EAPCET (AP) - 2024

(Engineering, Agriculture and Pharmacy Common Entrance Test)

MODEL TEST

CENTRE FOR EDUCATIONAL DEVELOPMENT OF MINORITIES Osmania University *Minorities Welfare Department, Government of Telangana* Nizam College Campus, Gunfoundry, Hyderabad – 500001.

MOCK TEST- 2024 BOTANY

1.	The term taxon refers to		-		
	1) Name of a species		2) Name of genus		
	3) Name of family		4) A taxonomic group	of any rank.	
2.	Class is present between	n			
	1) Kindom & Phyllum		2) Phylum and order		
	3) Order and family		4) family & genus.		
3.	Descending arrangemen	nt of Categories is call	ed		
	1) Key	3) Heirarchy	3) Taxonomy	4) Classification	
4.	The label of a herbariur	n Sheet dres not carry	information on		
	1) Date Collection	2) Name the collecto	r 3) Local names	4) Height of the plant	
5.	Viroids differ from viru	ses is having			
	1) DNA molecules with	iout.			
	2) RNA molecules with	protein coat			
	3) RNA molecules with	out protein coat			
	4) DNA molecules with	protein coat			
6.	After Karyogamy follow	wed by meiosis, spores	s are produced exogene	ously in	
	1) Agarious	1) Alternaria	3) Neurosppra	4) Sacharomyces	
7.	Bacillus thuringiensis (I	Bt) strains have been ι	used for designing nove	el	
	1) Bioinsecticidal plants		2) Bio-mineralizations		
	3) Biofuertizers		4) Bio-metallurgical tec	hniques	
8.	Cry protein is obtained from				
	1) Bacillus thuringiensis		2) Bacillus subtilis		
	3) Clostridium Welchi		4) E-coli		
9.	In primary settling tank, a	all sediments that settle	are termed as		
	1) Primary sludge	2) Effluent	3) Activated sludge	4) Flocs	
10.	The term poly adelphous	is related to			
	1) Gyroceium	2) Androecium	3) Corella	4) Calyx	
11.	Coconut fruit is a				
	1) Berry	2) Nut	3) Capsule	4) Drupe	
12.	When Stamens are attack	1			
	1) Epipetalous	2) Epiphyllous	3) Polyandrous	4) Diadelphous	
13.	Tricarpellary syncarpou				
	1) Fabaceae	2) Poaceoe	3) Liliacee	4) Solanaceoe	
14.	Placentation in tomato an				
	1) Marginal	2) Axile	3) Parietal	4) Free Central	
15.	Cork is formed from			41 37 1	
1	1) Cork combium	2) Vascular combium	3) Phloem	4) Xylem	
16.0	Companion cells are associ		$2) C_{} 1 11$	4) C'anna 1	
	1) Vessel elements	2) Trichomes	3) Guard celle	4) Sieve elements	

17.	The most primitive type				
	1) Eustete	2) Solenostele	3) Protostele	4) Siphonostele.	
18.	The functional xylem of				
	1) Sap wood	2) Hard wood	13) Heartwood	4) Autumn	
19.	Age of a tree Can be es	stimated by			
	1) Number of annual r	ings	2) Diameter of its hea	rtwood	
	3) Its height and girth		4) Biomass		
20.	Infloresence is racemos	se in			
	1) Brinjal	2) Tulip	3) Aloe	4) Soyabean	
21. 1	The mechanism that car	uses a gene is called to	move from one linkage	e group to another	
	1) Inversion	2) Duplication	3) Translocation	4) Crossing-over	
22.	Which of the following	g most appropriately d	escribes haemophilia.		
	1) Cchromosomal disord	der	2) Dominant gene disor	rder	
	3) Recessive gene disord	der	4) Recessive gene diso	order	
23.	The ratio of complement	tary genes in F ₂ generation	on		
	1) 12:3:1	2) 9:8	3) 9:3:4	4) 9:6:1	
24.	Wich one is the incorre	ect statement with rega	rd to the importance of	Pedigree analysis.	
	1) It confirms that DN	A is the Carries of gen	es information		
	2) It helps to understar	nd whether the trait que	estion is dominant of re	cessive	
	3) It confirms that the	trait is linked to one of	the autosome		
	4) It helps to trace the	inheritance of a specifi	c trait		
25.	Down's Syndrome in h	umans is due to			
	1) The X chromosom		2) Three copies of Ch	nrome of chromosomes	
	3) Monosomy		4) Two Y chromosom	nes.	
26.	Uridine, present only in	n RNA is a			
	10 Nucleoside	2) Nucleotide	3) Purine	4) Pyrimidine	
27.	Which of the following	is the starter codon			
	1) UAA	2) UAG	3) AUG	4) UGA	
28.	The final proof of DNA	as the genetic Material (Came from the experiment	nts of	
	1) Hershey & Chase		2) Avery, Mcleod & McCarty		
	3) Hangdoind Khorana		4)Griffith		
29.	Which of the following i	s codons codes for Proli	ne		
	1) CCC, CCU, CCG	2) UCC, UGU, CCU	3) CUG, CUU, CUA	4) CGC, CGG, CCA.	
30.	Which one of the follow:	ing is a restriction endon	uclease		
	1) DN asel	2) R Nase	3) Hind II	4) Protease	
31.	The cutting of DNA at s	_	se possible with the disco	overy of	
	1) Selectable maskers	2) Ligases	3) RE	4) Probes	
32.	XX7 · 1 · · · 1	to transfer T-DNA			
<i>c</i> <u>-</u> .	Which organism is used			с :	
021	1) Streptomycis hygrosc		2) Agrobacterium tume	facium	
	 Streptomycis hygrosc Salmonella typhi 	copices	4) E-coli	facium	
33.	1) Streptomycis hygrosc	copices	4) E-coli	facium 4) Selectable markers	

34.		ality re			a 1a ar i	a the hebitat	2) Dirth rota		
	,			lividual	s leavi	ng the habitat	2) Birth rate4) Number of individuals entering a habitat		
25	,	eath ra		41		e f	4) Number of individ	iuais entering a nabitat	
35.	•			the exa	-		2) Mastalian	(1) From winto air	
26	,	mmen			,	ntibiosis	3) Mutalism	4) Fungistasis	
36.						ase indicates		c · · · · · 1 · 1	
				ge of o	ld indiv	viduals	2) Low Percentage of		
		stable					4) High Percentage of	of Young individuals.	
37.			•	tem wa		•			
	,	laecke				. Warming	3) E. P. Odun	4) A.G. Tansley	
38.						imum biomass			
				•		ond ecosystem	3) Lake ecosystem	4) Forect ecosystem	
39.	Wha	at is the	e Natio	onalAq	uatic A	Animal of India?			
	1) B	lue W	hale		2) S	ea Horse	3) Gangetic Shark	4) River Dolphin	
40.	Whi	choft	he foll	owing	structu	res is not found in	n a prokaryotic cell		
	1) N	lesoso	me		2) P	lasmamembrane	3) Nuclear enuelope	4) Ribesome	
						ZOOL	OGY		
41.	Bra	nch of 2	Zoolo	gy com	nected	with the improve	ement of Human Race th	hrough laws of heredity is	
	1)E	ugenic	S		2)E	uthenics	3) Euphenics	4) Eithology	
42.	Fath	ner of T	axono	omy is					
	1) W	Villiam	Harve	y	2) C	Carolous Lineus	3) Aristotle	4) Theophrastus	
43.	Inte	r conve	ertibili	ty of So	ol-gel is	5			
	1) N	latural	chang	e			2) Physical change		
	3) C	hemic	al chai	nge			4) Physico-Chemica	l change	
44.	Whi	ch of t	he foll	owing	coelent	terate does not ex	hibit metagenesis		
	1) C	belic			2)A	urelia	3) Hydra	4) Physalia	
45.	Mat	ch the	follow	ving col	lumns a	and choose the co	orrect answer		
	Col	umn –	A	-		Column – B			
	A. P	olyem	bryon	У		I. Schistosoma	hasmatobium		
	B.L	iver flu	ıke			II. Dibothriceph	ulus		
	C. B	Silharzi	asis			III. Trematoda			
	D. L	argest	tape	vorm		IV. Hymenolepi	is nana		
		malles	-			V. Fasciola			
		А	B	С	D	Е			
	1)	Π	Ι	Ш	IV	V			
	2)	Ш	V	Ι	IV	П			
	3)	Ш	V	I	Π	IV			
	4)	Ш	IV	I	Π	V			
46.	,					turnal periodicity	7		
		lanula]			habiditi form larv			
	,	licrofil	aria		,	lysticercus			
47.	,			ing an		•	swer		
• / •	Match the following and choose the correct answer								

	Col	umn –	A			Column – B		
	A. S	tratifie	ed cubo	bidal ep	ithelium	I. Ducts of Paratid		
	B.S	imple	cuboid	lal epith	elium	II. Thyroid gland		
		-		nar epitl		III. Cornea of eyes	5	
		-		_	thelium	IV. Conjuctiva of e		
		1	1	1		V. Trachea and Bro	•	
		А	В	С	D			
	1)	V	Ш	II	Ι			
	2)	IV	Π	Ι	V			
	3)	Π	IV	Ι	III			
	4)	V	Π	Ш	IV			
48.	Find	l out th	ne corr	ect seri	es of diagram			
	1) ai	rtery, la	acunae	e, canali	culi	2) Canaliculi,	volkman	's canal, vein
	3) V	olkma	n's car	nal, lacu	nae, bone lamellae	4) Vollkman's	s canal, la	cunae, canaliculi
49.	Aris	totle's	lanten	in echi	noids is known as			
	1)A	liment	ary org	gan	2) Supplementar	yorgan 3) Mastiga	tory orga	n 4) All
50.	Aqu	atic or	ganisn	n with li	imited power of loc	omotion are called		
	1) P	lankto	n		2) Nektons	3) Neustons		4) Periphytons
51.		of the lescent		ving is u	seful measures for	prevention and cont	rol of TD	A abuse among the
	A)A	Avoid u	Indue	parenta	l pressure, and by I	Responsibility of par	ents and	teachers
	B) S	leeking	g help t	from pe	ers, education and	counseling		
	C) S	eeking	g help f	from pr	ofessional, alcohol	and drug consumpti	ive persor	ns
	1) A	and C	are tr	ue, B is	sfalse	2) B and C ar	re true, A	is false
	3) A	and B	are tr	ue, C is	sfalse	4) A, B and C	C are true	, None is false
52.	In ea of	arthwo	orm lat	eral He	art can be different	iated from lateral oe	sophagea	l Hearts by the presence
	1) 2	pairs o	of valv	ves	2) 3 pairs of valv	res 3) 4 pairs of v	valves	4) All
53.	-	id incr wn as	ease ir	n the nu	mber of cells in the	organ of host due to	o the pres	sence of a parasite is
	1) H	lyperp	lasia		2) Hypertrophy	3) Over grow	vth	4) Necrosis
54.	The	body	cavity	of cock	roach is not a true	body cavity, filled w	ith blood	is called
	1)H	[aemat	o fluid		2) Haemalymph	3) Haemocoe	el	4) Pseudocuel
55.	Rea	d the fo	ollowi	ng state	ement and choose the	ne correct answer		
	A. I	n Phero	eretim	a dorsa	l Blood vessel is co	llecting and distribut	ting Blood	d vessel.
	B. D	Oorsal]	Blood	vesseli	s considered as tru	e heart in earthworn	n.	
	1) A	& B a	are fals	se	2) A is correct	and B is correct exp	olainaiher	n to A.
	3) A	is fals	e and l	B is true	e. 4) A is correct ex	plaination to B, But	B is false	2
56.	Cho	ose th	e Corr	ect Stat	ement regarding n	nalaria and its parasit	e.	
	I. M	Ialaria	Cause	ed in ma	n by plasmodium v	vivax.		
						rated on 20th Augus		
	IIL.	Sexua	ll Cycl	e of pla	smocdium discove	red by Ronald Ross	in female	Anopheles.

	-		-	-	-	production in plas			
	1) I, II, & I		2) II, III, I			II & III	4d) III, IV, II		
57.		Choose the Correct statement of the following regarding circulation in frog.							
		3 Chambered.							
		tuated in peric		ty					
		arteriosus is a							
		contains erythr	•	•	throm	pocytes.			
		nosus is not a							
	1) I, II & V		2) I, III &		, ,	II & III	4) I, II, IV		
58.	The Mass of	of eggs are rele	eased by the	e female fro	g is na	med			
	1) milt		2) Spawn		3) 1	& 2	4) ova		
59.	The arrange	emeats of Abd	ominal gang	glia in Segur	nents c	cockroach is			
	1) 1,2,3,5,6	6,7	2) 1, 2, 3,	4, 6, 7	3) 1,	3, 4, 5, 6, 7	4) 1, 2, 3, 4, 5, 7		
60.	Fat bodies	in Cockroach	are Similar	to					
	1) The liver	r of Invertebra	tes stores f	ood & uric a	ncid				
	2) The liver	r of vertrebrate	es stores fo	od & uric an	id, Syr	nbioses & Synthe	esize lipids.		
	3) The hear	t of vertebrate	es, filter the	blood & Cir	culatio	on,			
	4) The Brai	in of Invertebr	ate & co-or	dinate the a	ll body	functions.			
61.	Mouth part	ts of Insects ar	e						
	1) Homolog	gous organs	2) Analogo	ous organs.	3) Ve	stigeal organs.	4) Atavistic organs.		
62.	Break-bon	e fever is also	known as						
	1) yellow fe	ever	2) Malaria		3) Fil	ariasis	4) Dengue fever		
63.	Chikungun	ya transmit to :	man by						
	1) Infected	person			2) M	osquito			
	3) infected	female Aedes	aegyptimos	quito	4) Cı	ılex female			
64.	The Sympt	oms of Dengu	e fever are a	are begins at	fter bit	ing of mosquito t	o man is		
	1) 1 to 2 da	ays	2) 2 to 4 d	lays	3)71	to 10 days	4) 4 to 10 days.		
65.	One of the	following are S	Symptoms	& Signs of d	lengue	fever.			
	1) Headach	n & muscular p	pain		2) Bo	one or Joint pains			
	3) High fev	er, Rash & Sw	ollen gland	S	4) Al	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 H		
66.	Look the d	iagram & find	out the cor	rect Series of	of Nan	nes	1) []] >0		
	1) Posterier thoracic air sac, Inter claricle, Abdominal, trachea								
	2) Cervical, Inter claricle, Right lung, Abdominal								
	3) Cervical	, Inter claricle	, Abdomina	l & Posterie	er thora	acic air sac.			
	4) Cervical	, Inter claricle,	, left lung, p	osterier ther	ocic	<u> </u>	FY FF		
67.	Match the f	ollowing colu	mns.				() () = 0		
	S.NO	Food Subst	ances.	Enzyme		Products.			
	Ι	Carbohydrat	tes.	Amylase		maltose, Sucros	e & lactose		
	II	Maltose		Maltase		Glucose & Gala	close		
	III	Sucrose		Invertrase		Glucose + Cellu	lose		
	IV	Lactose		Lactase		Glucose & Gala	close		
	which of th	e Above are C	Correct.						

	1) I & II	2) II & III	3) III & IV	4) I & IV			
68	A Healthy human breath	s normally per minute.					
	1) 12 to 13 times	2) 12 to 15 times	3) 12 to 16 times	4) 13 to 18 times.			
69.	Match the following and	,	,	,			
	A. Asbestosis	I. in halation of coal d					
	B. Silicosis	II in halation of cold d					
	C. Siderosis	III. Hyper ferremia					
	D. Black lung disease	••					
	D. Diack lung disease	V. Silica dust					
	A B C	D					
	I I I	IV					
	2) IV V III	П					
	3) IV V II	Ι					
	4) IV V III	Ι					
70.	In human being Heart be	-					
	1) A. V.node	b) S. Anode	3) Sinus venosus	4) Purkenji fibres.			
71.	Steps involve in Heart b	eat are					
	1) Auricular systole \rightarrow	ventricular diastole \rightarrow	ventricular Systole				
	2) Auricular systole \rightarrow	ventricular systole \rightarrow v	entriculer diastole				
	3) Auricular systole \rightarrow	ventricular systole \rightarrow	diastole of Complete He	eart			
	4) None of these						
72.	One of the following hig	h, B.P is fatal to human	s Kidney & Brain.				
	1) $1\frac{190}{110}Hg$	2) $\frac{120}{Ha}$	2) $\frac{150}{Ha}$	4) $\frac{120}{80}$ Hg			
	^{1) 1} 110 ¹¹ 8	²⁾ 190 ¹¹⁸	³⁾ 90 ¹¹ 8	4) 80 118			
73.	Assertion (A) Infection	of the urinery fract is m	ore common in woman	than in man.			
	Reasen (R) Due to Sho	rt urethra, which is mor	re close to the Anal aper	rture.			
	1) A is true, R is false						
	2) A is true, R is true, bu	t R is not the correct ex	plaination of A.				
	3) A is true, R is true and	l R is the correct explain	nation of A.				
	4) A is false R is false and	d R is the correct explai	naitien of A.				
74.	Match the following & c	hoose the correct Answ	/er				
	A. Motor unit	I. Neuron &	set of the Muscle fibre	s innervated by			
	B. Neuro Musculer June	ction telodendrite	es & constitute.				
	C. Functional unit	II. Sarcomer	re of striated muscle.				
	D. Voluntary muscle III. Cardiac muscle						
	IV. Junction between a motor neuron and Sarcolemma						
		V. Skeletal n	nuscles.				
	A B C	D					
	1) I II III	IV					
	2) II I III 3) I IV V	IV п					
	3) I IV V 4) I IV II	II V					
75.	Smallest bone in human'						

	1) Atlas		2) Malleus	3) Stepes	4) Patella		
76.	Match the following & cl				choose the correct Answ	ver	
		mn-I			Column - II		
	A. Myocuel				I. Ol factory lobe		
	B. Di	iacoel			II. Cerebral hemisph	ere.	
	C. La	teral	ventric	ele	III. Foramen of moni	. 0	
	D. RI	hinoco	bel		IV. Diencephalon		
					V. Medulla oblengata	l	
		А	В	С	D		
	1)	V	IV	III	Ι		
	2)	V	IV	Π	Ι		
	3)	V	IV	I	II		
	4)	IV	V	Π	Ι		
77	Deal		:		Nanhaona io controllo	J h	
77.			10n 01	H ₂ 01	n Nephrons is controlle		
70	1)A(1.1.1.		2) STH	3) Vasopressin	4) Oxytocin
78.			vnicn	stops o	vulation is		
-	1) F.:				2) L. H	3) Prolactin	4) Progesterone
79.		•		•	• •	shes are formed by the	
	,			ird trin		2) 24 weeks in 2nd tr	
	ŕ			nd trim		4) 36 weeks in 3rd tr	
80.				velopn	-	s attachment to the uteri	
	1)Pe	rtiruti	on		2) Puberty	3) Implantation	4) Gestation
					PHYS	ICS	
81.	In	S = a	+ <i>bt</i> +	$-ct^2$, S	is measured in meters	and t in seconds. The ur	nit of c is
	1)	ms^{-2}			2) m	3) ms^{-1}	4) No units
82.						versus time (t) graph is	as shown in the figure. The
				dofth	e particle will be		а
	,	110 m 550 m			2) 55 m/s 4) 660 m/s		10 m/s^2
83.	· ·			n vertia	cally upwards. Which o	f the following graphs	
05.					graph of the ball during i		t (s)
	is neglected)						
						1	
		th		1	*	v /	t l
			\searrow	×			
			\rightarrow	l	$\rightarrow t$	$\rightarrow t$	$\rightarrow l$
	1)				2)	3)	4)
	1)				2) .	5)	-, , ·

84. As shown in figure the tension in the horizontal cord is 30 N. The weight W and tension in the string OA in Newtons are

1) $30\sqrt{3},30$ 2) $30\sqrt{3},60$ 3) $60\sqrt{3},30$ 4) None of these

85. A ball is thrown from ground level so as to just clear a wall 4 metres high at a distance of 4 metres and falls at a distance of 14 metres from the wall. The magnitude of velocity of the ball

will be

1) $\sqrt{182m/s}$ 2) $\sqrt{175m/s}$ 3) $\sqrt{165m/s}$ 4) $\sqrt{155m/s}$ 86. A particle is moving in a circular path with velocity varying with time as $v = 1.5t^2+2t$. If the radius of circular path is 2 cm, the angular acceleration at t = 2 sec will be 1) $4 rad/sec^2$ 2) $40 rad/sec^2$ 3) $400 rad/sec^2$ 4) $0.4 rad/sec^2$

87. A body of mass m tied at the end of a string of length is projected with velocity $\sqrt{4\ell g}$, at what height will it leave the circular path

1)
$$\frac{5}{3}\ell$$
 2) $\frac{3}{5}\ell$ 3) $\frac{1}{3}\ell$ 4) $\frac{2}{3}\ell$

88. The equivalent resistance between A and B is

1)
$$16/3\Omega$$
 2) 16Ω 3) 8Ω 4) $3/16\Omega$

89. The magnitude of the force (in Newton) acting on a body varies with time t (in microsecond) as shown in fig. AB, BC, and CD are straight line segments. The magnitude of the total impulse on the body from t=4 μ s to to 16 μ s is

1)
$$5 \times 100^{-4} N.s$$
 2) $5 \times 10^{-3} N.s$ 3) $5 \times 10^{-5} N.s$ 4) $5 \times 10^{-2} N.s$

90. Three equal weights of mass m each are hanging on a string passing over a fixed pulley as shown in fig. The tensions in the string connecting weights A to B and B to C will respectively be

1)
$$\frac{2}{3}mg$$
, $\frac{2}{3}mg$ 2) $\frac{2}{3}mg$, $\frac{4}{3}mg$ 3) $\frac{4}{3}mg$, $\frac{2}{3}mg$ 4) $\frac{3}{2}mg$, $\frac{3}{4}mg$

91. A block of mass 2 kg is on a horizontal surface. The co-efficient of static & kinetic frictions are 0.6 & 0.2 The minimum horizontal force required to start the motion is applied and if it is continued, the velocity acquired by the body at the end of the 2nd second is $(g = 10 \text{ ms}^{-2})$

92. Two satellites S_1 , and S_2 , revolve round a planet in the same direction in circular orbits. Their periods of revolutions are 1 hour and 8 hour respectively. The radius of S_1 , is 10^4 km. The velocity of S_2 , with respect to S_1 , will be

1)
$$\pi \times 10^4$$
 km/hr 2) $\pi/3 \times 10^4$ km/hr 3) $2\pi \times 10^4$ km/hr 4) $\pi/2 \times 10^4$ km/hr

93. A uniform steel wire of density $7800 \text{kg}/m^3$ is 2.5 m long and weighs 15.6×10^{-3} kg. It extends by 1.25 mm when loaded by 8kg. Calculate the value of young's modulus of elasticity for steel.

1)
$$1.96 \times 10^{11} N/m^2$$
 2) $19.6 \times 10^{11} N/m^2$ 3) $196 \times 10^{11} N/m^2$ 4) None of these

94. An ideal gas expands isothermally from a volume V_1 to V_2 and then compressed to original volume V₁ adiabatically. Initial pressure is Pand final pressure is P₃. The total work done is W. Then

1)
$$P_3 > P_1, W > 0$$
 2) $P_3 < P_1, W < 0$ 3) $P_3 > P_1, W < 0$ 4) $P_3 = P_1, W = 0$

95. A charged ball B hangs from a silk thread S, which makes an angle with a large charged conducting sheet P, as shown in the figure. The surface charge density σ of the sheet is proportional to

1) $\sin \theta$ 2) $\tan \theta$ 3) $\cos \theta$ 4) $\cot \theta$

96. Figure given below shows two identical parallel plate capacitors connected to a battery with switch S closed. The switch is now opened and the free space between the plates of capacitors is filled with a dielectric of dielectric constant 3. What will be the ratio of total electrostatic energy stored in both capacitors before and after the introduction of the dielectric?

97. In the fig. shown, Calculate the current through 3 ohm resistor. The emf of battery is 2 volt and its

internal resistance is 2/3 ohm.

1) plate a

1) 0.33 amp 2) 0.44 amp 3) 1.22 amp 4) 0.88 amp

2) plate b

98. A thin circular wire carrying a current I has a magnetic moment M. The shape of the wire is changed to a square and it carries the same current. It will have a magnetic moment

1) M 2)
$$\frac{4}{\pi^2}M$$
 3) $\frac{4}{\pi}M$ 4) $\frac{\pi}{4}M$

99. Consider the arrangements shown in figure in which the north pole of a magnet is moved away from a thick conducting loop containing capacitor. Then excess positive charge will arrive on

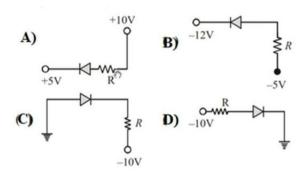
3) both plates a and b
4) None of the plates a and b
100. A current 10 A in the primary coil of a circuit is reduced to zero at a uniform rate in 10⁻³ second. If the coefficient of mutual inductance is 3H, the induced e. m.f. in the secondary coil will be
1) 3 kV
2) 30 kV
3) 2 kV
4) 20 kV

101. An alternating current is given by the equation $i = i_1 \cos \omega t + i_2 \sin \omega t$. The r.m.s. current is given by

1)
$$\frac{1}{\sqrt{2}}(i_1+i_2)$$
 2) $\frac{1}{\sqrt{2}}(i_1+i_2)^2$ 3) $\frac{1}{\sqrt{2}}(i_1^2+i_2^2)^{1/2}$ 4) $\frac{1}{2}(i_1^2+i_2^2)^{1/2}$

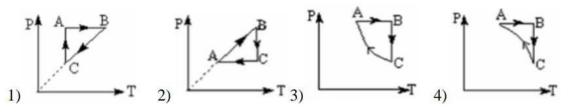
102. A light beam travelling in the X-direction is described by the electric field E_y , (300V/m) $\sin \omega (t - x/c)$. An electron is constrained to move along the Y - direction with a speed of 2.0×10^7 m/s. The maximum magnetic force (in N) on the electron is.

1)
$$3.2 \times 10^{-18}$$
 2) 5.1×10^{-16} 3) 6.5×10^{-11} 4) 7.8×10^{-12}


103. In Bohr model of atom an electron of charge (-e) and mass m is revolving around a nucleus of charge +ze. If \overline{L} is the orbital angular momentum of electron, then its magnetic moment is given by

1)
$$-\frac{e}{2m}\overline{L}$$
 2) $\frac{e}{2m}\overline{L}$ 3) $\frac{-Ze}{2m}\overline{L}$ 4) $\frac{Ze}{2m}\overline{L}$

104. Energy levels A, B, C of a certain atom corresponding to increasing values of energy i. e. $E_A < E_B$ $< E_C$. If $\lambda_1, \lambda_2, \lambda_3$ are the wavelengths of radiations corresponding to the transitions C to B, B to A and C to A respectively, which of the following statements is correct?


1)
$$\lambda_3 = \lambda_1 + \lambda_2$$
 2) $\lambda_3 = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$ 3) $\lambda_1 + \lambda_2 + \lambda_3 = 0$ 4) $\lambda_3^2 + \lambda_1^2 + \lambda_2^2$

105. In the given figure, the diodes in forward biased are

1) A, B, C only 2) B, C only 3) A, C only 4) A only

106. An ideal gas undergoes a thermodynamics cycle as shown in figure. Which of the following graphs

107. A uniform rope of mass m and length L is hung freely from stationary ceiling. If the cross sectional area of rope is A and Young's modulus Y, then net elongation in the rope due to its own weight

1)
$$\frac{mgL}{AY}$$
 2) $\frac{mgL}{2AY}$ 3) $\frac{mgL}{3AY}$ 4) $\frac{mgL}{4AY}$

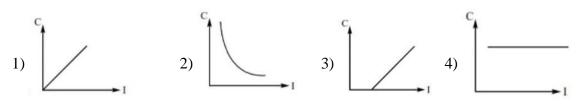
108. Two soap bubbles to form a single large drop (r = radius of small bubbles R = radius of large drop)

Column: I	Column - II
A) surface energy in the process	P) $2^{1/3}$ r
B) pressure of the soap bubble inside will be	Q) Decreases
C) temperature of drop will be	R) 4 ^{1/3} r
D) radius of final single drop	S) increases.
1) A-Q,B-Q,C-S,D-P	2) A-Q,B-P,C-S,D-P
3) A-P,B-Q,C-P,D-S	4) A-P,B-Q,C-P,D-S

- 109. In a photo electric experiment, I(current)-V (voltage) graph is as shown. Curves a,b,c correspond to three different metal surfaces irradiated with monochromatic light of same frequency. Assuming the ratio of number of electrons emitted per second to the number of photons incident per second is the same for all the three surfaces, choose the INCORRECT statement:
 - 1) the work function of metals b and c are equal
 - 2) the intensities of light incident on a and b are same
 - 3) the work functions of metals a and b are not equal
 - 4) the intensities of light incident on a, b and c are all different
- 110. The value of L, C and R in an LCR series circuit are 4 mH, 40 pF and 100_{Ω} respectively. The quality factor of the circuit is

111. Two coherent sources of light emit waves with wavelength with constant phase difference of 180°. The intensity due to each at a point on a screen is I. At a point on the screen where the path

difference between two waves is
$$\frac{3\lambda}{2}$$
 the total intensity will be:
1) $2I_0$ 2) $4I_0$ 3) $6I_0$ 4) $3I_0$


112. Statement - A: A diver under water, looks obliquely at a fisherman standing on the bank of a lake. The fisherman look shorter to the diver than what he actually is

Statement - B: A convex mirror always produces a virtual image independent of location of the real object

Both statements A & B are true
 Statement A is true and Statement B is false
 Statement A is false and Statement B is true 4) Both statements A & B are false

- 2 In photo all activity official and Statement the internative of light is varied by sharping the distance
- 113. In photoelectric effect experiment, the intensity of light is varied by changing the distance of light

source from emitter. Which of the following graphs depict he variation of photoelectric current 'C' with intensity of light 'I'?

114. Assertion (A): The Bohr model is not applicable to atoms having many electrons.

Reason (R): In atoms having many electrons, each electron interacts not only with positively charged nucleus but also with all other electrons.

1) Both assertion and reason are true and reason is correct explanations of assertion.

- 2) Both assertion and reason are true but reason is not correct explanation of essertion.
- 3) Assertion is true and reason is false

4) Assertion is false and reason is true

115. The combination of gates shown in the diagram is equivalent to

1) OR	2) AND
3) NAND	4) NOR

116. Two identical capacitors have the same capacitance C. One of them is charged to a potential Vi and the other to V2. If they are connected with their unlike plates together, the decrease in energy of the combined system is

1)
$$\frac{1}{4}C(V_1^2 - V_2^2)$$
 2) $\frac{1}{4}C(V_1^2 + V_2^2)$ 3) $\frac{1}{4}C(V_1 - V_2^2)^2$ 4) $\frac{1}{4}C(V_1 + V_2^2)^2$

117. Some relations and laws related to fluids are given in column A, While the reasons behind them are given in column B. Match A and B

Column - I Column - II

(a) Stoke's law energy	e) Surface potential
(b) Equation of continuity	f) Viscosity
(c) Bernoulli's theorem	g) Conservation of mass
(d) Velocity efflux	h) Conservation of energy
1) (a) – (e), (b) – (f), (c) – (g)), (d) – (h) 2) (a) – (f), (b) – (h), (c) – (g), (d) – (e)
3) (a) – (f), (b) – (g), (c) – (h)), $(d) - (e) = 4$) $(a) - (e)$, $(b) - (h)$, $(c) - (g)$, $(d) - (f)$

- 118. When two identical batteries of internal resistance 10 each are connected in series across a resistor R, the rate of heat produced in R is P_1 . When the same batteries are connected in parallel across R, the rate is P_2 . If $P_1=2.25 P_2$, the value of R is
 - 1) $_{2\Omega}$ 2) $_{4\Omega}$ 3) $_{10\Omega}$ 4) $_{12\Omega}$

119. If θ is the angle of projection and H, R are the maximum height, range of a projectile, then Tan θ is

- 120. The force per unit length on a wire carrying current of 8A making an angle of 30° with a uniform magnetic field of 0.15 T is
 - 1) 1.2 N 2) 1.02 N 3) 0.6 N 4) 2.4 N

CHEMISTRY

121.	A mixture of gases contai the two gases in the mixtu	ns H_2 and O_2 gases in the ra re?	tio of 1:4 (w/w). What is t	the molar ratio of
	1) 16 : 1	2) 2 : 1	3) 1 : 4	4) 4 : 1
122.	_	ron jumps from 5th excited s ines in Lyman series and Pa		
	1) 10, 4, 3	2) 15,0,4	3) 15, 4, 5	4) 10,0,3
123.	The angular momentum o	f electron in 'd' orbital is equ	ual to:	
	1) $2\sqrt{3}h$	2) <i>h</i>	3) $\sqrt{6}h$	4) $\sqrt{2}h$
124.	Which of the following is	correct with respect to -I ef	fect of the substituents? [I	R = alkyl]
	1) $-NH_2 > -OR > -F$		2) $-NR_2 < -OR < -F$	
	3) $-NH_2 < -OR < -F$		4) $-NR_2 > -OR > -F$	7
125.	The species, having bond	angles of 120° is:		
	1) PH ₃	(b) CIF ₃	(c) NC1 ₃	BCl ₃
126.	The species Ar, K ⁺ and Ca increase?	a ²⁺ contain the same number	r of electrons. In which or	der do their radii
	1) $Ca^{2+} < K^+ < Ar$	2) $K^+ < Ar < Ca^{2+}$		
	3) Ar < K^+ < Ca^{2+}	4) $Ca^{2+} < Ar < K^{+}$		
127.	The solubility of $BaSO_4$, in will be [Given molar mass	n water is $2.42 \times 10^{-3} \text{gL}^{-1}$ at s of BaSO ₄ = 233 g mol ⁻¹]	298K. The value of solubi	lity product (K_{sp})
	1) $1.08 \text{ x } 10^{-2} \text{ mol}^2 \text{L}^{-1}$	2) $1.08 \text{ x } 10^{-12} \text{ mol}^2 \text{L}^{-2}$		
	3) 1.08 x 10 ⁻¹⁴ mol ² L ⁻²	4) 1.08 x 10 ⁻⁸ mol ² L ⁻²		
128.	What is the activation energy 20° C to 35° C? (R= 8.314	rgy for a reaction if its rate d 4J mol ⁻¹ K ⁻¹)	oubles when the temperat	ure is raised from
	1) 342 kJ mol ⁻¹	2) 269 kJ mol ⁻¹	3) 34.7 kJ mol ⁻¹ 4)	15.1 kJ mol ⁻¹
129.	In which of the following property indicated against	options the order of arrang it?	ement does not agree wit	h the variation of
	2) Li < Na < K < Rb (incu 3) Al ³⁺ < Mg ²⁺ < Na ⁺ < F ⁻			
130.	Aqueous solution of which	h of the following compoun	ids is the best conductor of	f electric current?
	1) Hydrochloric acid, HC	I	2) Ammonia, NH_3	
	3) Fructose, $C_6 H_{12} O_6$		4) Acetic acid, C_2H_4O	2
131.		eaction is 0.04 mol L^{-1} s ⁻¹ the reaction. The half-life pe		mol $L^{-1}s^{-1}$ at 20
	1) 44.1 s	2) 54.1 s	3) 24.1 s	4) 34.1 s
132.	In acidic medium, H_2O_2 of state of Cr in CrO ₅ is:	changes $\operatorname{Cr}_2 \operatorname{O}_7^{2-}$ to CrO_5 w	which has two (–O–O–) b	onds. Oxidation

	1) +5	2) +3	3)+6	4) -10
133.	The reaction of H_2O_2 with	hydrogen sulphide is an exa	ample of reaction:	
	1) addition	2) oxidation	3) reduction	4) redox acidic
134.	The enthalpy of vaporizati mol. Enthalpy of formatio	on of $H_2O(l)$ is x kJ/mol and on of $H_2O(l)$. would be	enthalpy of formation of	of water vapour y kJ/
	1) $(y - x)$ kJ mol ⁻¹	2) $(x - y)$ kJ mol ⁻¹	3) $(x + y)$ kJ mol ⁻¹	4) $(2x-y)$ kJ mol ⁻¹
135.	Equal volumes of four ac concentration of hydrogen	cid solutions having pH 1, ion in the mixture of.	2, 3 and 4 are mixed	in a container. The
	1) 4.25×10^{-4} M	2) $2.78 \times 10^{-2} \mathrm{M}$	3) 2.30×10^{-3} M	4) $1.35 \times 10^{-2} \text{ M}$
136.	A button cell used in watch	nes functions as following:		
	$Zn(s) + Ag_2O(s) + H_2O(l)$	$\rightarrow 2 \operatorname{Ag}(s) + \operatorname{Zn}^{2+}(aq) + 20$	$H^{-}(aq)$	
	If half-cell potentials are:	$\operatorname{Zn}^{2+}(aq) + 2e^{-}\operatorname{Zn}(s) E^{\circ} =$	= -0.76 V	
	$Ag_2O(s) + H_2O(l) + 2e^{-1}$	$\rightarrow 2 \operatorname{Ag}(s) + 2 \operatorname{OH}^{-}(aq), \operatorname{E}^{\circ}$	=0.34 V	
	The cell potential will be:			
	1) 1.10 V	2) 0.42 V	3) 0.84 V	4) 1.34 V
137.	The correct order of increases 1 C - C < C = C < C - 3 C - H < C - O < C - 3		C–O, C–C and C = C 2) C–O < C–H 4) C–H < C = C	< C - C < C = C
138.	Which one of the following	orders is correct for the bond	dissociation enthalpy of	of halogen molecules?
	1) $Br_2 > I_2 > F_2 > Cl_2$	2) $F_2 Cl_2 > Br_2 > I_2$ 3)	$I_2 > Br_2 > Cl_2 > F_2$	4) $Cl_2 > Br_2 > F_2 > I_2$
139.	Gadolinium belongs to 4f electronic configuration of	series. It's atomic number is gadolinium?	s 64. Which of the foll	owing is the correct
	1) [Xe] $4f^{8} 6s^{2}$	2) [Xe] $4f^9 5s^1$	3) [Xe] $4f^7 5d^16s^2$	4) [Xe] $4f^6 5d^26s^2$
140.	Propionic acid with Br_2/P	yields a dibromo product. It	s structure would be:	
			Br	
	1) CH ₂ Br—CHBr—COO	ЭH	 2) H—C—CH ₂ CC Br	ЮН
	3) CH ₂ Br—CH ₂ —COBr		Br 3) CH ₃ —C—COO Br	ЭН
141.	-	sure, 380 ml of dry oxygen w gen occupy at 760 mm press		perature is constant,

1) 365 ml (b) 2 ml (c) 10 ml (d) 20 ml

142. Predict the product C obtained in the following reaction of 1-butyne.

$$\begin{array}{c} CH_{3}CH_{2}-C=CH+HCI \longrightarrow B \xrightarrow{HI} C \\ 1) CH_{3}-CH_{2}-CH_{2}CH_{3}I \\ 2) CH_{3}-CH_{2}-CH_{2}-CH_{4}I \\ 3) CH_{3}-CH_{2}-CH_{2}CH_{4}I \\ 2) CH_{3}-CH_{2}-CH_{2}-CH_{3}I \\ 3) CH_{3}-CH_{2}-CH_{-}CH_{2}CH \\ 4) CH_{3}CH_{2}-CH_{3}-CH_{4}I \\ (i) CH_{3}CH_{2}-CH_{4}I \\ (ii) CH_{3}COCH_{3} \\ (iii) CH_{3}-CHOH \\ (iv) CH_{3}OH \\ CH_{3}I \\ C$$

150.	Which of the following is an ideal solution?						
1000	1) Ethanol + water				2) Nitric acid + water		
	<i>,</i>		bl + benzene		4) Benzene + toluene		
151.	The efficiency of a fuel cell is given by:						
	2				ΔS	ΔH	
	1) $\frac{\Delta \mathbf{G}}{\Delta \mathbf{S}}$			2) $\frac{\Delta G}{\Delta H}$	$3) \frac{\Delta S}{\Delta G}$	4) $\frac{\Delta H}{\Delta G}$	
152.	Which of the following will not show cis-trans isomerism?						
	1) CH ₃		СН—СН	[3	2) CH ₃ —CH ₂ —CH=CH—CH ₂ CH ₃		
	3) CH_{3} —C = CH—CH			–CH ₃	4) $CH_3 - C - CH = CH - CH_2 - CH_3$ CH_3		
	3) $CH_3 - C = CH - CH_2 - CH_3$ CH_3				CH_3		
153.	Among the following compounds, one that is most reactive towards electrophilic nitration is						
	1) benz	oic acid.		2) nitrobenzene.	3) toluene.	4) benzene.	
154.	At 25°C, the dissociation constant of a base, BOH is 1.0×10^{-12} . The concentration of hydrox ions in 0.01 M aqueous solution of the base would be:						
	1) 2.0 :	× 10 ⁻⁶ mo	$1 L^{-1}$	2) $1.0 \times 10^{-5} \text{ mol } L^{-1}$			
	(c) 1.0	$ imes 10^{-6}\mathrm{mc}$	$hol L^{-1}$	(d) $1.0 \times 10^{-7} mol L^{-1}$			
155.	If the enthalpy change for transition of liquid water to steam is 30 kJmol ⁻¹ at 27°C. The entropy change for the process would be:						
	1) 1.0J	$mol^{-1} K^{-1}$		2) 0.1 J mol ⁻¹ K ⁻¹	3) 100 J mol ⁻¹ K ⁻	4) 10J mol ⁻¹ K ⁻¹	
156.	 Sulphonation of benzene 2) Nitration of benzene Chlorination of benzene 4) All of these 						
157.	Aceton	e and etha	nol can b	e chemically distinguished	shed by:		
	(a) I ₂ /NaOH			(b) 2,4 DNP	3) Tollen's reagent 4) Both (a) and (b)		
158.			tion does not take pla				
	(1) Gattermann-Koch reaction				(2) Étard reaction		
	(3) Benzoin condensation				(4) Swarts reaction		
159.		lue of ΔA					
	$C_{(gradually)}(s) + CO_2(g) \rightarrow 2CO(g)$ are 170 kJ and 170 JK ⁻¹ , respectively. This reaction we spontaneous at:						
	1) 710	Κ		2) 910 K	3) 1110 K	4) 510 K	
160.	The exp	perimenta	l data for	the reaction $2A + B_2$	→ 2AB		
	Exp.	[A]	[B]	Rate (Ms ⁻¹)			
	1.	0.50	0.50	$1.6 imes 10^{-4}$			
	2.	0.50	1.00	3.2×10^{-4}			
	3.	1.00	1.00	$3.2 imes 10^{-4}$			
	The rate equation for the above data is:						
	1) rate = $k[B_2]$ 2) rate = $k[B_2]^2$ 3) rate = $k[A]^2[B]^2$ (c) rate = $k[A]^2[B]$						