 9$$
 2) $x + y = 3$ 3) $x^2 + y^2 = 36$ 4) $x + y = 6$

49. The transformed equation of $3x^2 - 4xy = r^2$. When the coordinate axes are related through an angle $\tan^{-1}(2)$ is

1)
$$x^2 - 4y^2 = r^2$$
 2) $2xy + r^2 = 0$ 3) $4y^2 - x^2 = r^2$ 4) $xy = r^2$

- 50. If $ax^2 xy 3y^2 5x + 20y + c = 0$ represents a pair of lines passing through the points (2, 3) then a - c =1) -23 2) 27 3) 23 4) -27
- 51. If the lines x + y 1 = 0, k + 2y + 1 = 0 and 4x + 2ky + 7 = 0 are concernent, then k = 1) 2 2) 13/2 3) -13/2 4) -2
- 52. If P is a part of equidistent from all the vertices A(-1,3), B(3,5), C(5,7) of $\triangle ABC$, then PA=

1) 11 2)
$$\sqrt{140}$$
 3) 13 4) $\sqrt{130}$

- 53. IF (h, k) is the image of the point (2, -3) with respect to the line line 5x 3y = 2, then h + k = 1) -3 2) -3/34 3) -3/34 4) 5
- 54. The points A (2, 1) B (3, -2) C (*a*, *b*) are Vertices of the rectangle ABCD. If the point P(3, 4) lies on CD produced, then 5a + 10b =1) 41 2) 10 3) 45 4) -15
- 55. If the pair of lines $6x^2 + xy y^2 = 0$ and $3x^2 axy y^2 = 0$, a > 0 have a Common line, then a = 1) 1/2 2) 1 3) 2 4) 4
- 56. If the Circle passing through (1, -2) has x y = 2 and 2x + 3y = 14 as its diameter, then the radius of the Circle is
- 1) 2 2) 3 3) 3 4) 5 57. If the angle between the Circles $x^2 + y^2 - 2x - 4y + C = and x^2 + y^2 - 4x - 2y + 4 = 0$ is 60° then C

1)
$$\frac{3\pm\sqrt{5}}{2}$$
 2) $\frac{6\pm\sqrt{5}}{2}$ 3) $\frac{7\pm\sqrt{5}}{2}$ 4) $\frac{9\pm\sqrt{5}}{2}$

58. Let the Circle $S = x^2 + y^2 + 2gx + 2fy + C = 0$ touch the Position X-axis and the position Y-axis. Let (2, 4) be a point on the Circle S = 0. If two such Circles exist, then the difference of their areas is

1)
$$104\pi$$
 2) 96π 3) 9π 4) 41π

59. If the angle between the Circles $x^2 + y^2 - 4x - 6y + K = 0$ and $x^2 + y^2 + 8x - 4y + 11 = 0$ is $\frac{\pi}{2}$, then k =

60. The Value of C such that the line y = 4x + C touches the ellipse $\frac{x^2}{4} + \frac{y^2}{1} = 1$ is

1)
$$\pm 13$$
 2) ± 1 3) $\pm \sqrt{65}$ 4) $\pm \sqrt{74}$

- 61. The Cartesian equation of the Parabola $x = -2 + 2t^2$, y = 2 + 4t is
 - 1) $y^2 8x 4y + 12 = 0$ 2) $y^2 - 8x - 4y - 12 = 0$ 3) $y^2 + 8x - 4y - 12 = 0$ 4) $y^2 - 8x + 4y - 12 = 0$
- 62. The equation of hyperbole, whose eccentricity is $\sqrt{2}$ and whose foci are 16 units apart, is

1)
$$9x^2 - 4y^2 = 36$$
 2) $2x^2 - 3y^2 = 37$ 3) $x^2 - y^2 = 16$ 4) $x^2 - y^2 = 32$

63. Let a = 2i - 3j + k, b = i + 2j - 3k, C = i - j and d = i + j + xk. If $(a \times b) \times C$ is \perp to d, then x is equal to 1) 3/2 2) 2 3) 2/3 4) 1

- 64. If *a*, *b* and *c* are three non-Collinear points and ka + 2b + 3c is a point in the plane of *a*, *b*, *c* then K.
- 1) 4 2) 5 3) -5 4) -465. If OA = 6i + 3j - 4k, OB = 2j + k, OC = 5i - j + 2k are Coterminous edges of a parallelopiped, then the height of the parallelopiped drawn from the vertex A is

1)
$$\frac{85}{3}$$
 2) $\frac{5}{\sqrt{32}}$ 3) $\frac{85}{\sqrt{257}}$ 4) $\frac{17}{\sqrt{6}}$

66. If (2, -1, 3) is the fort of perpendicular drawn from the origin to a plane, then the equation of that Plane is.

	1) $2x + y - 3z + 6 = 0$		2) $2x - y + 3z - 14 = 0$			
	3) $2x - y + 3z - 13 = 0$		4) $2x + y + 3z - 10 = 0$			
67.	If $f(x) = -(\sin^2 + \cos^5 x)$ then $\lim_{x \to 0} \frac{1}{x} f'(x)$					
	1) exist and is equal to	$\lambda \to \lambda$	2) exist and is equal t	0.7		
	3) exist and is equal to 3		4) does not exist.			
	$1 - \cos(1 - \cos x)$					
68.	$Lt_{x\to 0} \frac{1 - \cos(1 - \cos x)}{\sin^2 x}$					
	1) 1/2	2) 1/4	3) 1/6	4) 1/8		
69.	$\lim_{x \to \infty} x \left(\log \left(1 + \frac{x}{2} \right) - \log \left(1 + \frac{x}{2} \right) \right)$	$\left(\frac{x}{2}\right)$				
	1)0	2) 1	3) 2	4) <i>e</i>		
	,	, 	,	,		
70.	If $2x^2 + 3x - y^2 + 4x - 3x - y^2 + 4x - 3x -$	$5y+6=0$ then $\frac{dy}{dx}$ at	(x, y) = (0, -2) is			
	1) 1	2) _1	3) 7/2	4) 0		
	$1 + \sec x$	π				
71.	If $f(x) = \frac{1 + \sec x}{2(\sec x - 1)}$ f	for $0 < x < \frac{1}{2}$ and $f'(x)$	f(x) = f(x).g(x) then $g(x)$	(x) =		
	1) cosec x	2) -cosec x	3) 2cosec <i>x</i>	4) – 2 cosec <i>x</i>		
72.	An angle between the c	curve $r^2 - v^2 = 4$ and	$r^{2} + v^{2} - 4\sqrt{2}$			
, 2.	,	,	,	1		
	1) $\frac{\pi}{6}$	2) $\frac{\pi}{4}$	3) $\frac{\pi}{3}$	4) $\frac{\pi}{2}$		
73.	Slope of the tangent at (1, 2) to the curve $x = t^2 - 7t + 7$ and $y = t^2 - 4t - 10$ is					
	1) $\frac{8}{5}$	2) $\frac{5}{8}$	3) $-\frac{8}{5}$	4) $\frac{-5}{8}$		
	1) /5	2) /8	3) /5	4) /8		
74.	$\int \frac{dx}{\sqrt{\left(5+2x+x^2\right)^3}} =$					
	1) $\frac{1}{4}\int \frac{1}{\sqrt{5+2x+x^2}} + c$	$2) \int \frac{1}{\sqrt{5+2x+x^2}} + c$	(2) $\frac{x+1}{\sqrt{5+2x+x^2}} + C$	4) $\frac{1}{4} \frac{x+1}{\sqrt{5+2x+x}} + C$		
75.	Let $\operatorname{In} = \int \sec^n x dx$ If 5	$I_{6} - 4I_{4} = f(x)$ then .	$f\left(\frac{\pi}{4}\right) =$			
	1) 2	2) 4	3) 1	4) 4/5		
76.	$\int_{0}^{\pi/2} \sin^4\theta \cos^3\theta d\theta =$					
	1) 1/35	2) 2/35	3) 4/35	4) 8/35		
	4	,	,			
77.	$\int_{0}^{4} x-2 - x dx =$					
	1) 2	2) 3	4) 6	4) 12		
78.	If $y = f(y)$ is the colution	of the differentel agent	on $r\frac{dy}{dx} = r^2 + 3y$ r	(0, y(2) = 4, then f(x) =		
10.	$\mu v = \mu \lambda \mu \delta \mu c \delta 0 \mu \mu 0 \mu$		$v_{1}v_{2}$ $v_{1}v_{3}v_{4}v_{7}$	\sim_{1} , \sim		

78. If y = f(x) is the solution of the differential equation $x\frac{dy}{dx} = x^2 + 3y$, x > 0, y(2) = 4, then f(x) = 1

1) 48 2) 260 3) 80 4) 36

79. The solution of the differential equation $(x+2y^3)\frac{dy}{dx} = y$ is

1)
$$x = y^3 + c$$
 2) $x = y^3 + cy$ 3) $y = x^3 + c$ 4) $y = x^3 + cx + d$

80. The differential equation for which $y = ax^2 + bx = c$ is the general solution is

1)
$$\frac{d^4 y}{dx^4} = 0$$
 2) $\frac{d^3 y}{dx^3} = 0$ 3) $\frac{d^5 y}{dx^5} = 0$ 4) $\frac{d^3 y}{dx^3} + \frac{d^4 y}{dx^4} = 0$
PHYSICS

81. In $S = a + bt + ct^2$, S is measured in meters and t in seconds. The unit of c is 1) ms^{-2} 2) m 3) ms^{-1}

82. A particle starts from rest. Its acceleration (a) versus time (t) graph is as shown in the figure. The maximum speed of the particle will be 10 m/s^2

2) 55 m/s

4) 660 m/s

4) No units

4) $\sqrt{155}m/s$

83. A ball is thrown vertically upwards. Which of the following graphs represent velocity-time graph of the ball during its flight? (air resistance is neglected)

84. As shown in figure the tension in the horizontal cord is 30 N. The weight W and tension in the string OA in Newtons are

1) $30\sqrt{3},30$ 2) $30\sqrt{3},60$ 3) $60\sqrt{3},30$ 4) None of these

85. A ball is thrown from ground level so as to just clear a wall 4 metres high at a distance of 4 metres and falls at a distance of 14 metres from the wall. The magnitude of velocity of the ball will be

1) $\sqrt{182}m/s$

1) 110 m/s

3) 550 m/s

- 2) $\sqrt{175}m/s$ 3) $\sqrt{165}m/s$
- 86. A particle is moving in a circular path with velocity varying with time as $v = 1.5t^2+2t$. If the radius of circular path is 2 cm, the angular acceleration at t = 2 sec will be 1) $4 rad/sec^2$ 2) $40 rad/sec^2$ 3) $400 rad/sec^2$ 4) $0.4 rad/sec^{28}$
- 87. A body of mass m tied at the end of a string of length is projected with velocity $\sqrt{4\ell g}$, at what height will it leave the circular path

1)
$$\frac{5}{3}\ell$$
 2) $\frac{3}{5}\ell$ 3) $\frac{1}{3}\ell$ 4) $\frac{2}{3}\ell$

- 88. The equivalent resistance between A and B is
 - 1) 16/3Ω 2) 16Ω 3) 8Ω 4) 3/16Ω
- 89. The magnitude of the force (in Newton) acting on a body varies with time t (in microsecond) as shown in fig. AB, BC, and CD are straight line segments. The magnitude of the total impulse on the body from t=4 μ s to to 16 μ s is

1) $5 \times 100^{-4} N.s$ 2) $5 \times 10^{-3} N.s$ 3) $5 \times 10^{-5} N.s$ 4) $5 \times 10^{-2} N.s$

90. Three equal weights of mass m each are hanging on a string passing over a fixed pulley as shown in fig. The tensions in the string connecting weights A to B and B to C will respectively be

1)
$$\frac{2}{3}mg$$
, $\frac{2}{3}mg$ 2) $\frac{2}{3}mg$, $\frac{4}{3}mg$ 3) $\frac{4}{3}mg$, $\frac{2}{3}mg$ 4) $\frac{3}{2}mg$, $\frac{3}{4}mg$

91. A block of mass 2 kg is on a horizontal surface. The co-efficient of static & kinetic frictions are 0.6 & 0.2 The minimum horizontal force required to start the motion is applied and if it is continued, the velocity acquired by the body at the end of the 2nd second is $(g = 10 \text{ ms}^{-2})$

1) 8N,
$$8ms^{-1}$$
 2) 8N, $4 ms^{-1}$ 3) 8N, $2 ms^{-1}$ 4) 8N, zero

92. Two satellites S_1 , and S_2 , revolve round a planet in the same direction in circular orbits. Their periods of revolutions are 1 hour and 8 hour respectively. The radius of S_1 , is 10^4 km. The velocity of S_2 , with respect to S_1 , will be

1)
$$\pi \times 10^4$$
 km/hr 2) $\pi/3 \times 10^4$ km/hr 3) $2\pi \times 10^4$ km/hr 4) $\pi/2 \times 10^4$ km/hr

93. A uniform steel wire of density $7800 \text{kg}/m^3$ is 2.5 m long and weighs 15.6×10^{-3} kg. It extends by 1.25 mm when loaded by 8kg. Calculate the value of young's modulus of elasticity for steel.

1)
$$1.96 \times 10^{11} N/m^2$$
 2) $19.6 \times 10^{11} N/m^2$ 3) $196 \times 10^{11} N/m^2$ 4) None of these

94. An ideal gas expands isothermally from a volume V_1 to V_2 and then compressed to original volume V₁ adiabatically. Initial pressure is Pand final pressure is P₃. The total work done is W. Then

1)
$$P_3 > P_1, W > 0$$
 2) $P_3 < P_1, W < 0$ 3) $P_3 > P_1, W < 0$ 4) $P_3 = P_1, W = 0$

95. A charged ball B hangs from a silk thread S, which makes an angle with a large charged conducting sheet P, as shown in the figure. The surface charge density σ of the sheet is proportional to

1) $\sin \theta$ 2) $\tan \theta$ 3) $\cos \theta$ 4) $\cot \theta$

96. Figure given below shows two identical parallel plate capacitors connected to a battery with switch S closed. The switch is now opened and the free space between the plates of capacitors is filled with a dielectric of dielectric constant 3. What will be the ratio of total electrostatic energy stored in both capacitors before and after the introduction of the dielectric?

97. In the fig. shown, Calculate the current through 3 ohm resistor. The emf of battery is 2 volt and its internal resistance is 2/3 ohm.

1) 0.33 amp 2) 0.44 amp 3) 1.22 amp 4) 0.88 amp

98. A thin circular wire carrying a current I has a magnetic moment M. The shape of the wire is changed to a square and it carries the same current. It will have a magnetic moment

1) M 2)
$$\frac{4}{\pi^2}M$$
 3) $\frac{4}{\pi}M$ 4) $\frac{\pi}{4}M$

99. Consider the arrangements shown in figure in which the north pole of a magnet is moved away from a thick conducting loop containing capacitor. Then excess positive charge will arrive on

1) plate a 2) plate b

3) both plates a and b 4) None of the plates a and b

- 100.A current 10 A in the primary coil of a circuit is reduced to zero at a uniform rate in 10^{-3} second.
If the coefficient of mutual inductance is 3H, the induced e. m.f. in the secondary coil will be
1) 3 kV2) 30 kV3) 2 kV4) 20 kV
- 101. An alternating current is given by the equation $i = i_1 \cos \omega t + i_2 \sin \omega t$. The r.m.s. current is

given by

1)
$$\frac{1}{\sqrt{2}}(i_1+i_2)$$
 2) $\frac{1}{\sqrt{2}}(i_1+i_2)^2$ 3) $\frac{1}{\sqrt{2}}(i_1^2+i_2^2)^{1/2}$ 4) $\frac{1}{2}(i_1^2+i_2^2)^{1/2}$

102. A light beam travelling in the X-direction is described by the electric field E_y , (300V/m) $\sin \omega (t - x/c)$. An electron is constrained to move along the Y - direction with a speed of 2.0×10^7 m/s. The maximum magnetic force (in N) on the electron is.

1)
$$3.2 \times 10^{-18}$$
 2) 5.1×10^{-16} 3) 6.5×10^{-11} 4) 7.8×10^{-12}

103. In Bohr model of atom an electron of charge (-e) and mass m is revolving around a nucleus of charge +ze. If \overline{L} is the orbital angular momentum of electron, then its magnetic moment is given by

1)
$$-\frac{e}{2m}\overline{L}$$
 2) $\frac{e}{2m}\overline{L}$ 3) $\frac{-Ze}{2m}\overline{L}$ 4) $\frac{Ze}{2m}\overline{L}$

104. Energy levels A, B, C of a certain atom corresponding to increasing values of energy i. e. $E_A < E_B$ $< E_C$. If $\lambda_1, \lambda_2, \lambda_3$ are the wavelengths of radiations corresponding to the transitions C to B, B to A and C to A respectively, which of the following statements is correct?

1)
$$\lambda_3 = \lambda_1 + \lambda_2$$

2) $\lambda_3 = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$
3) $\lambda_1 + \lambda_2 + \lambda_3 = 0$
4) $\lambda_3^2 + \lambda_1^2 + \lambda_2^2$

105. In the given figure, the diodes in forward biased are

106. An ideal gas undergoes a thermodynamics cycle as shown in figure. Which of the following graphs represents the same cycle?

107. A uniform rope of mass m and length L is hung freely from stationary ceiling. If the cross sectional area of rope is A and Young's modulus Y, then net elongation in the rope due to its own weight

1)
$$\frac{mgL}{AY}$$
 2) $\frac{mgL}{2AY}$ 3) $\frac{mgL}{3AY}$ 4) $\frac{mgL}{4AY}$

108. Two soap bubbles to form a single large drop (r = radius of small bubbles R = radius of large drop)

Column: I	Column - II
A) surface energy in the process	P) $2^{1/3}$ r
B) pressure of the soap bubble inside will be	Q) Decreases
C) temperature of drop will be	R) 4 ^{1/3} r
D) radius of final single drop	S) increases.
1) A-Q,B-Q,C-S,D-P	2) A-Q,B-P,C-S,D-P
3) A-P,B-Q,C-P,D-S	4) A-P,B-Q,C-P,D-S

109. In a photo electric experiment, I(current)-V (voltage) graph is as shown. Curves a,b,c correspond to three different metal surfaces irradiated with monochromatic light of same frequency. Assuming the ratio of number of electrons emitted per second to the number of photons incident per second is the same for all the three surfaces, choose the INCORRECT statement:

1) the work function of metals b and c are equal

2) the intensities of light incident on a and b are same

3) the work functions of metals a and b are not equal

4) the intensities of light incident on a, b and c are all different

110. The value of L, C and R in an LCR series circuit are 4 mH, 40 pF and 100_{Ω} respectively. The quality factor of the circuit is

111. Two coherent sources of light emit waves with wavelength with constant phase difference of 180°. The intensity due to each at a point on a screen is I. At a point on the screen where the path

difference between two waves is $\frac{3\lambda}{2}$ the total intensity will be: 1) $2I_0$ 2) $4I_0$ 3) $6I_0$ 4) $3I_0$

112. Statement - A: A diver under water, looks obliquely at a fisherman standing on the bank of a lake. The fisherman look shorter to the diver than what he actually is

Statement - B: A convex mirror always produces a virtual image independent of location of the real object

1) Both statements A & B are true 2) Statement A is true and Statement B is false

3) Statement A is false and Statement B is true 4) Both statements A & B are false

113. In photoelectric effect experiment, the intensity of light is varied by changing the distance of light source from emitter. Which of the following graphs depict he variation of photoelectric current 'C' with intensity of light T'?

114. Assertion (A): The Bohr model is not applicable to atoms having many electrons.

Reason (R): In atoms having many electrons, each electron interacts not only with positively charged nucleus but also with all other electrons.

1) Both assertion and reason are true and reason is correct explanations of assertion.

- 2) Both assertion and reason are true but reason is not correct explanation of essertion.
- 3) Assertion is true and reason is false
- 4) Assertion is false and reason is true

115. The combination of gates shown in the diagram is equivalent to

1) OR	2) AND
3) NAND	4) NOR

Column - I

116. Two identical capacitors have the same capacitance C. One of them is charged to a potential Vi and the other to V2. If they are connected with their unlike plates together, the decrease in energy of the combined system is

1)
$$\frac{1}{4}C(V_1^2 - V_2^2)$$
 2) $\frac{1}{4}C(V_1^2 + V_2^2)$ 3) $\frac{1}{4}C(V_1 - V_2^2)^2$ 4) $\frac{1}{4}C(V_1 + V_2^2)^2$

117. Some relations and laws related to fluids are given in column A, While the reasons behind them are given in column B. Match A and B

Column - II

	Column - 1	Colui	1111 - 11		
	(a) Stoke's law energy	e) Surface	e potential		
	(b) Equation of continuity	nation of continuity f) Viscosity			
	(c) Bernoulli's theorem	g) Conser	vation of mass		
	(d) Velocity efflux	h) Conserv	ation of energy		
	1) (a) – (e), (b) – (f), (c) –	-(g), (d) - (h)	2) (a) – (f), (b) – (h), (c) – (g	g), (d) – (e)	
	3) (a) – (f), (b) – (g), (c) –	-(h), (d) - (e)	4) (a) – (e), (b) – (h), (c) – (g	g), (d) – (f)	
118.		ed in R is P_1 . When	ance 10 each are connected in s a the same batteries are connec R is		
	1) 2Ω	2) _{4Ω}	3) 10Ω	4) _{12Ω}	
119.	If θ is the angle of projections	on and H, R are th	e maximum height, range of a	projectile, then Tan θ	
	1)4H/R	2) 4R/H	3) 2H/R	4) 2R/H	
120.	The force per unit length o magnetic field of 0.15 T is	n a wire carrying o	current of 8A making an angle	of 30 ⁰ with a uniform	
	1) 1.2 N	2) 1.02 N	3) 0.6 N	4) 2.4 N	
		CHEM	ISTRY		
121.	A mixture of gases contair the two gases in the mixtur		in the ratio of 1:4 (w/w). What	tt is the molar ratio of	
	1) 16 : 1	2) 2 : 1	3) 1 : 4	4) 4 : 1	
122.	1	0 1	excited state to 1st excited state as and Paschen series respectiv		
	1) 10, 4, 3	2) 15,0,4	3) 15, 4, 5	4) 10,0,3	
123.	The angular momentum of	felectron in 'd' orb	ital is equal to:		
	1) $2\sqrt{3}h$	2) <i>h</i>	3) $\sqrt{6}h$	4) $\sqrt{2}h$	
124.	Which of the following is c	correct with respec	ct to -I effect of the substituent	s? [$\mathbf{R} = alkyl$]	
	1) $-NH_2 > -OR > -F$		2) $-NR_2 < -OR <$	< -F	
	3) $-NH_2 < -OR < -F$		4) $-NR_2 > -OR >$	> -F	

- 125. The species, having bond angles of 120° is:
 - 1) PH_3 (b) CIF_3 (c) $NC1_3$ BCl_3
- 126. The species Ar, K⁺ and Ca²⁺ contain the same number of electrons. In which order do their radii increase?

1) $Ca^{2+} < K^{+} < Ar$	2) $K^+ < Ar < Ca^{2+}$
3) Ar < K^+ < Ca^{2+}	4) $Ca^{2+} < Ar < K^{+}$

- 127. The solubility of $BaSO_4$, in water is 2.42 x $10^{-3}gL^{-1}$ at 298K. The value of solubility product (K_{sp}) will be [Given molar mass of $BaSO_4 = 233 \text{ g mol}^{-1}$]
 - 1) $1.08 \times 10^{-2} \operatorname{mol}^{2} L^{-1}$ 2) $1.08 \times 10^{-12} \operatorname{mol}^{2} L^{-2}$
 - 3) $1.08 \ge 10^{-14} \mod^2 L^{-2}$ 4) $1.08 \ge 10^{-8} \mod^2 L^{-2}$
- 128. What is the activation energy for a reaction if its rate doubles when the temperature is raised from 20°C to 35°C? (R= 8.314J mol⁻¹ K⁻¹)

1) 342 kJ mol^{-1} 2) 269 kJ mol^{-1} 3) 34.7 kJ mol^{-1} 4) 15.1 kJ mol^{-1}

129. In which of the following options the order of arrangement does not agree with the variation of property indicated against it?

I < Br< Cl< F (increasing electron gain enthalpy)
 Li < Na < K < Rb (increasing metallic radius)
 Al³⁺ <Mg²⁺< Na⁺ < F⁻ (increasing ionic size)
 B < C <N< O (increasing first ionization enthalpy)

130. Aqueous solution of which of the following compounds is the best conductor of electric current?

1) Hydrochloric acid, HCI	2) Ammonia, NH_3
3) Fructose, $C_6 H_{12} O_6$	4) Acetic acid, $C_2H_4O_2$

131. The rate of first-order reaction is 0.04 mol L^{-1} s⁻¹ at 10 seconds and 0.03 mol L^{-1} s⁻¹ at 20 seconds after initiation of the reaction. The half-life period of the reaction is:

- 132. In acidic medium, H_2O_2 changes $Cr_2O_7^{2-}$ to CrO_5 which has two (-O-O-) bonds. Oxidation state of Cr in CrO_5 is:
 - 1) +5 2) +3 3) +6
- 133. The reaction of H_2O_2 with hydrogen sulphide is an example of reaction:

1) addition2) oxidation3) reduction4) redox acidic

4) - 10

134. The enthalpy of vaporization of $H_2O(l)$ is x kJ/mol and enthalpy of formation of water vapour y kJ/mol. Enthalpy of formation of $H_2O(l)$. would be

1)
$$(y - x)$$
 kJ mol⁻¹ 2) $(x - y)$ kJ mol⁻¹ 3) $(x + y)$ kJ mol⁻¹ 4) $(2x-y)$ kJ mol⁻¹

135. Equal volumes of four acid solutions having pH 1, 2, 3 and 4 are mixed in a container. The concentration of hydrogen ion in the mixture of.

1) 4.25×10^{-4} M 2) 2.78×10^{-2} M 3) 2.30×10^{-3} M 4) 1.35×10^{-2} M

136. A button cell used in watches functions as following:

$$Zn(s) + Ag_2O(s) + H_2O(l) \rightarrow 2Ag(s) + Zn^{2+}(aq) + 20H^{-}(aq)$$

If half-cell potentials are: $Zn^{2+}(aq) + 2e^{-}Zn(s) E^{\circ} = -0.76 V$

The cell potential will be: 1) 1.10 V 2) 0.42 V 3) 0.84 V 4) 1.34 V 137. The correct order of increasing bond length of C-H, C-O, C-C and C = C is: 1) C-C < C = C < C - O < C - H 2) C-O < C - H < C - C < C = C 3) C-H < C - O < C - C < C = C 4) C-H < C = C < C - O < C - C 138. Which one of the following orders is correct for the bond dissociation enthalpy of halogen molecules? 1) Br ₂ >I ₂ >F ₂ > CI ₂ 2) F ₂ CI ₂ > Br ₂ >I ₂ 3) I ₂ > Br ₂ >CI ₂ >F ₁ 4) CI ₂ > Br ₂ > F ₂ > I ₂ 139. Gadolnium belongs to 4f series. It's atomic number is 64. Which of the following is the correct electronic configuration of gadolinium? 1) [Xe] 4f* 6s ² 2) [Xe] 4f* 5s ¹ 3) [Xe] 4f^7 5d* 6s ² 4) [Xe] 4f* 5d ² 6s ² 140. Propionic acid with Br ₂ /P yields a dibromo product. Its structure would be: Br 1) CH ₂ Br-CHBr-COOH 2) H-C-CH ₂ COOH Br 141. At 25°C and 730 mm pressure, 380 ml of dry oxygen was collected. If the temperature is constant, what volume will the oxygen occupy at 760 mm pressure? 1) 365 ml (b) 2 ml (c) 10 ml (d) 20 ml 142. Predict the product C obtained in the following reaction of 1-butyne. CH ₃ CH ₂ -C=CH+HCI \rightarrow B ^{-HI} C 1) CH ₃ -CH-CH ₂ CH ₂ I 2) CH ₃ -CH ₂ -CHOH (ii) CH ₃ CCH ₃ 43. Following compounds are given: (i) CH ₅ CH ₂ OH (ii) CH ₃ COCH ₃ (iii) CH ₃ -CHOH (iv) CH ₃ OH CH ₃ 43. Following compounds are given: (i) (CH ₅ CH ₂ OH (iii) CH ₃ COCH ₃ (iii) CH ₅ -CHOH (iv) CH ₃ OH (CH ₃) (i) (CH ₃ CH ₂ OH (iii) CH ₃ COCH ₃ (iii) CH ₃ -CHOH (iv) CH ₃ OH (CH ₃) (i) (CH ₃ CH ₂ OH (iii) CH ₃ COCH ₃ (iii) CH ₅ -CHOH (iv) CH ₃ OH (CH ₃) (i) (iii) and (iv) 2) Only (iii) 3) (i) (ii) and (iii) 4) (i) and (ii)		$Ag_2O(s) + H_2O(l) + 2e^- \rightarrow 2Ag(s) + 2OH^-(aq), E^\circ = 0.34 V$				
137. The correct order of increasing bond length of C–H, C–O, C–C and C = C is: 1) C–C < C = C < C–O < C–H 2) C–O < C–H < C–C < C = C 3) C–H < C–O < C–C < C = C 4) C–H < C = C < C – O < C–C 138. Which one of the following orders is correct for the bond dissociation enthalpy of halogen molecules? 1) Br ₂ > L ₂ > F ₂ > Cl ₂ 2) F ₂ Cl ₂ > Br ₂ > L ₂ 3) I ₂ > Br ₂ > Cl ₂ > F ₂ 4) Cl ₂ > Br ₃ > F ₂ > L ₂ Gaodinium belongs to 4f series. It's atomic number is 64. Which of the following is the correct electronic configuration of gadolinium? 1) [Xel 4f ³ 6s ² 2) [Xel 4f ³ 5s ¹ 3) [Xel 4f ⁷ 5d ⁴ 6s ² 4) [Xel 4f ⁴ 5d ² 6s ² 140. Propionic acid with Br ₂ /P yields a dibromo product. Its structure would be: Br 1) CH ₂ Br–CHBr–COOH 2) H–C–C–CH ₂ COOH Br 3) CH ₂ Br–CH ₂ –COBr 3) CH ₂ Br–CH ₂ –COBr 411. At 25°C and 730 mm pressure, 380 ml of dry oxygen was collected. If the temperature is constant, what volume will the oxygen occupy at 760 mm pressure? 1) 365 ml (b) 2 ml (c) 10 ml (d) 20 ml 142. Predict the product C obtained in the following reaction of 1-butyne. CH ₃ CH ₂ –CH ₂ –CH ₂ H ₂ Π → B ^H →C 1) CH ₃ –CH ₂ –CH ₂ CH ₂ H ₂ Π → B ^H →C 1) CH ₃ –CH ₂ –CH ₂ CH ₂ I → CH ₃ (i) CH ₃ –CH ₂ OH (ii) CH ₃ CQH → CH ₂ CH ₂ I → CH ₃ 143. Following compounds are given: (i) CH ₃ CH ₂ OH (ii) CH ₃ COCH ₃ (iii) CH ₃ –CHOH (iv) CH ₃ OH (iv) CH ₃ OH (vi) CH ₃ O		The cell potential will be:				
1) $C-C < C = C < C-O < C-H$ 3) $C-H < C-O < C-C < C = C$ 3) $C-H < C-O < C-C < C = C$ 4) $C-H < C = C < C - O < C-C$ 138. Which one of the following orders is correct for the bond dissociation enthalpy of halogen molecules? 1) $Br_2 > I_2 > F_2 > CI_2$ 2) $F_2 CI_2 > Br_2 > I_2$ 3) $I_2 > Br_2 > CI_2 > F_2$ 4) $CI_2 > Br_2 > I_2 > F_2 > I_2$ 3) $I_2 > Br_2 > CI_2 > F_2 > I_2 > I_2 > F_2 > I_2$ 3) $I_2 = 4f^2 5d^2 6s^2$ 4) $I_2 > Br_2 > I_2 > I_2 = 14f^2 5s^1$ 3) $I_2 = 4f^2 5d^2 6s^2$ 4) $I_2 = 4f^2 5d^2 6s^2$ 40. Propionic acid with Br_2/P yields a dibromo product. Its structure would be: Br 1) $CH_2Br-CHBr-COOH$ 3) CH_2Br-CH_2-COBr 3) CH_2Br-CH_2-COBr 3) CH_2Br-CH_2-COBr 3) $CH_3C-C-COOH$ Br 141. At 25°C and 730 mm pressure, 380 ml of dry oxygen was collected. If the temperature is constant, what volume will the oxygen occupy at 760 mm pressure? 1) 365 ml (b) 2 ml (c) 10 ml (d) 20 ml 142. Predict the product C obtained in the following reaction of 1-butyne. $CH_3CH_2-CC=CH + HCI \longrightarrow B \xrightarrow{HI} C$ 1) $CH_3-CH_2-CH_2CH_2I$ 3) $CH_3-CH_2-CH_2CH_2I$ 4) $CH_3CH_2-CH_2-CH_3$ 143. Following compounds are given: (i) CH_3CH_2OH (ii) CH_3COCH_3 (iii) CH_3-CHOH (iv) CH_3OH (iv) CH_3OH (vi) CH_3OH (vi		1) 1.10 V	2) 0.42 V	3) 0.84 V	4) 1.34 V	
1) $Br_2 > I_2 > F_2 > CI_2$ 2) $F_2 CI_2 > Br_2 > I_2$ 3) $I_2 > Br_2 > CI_2 > F_2$ 4) $CI_2 > Br_2 > F_2 > I_2$ 139. Gadolinium belongs to 4f series. It's atomic number is 64. Which of the following is the correct electronic configuration of gadolinium? 1) [Xe] 4f' 6s ² 2) [Xe] 4f' 5s ¹ 3) [Xe] 4f'^2 5d ¹ 6s ² 4) [Xe] 4f' 5d ² 6s ² 140. Propionic acid with Br_2/P yields a dibromo product. Its structure would be: Br 1) $CH_2Br-CHBr-COOH 2) H-C-CH_2COOH Br 3) CH_2Br-CH_2-COBr 3) CH_3-C-COOH Br 141. At 25°C and 730 mm pressure, 380 ml of dry oxygen was collected. If the temperature is constant, what volume will the oxygen occupy at 760 mm pressure? 1) 365 ml (b) 2 ml (c) 10 ml (d) 20 ml 142. Predict the product C obtained in the following reaction of 1-butyne. CH_3CH_2-C=CH+HCI \rightarrow B \xrightarrow{HI} C1) CH_3-CH-CH_2CH_2I 2) CH_3-CH_2-CH_2-CH_3143. Following compounds are given:(i) CH_3-CH_2-CH - CH_2CH_2I 4) CH_3CH_2-CH_2-CH_3143. Following compounds are given:(i) CH_3CH_2OH (ii) CH_3COCH_3 (iii) CH_3-CHOH (iv) CH_3OHCH_3Which of the above compound(s), on being warmed with iodine solution and NaOH, will give iodoform?$	137.	1) $C - C < C = C < C - C$	-O < C—H	2) $C - O < C - H < C$	C - C < C = C	
139. Gadolinium belongs to 4f series. It's atomic number is 64. Which of the following is the correct electronic configuration of gadolinium? 1) [Xe] $4f^{*} 6s^{2}$ 2) [Xe] $4f^{*} 5s^{1}$ 3) [Xe] $4f^{*} 5d^{1} 6s^{2}$ 4) [Xe] $4f^{6} 5d^{2} 6s^{2}$ 140. Propionic acid with Br,/P yields a dibromo product. Its structure would be: Br 1) CH ₂ Br—CHBr—COOH 2) H—C—CH ₂ COOH Br 3) CH ₂ Br—CH ₂ —COBr 3) CH ₃ —C—COOH Br 141. At 25°C and 730 mm pressure, 380 ml of dry oxygen was collected. If the temperature is constant, what volume will the oxygen occupy at 760 mm pressure? 1) 365 ml (b) 2 ml (c) 10 ml (d) 20 ml 142. Predict the product C obtained in the following reaction of 1-butyne. CH ₃ CH ₂ —C=CH+HCI→B ^{HI} →C 1) CH ₃ —CH ₂ —CH ₂ —CH ₂ CH ₂ I 2) CH ₃ —CH ₂ —CH ₂ —CH ₂ —CH 3) CH ₃ —CH ₂ —CH ₂ CH ₂ CH ₂ I 4) CH ₃ CH ₂ —CH ₂ (H) (ii) CH ₃ CH ₂ —CH ₂ (H) 4. Following compounds are given: (i) CH ₃ CH ₂ OH (ii) CH ₃ COCH ₃ (iii) CH ₃ —CHOH (iv) CH ₃ OH CH ₃ . Which of the above compound(s), on being warmed with iodine solution and NaOH, will give iodoform?	138.	Which one of the following	orders is correct for the bond	dissociation enthalpy of ha	llogen molecules?	
electronic configuration of gadolinium? 1) [Xe] 4f ⁸ 6s ² 2) [Xe] 4f ⁹ 5s ¹ 3) [Xe] 4f ⁷ 5d ¹ 6s ² 4) [Xe] 4f ⁶ 5d ² 6s ² 140. Propionic acid with Br ₂ /P yields a dibromo product. Its structure would be: 1) CH ₂ Br—CHBr—COOH 2) H—C—C—CH ₂ COOH Br 3) CH ₂ Br—CH ₂ —COBr 3) CH ₃ —C—COOH 1 41. At 25°C and 730 mm pressure, 380 ml of dry oxygen was collected. If the temperature is constant, what volume will the oxygen occupy at 760 mm pressure? 1) 365 ml (b) 2 ml (c) 10 ml (d) 20 ml 142. Predict the product C obtained in the following reaction of 1-butyne. CH ₃ CH ₂ —C=CH+HCl → B ^H →C 1) CH ₃ —CH=CH ₂ CH ₂ (H ₂ I 2) CH ₃ —CH ₂ —CH ₂ —CH 3) CH ₃ —CH=CH ₂ CH ₂ I 2) CH ₃ —CH ₂ —CH ₂ —CH 4) CH ₃ CH ₂ —C=CH (ii) CH ₃ CH ₂ (H ₂) (iii) CH ₃ —CHOH (iv) CH ₃ OH (i) CH ₃ CH ₂ OH (ii) CH ₃ COCH ₃ (iii) CH ₃ —CHOH (iv) CH ₃ OH Which of the above compound(s), on being warmed with iodine solution and NaOH, will give iodoform?		1) $Br_2 > I_2 > F_2 > Cl_2$	2) $F_2 Cl_2 > Br_2 > I_2$ 3)	$I_2 > Br_2 > Cl_2 > F_2$ 4) C	$Cl_2 > Br_2 > F_2 > I_2$	
140. Propionic acid with Br_2/P yields a dibromo product. Its structure would be: Br 1) CH_2Br—CHBr—COOH 2) H—C—CH_2COOH Br 3) CH_2Br—CH_2—COBr 3) CH_3=C—COOH Br 141. At 25°C and 730 mm pressure, 380 ml of dry oxygen was collected. If the temperature is constant, what volume will the oxygen occupy at 760 mm pressure? 1) 365 ml (b) 2 ml (c) 10 ml (d) 20 ml 142. Predict the product C obtained in the following reaction of 1-butyne. CH_3CH_2—C=CH+HCI $\rightarrow B \xrightarrow{HI} C$ 1) CH_3—CH—CH_2CH_2I 2) CH_3—CH_2—CH_2 (l) CH_3—CH—CH_2CH_2I 2) CH_3—CH_2—CH_2 (l) CH_3—CH_2—CH—CH_2CH 3) CH_3—CH_2—CH—CH_2CH 4) CH_3CH_2—C=CH_3 143. Following compounds are given: (i) CH_3CH_2OH (ii) CH_3COCH_3 (iii) CH_3—CHOH (iv) CH_3OH (viv) CH_	139.	•		s 64. Which of the follow	ing is the correct	
Br 1) CH ₂ BrCHBrCOOH 3) CH ₂ BrCH ₂ -COBr 3) CH ₂ BrCH ₂ -COBr 3) CH ₂ BrCH ₂ -COBr 3) CH ₃ -CCOOH Br 141. At 25°C and 730 mm pressure, 380 ml of dry oxygen was collected. If the temperature is constant, what volume will the oxygen occupy at 760 mm pressure? 1) 365 ml (b) 2 ml (c) 10 ml (d) 20 ml 142. Predict the product C obtained in the following reaction of 1-butyne. CH ₃ CH ₂ -C=CH+HCI \rightarrow B $\stackrel{HI}{\rightarrow}$ C 1) CH ₃ -CH-CH ₂ CH ₂ I 2) CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH 3) CH ₃ -CH ₂ -CH ₂ CH ₂ CH 4) CH ₃ CH ₂ -CH ₂ -CH ₂ -CH (i) CH ₃ -CH ₂ -CH ₂ CH ₂ CH (ii) CH ₃ CH ₂ -CH ₂ CH (iii) CH ₃ -CH (iv) CH ₃ OH (v) CH ₃ OH (v		1) [Xe] 4 <i>f</i> ⁸ 6s ²	2) [Xe] $4f^9 5s^1$	3) [Xe] $4f^7 5d^16s^2$ 4)	[Xe] $4f^6 5d^2 6s^2$	
1) CH ₂ Br—CHBr—COOH 1) CH ₂ Br—CHBr—COOH 2) H—C—CH ₂ COOH Br Br 3) CH ₂ Br—CH ₂ —COBr 3) CH ₂ Br—CH ₂ —COBr 3) CH ₃ —C—COOH Br 141. At 25°C and 730 mm pressure, 380 ml of dry oxygen was collected. If the temperature is constant, what volume will the oxygen occupy at 760 mm pressure? 1) 365 ml (b) 2 ml (c) 10 ml (d) 20 ml 142. Predict the product C obtained in the following reaction of 1-butyne. CH ₃ CH ₂ —C=CH+HCI \rightarrow B ^{HI} \rightarrow C 1) CH ₃ —CH=CH ₂ CH ₂ I 2) CH ₃ —CH ₂ —CH ₂ —CH ₂ —CH 3) CH ₃ —CH=CH ₂ CH ₂ I 4) CH ₃ CH ₂ —CH ₂ —CH ₂ (i) CH ₃ -CH ₂ —CH=CH ₂ CI 4) CH ₃ CH ₂ —CH ₃ (ii) CH ₃ —CHOH (iv) CH ₃ OH (v) CH ₃ OH (v) CH ₃ OH (v) CH ₃ OH (v) CH ₃ OH	140.	Propionic acid with Br ₂ /P	yields a dibromo product. I	ts structure would be:		
Br Br Br 3) CH ₂ Br-CH ₂ -COBr 3) CH ₃ Br-CHOCH Br 141. At 25°C and 730 mm pressure, 380 ml of dry oxygen was collected. If the temperature is constant, what volume will the oxygen occupy at 760 mm pressure? 1) 365 ml (b) 2 ml (c) 10 ml (d) 20 ml 142. Predict the product C obtained in the following reaction of 1-butyne. CH ₃ CH ₂ -C=CH+HCl \rightarrow B $\stackrel{HI}{\rightarrow}$ C 1) CH ₃ -CH-CH ₂ CH ₂ I 2) CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH 3) CH ₃ -CH ₂ -CH ₂ -CH ₂ CH ₂ I 4) CH ₃ CH ₂ -CH ₂ -CH ₂ -CH ₃ 143. Following compounds are given: (i) CH ₃ CH ₂ OH (ii) CH ₃ COCH ₃ (iii) CH ₃ -CHOH (iv) CH ₃ OH Which of the above compound(s), on being warmed with iodine solution and NaOH, will give iodoform?				Br		
Br Br Br 3) CH ₂ Br-CH ₂ -COBr 3) CH ₃ Br-CHOCH Br 141. At 25°C and 730 mm pressure, 380 ml of dry oxygen was collected. If the temperature is constant, what volume will the oxygen occupy at 760 mm pressure? 1) 365 ml (b) 2 ml (c) 10 ml (d) 20 ml 142. Predict the product C obtained in the following reaction of 1-butyne. CH ₃ CH ₂ -C=CH+HCl \rightarrow B $\stackrel{HI}{\rightarrow}$ C 1) CH ₃ -CH-CH ₂ CH ₂ I 2) CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH 3) CH ₃ -CH ₂ -CH ₂ -CH ₂ CH ₂ I 4) CH ₃ CH ₂ -CH ₂ -CH ₂ -CH ₃ 143. Following compounds are given: (i) CH ₃ CH ₂ OH (ii) CH ₃ COCH ₃ (iii) CH ₃ -CHOH (iv) CH ₃ OH Which of the above compound(s), on being warmed with iodine solution and NaOH, will give iodoform?		1) CH Br—CHBr—CO	ОН	 2) H—C—CH COOI	4	
$\begin{array}{c} & Br \\ 3) CH_2Br-CH_2-COBr \\ & 3) CH_3-C-COOH \\ & Br \end{array}$ 141. At 25°C and 730 mm pressure, 380 ml of dry oxygen was collected. If the temperature is constant, what volume will the oxygen occupy at 760 mm pressure? $\begin{array}{c} 1) 365 \text{ ml} \\ b) 2 \text{ ml} \\ (c) 10 \text{ ml} \\ (d) 20 \text{ ml} \end{array}$ 142. Predict the product C obtained in the following reaction of 1-butyne. $\begin{array}{c} CH_3CH_2-C=CH+HCl \rightarrow B \stackrel{H}{\rightarrow} C \\ 1) CH_3-CH_2-CH_2CH_2I \\ 3) CH_3-CH_2-CH_2CH_2I \\ 3) CH_3-CH_2-CH_2CH_2I \\ (d) CH_3CH_2-CH_3 \\ (d) CH_3-CH_2-CH_2CH_2I \\ (d) CH_3CH_2-CH_3 \\ (d) CH_3-CH_2-CH_3CH_2I \\ (d) CH_3CH_2-CH_3 \\ (d) CH_3-CH_2-CH_3CH_3 \\ (d) CH_3-CH_2-CH_3CH_3 \\ (d) CH_3-CH_3CH_3 \\ (d) CH_3-CH_3 \\ (d) CH_3CH_3 \\ (d) CH_3 \\ (d) CH_3CH_3 \\ (d) CH_3 \\ (d)$						
3) CH ₂ BrCH ₂ COBr 3) CH ₃ -CCOOH Br 141. At 25°C and 730 mm pressure, 380 ml of dry oxygen was collected. If the temperature is constant, what volume will the oxygen occupy at 760 mm pressure? 1) 365 ml (b) 2 ml (c) 10 ml (d) 20 ml 142. Predict the product C obtained in the following reaction of 1-butyne. CH ₃ CH ₂ C=CH+HCl \rightarrow B \xrightarrow{HI} C 1) CH ₃ CHCH ₂ CH ₂ I 2) CH ₃ CH ₂ CH ₂ CH ₂ CH 3) CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₂ I 4) CH ₃ CH ₂ CH ₂ -CH ₂ -CH (i) CH ₃ -CH ₂ -CH-CH ₂ CI 4) CH ₃ CH ₂ CHOH (ii) CH ₃ CH ₂ OH (iii) CH ₃ -CHOH (iv) CH ₃ OH Which of the above compound(s), on being warmed with iodine solution and NaOH, will give iodoform?						
Br 141.At 25°C and 730 mm pressure, 380 ml of dry oxygen was collected. If the temperature is constant, what volume will the oxygen occupy at 760 mm pressure?1) 365 ml(b) 2 ml(c) 10 ml(d) 20 ml142.Predict the product C obtained in the following reaction of 1-butyne. $\operatorname{CH}_3\operatorname{CH}_2 - \mathbb{C} = \operatorname{CH} + \operatorname{HCl} \longrightarrow \mathbb{B} \xrightarrow{\operatorname{HI}} \mathbb{C}$ 11) $\operatorname{CH}_3 - \operatorname{CH}_2 - \operatorname{CH}_2\operatorname{CH}_2\operatorname{I}$ 2) $\operatorname{CH}_3 - \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{CH}_2$ 1) $\operatorname{CH}_3 - \operatorname{CH}_2 - \operatorname{CH}_2\operatorname{CH}_2\operatorname{I}$ 2) $\operatorname{CH}_3 - \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{CH}_3$ 3) $\operatorname{CH}_3 - \operatorname{CH}_2 - \operatorname{CH}_2\operatorname{CH}_2\operatorname{CH}$ 4) $\operatorname{CH}_3\operatorname{CH}_2 - \operatorname{CH}_3$ 143.Following compounds are given:Cl(i) $\operatorname{CH}_3\operatorname{CH}_2\operatorname{OH}$ (ii) $\operatorname{CH}_3\operatorname{COCH}_3$ (iii) $\operatorname{CH}_3 - \operatorname{CHOH}$ (iv) $\operatorname{CH}_3\operatorname{CH}_2$ (iii) $\operatorname{CH}_3\operatorname{COCH}_3$ (iii) $\operatorname{CH}_3 - \operatorname{CHOH}$ which of the above compound(s), on being warmed with iodine solution and NaOH, will give iodoform?						
Br 141.At 25°C and 730 mm pressure, 380 ml of dry oxygen was collected. If the temperature is constant, what volume will the oxygen occupy at 760 mm pressure?1) 365 ml(b) 2 ml(c) 10 ml(d) 20 ml142.Predict the product C obtained in the following reaction of 1-butyne. $\operatorname{CH}_3\operatorname{CH}_2 - \mathbb{C} = \operatorname{CH} + \operatorname{HCl} \longrightarrow \mathbb{B} \xrightarrow{\operatorname{HI}} \mathbb{C}$ 11) $\operatorname{CH}_3 - \operatorname{CH}_2 - \operatorname{CH}_2\operatorname{CH}_2\operatorname{I}$ 2) $\operatorname{CH}_3 - \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{CH}_2$ 1) $\operatorname{CH}_3 - \operatorname{CH}_2 - \operatorname{CH}_2\operatorname{CH}_2\operatorname{I}$ 2) $\operatorname{CH}_3 - \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{CH}_3$ 3) $\operatorname{CH}_3 - \operatorname{CH}_2 - \operatorname{CH}_2\operatorname{CH}_2\operatorname{CH}$ 4) $\operatorname{CH}_3\operatorname{CH}_2 - \operatorname{CH}_3$ 143.Following compounds are given:Cl(i) $\operatorname{CH}_3\operatorname{CH}_2\operatorname{OH}$ (ii) $\operatorname{CH}_3\operatorname{COCH}_3$ (iii) $\operatorname{CH}_3 - \operatorname{CHOH}$ (iv) $\operatorname{CH}_3\operatorname{CH}_2$ (iii) $\operatorname{CH}_3\operatorname{COCH}_3$ (iii) $\operatorname{CH}_3 - \operatorname{CHOH}$ which of the above compound(s), on being warmed with iodine solution and NaOH, will give iodoform?		3) CH_2Br-CH_2-COB	r	3) CH ₃ —C—COOH		
what volume will the oxygen occupy at 760 mm pressure? 1) 365 ml (b) 2 ml (c) 10 ml (d) 20 ml 142. Predict the product C obtained in the following reaction of 1-butyne. $CH_3CH_2-C=CH+HCI \longrightarrow B \xrightarrow{HI} C$ 1) $CH_3-CH-CH_2CH_2I$ 2) $CH_3-CH_2-CH_2-CH_2-CH_2-CH_2$ 3) $CH_3-CH_2-CH-CH_2CI$ 4) $CH_3CH_2-CH_2-CH_3$ 143. Following compounds are given: (i) CH_3CH_2OH (ii) CH_3COCH_3 (iii) CH_3-CHOH (iv) CH_3OH CH_3 Which of the above compound(s), on being warmed with iodine solution and NaOH, will give iodoform?						
142. Predict the product C obtained in the following reaction of 1-butyne. $CH_{3}CH_{2}-C=CH+HCI \longrightarrow B \xrightarrow{HI} C$ $1) CH_{3}-CH-CH_{2}CH_{2}I$ $2) CH_{3}-CH_{2}-CH_{2}-CH_{2}-CH_{2}$ 1 $3) CH_{3}-CH_{2}-CH-CH_{2}CI$ $4) CH_{3}CH_{2}-C-CH_{3}$ $143. Following compounds are given:$ $(i) CH_{3}CH_{2}OH$ $(ii) CH_{3}COCH_{3}$ $(iii) CH_{3}-CHOH$ $(iv) CH_{3}OH$ CH_{3} Which of the above compound(s), on being warmed with iodine solution and NaOH, will give iodoform?	141.	-		vas collected. If the temper	ature is constant,	
CH ₃ CH ₂ C=CH + HCl \rightarrow B \xrightarrow{HI} C 1) CH ₃ CHCH ₂ CH ₂ I 3) CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₂ I 4) CH ₃ CH ₂ CH ₂ -CH ₂ -CH ₃ 143. Following compounds are given: (i) CH ₃ CH ₂ OH (ii) CH ₃ COCH ₃ (iii) CH ₃ CHOH (iv) CH ₃ OH CH ₃ Which of the above compound(s), on being warmed with iodine solution and NaOH, will give iodoform?		1) 365 ml	(b) 2 ml	(c) 10 ml	(d) 20 ml	
1) $CH_3 - CH_2 - CH_2 CH_2 I$ 3) $CH_3 - CH_2 - CH_2 - CH_2 CH_2 CH_2 I$ (i) $CH_3 - CH_2 - CH_2 - CH_2 CH_2 CH_2 CH_3$ 143. Following compounds are given: (i) $CH_3 CH_2 OH$ (ii) $CH_3 COCH_3$ (iii) $CH_3 - CHOH$ (iv) $CH_3 OH$ (v) CH	142.	Predict the product C obt	ained in the following reaction	on of 1-butyne.		
1) $CH_3 - CH_2 - CH_2 CH_2 I$ 3) $CH_3 - CH_2 - CH_2 - CH_2 CH_2 CH_2 I$ (i) $CH_3 - CH_2 - CH_2 - CH_2 CH_2 CH_2 CH_3$ 143. Following compounds are given: (i) $CH_3 CH_2 OH$ (ii) $CH_3 COCH_3$ (iii) $CH_3 - CHOH$ (iv) $CH_3 OH$ (v) CH		$CH_3CH_2 - C \equiv CH + 1$	$HCI \longrightarrow B \xrightarrow{HI} C$			
(i) CH ₃ CH ₂ OH (ii) CH ₃ COCH ₃ (iii) CH ₃ —CHOH (iv) CH ₃ OH CH ₃ Which of the above compound(s), on being warmed with iodine solution and NaOH, will give iodoform?				1		
(i) CH ₃ CH ₂ OH (ii) CH ₃ COCH ₃ (iii) CH ₃ —CHOH (iv) CH ₃ OH CH ₃ Which of the above compound(s), on being warmed with iodine solution and NaOH, will give iodoform?		T) CH ₃ —CH—CH ₂ C	H ₂ I 2) CH ₃	$-CH_2-CH_2-CH_2$	ł	
(i) CH ₃ CH ₂ OH (ii) CH ₃ COCH ₃ (iii) CH ₃ —CHOH (iv) CH ₃ OH CH ₃ Which of the above compound(s), on being warmed with iodine solution and NaOH, will give iodoform?				I CI		
(i) CH ₃ CH ₂ OH (ii) CH ₃ COCH ₃ (iii) CH ₃ —CHOH (iv) CH ₃ OH CH ₃ Which of the above compound(s), on being warmed with iodine solution and NaOH, will give iodoform?		3) CH ₃ —CH ₂ —CH	CH ₂ CI 4) CH ₃ CH	I ₂ —C—CH ₃		
(i) CH ₃ CH ₂ OH (ii) CH ₃ COCH ₃ (iii) CH ₃ —CHOH (iv) CH ₃ OH CH ₃ Which of the above compound(s), on being warmed with iodine solution and NaOH, will give iodoform?	143.	Following compounds are	e given:	ĊI		
CH ₃ Which of the above compound(s), on being warmed with iodine solution and NaOH, will give iodoform?		(i) CH ₃ CH ₂ OH	(ii) CH ₃ COCH ₃	(iii) CH ₃ —CHOH	(iv) CH ₃ OH	
iodoform?						
1) (i), (iii) and (iv) 2) Only (ii) 3) (i), (ii) and (iii) 4) (i) and (ii)		-	pound(s), on being warmed	with iodine solution and	NaOH, will give	
-		1) (i), (iii) and (iv)	2) Only (ii)	3) (i), (ii) and (iii)	4) (i) and (ii)	
144. Consider the following statements.	144.	Consider the following sta	tements.			

(1) XeF_4 is colourless crystalline solid and undergoes sub-limation.

(2) $XeOF_4$ is colourless volatile liquid.

(3) XeO_4 is colourless explosive solid.

The correct statements are:

1) (1) and (2) only 2) (2) and (3) only 3) (1) and (3) only 4) (1), (2) and (3)

145. A solution has 1 : 4 mole ratio of pentane to hexane. The vapour pressure of the pure hydrocarbons at 20°C are 440 mm of Hg for pentane and 120 mm of Hg for hexane. The mole fraction of pentane in the vapour phase would be:

146. One mole of Al3⁺ discharged completely by using charge?

147. In which of the following molecules/ions BF₃, NO₂⁻, NH₂⁻ and H₂O, the central atom is sp² hybridised?

1) NO_2^- and NH_2^- 2) NH_2^- and H_2O 3) NO_2^- and H_2O 4) BF₃ and NO_2^-

148. Which one of the following is a free-radical substitution reaction?

1)
$$() \xrightarrow{CH_2Cl} + AgNO_2 \rightarrow () \xrightarrow{CH_2NO_2}$$

3) $() \xrightarrow{CH_3} + Cl_2 \xrightarrow{Boiling} () \xrightarrow{CH_2Cl}$
4) $() \xrightarrow{CH_3Cl} + CH_3Cl \xrightarrow{anhy} () \xrightarrow{CH_3}$

149. Consider the following reaction:

$$\begin{array}{l} \text{Ethanol} \xrightarrow{PBr_3} X \xrightarrow{\text{alc. KOH}} Y \xrightarrow{H_2SO_4, \text{room temperature}}_{H_2O, \text{ heat}} Z \\ 1) \text{ CH}_3\text{CH}_2\text{O} \xrightarrow{-} \text{CH} \xrightarrow{-} \text{CH}_3 \\ 2) \text{ CH}_3 \xrightarrow{-} \text{CH}_2 \xrightarrow{-} \text{O} \xrightarrow{-} \text{SO}_3\text{H} \\ 3) \text{ CH}_3\text{CH}_2\text{OH} \\ 4) \text{ CH}_2 = \text{CH}_2 \end{array}$$

- 150. Which of the following is an ideal solution?
 - 1) Ethanol + water
 - 3) Ethanol + benzene
- 151. The efficiency of a fuel cell is given by:

1)
$$\frac{\Delta G}{\Delta S}$$
 2) $\frac{\Delta G}{\Delta H}$ 3) $\frac{\Delta S}{\Delta G}$ 4) $\frac{\Delta H}{\Delta G}$

2) Nitric acid + water

4) Benzene + toluene

4) benzene.

152. Which of the following will not show cis-trans isomerism?

1)
$$CH_3$$
— $CH = CH$ — CH_3
3) CH_3 — $C = CH$ — CH_2 — CH_3
 \downarrow
 CH_3
 CH_3
 CH_3 — $CH = CH$ — CH_2 — CH_3
 \downarrow
 CH_3
 CH_3
 CH_3 — $CH = CH$ — CH_2 — CH_3
 \downarrow
 CH_3
 CH_3

153. Among the following compounds, one that is most reactive towards electrophilic nitration is

1) benzoic acid.2) nitrobenzene.3) toluene.

154. At 25°C, the dissociation constant of a base, BOH is 1.0×10^{-12} . The concentration of hydroxyl ions in 0.01 M aqueous solution of the base would be:

1) $2.0 \times 10^{-6} \text{ mol } L^{-1}$ 2) $1.0 \times 10^{-5} \text{ mol } L^{-1}$

	(c) 1.0	$ imes 10^{-6}$ me	ol L^{-1}	(d) 1.0×10^{-7} mo	l L ⁻¹	
155.	If the enthalpy change for transition of liquid water to steam is 30 kJmol ⁻¹ at 27°C. The entropy change for the process would be:					
	1) 1.0J	mol ⁻¹ K ⁻¹	1	2) 0.1 J mol ⁻¹ K ⁻¹	3) 100 J mol ⁻¹ K ⁻¹ 4) 10J mol ⁻¹ K ⁻¹	-1
156.	In whic	ch electrop	philic subs	titution reaction slo	w step is breaking of C—H bond?	
	1) Sulphonation of benzene 2) Nitration of benzene				nzene	
	3) Chlorination of benzene 4) All of these					
157.	Acetor	e and etha	anol can b	e chemically disting	uished by:	
	(a) I ₂ /N	laOH		(b) 2,4 DNP	3) Tollen's reagent 4) Both (a) and (b))
158.	In whic	ch of the fo	ollowing	eaction C—C bond	formation does not take place?	
	(1) Gattermann-Koch reac		tion	(2) Étard reaction		
	(3) Ber	nzoin cond	lensation		(4) Swarts reaction	
159.	The va	lue of ΔA	AH and AS	S for the reaction,		
	$C_{(gradually)}(s) + CO_2(g) \rightarrow 20$ spontaneous at:		2CO(g) are 170 kJ	and 170 JK^{-1} , respectively. This reaction will b	be	
	1) 710	Κ		2) 910 K	3) 1110 K 4) 510 K	
160.	The ex	perimenta	ıl data for	the reaction 2A + E	$B_2 \longrightarrow 2AB$	
	Exp.	[A]	[B]	Rate (Ms ⁻¹)		
	1.	0.50	0.50	$1.6 imes 10^{-4}$		
	2.	0.50	1.00	$3.2 imes 10^{-4}$		
	3.	1.00	1.00	$3.2 imes 10^{-4}$		
	The rat	e equation	n for the a	bove data is:		
	1) rate	$= k[B_2]$		2) rate = $k[B_2]^2$	3) rate = $k[A]^2[B]^2$ (c) rate = $k[A]^2[B]^2$	B]