NEET CHEMISTRY

CENTRE FOR EDUCATIONAL DEVELOPMENT OF MINORITIES OsmaniaUniversity

Minorities Welfare Department, Govt. of Telangana

Nizam College Campus, Gunfoundary, Hyderabad - 500 001. Phone / Fax: 040-23210316;<u>www.tscedm.com</u>; email: <u>cedm_ou@yahoo.com</u>

NEET CHEMISTRY

By JAMSHED Centre Head & Sr. IIT Faculty in Chemistry

Excellential College, Madhapur, Hyderabad.

CENTRE FOR EDUCATIONAL DEVELOPMENT OF MINORITIES OsmaniaUniversity Minorities Welfare Department, Govt. of Telangana Nizam College Campus, Gunfoundary, Hyderabad - 500 001. Phone / Fax: 040-23210316; www.tscedm.com; email: cedm_ou@yahoo.com

NEET

CHEMISTRY

Editorial Board

Prof. S. A. Shukoor	:	Director Centre for Educational Development of Minorities
Dr. Syed Israr Ahmed	:	Project Officer Centre for Educational Development of Minorities

Author

Jamshed : Centre Head and Senior IIT Faculty in Chemistry, Excellentia College, Madhapur, Hyderabad.

© Copyright Reserved

First Edition: 2024

Not for Sale

CENTRE FOR EDUCATIONAL DEVELOPMENT OF MINORITIES Osmania University Minorities Welfare Department, Govt. of Telangana

Nizam College Campus, Gunfoundary, Hyderabad - 500 001. Phone: 040-23210316; <u>www.tscedm.com</u>; mail: <u>cedm_ou@yahoo.com</u>

PREFACE

Taking competitive examinations has became the order of the day for any educated young man who is desirous of seeking any coveted job, a seat in any prestigious college. The approach required for such competitive examination is different from that of taking an academic examination.

It was observed that most of the minority candidates do not fare well at these competitive examinations not because they lack in talents but because they can neither afford to join the private coaching centres nor could purchase the required study material.

In order to improve the participation and performance of the candidates belonging to minorities in such competitive examinations, the Minorities Welfare Department, State Government sponsored a project to Osmania University. The University in turn established Centre for Educational Development of Minorities (CEDM) in 1994 in Nizam College. Since then, the Centre has been offering free coaching for the benefit of candidates belonging to minority communities appearing for various job seeking and admission seeking competitive examinations at Hyderabad and other minority concentrated districts of the state. In respect of job-seeking examinations, the Centre is providing free coaching and study material for TS TRT, TS TET etc. and for admission oriented examinations such as NEET, EAMCET, ICET, ECET, EdCET, DEECET and POLYCET etc. In addition to these coaching programmes, the Centre is also providing free coaching and study material to X class Urdu medium minority students in minority concentrated districts of the state is also providing free coaching and study material to X class Urdu medium minority students in minority concentrated districts of the state to strengthen their educational foundation and to improve their performance in SSC Public Examination.

We wish to place on record the pains the compilers have taken to summarize and arrange the important questions. The Centre gratefully acknowledges their services.

If these study materials are of any help to the candidates, we feel immensely rewarded for the humble efforts we have put in.

Prof. S. A. Shukoor, DIRECTOR

Hyderabad April 2024

CONTENT

First Year

1.	Some Basic Principles of Chemistry (Stoichiometry).	1
2.	Atomic Structure	
3.	Periodic Table	
4.	Chemical Bonding	
5.	Thermodynamics	
6.	Equilibrium	
7.	Redox Reactions	
8.	<i>p</i> -Block Elements (Group 13 to 18 elements)	
9.	Organic Chemistry	
10.	Hydrocarbons	

Second Year

1.	Solutions	
2.	Electrochemistry	
3.	Chemical Kinetics	
4.	d and f Block Elements	
5.	Coordination Compounds	
6.	Halokanes and Halorenes	
7.	Alcohols, Phenols and Ehters	
8.	Aldehydes, Ketones and Carboxylic Acids	
9.	Aminies	
10.	Biomolecules	
11.	Principles related to Practical Chemistry	

SOME BASIC CONCEPTS OF CHEMISTRY (STOICHIOMETRY) EXERCISE -I

1.	Chemical equation is	balanced according to	the law of			
1.	1) Multiple proportio	-	2) Reciprocal proportion			
	3) Conservation of m		4) Definite proportions			
2.	,		as an example to illustra			
	1) Na ₂ O, K ₂ O	2) CaO,MgO	3) Al_2O_3 , Cr_2O_3	4) CO,CO ₂		
3.		r and oxygen in sampl . This proves the law of	es of CuO obtained by c	lifferent methods were		
	1) Constant proportion	ons	2) Reciprocal proportion	ons		
	3) Multiple proportio	ons	4) Conservation of mas	5S		
4.	The law of conservat	ion of mass holds good	for all of the following e	xcept		
	1) All chemical reacti	ions	2) Nuclear reactions			
	3) Endothermic react	ions	4) Exothermic reaction	S		
5.	Law of combining vo	lumes was proposed b	у			
	1) Lavoisier	2) Gay Lussac	3) Avogadro	4) Dalton		
6.	In the reaction Hydro illustrates the law of	ogen (g)+Oxygen(g) →	water vapour, the ratio	of volumes is 2:1:2. This		
	1) conservation of ma	ass	2) combining weights			
	3) combining volume	es	4) all the above			
7.		oxygen. In compound	th 0.57 g oxygen. In compound B, 2.00g nitrogen C, 3.00 g nitrogen combines with 5.11 g oxygen.			
	1) Law of constant pr	e e	2) Law of multiple pro-	portion		
	3) Law of reciprocal p	-	4) Dalton's law of part			
8.	The law of multiple p	proportions is ilustrated	l by the two compounds	by the two compounds		
	1) Sodium chloride a	nd sodium bromide	2) Ordinary water and	heavy water		
	3) Caustic soda and	caustic potash	4) Sulphur dioxide and	l sulphur trioxide.		
9.	-	nt of lead from oneoxid	educed to metallic lead b e was half the weight of			
	1) Law of reciprocal p	proportions	2) Law of constant pro	portions		
	3) Law of multiple pr	oportions	4) Law of equivalent p	roportions		
10.	LIST - 1		LIST - 2			
	A) Law of conservat	ion of Mass	1) $\frac{V_1}{V_2} = \frac{n_1}{n_2}$			
	B) Avogadro's Law		2) $2H_{2(s)} + O_{2(g)} \rightarrow 2H$	₂ O _(s)		
	C) Gay-Lussac's Law	of combining volume	s 3) 12g of C + 32g of O_2	= $44g CO_2$		
	D) Law of conservati	on of Energy	4) $H_{2(g)} + Cl_{2(g)} \rightarrow 2H0$	Cl _(g)		

00111										•••	
							5) H _{2(g)} +	$Cl_{2(g)} \rightarrow$	2HCl	_(g) , ∆H=-1	84.6k.J
	The co	orrect m	atch is								
		А	В	С	D		А	В	С	D	
	1)	3	1	4	5	2)	3	1	5	4	
	3)	3	1	2	5	4)	1	2	4	5	
11.			ure carbo ata supp		e, irresp	pective o	of its sourc	ce contair	ns 27.27	% carbon a	nd 72.73%
	1) Lav	v of con	stant con	nposition	ı		2) Law of	conserv	tion of	mass	
	· ·		procal pr	-			4) Law of	-			
12.	which		io of the							nd carbon o 2:16 and 12	
	· ·		tiple pro	-			2) Law of	reciproc	al prop	ortions	
	,		servatior				4) Law of	constant	t propo	ortions	
13.	The m	olar vol	ume of a	ny gas a	t STP is						
	1) 1 lit	re		2) 22.41	4 lit	:	3) 6.02×1	0 ²³ lit	4	4) 22.414 m	1
14.	1 gran	n - atom	of oxyge	en is							
	1) 1 g	of oxyge	en	2) 16g og	f oxyge	n	3) 22.4 g o	of oxyger	1 4	4) 8g of oxy	gen
15.	One g	ram mo	lecule of	oxygen i	s						
	1) 16 g	gms of o	xygen	2) 32 gm	ns of oxy	ygen	3) 8gms o	f oxygen	4	4) 1gm of 0>	vygen
16.	A mol	e is									
			t of subst tly 12g o		ntaining	g the sar	ne numbe	er of cher	nical u	nits as the r	number of
	2) The	amoun	t of subs	tance co	ntaining	g Avoga	adro num	ber of ch	emical	units.	
	3) The	e unit for	r express	ing amo	unt of a	a substa	nce		4	4) all the ab	ove
17.	The m	ass of a	mole of l	nydroge	n atoms	sis					
	1) 1.00)8 g		2) 2.016	g	;	3) 6.02×1	0 ²³ g	4	4) 1.008 am	u
18.	The m	olar ma	ss of hyd	lrogen is							
	1) 1.00)8 g	-	2) 2.016	g		3) 6.02×1	0 ²³ g	4	4) 2.016 am	u
19.	One n	nole of a	toms of o	xygen re	presen	ts					
			toms of o		1		2) 32 g of	oxvgen			
	,	L of O ₂		, y 8011			4) 8g of o:				
20		-		C			+) 0g 01 0.	vy gen			
20.			nolecules		-			<i>.</i>			
	,		nolecules	of oxyg	en		2) 8 gms o				
	3) 16g	of O_2					4) 11.2L c	of O ₂ at S	ГР		
21.	The cl	narge pr	esent on	1 mole e	lectron	s is					
	1) 965	00 Coul	ombs				2) Coulon	nb			
	3) 1.60)×10 ⁻¹⁹ (2				4) 0.1 Far	aday			
22.	Thew	reight of	0.1 mole	of Na C	O, ic			-			
	1) 106			2) 10.6 g	0		3) 5.3 g		,	4) 6.02×10 ²	2σ
-	1) 100	б		-, 10.0 g)		o, o.o g		-	·/ 0.02^10	б

23.	Avogadro number of helium atoms have a mass of						
	1) 2g	2) 4g	3) 8g	4) 4×6.02×10 ²³ g			
24.	The volume of two moles of oxygen at STP is						
	1) 22.4 L	2) 11.2 L	3) 40 L	4) 44.8 L			
25.	The ratio between the	e number of molecules i	in equal masses of nitrog	en and oxygen is			
	1) 7:8	2) 1:9	3) 9:1	4) 8:7			
26.	The gas which is twic	e as dense as oxygen u	under the same condition	ns is			
	1) Ozone	2) Sulphur trioxide	3) Sulphur dioxide	4) Carbon dioxide			
27.	i) Number of atoms iii) Number of moles	-	th respect which one of t ii) Number of molecul iv) Mass	es			
	1) Only i is correct	2) Only iii correct	3) Only iv Correct	4) Both i & iv correct			
Note:1) Both (A) and (R) are t			<i></i>			
	, , , , , ,	(<i>'</i> ,	e correct explanation of	(A)			
	3) (A) is true but (R) i4) (A) is false but (R) :						
28.	, , , , , , , , , , , , , , , , , , , ,	contains Avogadro nun	nhor of moloculos				
20.		e					
29.	 (R) : One mole of an ideal gas at STP occupies 22.4 lt. (A) : 2 g of Hydrogen contains Avogadro number of atoms (R) : One mole of any gas contains Avogadro number of molecules 						
30.		ss, N_2 and H_2 combine n simple volume ratio	in 1 : 3 volume ratio				
31.	(A): 1 c.c. of Nitrogen	at STP contains 2.69 ×	10^{19} molocules				
	(R): Molar volume of	an ideal gas st STP cont	tains Avogadro number	of molecules			
32.			cupy 11.2 lt. of volume at				
33.	(R): Equal volumes of Which of the following	Ũ	ne conditions contain equ	al number of molecules.			
55.	1) One gram atom of I	0 0	2) 5 moles of N_2				
	3) 10^{24} carbon atoms		4) 44.8 lit of He at STP				
34.	,	contains 6×10 ²³ atoms.	Then 4 grams of He cont	ains			
	1) 6×10^{23} atoms	2) 12×10 ²³ atoms	3) 24×10 ²³ atoms	4) 1.5×10 ²³ atoms			
35.	Elements 'A' and 'B'	combine in the ratio of	their				
	1) Atomic weights	2) Molecular weights	3) Equivalent weights	4) Mass numbers			
36.	Molecular weight of o	orthophosphoric acid is	s M. Its equivalent weigh	t is			
	1) 3M	2) M	3) $\frac{M}{2}$	4) $\frac{M}{3}$			
37.	The equivalent weigh	tt of CaCO ₃					

SOME BASIC CONCEPTS OF CHEMISTRY (STOICHIOMETRY)							
	1) 100	2) 50	3) 33.3	4) 25			
38.	Equivalent weight o	of $K_2 Cr_2 O_7$ in acidic m	edium is				
	1) 24.5	2) 49	3) 147	4)296			
39.	The equivalent weig	nt of Bayer's reagent is					
	1) 31.6	2) 52.6	3) 79	4) 158			
40.	Molecular weight of equivalent weight of		reaction $KMnO_4$ is red	uced to K_2MnO_4 . The			
	1) M	$2)\frac{M}{2}$	$3)\frac{M}{3}$	$4)\frac{M}{5}$			
41.	$2H_2O \rightarrow 4e^- + O_2 + A_2$	4H ⁺ . The equivalent we	eight of molecular oxyge	n is			
	1) 32	2) 16	3) 8	4) 4			
42.	(A): Normality is alv	vays a multiple of mola	rity				
		way related to normal	ity				
	The correct answer is						
	, , , , ,	· · ·	rrect explanation of (A)	())			
	2) Both (A) and (R) a 3) (A) is true but (R)	. ,	e correct explanation of 4) (A) is false but (R) is	. ,			
43.	, , , , , , , , , , , , , , , , , , , ,		4) (A) is faise but (K) is	stitue			
45.	(A) : The basicity of F (R) : Three hydrogen	0 0	ohosphorus through oxy	gen atoms			
	The correct answer is	-	1 0 7	0			
	, , , , , ,	. ,	rrect explanation of (A)	(•)			
	2) Both (A) and (R) a 3) (A) is true but (R) :	• •	e correct explanation of 4) (A) is false but (R) is				
44.	In acidic medium Di	chromate ion oxidises	Ferrous ion to Ferric ion its equivalent weight is				
	1) 294	2) 147	3) 49	4) 24.5			
45.			tion [M = molecular weig	ght]			
	$2Na_2S_2O_3 + I_2 \rightarrow 2N$		М	М			
	1) M	$2)\frac{M}{2}$	$3)\frac{M}{3}$	$4)\frac{M}{4}$			
46.	The equivalent weig	nt of $CuSO_4$ when it is c	onverted to Cu_2I_2 [M=mo	ol.wt]			
	$1)\frac{M}{1}$	$2)\frac{M}{2}$	$3)\frac{M}{2}$	4) 2 M			
47.	The equivalent weigh	ے t of Iodine in the react	$ion2Na_2S_2O_3 + I_2 \rightarrow 2Na_3$	I+Na.S.O. is [M=mol.			
	wt]						
	1) M	2) $\frac{M}{2}$	3) $\frac{M}{3}$	4) 2M			
48.	The equivalent we [M=mol.wt]	ight of glucose in th	e reaction $C_6H_{12}O_6 + 60$	$O_2 \rightarrow 6CO_2 + 6H_2O$ is			

49. Medium Equivalent weight of KMnO ₄ A) Acidic a) 158 B) Neutral b) 79 C) Strongly basic c) 52.6 D) Weakly basic d) 31.6 The correct match is 1) A - d, B - c, C - a, D - c 2) A - d, B - c, C - a, D - b 3) A - d, B - c, C - a, D - c 4) A - d, B - c, C - a, D - b 3) A - d, B - b, C - a, D - c 4) A - d, B - c, C - a, D - b 3) A - d, B - b, C - a, D - c 4) A - d, B - c, C - a, D - b 3) A - d, B - b, C - a, D - c 4) A - d, B - c, C - a, D - b 3) A - d, B - b, C - a, D - c 7) A - d, B - c, C - a, D - b 3) A - d, B - b, C - a, D - c 7) B NH ₂ B) Oxalic acid 7) CH D) Oxygenated water 4) CHO ₂ The correct match is A B C D A B C D A B C ID The correct match is A B C D A B C ID The correct match is A B C D A B C ID The correct match is A B C D A B C ID (R) : If percentage composition is same, then empirical formula is same The correct answer is 1) Both (A) and (R) are true and (R) is the correct explanation of (A) 2) Both (A) and (R) are true and (R) is the correct explanation of (A) 2) Both (A) and (R) are true and (R) is not the correct explanation of (A) 3) (A) is true but (R) is false 4) (A) is false but (R) is true 52. Oxidation state of S' in S ₈ molecule is 1) 0 2) +2 3) +4 4) +6 53. Oxidation state of N in N ₃ H is 1) +1/3 2) +3 3) -1/3 4) -1 54. Oxidation number of C in CH ₂ O is 1) -2 2) +2 3) 0 4) 4 55. Oxidation state of N in N ₁ H is 1) +1/3 2) +3 3) -1/3 4) -1 54. Oxidation number of C in CH ₂ O is 1) -2 2) +2 3) 0 4) 4 55. Oxidation state of N in Ni(CO) ₄ is 1) 0 2) 4 3) 8 4) 2 56. Oxidation state of N in Ni(CO) ₄ is 1) -2 2 4) 3) 8 4) 2 56. Oxidation state of N in Ni(CO) ₄ is 1) -2 2 4) 4 3) +2 4) +5 57. Oxidation number and valency of oxygen in U ₂ are 1) +1,2 2) +2,2 3) +1,1 4) +2		$1)\frac{M}{4}$			2) $\frac{M}{12}$		3	$(3)\frac{M}{24}$. 4	$\frac{M}{48}$
B)Neutralb)79C)Strongly basicc)52.6D)Weakly basicc)52.6D)Weakly basicc)31.6The correct match is1)A - d, B - c, C - a, D - c2)A - d, B - c, C - a, D - c2)A - d, B - c, C - a, D - a3)A - d, B - b, C - a, D - c4)A - d, B - c, C - a, D - a50.LIST - 1LIST - 2(Empirical formula)A)Glucose1)BNH2B)Oxalic acid2)2C)Inorganic Benzene3)CHD)Oxygenated water4)CHO2B)Oxalic acid2)2ABCDABCD1)3523)1324)42151.(A) : Empirical formula of glucose and acetic acid is CH2O(R) : If percentage composition is same, then empirical formula is sameThe correct arsker is1)Both (A) and (R) are true and (R) is not the correct explanation of (A)2)Both (A) and (R) are true and (R) is not the correct explanation of (A)3)(A) is false but (R) is false4)4)52.Oxidation state of N in N3H is1)1)2)1)2)3)4)4)53.Oxidation state of N in Ni(CO)454.Oxidation state of N in Ni(CO)455.Oxidation state of N in	49.										
C) Strongly basic c) 52.6 D) Weakly basic d) 31.6 The correct match is 1) A - d, B - c, C - a, D - c 3) A - d, B - c, C - a, D - c 3) A - d, B - c, C - a, D - c 3) A - d, B - c, C - a, D - c 3) A - d, B - c, C - a, D - c 3) A - d, B - c, C - a, D - c 4) A - d, B - c, C - a, D - b 3) A - d, B - c, C - a, D - c 4) A - d, B - c, C - a, D - b 3) A - d, B - c, C - a, D - c 4) A - d, B - c, C - a, D - a 50. LIST - 1 (Molecules) IIST - 2 (Molecules) IIST - 2 (Molecule		,						,			
The correct match is 1 A - d, B - c, C - a, D - c2) A - d, B - c, C - a, D - b3) A - d, B - b, C - a, D - c2) A - d, B - c, C - a, D - b3) A - d, B - b, C - a, D - c4) A - d, B - c, C - a, D - a50.LIST - 1LIST - 2(Molecules)(Empirical formula)A) Glucose1) BNH2B) Oxalic acid2) CH2OC) Inorganic Benzene3) CHD) Oxygenated water3) CHD) Oxygenated water3) H0The correct match isThe correct match isABC1) 3523) 1324421) 352442) Both (A) and (R) are true and glucose and acetic acid is CH2O(R) : If percentage composition is same, then empirical formula is same. The correct answer is 1) Both (A) and (R) are true and (R) is not the correct explanation of (A) 2) Both (A) and (R) are true and (R) is not the correct explanation of (A) 2) Both (A) and (R) are true and (R) is not the correct explanation of (A) 3) (A) is true but (R) is false 4) (A) is false but (R) is false52.Oxidation state of S' in S ₈ molecule is 1) +1/32) +33) -1/34) -153.Oxidation state of N in N ₃ H is 1) +1/32) +23) 04) 454.Oxidation number of C in CH2O is 1) -23) 24) -155.Oxidation state of N in Ni(CO)4 is 1) 02) 43) 84) 256.Oxidation state of N in Ni(CO)4 is 1) 02) +43) +24) +5				asic				,			
$\begin{array}{c c c c c c c c } 1) A - d, B - c, C - a, D - c & 4) A - d, B - c, C - a, D - b & 4) A - d, B - c, C - a, D - b & 4) A - d, B - c, C - a, D - a & 50 & 100 & 1$		D) We	eakly ba	sic			C	ł) 31.6			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		The correct match is 1) A - d, B - c, C - a, D - c 2) A - d, B - c, C - a, D - b									
ABCDABCI1)35242)24153)13244)421551.(A) : Empirical formula of glucose and acetic acid is CH2O(R) : If percentage composition is same, then empirical formula is same. The correct answer is 1) Both (A) and (R) are true and (R) is the correct explanation of (A) 2) Both (A) and (R) are true and (R) is not the correct explanation of (A) 3) (A) is true but (R) is false 4) (A) is false but (R) is true3) $+4$ 4) $+6$ 52.Oxidation state of 'S' in S8 molecule is 1) 02) $+2$ 3) $+4$ 4) $+6$ 53.Oxidation state of N in N3H is 1) $+1/3$ 2) $+3$ 3) $-1/3$ 4) -1 54.Oxidation number of C in CH2O is 1) -2 3) 8 4) 2 55.Oxidation state of N in Ni(CO)4 is 1) 0 3) 8 4) 2 56.Oxidation state of F in K4[Fe(CN)6] 1) $+6$ 3) $+2$ 4) $+5$ 57.Oxidation number and valency of oxygen in OF_2 are 1) $+1,2$ 2) $+2, 2$ 3) $+1, 1$ 4) $+2$	50.	(Moleo A) Ghu B) Oxa C) Ino	cules) Icose Alic acid rganic B	Benzene			(1 2 3 4	Empirica 1) BNH ₂ 2) CH ₂ O 3) CH 4) CHO ₂	al formul	a)	
ABCDABCI1)35242)24153)13244)421551.(A) : Empirical formula of glucose and acetic acid is CH2O(R) : If percentage composition is same, then empirical formula is same(R) : If percentage composition is same, then empirical formula is same51.(A) : Empirical formula of glucose and acetic acid is CH2O(R) : If percentage composition is same, then empirical formula is sameThe correct answer is 1) Both (A) and (R) are true and (R) is not the correct explanation of (A) 2) Both (A) and (R) are true and (R) is not the correct explanation of (A) 3) (A) is true but (R) is true3) (A) is false but (R) is true52.Oxidation state of 'S' in Sg molecule is 1) 02) +23) +44) +653.Oxidation state of N in N3H is 1) +1/32) +33) -1/34) -154.Oxidation number of C in CH2O is 1) -22) +23) 04) 455.Oxidation state of N in Ni(CO)4 is 1) 03) 84) 256.Oxidation state of F in K4[Fe(CN)6] 1) +63) +24) +557.Oxidation number artuge of oxygen in CF2 are 1) +1,22) +2, 23) +1, 14) +2		These	maget m	atch ic			5) HO			
1) 3 5 2 4 2) 2 4 1 5 3) 1 3 2 4 4 4 2 1 5 51. (A) : Empirical formula of glucose and acetic acid is CH ₂ O (R) : If percentage composition is same, then empirical formula is same. The correct answer is 1) 8 1) 1 <t< td=""><td></td><td>mecc</td><td></td><td></td><td>C</td><td>D</td><td></td><td>А</td><td>в</td><td>C</td><td>D</td></t<>		mecc			C	D		А	в	C	D
3) 1 3 2 4 4) 4 2 1 3 51. (A) : Empirical formula of glucose and acetic acid is CH ₂ O (R) : If percentage composition is same, then empirical formula is same The correct answer is 1) Both (A) and (R) are true and (R) is the correct explanation of (A) 2) Both (A) and (R) are true and (R) is not the correct explanation of (A) 3) (A) is true but (R) is false 4) (A) is false but (R) is true 52. Oxidation state of 'S' in S ₈ molecule is 1) 0 2) +2 3) +4 4) +6 53. Oxidation state of N in N ₃ H is 1) +1/3 2) +3 3) -1/3 4) -1 54. Oxidation number of C in CH ₂ O is 1) -2 2) +2 3) 0 4) 4 55. Oxidation state of N i in Ni(CO) ₄ is 1) 0 2) 4 3) 8 4) 2 56. Oxidation state of N i in Ni(CO) ₄ is 1) 0 2) 4 3) 8 4) 2 56. Oxidation state of F in K ₄ [Fe(CN) ₆] 1) +6 2) +4 3) +2 4) +5 57. Oxidation number and valency of oxygen in OF ₂ are 1) +1,2 2) +2,2 3) +1, 1 4) +2		1)					2)				5
(R): If percentage composition is same, then empirical formula is same The correct answer is 1) Both (A) and (R) are true and (R) is the correct explanation of (A) 2) Both (A) and (R) are true and (R) is not the correct explanation of (A) 3) (A) is true but (R) is false 4) (A) is false but (R) is fure52.Oxidation state of 'S' in S8 molecule is 1) 0 2) +2 2) +23) +44) +653.Oxidation state of N in N3H is 1) +1/3 2) +3 2) +33) -1/3 3) -1/34) -154.Oxidation number of C in CH2O is 1) -2 2) +2 3) 04) 455.Oxidation state of N in Ni(CO)4 is 1) 0 2) 43) 8 3) +24) +556.Oxidation state of Fe in K4[Fe(CN)6] 1) +6 2) +43) +2 3) +1, 14) +557.Oxidation number and valency of oxygen in OF2 are 1) +1,22) +2, 23) +1, 14) +2		,					,			1	3
The correct answer is1) Both (A) and (R) are true and (R) is the correct explanation of (A)2) Both (A) and (R) are true and (R) is not the correct explanation of (A)3) (A) is true but (R) is false4) (A) is false but (R) is true52.Oxidation state of 'S' in S ₈ molecule is1) 02) +23) +44) +653.Oxidation state of N in N ₃ H is1) +1/32) +33) -1/34) -154.Oxidation number of C in CH ₂ O is1) -22) +23) 04) 455.Oxidation state of Ni in Ni(CO) ₄ is1) 02) 43) 84) 256.Oxidation state of Fe in K ₄ [Fe(CN) ₆]1) +62) +43) +24) +557.Oxidation number and valency of oxygen in OF ₂ are1) +1,22) +2,23) +1,14) +2,2	51.		-		-				-	is same	
1) 02) $+2$ 3) $+4$ 4) $+6$ 53.Oxidation state of N in N ₃ H is 1) $+1/3$ 2) $+3$ 3) $-1/3$ 4) -1 54.Oxidation number of C in CH ₂ O is 1) -2 2) $+2$ 3) 04) 455.Oxidation state of Ni in Ni(CO) ₄ is 1) 02) 43) 84) 256.Oxidation state of Fe in K ₄ [Fe(CN) ₆] 1) $+6$ 2) $+4$ 3) $+2$ 4) $+5$ 57.Oxidation number and valency of oxygen in OF_2 are 1) $+1,2$ 2) $+2, 2$ 3) $+1, 1$ 4) $+2$		1) Both 2) Both 3) (A)	h (A) an h (A) an is true b	d (R) are d (R) are out (R) is	e true ar false			-			I
1) 02) +23) +44) +653.Oxidation state of N in N3H is 1) +1/32) +33) -1/34) -154.Oxidation number of C in CH2O is 1) -22) +23) 04) 455.Oxidation state of N in Ni(CO)4 is 1) 02) 43) 84) 256.Oxidation state of Fe in K4[Fe(CN)6] 1) +63) +24) +557.Oxidation number and valency of oxygen in OF2 are 1) +1,22) +2, 23) +1, 14) +2	52.	Oxida	tion stat	te of 'S' i	n S _s mo	lecule is					
53. Oxidation state of N in N ₃ H is 1) +1/3 2) +3 3) -1/3 4) -1 54. Oxidation number of C in CH ₂ O is 1) -2 2) +2 3) 0 4) 4 55. Oxidation state of Ni in Ni(CO) ₄ is 1) 0 2) 4 3) 8 4) 2 56. Oxidation state of Fe in K ₄ [Fe(CN) ₆] 1) +6 2) +4 3) +2 4) +5 57. Oxidation number and valency of oxygen in OF ₂ are 1) +1,2 2) +2, 2 3) +1, 1 4) +2					0		3	3) +4		4) +6
1) $\pm 1/3$ 2) ± 3 3) $-1/3$ 4) -1 54.Oxidation number of C in CH2O is 1) -2 2) ± 2 3) 04) 455.Oxidation state of Ni in Ni(CO)4 is 1) 02) 43) 84) 256.Oxidation state of Fe in K4[Fe(CN)6] 1) ± 6 3) ± 2 4) ± 5 57.Oxidation number and valency of oxygen in OF2 are 1) $\pm 1, 2$ 2) $\pm 2, 2$ 3) $\pm 1, 1$ 4) $\pm 2, 2$	53		tion stat	te of N ii	n N H is	2		,			
1) -2 2) $+2$ 3) 04) 455.Oxidation state of Ni in Ni(CO) ₄ is 1) 02) 43) 84) 256.Oxidation state of Fe in K ₄ [Fe(CN) ₆] 1) $+6$ 2) $+4$ 3) $+2$ 4) $+5$ 57.Oxidation number and valency of oxygen in OF ₂ are 1) $+1,2$ 2) $+2,2$ 3) $+1,1$ 4) $+2,2$	00.				5	,	3	3) -1/3		4) –1
55. Oxidation state of Ni in Ni(CO) ₄ is 1) 0 2) 4 3) 8 4) 2 56. Oxidation state of Fe in K ₄ [Fe(CN) ₆] 4) +5 1) +6 2) +4 3) +2 4) +5 57. Oxidation number and valency of oxygen in OF ₂ are 4) +2 1) +1,2 2) +2, 2 3) +1, 1 4) +2	54.	Oxida	tion nur	nber of (C in CH	₂ O is					
1) 02) 43) 84) 256.Oxidation state of Fe in $K_4[Fe(CN)_6]$ 4) +51) +62) +43) +24) +557.Oxidation number and valency of oxygen in OF_2 are 1) +1,22) +2, 23) +1, 1		1) –2			2) +2		З	3) 0		4) 4
1) 02) 43) 84) 256.Oxidation state of Fe in $K_4[Fe(CN)_6]$ 4) +51) +62) +43) +24) +557.Oxidation number and valency of oxygen in OF_2 are 1) +1,22) +2, 23) +1, 1	55.	Oxida	tion stat	te of Ni i	n Ni(CC	D)₄is					
1) +62) +43) +24) +557.Oxidation number and valency of oxygen in OF_2 are 1) +1,22) +2, 23) +1, 14) +2,						/4	3	3) 8		4) 2
57.Oxidation number and valency of oxygen in OF_2 are 1) +1,22) +2, 23) +1, 14) +2,	56.	Oxida	tion stat	e of Fe ii	n K ₄ [Fe(CN) ₆]					
1) +1,2 2) +2, 2 3) +1, 1 4) +2,		1) +6			2) +4		3	3) +2		4) +5
1) +1,2 2) +2, 2 3) +1, 1 4) +2,	57.	Oxida	tion nur	nber and	d valenc	cy of oxvs	gen in O	F ₂ are			
	- •							-		4) +2, 1
58.In which of the following the oxidation state of chlorine is +5 ?1) $HClO_4$ 2) $HClO_3$ 3) $HClO_2$ 4) $HClO_4$	58.			e follow	-					4) HCl

In the conversion of K₂Cr₂O₇ to K₂CrO₄ the oxidation number of the following changes 59. 1) K 2) Cr 4) None 3) Oxygen The oxidation number of sulphur in $S_{8'}S_2F_2$ and H_2S are 60. 1) 0, +1 and -2 2) +2, +1 and -2 3) 0, +1 and + 2 4) -2, +1 and -2 In the conversion of $\operatorname{CrO}_4^{-2} \to \operatorname{Cr}_2\operatorname{O}_7^{2-}$, the oxidation number of chromium 61. 1) increases 2) decreases 3) becomes zero 4) remains unchanged LIST - 1 LIST - 2 62. (Oxidation state) A) + 3 1) Nitrogen B) + 1 2) Nitrous oxide C) 0 3) Nitrate ion D) + 5 4) Hydroxylamine 5) Nitrite ion The correct match is Α В С D B С D Α 1) 1 4 3 2 2) 5 2 4 3 5 3) 4 5 3 4) 2 1 3 1 If three electrons are lost by Mn⁺³, its final oxidation state would be 63. 1) 0 2) +6 3) +2 4) +4 Oxidation number and Covalency of sulphur in S₈ molecule are respectively 64.

SOME BASIC CONCEPTS OF CHEMISTRY (STOICHIOMETRY)

01.	exitation number a	ina covarency of salpin	ai in 98 morecure are resp	eeuvery
	1) 6 and 8	2) 0 and 8	3) 0 and 2	4) 6 and 2
65.	Sum of the oxidation	numbers of carbon in a	acetaldehyde is	
	1) – 2	2) +2	3) – 4	4) –1
66.	In bleaching powder	oxidation states of Cl a	are	
	1) –1, +2	2) -2, +1	3) -1, +1	4) -2,+1
67.	Oxidation number of	f sulphur in oleum (H ₂ S	S_2O_7) is	
	1) +4	2) +2	3) -2	4) +6
68.	The compound forme state of iron in it is	ed in the brown ring test	has the formula $[Fe(H_2O)_5]$	$_{\rm NO}$ NO] SO ₄ . The oxidation
	1) +1	2) +2	3) +3	4) zero
69.	Oxidation numbers of	of sodium, mercury in s	odium amalgam are	
	1) zero, zero	2) +1, -1	3) -2, +2	4) 0, +1
70.	Chlorine is passed in in the products form		ition. What are the oxidat	ion numbers of chlorine
	1) -1, +5	2) -1, +3	3) +1, +7	4) +1, -1
71.	The oxidation state of	of sulphur in $Na_2S_4O_6$ i	S	
	1) 3/2	2) 2/3	3) 5/2	4) 2/5

 72.
 The oxidation number of sulphur in $S_2O_8^{2-}$ is

 1) +7
 2) +6
 3) +4
 4) +5

73.	The oxidation number of Cr in CrO ₅ is										
	1) + 10			2) + 6			3) + 4			4) + 5	
74.	LIST - 1			LIST -	2						
	A) NH	H ₃		1) Oxic	lant						
	B) KM	InO4		2) Both	oxidan	t and r	eductant				
	C) SO	2		3) Neit	her oxid	ant no	r reducta	nt			
	D) He			4) Redu	uctant						
				5) Deh	ydrating	gagent					
	The co	orrect m	natch is								
		Α	В	С	D		Α	В	C	D	
	1)	4	3	1	5	2)	2	4	1	3	
	3)	4	1	2	3	4)	3	2	1	4	
75.	In the	reaction	n, I ₂ + 2H	$(ClO_3 \rightarrow$	2KIO ₃ +	Cl ₂					
	i) Iodi	ine is o	xidised				ii) Chlorine is reduced				
	iii) Ioc	line dis	places c	hlorine			iv) KClO	D ₃ is deco	mpose	ed	
	The co	orrect co	ombinat	ion is							
	1) Only i & iv are correct2) Only iii & iv are corr								ect		
	3) i, ii,	iii are c	correct				4) All ar	e correct			
76.	The o	xidation	n numbe	er of pho	sphorus	in sod	ium hyp	ophosph	ite is		
	1) +3			2) +2			3) +1			4) –1	
77.	Oxida	ition sta	te of oxy	ygen in p	otassiu	m supe	eroxide is				
	1) –1/	2		2) –1			3) –2			4) 0	
78.	Average oxidation number of iodine in KI ₃										
	1) +1/	'3		2) -1/3	3		3) +3			4) –1	
79.	The o	xidation	n numbe	er of nitro	ogen in N	NCl ₃ is					
	1) +3			2) –3	-		3) zero			4) -1/3	
80.	What	are the	oxidatio	on numb	ers of 'N	l' in NI	$H_4NO_3?$				
	1) +3,			2) -3, +			3) +3, +6	6		4) -2, +2	
81.	The o	xidatior	n numbe	er of pho	sphorus	in Ba ($(H_2PO_2)_2$	is			
	1) +3			2) +2	1		3) +1			4) -1	
82.	Inwhi	ich one	of the fc	ollowing	compou	unds th	e oxidatio	on numbe	er of Io	dine is fractiona	ıl?
	1) IF ₃			2) IF ₅	r		3) IF ₇			4) KI ₃	
83.	. 0	± 0.1	PhSO +	, 0	n this rea	action 1	PbS unde	rones		/ 3	
00.		dation	10004	2) redu			3) both	5005		4) None	
84.	,	reaction	n	_) 10010	cuon		<i>c) c c c c c c c c c c</i>			1)110110	
04.				3H PC) - + PH	nhosi	phorus is	undorgo	ina		
	-	dation	JI 1 ₂ 0 —	$\frac{2}{2}$ redu		₃ prios		oportion	-	4) hydrolysis	
05	<i>.</i>		c 11 ·	,			· -	oportiona	ation	4) Hydrorysis	
85.				ng is not a	a redox i	reactio			E C		
		1) $2BaO+O_2 \rightarrow 2BaO_2$						2) $BaO_2 + H_2SO_4 \rightarrow BaSO_4 + H_2O_2$			
	3) 2KC	3) $2KClO_3 \rightarrow 2KCl+3O_2$ 4) $SO_2+2H_2S \rightarrow 2H_2O+3S$									

86. In a reaction between zin and iodine, in which zinc iodide is formed, what is being oxidised

SOM	SOME BASIC CONCEPTS OF CHEMISTRY (STOICHIOMETRY)							
	1) Zinc ions	2) Iodide ions	3) Zinc atom	4) Iodine				
87.	Which of the following	ng is redox reaction						
	1) H_2SO_4 with NaOH	I	2) In atmosphere, O_3 fr	om O ₂ by lightning				
	3) Evaporation of H_2	С						
	4) Nitrogen oxide from	m nitrogen and oxygen	by lightning					
88.	$C+O_2 \rightarrow CO_2$ the read	ction is						
	1) Chemical combina	tion	2) Decomposition reac	tions				
	3) Displacement reac	tions	4) Disproportionation	reactions				
89.	Which of the followir	ng is decomposition rea	action					
	1) $2HgO \rightarrow 2Hg + O_2$		2) $CH_4 + 2O_2 \rightarrow CO_2 +$	2H ₂ O				
	3) S + $O_2 \rightarrow SO_2$		4) $Cl_2 + 2KBr \rightarrow 2KCl -$	+ Br ₂				
90.	Which one of the follo	owing is not prepared f	from halide by chemical	oxidation process				
	1) F ₂	2) Cl ₂	3) Br ₂	4) I ₂				
91.		ng is metal displacemer						
	1) $Zn + CuSO_4 \rightarrow Zr$	-	2) $2Na + 2H_2O \rightarrow 2Na$	aOH + H ₂				
	3) Ca + 2H ₂ O \rightarrow Ca(4) $2HgO \rightarrow 2Hg + O_2$					
92.		D_4 + Cu, Zn can act as						
93.	1) Oxidising agent Which of the followit	2) Reducing agent ng is a redox reaction?	3) Reduced	4) Oxidant				
<i>)0</i> .	1) NaCl+KNO ₃ \rightarrow Na	•	2) CaC_2O_4 +2HCl \rightarrow Ca	aCl ₂ +H ₂ C ₂ O ₄				
	0	\rightarrow MgCl ₂ +2NH ₄ OH	4) Zn+2AgCN \rightarrow 2Ag	$+Zn(CN)_2$				
94.	In the reaction 3Mg+	$N_2 \rightarrow Mg_3N_2$						
	1) Magnesium is redu	ıced	2) Magnesium is oxidi	zed				
	3) Nitrogen is oxidize	ed	4) None of these					
95.	Which one of the halo	ogn is prepared by only	electrolysis method					
	1) Cl ₂	2) Br ₂	3) F ₂	4) I ₂				
96.	Layer test is used for 1) Chalogens	determination of 2) Pnicogens	3) Halogens	4) Noble gases				
	-	-	-	Ű,				

EXERCISE - II

1.	in liquid water, the vo	1g/mL. Assuming that plume of a water molect 2) 6×10 ⁻²³ ml		between water molecules 4) 3×10 ⁻²² ml		
	1) $1.5 \times 10^{-5} \text{m}$	$2) 6 \times 10^{-5} \text{m}$	$3) 3 \times 10^{-5} \text{m}$	4) $3 \times 10^{}$ mi		
2.	Ordinary water contains one part of heavy water per 6000 parts by weight. The number of heavy water molecules present in a drop of water of volume 0.01mL is (density of water is 1g/mL)					
	1) 2.5×10 ¹⁶	2) 5×10 ¹⁷	3) 5×10 ¹⁶	4) 7.5×10 ¹⁶		
3.				ar the volume of Helium t STP. The number of α		

8

		ASIC CONCEPTS		(STOICHIOMETRY)
	1) 6×10^{17}	2) 3×10^{17}	3) 1.5×10^{17}	4) 1.2×10^{18}
4.	A gaseous mixture number of molecule		trogen in the ratio 1:4 b	y weight. The ratio of their
	1) 1:4	2) 4:1	3) 7:32	4) 3:16
5.	The number of oxy	gen atoms present in 50	g of calcium carbonate	is
	1) 6.023×10^{23}	2) 30.1×10 ²³	3) 9.035×10 ²³	4) 1.206×10 ²⁴
6.		required to prepare 2 r		
	1) 16g	2) 32g	3) 8g	4) 64g
7.	One mole of $CH_4 cc$			
	1) 6.02×10^{23} atoms of 2) 2 for 1	of hydrogen	2) 4gm atoms of hyd	•
	3) 3g of carbon		4) 1.81×10 ²³ molecu	T
8.		he number of molecule		
	1) 1:1	2) 4:1	3) 1:4	4) 2:1
9.	The number of sulp number)	ohur atoms present in (0.2 mole of sodium thio	sulphate is (N=Avogadro
	1) 4N	2) 0.2N	3) 0.4N	4) 0.1N
10.	The number of nitro	ogen molecules present	in 1c.c of gas at NTP is	
	1) 2.67×10 ²²	2) 2.67×10 ²¹	3) 2.67×10^{20}	4) 2.67×10 ¹⁹
11.	The mixture contain	ning the same number of	of molecules as that of 1	4 g of CO is
	1) 14g of nitrogen +	16g of oxygen	2) 7g of nitrogen + 1	.6g of oxygen
	3) 14g of nitrogen +	8g of oxygen	4) 7g of nitrogen + 8	g of oxygen
12.	Which of the follow	ing is heaviest?		
	1) 50g of iron		2) 5 moles of nitroge	en
	3) 0.1 gram atom of	silver	4) 10^{23} atoms of carl	bon
13.	The density of a ga weight of the gas is	as is 2, relative to nitro	gen, under the same c	conditions. The molecular
	1) 5.6	2) 28	3) 56	4) 14
14.	The density of a gas	at STP is 1.5g/L at STI	P. Its molecular weight	is
	1) 22.4	2) 33.6 g	3) 33.6	4) 44.8
15.	one mole of a gas, h	aving molecular weigh	t 56, occupies a volume	
	1) 40L	2) 20L	3) 10L	4) 80L
16.	One mole of oxyger	$n(O_2)$ is present in the f	-	uric acid
	1) 98g	2) 24.5g	3) 196g	4) 49g
17.	The number of grar	n - atoms of sulphur in	2 moles of peroxydisul	phuric acid is
	1) 2	2) 3	3) 1	4) 4
18.	Four ten litre flasks	are separately filled wi	th the gases hydrogen, I	helium, oxygen and ozone

SOME BASIC CONCEPTS OF CHEMISTRY (STOICHIOMETRY)				
	at the same tempera present in different f		ratio of the total numbe	er of atoms of these gases
	1) 1:2:3:2	2) 2:1:2:3	3) 1:3:2:2	4) 1:1:1:1
19.	If the relative atomic	mass of oxygen is 64 u	nits, the molecular mas	s of CO becomes
	1) 112	2) 128	3) 28	4) 7
20.	Three grams of carbo formed is	on is completely burnt ir	n excess of oxygen. The	weight of carbon dioxide
	1) 22g.	2) 44g.	3) 11 g	4) 5.5 g
21.	What is the mole per	centage of O ₂ in a mixt	ure of 7g of N ₂ and 8g c	of O ₂ ?
	1) 25%	2) 75%	3) 50%	4) 40%
22.	The volume in litres completely is	s of CO ₂ liberated at S'	TP, when 10g of 90% $_{\rm J}$	pure limestone is heated
	1) 2.016	2) 20.16	3) 2.24	4) 22.4
23.	7.5 g of a gas occupi	es 5.6 litres as STP. The	gas is	
	1) NO	2) N ₂ O	3) CO	4) CO ₂
24.	$H_3PO_4 + 2KOH \rightarrow 1$	K,HPO4 + 2H,O		
Based on the above reaction equivalent weight of H_3PO_4 is				
	1) 196	2) 98	3) 49	4) 32.67
25.	A bivalent metal has	12 equivalent weight.	The molecular weight o	of its oxide is
	1) 16	2) 32	3) 40	4) 52
26.	Molecular weight of acidic medium is	Mohr's salt is 392. Its eq	uivalent weight when i	t is oxidised by KMnO ₄ in
	1) 392	2) 196	3) 130.6	4) 78.5
27.	The eqivalent weigh	ts of 'S' in SCl ₂ and S ₂ C	l ₂ are in the ratio	
	1) 1 : 2	2) 2 : 1	3) 1 : 1	4) 1 : 4
28.	The equivalent weig metal would be	ht of a metal in differer	t compounds are 18.6 a	ad 28. Atomic mass of the
	1) 18.6	2) 28	3) 46.6	4) 56
29.	•	quires five times its vo n. The molecular formu		the same conditions for
	1) C ₂ H ₆	2) C ₄ H ₁₀	3) C ₃ H ₈	4) CH ₄
30.	0.262g of a substanc empirical formula of	-	, 0.361g of CO ₂ and 0.3	147g of H_2O . What is the
	1) CH ₂ O	2) C ₃ H ₆ O	3) C ₃ H ₆ O ₂	4) $C_2 H_6 O_2$
31.	<i>v</i> 1	und yields the followin mplest formula of the c	0. 0. 1	on. 65.03% of Ag; 15.68% =52]
	1) Ag_2CrO_4	$2) \operatorname{Ag}_2\operatorname{Cr}_2\operatorname{O}_7$	3) AgCrO ₂	4) $AgCr_2O_3$
32.	The percentage of ox	ygen in NaOH is		
	1) 40	2) 6	3) 8	4) 20

	SOME BASIC CONCEPTS OF CHEMISTRY (STOICHIOMETRY)				
33.	The percentage of ni	trogen in Magnesium n	itride is		
	1) 14	2) 28	3) 42	4) 56	
34.	The mass of water (in	n grams) in one mole of	crystalline hypo is		
	1) 18	2) 90	3) 158	4) 248	
35.		compound on combus n and Hydrogen in the		$_2$ and 0.54g of H ₂ O. The	
	1) 75, 25	2) 60, 40	3) 83.33, 16.67	4) 77.8, 22.2	
36.	0 1	d gave 112ml of nitrog en in the compound is	en measured at STP in	the Dumas method. The	
	1) 25	2) 41.5	3) 42.4	4) 21.2	
37.	A compound contain	ns 90% C and 10% H. T	he empirical formula of	f the compound is	
	1) C ₈ H ₁₀	2) C ₁₅ H ₃₀	3) C ₃ H ₄	4) C ₁₅ H ₄₀	
38.	60g of a compound o	on analysis gave C=24g	, H=4g and O=32g. Its e	empirical formula is	
	1) C ₂ H ₄ O ₂	2) CH ₂ O	3) CH ₂ O ₂	4) C ₂ H ₂ O	
39.	The empiricial form formula of the comp	-	H ₂ O. Its molecular wei	ght is 120. The molecular	
	1) C ₃ H ₆ O ₃	2) C ₄ H ₈ O ₄	3) C ₂ H ₄ O ₂	4) C ₆ H ₁₂ O ₆	
40.	In the reaction				
	$MnO_4^{-} + SO_3^{2-} + H^+ -$	\rightarrow Mn ²⁺ +SO ₄ ²⁻ the num	ber of H ⁺ ions involved	is	
	1) 2	2) 6	3) 8	4) 16	
41.	$Cr(OH)_3 + H_2O_2 -$ equation	$\xrightarrow{\text{Alkali}} \text{CrO}_4^{-2} + \text{H}_2\text{O}_4$) the number of OH ⁻ rec	quired to balance the above	
	1) 1	2) 3	3) 4	4) 6	
42.		pichiometry coefficients	_ , _	l H ⁺ respectively are	
	$Cr_2O_7^{2-} + NO_2^{-} + H$	$r^+ \rightarrow Cr^{3+} + NO_3^- + H$	I ₂ O		
	1) 1,3,8	2) 1,4,8	3) 1,3,12	4) 1,5,12	
43.	The number of moles each in acidic mediu		² separately required to	o oxidise 1 mole of FeC ₂ O ₄	
	1) 0.5 ; 0.6	2) 0.6 ; 0.4	3) 0.4 ; 0.5	4) 0.6 ; 0.5	
44.	The weight of a pure 1) 2.45g	sample of KClO ₃ to be 2) 1.225g	decomposed in order to 3) 9.90g	o get 0.96g of O ₂ is 4) None	
45.	6g of Mg reacts with 1) 0.5g	excess of an acid. The a 2) 1g	mount of hydrogen pro 3) 2g	oduced would be 4) 4g	
46.		$s of Fe_2O_3$ formed wher	, 0		
	1) 0.125	2) 0.01	3) 0.05	4) 0.10	
47.	What volume of H_2 a	t NTP is required to co	nvert 2.8g of N ₂ in to N	H ₃ ?	
	1) 2240 ml	2) 22400 ml	3) 6.72 lit	4) 224 lit	

 SOME BASIC CONCEPTS OF CHEMISTRY (STOICHIOMETRY) 48. The number of grams of NaOH that completely neutralises 9.8g of phosphoric acid is 				
	1) 120	2) 24	3) 36	4) 12
49.		olume of oxygen. The vo ler the same conditions	-	the complete combustion
	1) 2L	2) 4L	3) 10L	4) 0.4L
50.			are exploded together a ing volume of the mixt	nd the reaction mixture is ure is
	1) 40 ml	2) 20 ml	3) 30 ml	4) 10 ml
51.	The volume of CO_2 of	btained by the complete	e decomposition of one i	mole of NaHCO ₃ at STP is
	1) 22.4 L	2) 11.2 L	3) 44.8 L	4) 4.48 L
52.	How many litres of C of Na_2CO_3 ?	CO ₂ at STP will be forme	ed when 100 ml of 0.1M	H_2SO_4 reacts with excess
	1) 22.4	2) 2.24	3) 0.224	4) 5.6
53.	25.5 g of H_2O_2 solution weight of the solution		ve 1.68L of O ₂ at STP. Th	ne percentage strength by
	1) 30	2) 10	3) 20	4) 25
54.	What is the volume (l into sulphurdioxide	it) of oxygen required a	at STP to completely cor	overt 1.5 moles of sulphur
	1) 11.2	2) 22.4	3) 33.6	4) 44.8
55.	A peroxidase enzym enzyme is	e contains 2% selenium	(Se=80). The minimun	n molecular weight of the
	1) 1000	2) 2000	3) 4000	4) 800
56.	The amount of Mg in to reduce 160g of ferm	•	dilute H_2SO_4 to liberate	H ₂ which is just sufficient
	1) 24	2) 48	3) 72	4) 96
57.		92% purity is used in the sof Na_2CO_3 required to	- 0	$aCl_2 \rightarrow CaCO_3 + 2NaCl.$
	1) 8.5g	2) 10.5g	3) 11.52g	4) 1.152g
58.	Benzene burns in oxygen according to the equation $2C_6H_6(l) + 15O_2(g) \rightarrow 12CO_2(g) + 6H_2O(l)$. How many litres of oxygen are required at STP for the complete combustion of 39g of liquid benzene?			
	1) 11.2	2) 22.4	3) 42	4) 84
59.	The mass of 80% pur	e H ₂ SO ₄ required to co	mpletely neutralise 60g	of NaOH is
	1) 92g	2) 58.8g	3) 73.5g	4) 98g
60.	•	ns 0.33% iron (Fe=56). toms in one molecule o	•	of haemoglobin is 68000.
	1) 2	2) 3	3) 4	4) 5

61.	Assuming that air at			(STOICHIOMETRY) volume of air at STP that
	1) 18 L	2) 44.8 L	3) 22.4 L	4) 11.2 L
622.		f two elements A and B atoms are present in 2x	-	vely. If x gm of A contains
	1) 2y	2) y/2	3) y	4) 4y
63.	20 ml of nitric oxide o be	combines with 10 ml of c	oxygen at STP to give N	IO ₂ . The final volume will
	1) 30 ml	2) 20 ml	3) 10 ml	4) 40 ml
64.	The number of moles	s of KI required to produ	uce 0.4 mole K ₂ HgI ₄ is	
	1) 1	2) 3	3) 16	4) 1.6
65.	-	ns atoms of three elemen is -2, the possible form		idation number of A is +2,
	1) $A_3(BC_4)_2$	2) $A_3(B_4C)_2$	3) ABC ₂	4) A ₂ (BC ₃) ₂
66.	How many moles oxygen atoms?	of magnesium phosp	phate, $Mg_3(PO_4)_2$ will	ll contain 0.25 mole of
	1) 0.02	2) 3.125×10^{-2}	3) 1.25×10^{-2}	4) 2.5×10^{-2}
67.	Total number of sulp	phate ions present in 3.9	92g of chromic sulphate	e is (Cr = 52, S=32, O=16)
	1) 1.8×10 ²²	2) 1.8×10 ²³	3) 1.2×10 ²¹	4) 6×10 ²³
68.	The number of mole	cules in one litre of wate	er is (density of water =	1g/mL)
	1) 6×10 ²³ / 22.4	2) 3.33×10 ²⁵	3) 3.33×10 ²³	4) 3.33×10 ²⁴
69.	The mass of 1.5×10 ²⁰ 1) 60g	atoms of an element is 2) 60mg	15mg. The atomic mas 3) 60	s of the element is 4) 6
70.	If 0.5 mol of BaCl ₂ is r that can be formed is		$_{3}PO_{4}$ the maximum nur	nber of moles of $Ba_3(PO_4)_2$
	1) 0.7	2) 0.5	3) 0.30	4) 0.10
71.		cm × 10cm is to be plate d for the plating is (dens		thickness. The number of c)
	1) 1.2×10 ²⁴	2) 2.4×10 ²⁴	3) 1.2×10 ¹³	4) 2.4×10 ²³
72.	Bell metal contains a copper is (Cu=64)	80% copper. The mass	of Bell metal which co	ontains 1.5×10^{20} atoms of
	1) 2mg	2) 20mg	3) 40mg	4) 12.8mg
73.		$a(OH)_2$ and H_3PO_4 are f moles of $Ca_3(PO_4)_2$ for		er dilute conditions. The
	1) 1	2) 1/2	3) 1/3	4) 3
74.	The mass of 1.5×10^{26} .	molecules of a substan	ice is 16kg. The molecu	lar mass of the substance

is

13

SOM	SOME BASIC CONCEPTS OF CHEMISTRY (STOICHIOMETRY)					
	1) 64g	2) 64 a.	m.u	3) 16 a.m.u	4) 32 a.m.u	
75.	A mixture of 7	'g of nitrogen an	d 8g of oxyg	en at STP occupies	a volume of	
	1) 11,200 mL	2) 22, 4	00 mL	3) 2240 mL	4) 5600 mL	
76.		A_2B_3 is 26gm. Th			ands A_2B_3 and AB_2 . The weight gm. Then the atomic weights of	
	1) 15,20	2) 20,2	5	3) 20,30	4) 25,30	
77.		easured under si	imilar conditi	ions of temperature	en and gives 160ml of CO ₂ . If all and pressure, the formula of the	
	1) C ₃ H ₈	2) C ₄ H	8	3) C ₆ H ₁₄	4) C ₄ H ₁₀	
78.	0.2 mole of an alkane is	alkane on com	plete combus	stion gave 26.4g of	CO_2 . The molecular weight of	
	1) 16	2) 30		3) 44	4) 58	
79.	-	pound on comp carbon in the co		stion gave 56ml of	CO_2 at 760mm and 0 ^o C. The	
	1) 50	2) 60		3) 27.5	4) 7.5	
80.		umber of atoms of e empirical forn		-	und are as follows. A=1.33, B=1	
	1) $A_2 B_2 C_3$	2) ABC		3) $A_8 B_6 C_9$	4) $A_3 B_3 C_4$	
81.		e			n C=26.7% and H=2.2%. The nolecular formula of the acid is	
	1) CH ₂ O ₂	2) C ₂ H	₂ O ₄	3) C ₃ H ₃ O ₄	4) $C_2 H_4 O_4$	
82.	-	d C, H and N a 108. Molecular f	-	-	v weight. Molecular weight of	
	1) $C_2 H_6 N_2$	2) C ₃ H	₄ N	3) $C_6 H_8 N_2$	4) $C_9 H_{12} N_3$	
			EVEDO			
			EXERC			
	1) 4	2) 4	3) 1	4) 2	5) 2	
	6) 3	7) 2	8) 4	9) 3	10) 1	
	11) 1	12) 1	13) 2	14) 2	15) 2	
	16) 4	17) 1	18) 2	19) 1	20) 1	
	21) 1	22) 2	23) 2	24) 4	25) 4	
	26) 3	27) 4	28) 2	29) 4	30) 1	

35) 3

40) 1

31) 1

36) 4

32) 4

37) 2

33) 2

38) 2

34) 1

39) 2

	SOME BASIC	CONCEPTS	OF CHEMIS	TRY (STOICHIOME	TRY)
41) 3	42) 3	43) 3	44) 3	45) 1	
46) 1	47) 2	48) 3	49) 1	50) 2	
51) 1	52) 1	53) 3	54) 3	55) 1	
56) 3	57) 2	58) 2	59) 4	60) 1	
61) 4	62) 4	63) 2	64) 3	65) 1	
66) 3	67) 4	68) 1	69) 1	70) 4	
71) 3	72) 2	73) 2	74) 3	75) 3	
76) 3	77) 1	78) 2	79) 2	80) 2	
81) 3	82) 4	83) 1	84) 3	85) 2	
86) 3	87) 4	88) 1	89) 1	90) 1	
91) 1	92) 2	93) 4	94) 2	95) 3	
96) 3					
		EXERCIS	SE - II		
1) 3	2) 3	3) 2	4) 3	5) 3	
6) 2	7) 2	8) 2	9) 3	10) 4	
11) 4	12) 2	13) 3	14) 3	15) 2	
16) 4	17) 4	18) 2	19) 1	20) 3	
21) 3	22) 1	23) 1	24) 3	25) 3	
26) 1	27) 1	28) 4	29) 3	30) 1	
31) 1	32) 1	33) 2	34) 2	35) 3	
36) 4	37) 3	38) 2	39) 2	40) 2	
41) 3	42) 1	43) 4	44) 1	45) 1	
46) 3	47) 3	48) 4	19) 3	50) 2	
73) 2	74) 3	77) 3	79) 3	81) 3	
82) 3	84) 4	85) 4	86) 1	90) 3	
91) 3	92) 3	93) 2	94) 4	96) 1	
51) 2	52) 1	53) 2	54) 3	55) 4	
56) 1	57) 2	58) 3	59) 2	60) 1	
61) 3	62) 4	63) 3	64) 4	65) 3	
66) 2	67) 3				

EXERCISE- IA

Comprehension I

Mole of any reagent contains 6.023×10^{23} particles. The particles may be atom, molecule, ions, electron, proton and neutron. One mole of atom is equal to 1 gm-atom which is equal to atomic weight of atom. 1 gm-molecule of any gas is 1 mole of gas whose volume is 22.4 litre at N.T.P.

SOM	SOME BASIC CONCEPTS OF CHEMISTRY (STOICHIOMETRY)					
1.	The volume of 3.011	<10 ²³ atoms of hydroge	n gas at N.T.P. is:			
	1) 1.12 litres	2) 2.24 litres	3) 2.8 litres	4) 5.6 litres		
2.	Mass of 1 atom of an	element X_2 is 6.64 x 10	⁻²³ gm. Molecular wt. of	X_2 is about:		
	1) 80	2) 60	3) 40	4) 20		
3.	In a reaction 1 Kg of 0 be present in 1 Kg O	-	273°C and 2 atm. How	many gm-atoms of O_2 will		
	1) 31.25 gm-atom	2) 62.5 gm-atom	3) 15.63 gm-atom	4) 125 gm-atom		
Comp	rehension II					
In chemistry, 'mole' is an essential tool for the chemical calculations. It is a basic S.I. unit adopted by the 14th general conference on weights and measurements in 1971. A mole contains as many elementary particles as the number of atoms present in 12 g of C. 1 mole of a gas at STP occupies 22.4 litre volume. Molar volume of solids and liquids is not definite. Molar mass of a substance is also called gram atomic mass or gram molar mass. The virtual meaning of mole is plenty, heap or the collection of large numbers. 1 mole of a substance contains 6.023 x 10 ²³ elementary particles like atom or molecule. Atomic mass unit {amu} is the unit of atomic mass, e.g., atomic mass of single carbon is 12 amu.						
4.	The mass of one amu	ı is approximately:				
	1) 1 g	2) 0.5 g	3) 1.66xl0 ⁻²⁴ g	4) 3.2 x 10 ⁻²⁴ g		
5.	5.6 litre of a gas at SI	TP are found to have a	mass of 22 g. The molec	cular mass of the gas is:		
	1) 22	2)44	3) 88	4) 33		
6.	The mass of one mol	ecule of water is approx	ximately:			
	1) 1 g	2) 0.5 g	3) 1.66 x 10 ⁻²⁴ g	4) 3.2 x 10 ⁻²³ g		
7.	How many atoms as	re present in 49 g of H_2^{23}	50 ₄ ?			
	1) 7 x 6.023 x 10 ²³	2) 5 x 6.023 x 10 ²³	3) 6x6.023x 10 ²³	4) 7 x 3.02 x 10 ²³		
8.	x L N ₂ gas at STP con be:	tains 3x10 ²² molecules.	The number of molecul	es in x L ozone at STP will		
	1) 3 x 10 ²²	2) 4 x 10 ²³	3) 6.02 x 10 ²³	4) 3 x 10 ²		
Comp	rehension - III					
	numbers. Isotopes h	ave different number of atomic masses ¹ a' and '1	f neutrons in their nucle	umber but different mass eus. If an element exists in average atomic mass will		
	Different isotopes of same element have same position in the periodic table. The elements					

which have single isotope are called monoisotropic elements. Greater is the percentage com-position of an isotope, more will be its abundance in nature.

9. The isotopes of chlorine with mass number 35 and 37 exist in the ratio of Its average atomic mass is 35.5:

1)1:1	2) 2 : 1	3) 3 : 1	4) 3 : 2
-------	----------	----------	----------

10. Which of the following isotopes is/are used to decide the scale of atomic mass? $1)_{6}C^{12}$ 2) ₆C¹⁴ 3)₈O¹⁶ 4) ₇N¹⁴

- 11. Atomic mass of boron is 10.81. It has two isotopes namely ${}_{5}B^{11}$ and ${}_{5}B^{x}$ with their relative abundance of 80% and 20% respectively. The value of x is:
 - 1) 10.052) 103) 10.014) 10.02
- 12. The ratio of the mass of C-12 atom to that of an atom of element X (whose atomicity is four) is 1:9. The molecular mass of element X is:
 - 1) 480 g mol^{-1} 2) 432 g mol^{-1} 3) 36 g mol^{-1} 4) 84 g mol^{-1}
- 13. C-12 and C-14 isotopes are found as 98% and 2% respectively in any sample. Then, the number of C-14 atoms in 12 g of the sample will be:

1) 1.5 mole atoms 2) 1.032 x 10²² atoms 3) 2.06 x 10²¹ atoms 4) 2 g atoms

Comprehension - IV

Empirical formula is the simplest formula of the compound which gives the atomic ratio of various elements present in one molecule of the compound. However, the molecular formula of the compound gives the number of atoms of various elements present in one molecule of the compound.

Molecular formula = (Empirical formul1) x n

 $n = \frac{Molecular\ mass}{\Gamma}$

Empirical formula mass

A compound may have same empirical and molecular formula. Both these formulae are calculated using percentage composition of constituent elements.

Answer the following questions:

14. Which of the following compounds have same empirical formula?
1) A cotic acid 2) Clucose 3) Sucrose 4) Formaldehyde

	1) Acetic acid	2) Glucose	3) Sucrose	4) Formaldenyde
15.	Which of the follo	wing represents the f	ormula of a substance	which contains 50% oxygen?
	1) N ₂ O	2) CO ₂	3) NO ₂	4) CH ₂ OH

- 16.An oxide of iodine (I = 127) contains 25.4 g of iodine and 8 g of oxygen. Its formula could be:1) I_2O_3 2) I_2O 3) I_2O_5 4) I_2O_7
- 17.10 g of hydrofluoric acid gas occupies 5.6 litres of volume at STP. If the empirical formula of
the gas is HF, then its molecular formula in the gaseous state will be:
1) HF2) H_2F_2 3) H_4F_3 4) H_4F_4

Comprehension - V

Read the following passage and answer the questions based on it. Oxidation state (or number) of all elements in free or uncombined state is zero. If oxidation state of any element in a compound is fractional, it is average oxidation state of the element which is present in different oxidation states. Oxidising agent gains electrons and reducing agent lose electrons. In redox reactions oxidation and reduction occur simultaneously and there will be exchange of electrons from reductant to oxidant.

state of N¹, N², N³ and H in HN₃ i.e., H are respectively

1) 0,0,-1,+1 2) -1, 0, 0,+1/3 3) +1/3,+1/,+1/3,+14) 0, +2/3, +1/3, 0

19. Equivalent weight of chlorine molecule in the reaction $3Cl_2 + 6NaOH \rightarrow 5NaCl + NaClO_3 + 3H_2O$, will be:

SOM	E BASIC CONCE 1) 35.5	PTS OF CHEMIS	TRY (STOICHIOMI 3) 21.3	ETRY) 4) 42.6	
20.	$K_2 Cr_2 O_7 acidic soluti$	on:		reduce 200 mL of 0.6 M	
6	1) 600mL	2) 120ml	3) 2400 mL	4) 3000 mL	
Comp			l in a closed vessel of vol ng reaction takes place:	ume 2 litres. The mixture	
	$2SO_2(g) + O_2(g)$ - Assuming the reaction	$\rightarrow 2SO_3(g)$ on proceeds to complete	tion.		
21.	Select the correct statement:2) O_2 is the limiting reagent1) SO_2 is the limiting reagent2) O_2 is the limiting reagent3) Both SO_2 and O_2 are limiting4) Cannot be predicted				
22.	Number of moles of 1) 10	SO_{3} formed in the react 2) 4	tion will be: 3) 8	4) 14	
23.	Number of moles of 1) 4	excess reactant remain 2) 2	ing: 3) 6	4) 8	
24.	The calculation on t 1) Boyle's law hypothesis	he given reaction is ba 2) Charles' law		4) Avogadro's	
25.	Total number of mol 1) increase 3) remain same	es of gaseous compone	ent after the reaction will 2) decrease 4) may increase or de		
Comp	3) remain same 4) may increase or decrease Comprehension - VII Read the following passage and answer the following questions. Oleum is mixture of H_2SO_4 and SO_3 , i.e., $H_2S_2O_7$ which is obtained by passing SO_3 in solution of H_2SO_4 . In order to dissolve SO_3 in oleum, dilution of oleum is done by water in which oleum is converted into pure H_2SO_4 as shown below: $H_2SO_4 + SO_3 + H_2O \rightarrow 2H_2SO_4$ (<i>pure</i>) When 100 gm oleum is diluted with water then total mass of diluted oleum is known as percentage labelling in oleum. For example: 109% H_2SO_4 labelling of oleum sample means that 109 gm pure H_2SO_4 is obtained on diluting 100 gm oleum with 9 gm H_2O which dissolved all free SO_3 in oleum.				
26.	If the number of mol labelled oleum, the v 1) 2.2		nd H ₂ O be x, y and z, res 3) 3.4	spectively in 118% H ₂ SO ₄ 4) 4.2	
27.	How much volume o 1) 1.204 litre	f 1.00 M NaOH will be 2) 1.806 litre	required to neutralise 11 3) 2.408 litre	8% H_2SO_4 labelled oleum: 4) 4.816 litre	
28.	In '109% H ₂ SO ₄ ' labe 1) 30%, 70%	lled oleum, the percen 2) 40%, 60%	t of free SO ₃ and H ₂ SO ₄ a 3)60%, 40%	are: 4) 15%, 85%	
Comp	Comprehension - VIII Read the following passage and answer the questions based on it. H_2O_2 acts both as oxidant and reducing agent. H_2O and O_2 are products when H_2O_2 acts as oxidant and reducing agent respectively. The strength of H_2O_2 is expressed in terms of molarity, normality, % strength and				

and reducing agent. H₂O and O₂ are products when H₂O₂ acts as oxidant and reducing agent respectively. The strength of H₂O₂ is expressed in terms of molarity, normality, % strength and volume strength. H₂O₂ decomposes as $H_2O_2 \rightarrow H_2O + 1/2O_2(g)$ i.e., one mole O₂ is released from 2 mole H₂O₂ 'X' 'volume' strength of H₂O₂ means 1 volume (mL or litre) of H₂O₂

	SOME BASIC CONCEPTS OF CHEMISTRY (STOICHIOMETRY) sample released x volume (mL or litre) O_2 gas at NTP on its decomposition.				
	Hence molarity = $x/11.2$ moles per litre, i.e., normality of $H_2O_2 = x/5.6$				
		n, i.e. , x = 5.6 x Normali entage strength of H_2O	2 2 3	m) present in 100 mL H_2O_2	
29.	The percentage streng	gth of 20 'vol' H ₂ O ₂ is			
	1) 10%	2) 6.06%	3)22%	4) 15%	
30.	How much volume of	H_2O_2 solution of 22.4 '	vol' strength is required	d to oxidise 6.3 gm oxalic	
	a 1)10mL	c 2)11.2mL	i 3) 25 mL	d : 4) 30 mL	
31.			0 mL and 10 mL of th on. The volume streng	is diluted H_2O_2 solution th of H_2O_2 is:	
	1) 2.8'Vol'	2) 5.6'Vol'	3) 11.2'Vol'	4) 22.4 'Vol'	
Compr	ehension - IX				
	types of iodine titration of I ₂ estimation. Any	n (1) lodometric & (2) lo oxidant which liberates	odimetric. lodometric m	ased on it. There are two nethod is indirect method e liberated iodine is esti- $2NaI + Na_2S_4O_6$	
32.	-	- /	to excess of KI solution S_2O_3 solution. The valu	n in acidic medium. The e of x is:	
	1) 1/10 M	2) 1/20 M	3) 1/12 M	4) 1/120 M	
33.			npurity reacted with K e purity of CuSO ₄ .5H ₂ C	I and liberated I ₂ reacted) is:	
	1) 21.58%	2) 41.58%	3) 51.58%	4) 61.58%	
34.	8.25 gm oxalic acid is oxidised by 50 mL of 0.1 M KMnO ₄ solution in presence of H ⁺ ions. The remaining KMnO ₄ was heated with excess of KI solution and the liberated I ₂ was titrated with 10 mL of 0.05 M Na,S ₂ O ₃ solution. The percentage of purity of oxalic acid is:				
	1) 8.6%	2) 18.7%	3) 25.8%	4) 34.4%	
Compr	ehension - X		L		
	Molarity is number of moles of solute dissolved per litre of the solution while normality is number of gm-equivalent of solute dissolved per litre of solution. Molality is number of moles of solute dissolved per Kg of solvent. Normality and molarity change with change of tempera- ture of solution but molality is independent of temperature. In case of monobasic acid normal- ity and molarity are equal but in dibasic acid or base molarity is two times of normality. In redox and neutralisation processes number of milliequivalents of reactants as well as prod- ucts are always equal.				
35.			heated, 2.25 gm HC1 sulting solution will be 3) 0.58M	was lost and volume of about: 4)1.16M	
36.	,	,	,	on of volume $0.25 \mathrm{dm^3}$ will	
	be:	a configured to neutro	$0.21111_{3}10_{3}01000$	on of volume 0.20 unit will	
	1)100mL	2) 250 mL	3) 500 mL	4) 750 mL	

SOME BASIC CONCEPTS OF CHEMISTRY (STOICHIOMETRY) EXERCISE - IIB

1.	COLUMN-I A) CrO ₅ B) Mole fraction C) Atomic mass	COLUMN-II P) 6.4 x (specific heat) ⁻¹ Q) +6 R) No. of molecules in 1cm ³ of gas at N.T.P.
	D) Loschmidt Number	S) Independent of temperature
2	COLUMN-I	COLUMN-II
	A) 1 a.m.u.	P) Independent of temperature
	B) 2.4gm of Mg ²⁺	Q) 21.08 $\times 10^{23}$ neutrons
	C) 11.2 L NH ₃ at N.T.P.	R) 6.023 $\times 10^{23}$ electrons
	D) Molality	S) 1.66x10 ⁻²⁷ kg
3.	COLUMN-I	COLUMN-II
	A) 96 g of ozone	P) 2.41 $\times 10^{23}$ hybridised orbitals
	B) 1.6 gm CH ₄	Q) 3.61 $\times 10^{23}$ hybridised orbitals
	C) 2.24 L C ₂ H ₄ at N.T.P.	R) 6gm-atom
	D) 0.054 L H ₂ O	S) 2.9 $\times 10^{21}$ O - H bonds
4.	COLUMN-I	COLUMN-II
	A) 22.4 volume of H_2O_2	P) Dibasic
	B) 32 g of O_2	Q) 9.034×10^{23} atoms
	C) 11.2 L CO ₂ at S.T.P.	R) 2.0 moles L ⁻¹
_	D) H_3PO_3	S) 9.64 $\times 10^{24}$ electrons
5.	COLUMN-I	COLUMN-II
	$A) Cu^{2+} + I^- \rightarrow I_2 + \dots$	P) Eq. wt. of oxidant = $M.wt/6$
	$\mathbf{B}) Cu^{2+} + Cl^{-} \rightarrow CuCl_2 + \dots$	Q) Eq. wt. of oxidant = $M.wt/5$
	$\mathbb{C})MnO_{4}^{-} + H^{+} + e^{-} \rightarrow Mn^{2+} + \dots$	R) Eq. wt. of oxidant = $M.wt/1$
	$D) Cr_2 O_7^{2-} \to Cr_2 O_3 \dots$	S) Eq. wt. of oxidant = $M.wt/2$
6.	Match the stoichiometric coefficients listed and involved in the balanced equation of the $FeC_2O_4 + MnO_4^- + H^+ \rightarrow Fe^{3+} + Mn^2$	

$FeC_2O_4 + MnO_4 + H^+ \rightarrow Fe^{-1} + Mn^{2+1}$	$+CO_{2}+H_{2}O$
COLUMN-I	COLUMN-II
A) FeC_2O_4	P) 10
B) MnO_4^-	Q) 24
$C) H^{+}$	R) 5
D) CO_2	S) 3

7. 2.0 L water gas was mixed with 8.0 L of air $(H_2: O_2 = 4:1 by volume)$ and ignited. The resulting gaesous mixture was cooled to 25°C and successively brought in contact with aqueous KOH and alkaline pyrogallol. If all volumes were measured at 25°C and 1atm pressure, match the following

	SOME BASIC CONCEPTS COLUMN-I A) Total volume of mixture that results B) Contraction in volume by aqueous KOH C) Contraction in volume by alkaline pyrogall	· · · · · · · · · · · · · · · · · · ·
	D) Volume of residual gas	S)9L.
8.	Match type of the salt formed with the appro	priate reaction. COLUMN-II
	Reaction A) 1 mole of oxalic acid + 1 Mole of NaOH B) 1 mole of $H_3PO_2 + 1$ mole KOH C) 1 mole of Ca(OH) ₂ + 1 mole of HCl	Type of Salt P) Mixed salt Q) Basic salt R) Acid salt
	D) Dry slaked lime + Cl ₂	S) Normal salt
9.	COLUMN-I	COLUMN-II
	A) $N_2 + 3H_2 \rightarrow 2NH_3$ P) 4.16 ×10 0.1 mol 0.1 mol $H_2 + 2C \rightarrow C_2H_2$ B) \downarrow	r^{-2} mol Product was formed 0^{-2} mol Product was formed
	B) $_{1g}$ 1g Q) 4.16 ×10	inorrioudel was formed
	$C) \begin{array}{c} C &+ & O_2 &\rightarrow & CO_2 \\ 0.5 g & (22.4L \ at \ NTP) \end{array} R 6.25 \times 10^{-10}$	p^{-2} mol Product was formed
	D) $2H_2 + O_2 \rightarrow 2H_2O$ S) 6.67 ×10 1g 1g	⁻² mol Product was formed

EXERCISE - IA

1) 4	2) a	3) 2	4) 3	5) 3	6) 4	7) 4	8) a	9) 3	10) a,3
11) 2	12) 2	13) 2	14) 24	15) 4	16) 3	17) 2	18) a	19) 4	20) 3
21) 2	22) 3	23) 2	24) 3	25) 2	26) a	27) 3	28) 2	29) 2	30) 3
31) 3	32) 4	33) 2	34) 2	35) 3	36) 3				

EXERCISE- IIB

1) A - Q; B - S; C - P; D - R	2) A - S; B - R; C - Q; D - P
3) A - R ; B - P ; C - Q ; D - R	4) A - R; B - S; C - Q; D - P
5) A - R ; B - S ; C - Q ; D - P	6) A - R ; B - S ; C - Q ; D - P
7) A-S;B-R;C-Q;D-P	8) A - R ; B - S ; C - Q ; D - P,
9) A - S ; B - P ; C - Q ; D - R	

EXERCISE - I

1.	Which of the followin	ng is not a fundamental	particle?		
	1) Proton	2) Neutron	3) Alpha particle	4) Electron	
2.	A neutral atom (At.no	o. >1) has			
	1) electron and protor	ı	2) neutron and electro	on	
	3) neutron, electron a	nd proton	4) neutron and protor	ı	
3.	, ,	e of electricity through	gases led to the discove	ery of	
	1) Structure of the atom	m	2) Nucleus		
	3) Spectral lines		4) Electron		
4.	Electron is a particle l				
	1) negative charge of one unit and zero mass				
		one unit and zero mass			
		one unit and a mass of one unit and a mass of	•		
5. Th			about 1.07 × 10 Kg.		
5. 111	e value of e/m for an e 1) 1 78 × 10 ⁸ c/g	2) 1.6724 × 10^{-24} c/g	3) $0.005486 c/g$	4) 1.00866 c/g	
6.	Charge of electron is	2) 1.0/21 10 0/6	0) 0.000 100 07 6	1) 1.00000 0/ 6	
0.	1) 1.602×10^{-10} Coulo	mb	2) 4.8 × 10 ⁻¹⁰ coulomb	2	
3) 1.602×10^{-19} e.s.u		4) 4.8×10^{-10} e.s.u			
7.	The e/m of proton is		,		
	1) $1.78 \times 10^8 \mathrm{c/g}$	2) 9.57 × 10 ⁴ c/g	3) 19.14 × 10 ⁴ c/g	4) $0.478 \times 10^4 \text{ c/g}$	
8.	Atomic number is equ	al to the			
	1) number of neutron	s in the nucleus	2) number of protons	in the nucleus	
	3) sum of protons and	lneutrons	4) atomic mass of the	element.	
9.	A & Z can be				
	1) negative	2) fractional	3) zero	4) Whole number	
10.	The number of protor	ns electrons and neutro	ons in ⁸⁰ 35 Br are respect	ively	
	1) 35, 35, 80	2) 35, 35, 45	3) 80, 80, 35	4) 45, 45, 35	
11.	Which one of the follo	owing is an isobar of $_6$ C	2 ¹⁴ ?		
	1) ₆ C ¹³	2) ₆ C ¹²	3) ₇ N ¹⁴	4) ₇ N ¹⁵	
12.	Number of protons in	the nucleus of carbon	atom is		
	1) 7	2) 8	3) 4	4) 6	
13.	The number of nucleo	ons in chlorine-37 is			
	1) 17	2) 20	3) 54	4) 37	
14.	The nucleus of an ato	m contains			
	1) Electrons and prote	ons	2) Protons and neutro	ons	
	3) Electrons and beta	particles	4) Protons and alpha	particles	

CHEN	MISTRY -			ATOMIC STRUCTURE
15.	The isotopes of neutr	al atoms of an element	differ in	
	1) Atomic number	2) Mass number	3) Number of ele	ctrons 4) Chemical properties
16.	The nucleus of tritiu	m consists of		
	1) 1 proton + 1 neutro	on		2) 1 proton + 3 neutrons
	3) 1 proton + zero ne	utrons	4) 1 proton + 2 r	eutrons
17.	Sodium ion is isoeled	tronic with atom		
	1) Mg ²⁺	2) Al ³⁺	3) Ne	4) N ³⁻
18.	An atom differs from	n its ion in		
	1) Nuclear charge	2) Mass number	3) Number of ele	ectrons4) Number of neutrons
19.	In C ¹⁴ isotope the nur	mber of neutrons woul	d be	
	1) 6	2) 14	3) 8	4) 10
20.	The number of neutr	ons in the dipositve zir	nc ion (Mass no. of	Zn = 65)
	1) 35	2) 33	3) 65	4) 67
21.	Rutherford's alpha ra	ay scattering experiment	nt showed for the f	irst time that the atom has
	1) Nucleus	2) Proton	3) Electron	4) Neutron
22.	The radius of the atom	m is of the order of (PM	T)	
	1) 10 ⁻¹⁰ cm	2) 10 ⁻¹³ cm	3) 10 ⁻¹⁵ cm	4) 10 ⁻⁸ cm
23.	When alpha particles foil because	s are sent through athir	n metal foil, most of	f them go straight through the
	1) Alpha particles are r	nuch heavier than electr	ons	
	2) Alpha particles a	re positively charged		
	3) Most part of the at	om is empty	4) Alpha partic	les move with high velocity
24.	Identify the incorrect SET - A	ly matched set from the	e following SET - B	
	1) Wavelength(λ)		Nanometre	
	2) Frequency (U)		Hertz	
	3) Wave number $(\overline{\upsilon})$		metre ⁻¹	
	4) Velocity (C)		ergs	
25.	Einstein was awarde		2) The equation	$\mathbf{E} = m c^2$
	 General theory of 1 Enunciation of quality 		2) The equation, 4) Explanation of	f photoelectric effect
26.	,	2	, <u> </u>	ater wavelength than visible
_0.	light?		101101111191110 810	
	1) U.V-rays	2) I.R-rays	3) Gamma rays	4) X-rays
27.	Which of the following 1) Gamma rays	ng is not an electromag 2) Alpha rays	netic radiation? 3) Radio waves	4) X-rays
28.	The energy of a phot	on is inversely proport	ional to its	
	1) Wavelength	2) Frequency	3) Wave number	4) Velocity
29.	The value of Planck's	s constant is		

ATO	MIC STRUCTURE]₩		
L	1) 6.626 × 10 ⁻²⁷ Js	2) 6.626 × 10 ⁻³⁴ Js	3) 6.023 × 10 ²³ Js	4) 1.602×10^{-19} Js
30.	Which of the following	ng properties of a wave	is independent of the o	other?
	1) Wave number	2) Wave length	3) Frequency	4) Amplitude
31.	The radiation with hi	ghest wave number		
	1) Microwaves	2) X - rays	3) I.R rays	4) Radiowaves
32.	Which of the followin 1) $E = mc^2$	ng relates to photon bo 2) Photoelectric effect		as a stream of particles? 4) $E = h v$
33.	The metal best used i	n photoelectric cells is		
	1) Na	2) Mg	3) Al	4) Cs
34.	The energy required	to emit an electron from	n the surface of a metal	is called
	1) Activation energy	2) Threshold energy	3) Critical energy	4) Kinetic energy
35.	Kinetic energy of pho	otoelectrons is independ	dent on of incide	ent radiation.
	1) Wavelength	2) Wave number	3) Frequency	4) Intensity
36.	(A): K and Cs are cor	nmonly used in photoe	electric cells.	
		, ,	sed to light of lesser fre	quency.
		-	rrect explanation of (A	
	, , , , , ,		e correct explanation c	,
	3) (A) is true but (R) i	. ,	I	< / /
	4) (A) is false but (R)			
37.	If the wavelength of a	an electomagnetic radi	ation is 2000 ⁰ A. What i	is the energy in ergs?
	1) 9.94 × 10 ⁻¹²	2) 9.94 × 10 ⁻¹⁰	3) 4.97 × 10 ⁻¹²	4) 4.97 × 10 ⁻¹⁹
38.	The energy of a phot	on is 3×10 ⁻¹² ergs. Wha	t is its wavelength in n	m ?
	$(h=6.62 \times 10^{-27} \text{ erg. s})$	ec;C=3×10 ¹⁰ Cm.s ⁻¹)		
	1) 662	2) 1324	3) 66.2	4) 6.62
39.	The frequency associ 1) 5 × 10 ¹⁴ Hz	ated with photon of ra 2) 5 × 10^{10} Hz	diation having a wavel 3) $2 \times 10^{14} \text{Hz}$	ength of 6000A ⁰ is 4) 5 × 10 ¹⁵ Hz
40.	The wave number of 1) 5×10^{15} cm ⁻¹	the radiation whose qu 2) 15×10^5 cm ⁻¹	Ũ	4) 5 × 10^5 cm ⁻¹
11	,	,	,	4) 5 × 10 cm
41.	Energy of a photon w 1) 4.36 × 10^{-12} ergs	vith a wave length of 45 2) 4.36 × 10 ⁻¹³ ergs	3) 4.36 × 10 ⁻²⁰ ergs	4) 4.36 × 10 ⁻¹¹ ergs
42.	A wave has a frequent 1 1.6×10^{-12} erg		the energy of that photon 3) 2.0×10^{-11} erg	n is 4) 3 × 10 ¹⁵ erg
43.	The wave length of li	ght having wave num	per 4000 cm ⁻¹ is	
	1) 2.5 µ m	2) $250 \mu \mathrm{m}$	3) 25 µ m	4) 25nm
44.	The energy of an elec	, .	s 19.875 × 10 ⁻¹³ ergs. Wl	hat is the wave number in
	1) 1000	2) 10 ⁶	3) 100	4) 10,000

CHEN	MISTRY -		AT	OMIC STRUCTURE
45.	Line spectrum is cha	racteristic of		
	1) Atoms		2) Molecules	
	3) Any substance in		4) Any substance in	liquid state
46.		ed from incandescent		
	1) Continuous	2) Line	3) Band	4) Absorption
47.	Ũ	which series lie in the u	Ũ	
	1) Lyman	2) Balmer	3) Paschen	4) None of the above
48.	(A) : Hydrogen has c	only one electron in its o	orbit but produces seve	eral spectral lines
	(R) : There are many	excited energy levels a	vailable in a sample of	Hydrogen gas
	1) Both (A) and (R) a	re true and (R) is the co	prrect explanation of (A	A)
	, , , , , , ,	re true and (R) is not th	ne correct explanation of	of (A)
	3) (A) is true but (R)			
	4) (A) is false but (R)	is true		
49.	When electron jumps belongs?	s from 5 th energy level t	o 1 st energy level, to wh	iich series the spectral line
	1) Balmer	2) Lyman	3) Paschen	4) Pfund
50.	When the electron in line emitted is found	, I	om the fifth orbit to the	second orbit, the spectral
	1) Visible	2) Ultraviolet	3) Near IR	4) Far IR
51.	The following series	of lines is found in the	ultraviolet region of hy	drogen atomic spectrum
	1) Balmer	2) Paschen	3) Brackett	4) Lyman
52.	Brackett series is pro	duced when the electro	ons from outer orbits ju	mp to
	1) Third orbit	2) Second orbit	3) Fourth orbit	4) Fifth orbit
53.	The equation corresp	ponding to the wave nu	mber of spectral lines	in Pfund series is
	1) $R\left[\frac{1}{4^2} - \frac{1}{5^2}\right]$	2) $R\left[\frac{1}{3^2} - \frac{1}{4^2}\right]$	3) $R\left[\frac{1}{2^2} - \frac{1}{3^2}\right]$	4) $R\left[\frac{1}{5^2} - \frac{1}{6^2}\right]$
54.	n ₁ value in Balmer se	eries is		
	1) 2	2) 1	3) 3	4) 0
55.	The value of Rydber	-		
	1) 109677 cm ⁻¹	2) 109700 cm ⁻¹ s ⁻¹	3) 10968 cm ⁻¹	4) 10970 m
56.	A spectral line with	$\lambda = 4938 A^0$ belongs to	the - series of Hydroge	n atom
	1) Lyman	2) Balmer	3) Parchen	4) Pfund
57.	Among the first line spectra, which has h		aschen and Brackett s	eries in hydrogen atomic
	1) Lyman	2) Balmer	3) Paschen	4) Bracket
58.	What are the values atomic spectrum?	of n ₁ and n ₂ respective	ely for H _b line in the L	yman series of hydrogen
	1) 3 and 5	2) 2 and 3	3) 1 and 3	4) 2 and 4
59.	The fourth line of th	e Balmer series corres	ponds to the electroni	c transition between two

ATO	MIC STRUCTUR	E 🔫		
	orbits of the H atom	, Identify the orbits.		
	1) 3 and 1	2) 5 and 1	3) 5 and 2	4) 6 and 2
60.	In a H-atom, the tra of the light emitted		n L to K shell. If $R = 1.0$	$8 \times 10^7 \text{m}^{-1}$, the wave length
	1) 4400A°	2) 1250A°	3) 1650A°	4) 1850A°
61.	The wave length of Rydberg constant R		r series of a hydrogen a	tom is nearly (The value of
	1) 4400A°	2) 5500A°	3) 6600A°	4) 7700A°
62.	The wave length of	H_{δ} line of Balmer serie	es of a hydrogen atom i	is nearly (R = $1.08 \times 10^7 \text{m}^{-1}$)
	1) 4090A°	2) 5400A°	3) 6800A°	4) 7200A°
63.	The first emission (R=Rydberg consta		mic spectrum in the	Balmer series appears at
	1) $\frac{5R}{36}$ cm ⁻¹	2) $\frac{3R}{4}$ cm ⁻¹	3) $\frac{7R}{144}$ cm ⁻¹	4) $\frac{9R}{400}$ cm ⁻¹
64.	What is the wave le constant)	ength of H _b line in Bal	mer series of hydroge	n spectrum? (R = Rydberg
	1) 36/5R	2) 5R/36	3) 3R/16	4) 16/3R
65.	wave number of the	e emitted photon will b	$e(R=109700 \text{ cm}^{-1})$	hr's orbit, then the value of
	1) 54850 cm ⁻¹	2) 82275 cm ⁻¹	3) 62875 cm ⁻¹	4) 10970 cm ⁻¹
66.		he radiation emitted, wl ould be (Rydberg consta		lectron falls from infinity to
	1) 91 nm	2) 9.1 × 10 ⁻⁸ nm	3) 406 nm	4) 192 nm
67.	The first use of quar	ntum theory to explain	the structure of atom v	vas made by
	1) Planck	2) Einstein	3) Bohr	4) Heisenberg
68.	Bohr's theory is app	plicable to		
	1) Li ⁺²	2) Li ⁺	3) He ⁺	4) Both 1 and 3
69.	Bohr's theory is not	applicable to		
	1) H	2) He ⁺	3) Li ²⁺	4) H ⁺
70.	 (R): Electrons remains 1) Both (A) and (R) 2) Both (A) and (R) 3) (A) is true but (R) 		rbits for some time correct explanation of (
	4) (A) is false but (I			. 1
71.		2	2	otal energy of the electron is
	1) $\frac{-e^2}{r}$	2) $\frac{-e^2}{r^2}$	3) $\frac{-e^2}{2r}$	4) $\frac{-e^2}{2r^2}$
72.	The angular mome The electron is pres	_	esent in the excited sta	te of hydrogen is 1.5h/ π .
	1) Third orbit	2) Second orbit	3) Fourth orbit	4) Fifth orbit

CHE	MISTRY -		*	ATOMIC STRUCTURE
73.	According to Bohr's t	heory, the angular mo	mentum of electro	n in 5th orbit is
	1) 2.5 h/p	2) 25 h/p	3) 1.0 h/p	4) 10 h/p
74.	The angular moment	um of a revolving elect		qual to
	1) $\frac{\mathrm{nh}}{2\pi}$	2) $\frac{h}{2\pi}$	$3)\left(\frac{\mathrm{nh}}{2\pi}\right)^2$	4) $\frac{n\pi}{2h}$
75.	Energy of an electron	in n th Bohr orbit is giv	en as	
	1) $-\frac{n^2h^2}{4\pi^2mZe^2}$	2) $-\frac{2\pi^2 Z^2 me^4}{n^2 h^2}$	3) $-\frac{2\pi Ze^2}{nh}$	4) $-\frac{n^2h^2}{2\pi^2Z^2me^4}$
76.	The energy of the elec	ctron when it is at an ir	nfinite distance fro	m the nucleus is
	1) Infinity	2) Zero	3) Minimum	4) Can not be predicted
77.	energy level, the freq	uency of radiation emi	tted is related to th	
	1) $\lambda = \frac{\pi}{m\nu}$	2) $mvr = \frac{nh}{2\pi}$	3) $\upsilon = \frac{\Delta L}{h}$	4) $\upsilon = \frac{\Pi}{\Delta E}$
78.	1) Energy is absorbed	lectron jumps from K- bsorbed nor emitted	2) Energy is emi	tted ergy is absorbed and some times
79.	The expression for ra	dius of a Bohr orbit in	hydrogen atom is	
80.		2) $\frac{n^2h^2}{4\pi^2me^2}$ s away from the nucleu		4) $\frac{n^2}{4\pi^2 mhe^2}$ rgy and kinetic energy
	1) Decreases, increase	25		2) Increases, increases
81.	3) Decreases, decreas Identify the correctly	es matched set from the f	4) Increases, dec ollowing lists	creases
	LIST - A		LIST - B	
	I) Energy		a) $\frac{2\pi z e^2}{nh}$	
	II) Velocity		b) $-\frac{2\pi^2 m z^2 e^4}{n^2 h^2}$	
	III) Rydberg constant		c) $\frac{2\pi^2 mz^2 e^4}{h^3 c}$	
	IV) Radius		d) $\frac{n^2h^2}{4\pi^2mze^2}$	
			$e) - \frac{4\pi^2 m z^2 e^4}{n^2 h^2}$	
	1) I – e, II – a, III – c, IV 3) I – e, II – b, III – e, IV		2) I – b, II – a, III 4) I – b, II – a, III	
82.	Bohr's model can exp	olain		

82. Bohr's model can explain

1) The spectrum of hydrogen atom only

2) Spectrum of an atom or ion containing one electron only

3) The spectrum of hydrogen molecule

ATOMIC STRUCTURE 🛛 CHEMISTRY 4) The solar spectrum Splitting of spectral lines under the influence of strong magnetic field is called 83. 3) Photoelectric effect 1) Stark effect 2) Zeeman effect 4) None of these Radius of tenth Bohr orbit of the hydrogen atom is. 84. 1) 0.53A° 2) 5.3A° 3) 53A° 4) $5.3 \times 5A^{\circ}$ Radius of 3rd Bohr orbit is 85. 1) 6.529A° 2) 2.116A° 3) 4.761A° 4) 8.464A° Velocity of the electron in the 1st Bohr orbit 86. 3) 2.18×10¹⁶ cm/se 1) 2.18×10^8 cm/sec 2) 2.18×10^8 m/sec 4) 36559×10^8 cm/sec 87. The energy that is needed to remove an electron from the 1st Bohr orbit of Hydrogen atom is 1) 2.72 ev 2) 40.8 ev 3) 13.6 ev 4) 54.4 ev The speed of an electron in the inner most orbit of the hydrogen (Bohr radius = 52.9 pm; me = 88. 9.11×10^{-31} kg) is 2) 2.19 \times 10⁶ m.s⁻¹ 1) $2.19 \times 10^4 \text{ m.s}^{-1}$ 3) $2.19 \times 10^7 \text{ m.s}^{-1}$ 4) $2.19 \times 10^8 \text{ m.s}^{-1}$ 89. The energy of an electron present in Bohr's second orbit of hydrogen atom is 1) -1312 J atom⁻¹ 2) - 328 kJ mol⁻¹ 3) - 328 J mol⁻¹ 4) - 164 kJ mol⁻¹ The de-Broglie's equation treats an electron to be 90. 4) both (1) and (2) 1) a particle 2) a wave 3) ray 91. Wavelength of the wave associated with a moving electron 1) Decreases with increase in speed of electron 2) Increases with increase in speed of electron 3) Remains same irrespective of speed of electron 4) is zero. 92. The uncertainity principle and the concept of wave nature of matter were proposed by ----and ----- respectively 1) Pauli, Hund 2) Heisenberg, Aufbau 3) Heisenberg, de Broglie 4) Heisenberg, Planck Bohr's postulate that $mvr = \frac{nh}{2\pi}$ is proved mathematically by 93. 1) Pauli's exclusion principle 2) de Broglie wave nature of the electron 3) Heisenberg's uncertainity principle 4) Sommerfield theory 94. The momentum of a particle of wave length 1A° is 2) 6.625 × 10⁻¹⁹ g. cm.s⁻¹ 1) 6.625 × 10⁻²⁷ g. cm.s⁻¹ 3) 6.625 × 10⁻¹⁶ g. cm.s⁻¹ 4) 6.625×10^{-23} g. cm.s⁻¹ 95. The de Broglie wavelength of a particle with mass 1 g and velocity 100 m/s is 2) 6.63×10^{-34} m 1) 6.63×10^{-33} m 3) 6.63×10^{-35} m 4) 6.63×10^{-36} m 96. The de Broglie wave length of a riffle bullet of mass 2 grams moving with a velocity of 2m/sec is 1) $\frac{6.6 \times 10^{-34}}{2 \times 2}$ m 2) $\frac{6.6 \times 10^{-27}}{2 \times 10^{-3} \times 2}$ cm 3) $\frac{6.6 \times 10^{-34}}{2 \times 10^{-3} \times 2}$ m 4) $\frac{6.6 \times 10^{-27}}{2 \times 2}$ m

97. A cricket ball of mass 0.5kg is moving with a velocity of 100 m.s⁻¹, the wavelength associated

ATOMIC STRUCTURE CHEMISTRY 🗬 with its motion is 1) 13.25×10^{-26} m 2) 13.25×10^{-34} m 3) 13.25×10^{-36} m 4) 6.6 \times 10⁻³⁴m If the Planck's constant $h = 6.6 \times 10^{-34}$ Js, the de- Broglie's wave length of a particle having 98. momentum of 3.3×10^{-24} kg.ms⁻¹ will be 4) 4×10^{-10} m 1) 2 × 10⁻¹⁰m 2) 1×10^{-15} m 3) 10⁻⁵m 99. The de Broglie wave length associated with a particle of mass 1 mg moving with a velocity of 1 m/sec is 1) 6.63×10^{-29} m 2) 6.63 × 10⁻³¹ m 3) 6.63×10^{-28} m 4) $6.63 \times 10^{-22} \,\mathrm{m}$ The de Broglie wavelength of a tennis ball of mass 60 g moving with a velocity of 10 metres per 100. second is approximately 1) 10⁻³³ metres 2) 10⁻³¹ metres 3) 10⁻¹⁶ metres 4) 10⁻²⁵ metres The de Broglie wavelength associated with a ball of mass, 200 g and moving at a speed of 5 101. metres/hour, is in the order of (h = 6.625×10^{-34} Js) 1) 10⁻¹⁵ m 4) 10⁻³⁰ m 2) 10⁻²⁰ m 3) 10^{-25} m 5) 10-35 m 102. If uncertainity in position is zero, the uncertainity in momentum of an electron will be 1) Zero 2) Infinity 3) Unity 4) Zero or infinity Identify the correct set from the following for fundamental particles 103. LIST - A LIST - B I) Decreasing order of masses a) $e^- > p > n$ II) Decreasing order of e/m values b) $p > e^- > n$ III) Decreasing order of de-Broglie's c) $n > p > e^{-}$ wavelength with same velocities IV) Decreasing order of uncertainity in velocity d) $n > e^- > p$ when Δx is same The correct match is 1) I – c, II – a, III – d, IV – a 2) I – c, II – a, III – a, IV – a 4) I – c, II – b, III – d, IV – a 3) I – c, II – d, III – b, IV – a Uncertainity in position of a minute particle of mass 25g in space is 10⁻⁵ m. What is the 104. uncertainity in its velocity (in ms⁻¹)? ($\bar{h} = 6.6 \times 10^{-34}$ Js) 1) 2.1×10^{-34} 2) 0.5×19^{-34} 3) 2.1×10^{-28} 4) 0.5×10^{-23} The uncertainity in momentum of an electron is 1×10^{-5} kg.m/s. The uncertainity in its 105. position will be (h = 6.62×10^{-34} kg.m/s) 1) 1.05×10^{-28} m 2) 1.05 × 10⁻²⁶ m 3) 5.27×10^{-30} m 4) 5.27×10^{-28} m The uncertainity in the momentum of a particle is 3.31×10^{-2} kgms⁻¹. The uncertainity in its 106. position is (in metres) 1) 1.59 × 10⁻³³ 2) 0.33 × 10⁻³⁰ 3) 0.4×10^{-20} 4) 3.3×10^{-24} According to Schrodinger model, nature of electron in an atom is as 107. 1) Particles only 2) Wave only

a) Both simultaneously2) Wave only3) Both simultaneously4) Sometimes waves and sometimes particles

ATO	MIC STRUCTUR	E		CHEMISTRY
108.	Which one of the fo	 ollowing expressions re	present the electron pr	
	1) $4\pi r dr \psi^2$	2) $4\pi r^2 dr \psi$	3) $4\pi r^2 dr \psi^2$	4) $4\pi r dr \psi$
109.	Radial part of the v	vave function depends	on quantum numbers	
	1) n and s	2) l and m	3) l and s	4) n and l
110.	p-orbitals are de	generate		
	1) Two fold	2) Three fold	3) Four fold	4) Five fold
111.	Number of nodal p	planes that a p-orbital h	as	
	1) 0	2) 1	3) 2	4) 3
112.	Which of the follow	ving is correct with res	pect to 'p' orbitals?	
	1) Spherical		2) Strong direction	al character
	3) Five fold degene	rate	4) No directional c	haracter
113.	The maximum num	nber of electrons accom	modated in 5f orbitals	
	1) 5	2) 10	3) 14	4) 18
114.	The maximum pro	bability of finding an e	lectron of a particular e	nergy in an orbital is about
	1) 80%	2) 85%	3) 95%	4) 99%
115.	Number of nodal s	paces in 4s orbital is		
	1) 0	2) 1	3) 3	4) 4
116.	(A) : The p-orbital l	nas dumb-bell shape		
	(R) : Electron prese numbers (0, +1, –1)		e any one of the three va	alues of magnetic quantum
	1) Both (A) and (R)	are true and (R) is the	correct explanation of ((A)
			the correct explanation	n of (A)
	3) (A) is true but (R			
448	4) (A) is false but (I			
117.		lal planes for P_x orbital		4) 0
110	1) 1	2) 2	3) 3	4) 0
118.	Number of nodes i 1) 0	2) 1	3) 2	4) 3
119.		,	5) 2	4)5
119.	The orbital withou 1) 1s	2) 2p	3) 3d	4) 3p
120.		l nodes in a 4s orbital is		1) 0 P
120.	1) Zero	2) 1	3) 2	4) 3
121.		s its four lobes along th		,
	1) d _{xv}	2) $d_{x^2-v^2}$	3) d_{r^2}	4) d_{xz}
100	, ,	5	, <u>L</u>) - XZ
122.		tron cloud of the orbita 2) Maximum	al d _{xy} in yz plane is 3) Not determined	4) None
102	1) Zero The probability of	,	,	,
123.	1) Maximum	2) Zero	y orbital along the x-ax 3) Not determined	4) Infinite
	-)	-,	e, i tot acterimited	-)

CHEN	MISTR	Y ⊶					→	АТОМ	IC STR	RUCTURE
124.	The nu	imber of	f nodes a	and noda	al planes in 4	p orbital ar	e respect	ively		
	1) 2, 1			2) 1, 2		3) 2, 3		4)	3,2	
125.	The nu 1) 1	mber of	nodes p	ossible in 2) 2	radial proba	ability distril 3) 3	oution cu	rve of 3d 4)		S
126.Th	e numbe	er of no	dal plane	es 'd' orb	ital has					
	1) Zero)		2) one		3) two		4)	three	
127.	In the radial probability distribution curve a maximum, the node and the major maximum respectively							0		
	1) 1.14	A°,0.53	A°,2.6A	°		2) 0.53A	°,1.1A°	,2.6A°		
	³) 2.6A°,1.1A°,0.53A°			4) 0.53A	°,2.116	A°,2.6A	0			
128.	(A) : TI	here are	two noc	lal regio	ns in 3s- orbi	ital				
	(R) : Tl	here is n	io nodal	plane in	3s orbital					
		rrect an								
	-				l (R) is the co	-				
	2) Both (A) and (R) are true and (R) is not				d (R) is not tl		-	. ,		
100	3) (A) is true but (R) is false				4) (A) is false but (R) is true					
129.	LIST - 1					LIST - 2	1) Fine spectrum of Hydrogen			
	A) Bohr's atomic model					, -		of Hydro	ogen	
	B) de-Broglie's concept					2) Atomi				
	C) Sommerfield atomic model					3) Dual r	nature of	any par	ticle in m	notion
	D) Sch	rodinge	er wave e	equation		4) Quant	isation o	f angula	r momer	ntu
	The co	rrect ma		0	D			D	6	D
		А	В	С	D		А	В	С	D
	1)	2	3	4	1	2)	4	3	2	1
	3)	4	3	1	2	4)	3	4	2	1
130.	For cor is	nplete d	lescriptio	on of an e	electron in ar	n atom, the n	umber of	f quantu	m numb	ers required
	1) one			2) Two		3) Three		4)]	Four	
131.	The az	imuthal	lquantu	m numb	er indicates	of the o	rbital			
	1) Size			2) Shape	2	2) Orient	ation	4)	Spin	
132.	Which	of the f	ollowing	g is indica	ated by the r	nagnetic qu	antum n	umber?		
	1) Size			2) Shape	2	3) Spatia	l orienta	tion 4)	Spin	
133.	Princip	oal qua	ntum nu	mber is 1	elated to					
	-	of the o				2) Spin a	ngular m	omentu	m	
	,		ılar mon	nentum		4) Orient	0			
134.	,	Ũ			a value of				-	
	1) 1/2	-		2) $+1/2$		3) -1/2		4)	either +1	/2 or -1/2
125			o huo ol.	, ,	the come	, -	2110			,/ -
135.	vvnen	mere ar	e two ele	ectrons II	n the same of	foital they h	ave	spins		

ATO	MIC S	FRUC	ΓURE].				
	$1) + \frac{1}{2}$	$\frac{1}{2}$ + $\frac{1}{2}$		2) $-\frac{1}{2}, -\frac{1}{2}$	3) + $\frac{1}{2}$, -	$\frac{1}{2}$	4)	0,0
136.	The va	lues of	quantu	m numbers n, l and m	for the fifth	electron o	f boro	n is
	1) n =	2,1=1,	m = -1	2) n = 2, l = 0, m = -1	3) n = 2, 1	= 2, m = -	-1 4)	n = 1, l = 2, m = -1
137.	When	n=3,1=	1, the d	esignation given to the	e orbital is			
	1) 4s			2) 4p	3) 3s		4)	3p
138.	Which	of the f	followi	ng designation is impo	ssible?			
	1) 4f			2) 5g	3) 2d		4)	6p
139.	1=3, tl	hen the	values	of magnetic quantum r	numbers are	•		
	1) <u>+</u> 1,	, <u>+</u> 2, <u>+</u>	3	2) 0, ± 1 , ± 2 , ± 3	3) -1, -2, -3	3	4)	0, +1, +2, +3
140.	For a f	-orbital,	, the val	ues of m are				
	1) -1,0), +1		2) 0, +1, +2, +3	3) -2, -1, 0	, +1, +2	4)	-3, -2, -1, 0, +1, +2, +3
141.	The in	npossibl	le set of	quantum numbers is				
	1) n =	2,1=0,	m = 0,	s = +1/2	2) n = 2, 1	=1, m=0),s=	+1/2
	3) n =	2,1=0,	m = 1 ,	s = -1/2	4) n = 3, 1	= 1, m = -	-1,s=	-1/2
142.	Which	of the f	ollowir	ng quantum numbers a	re not possi	ble?		
	1) n =	2,1=1,	m = -1,	s = -1/2	2) n = 3, 1	= 2, m = -	-3, s =	+1/2
	3) n =	2,1=0,	m = 0, s	s = +1/2	4) n = 3, 1	= 2, m = -	-2, s =	+1/2
143.	The co	errect se	t of qua	ntum numbers for the	unpaired el	ectron of c	hlorin	ne atom is
		n	1	m		n	1	m
	1)	2	1	0	2)	2	1	1
	3)	3	1	0	4)	3	0	0
144.	The tw	vo electi	rons oco	cupying an orbital are o	distinguishe	ed by		
	,			number	2) Azimuthal quantum number			
				number	4) Spin quantum number			
145.	Which	of the f	ollowin	ng sets of quantum nur	nbers is cor	rect for an	electr	on in 4 f orbital ?
	<i>'</i>			, s = +1/2	2) n = 3, 1			
	3) n =	4,1=3,	m = +1	, s = +1/2	4) $n = 4, l = 4, m = -4, s = -1/2$			- 1/2
146.		-		umbers not applicable				
	1) 1, 1,	1, +1/2	2	2) 1, 0, 0, +1/2	3) 1, 0, 0,	-1/2	4)	2, 0, 0, +1/2
147.		e p _z orbi	ital, cor	iventionally m is				
	1) –2	_		2) +2	3) 0		4)	Any of these
148.		$\mathbf{d}_{\mathbf{z}^2}$ or	bital, th	ne value of m may be				
	1) -3			2) -2	3) 0		,	None
149.	The qu	ınatum	numbe	er not obtained from the	e Schroding	er's wave	equat	tion is

CHEN	AISTRY «		→ A	TOMIC STRUCTURE
	1) n	2) 1	3) m	4) s
150.	A given orbital is lab	elled by the magnetic o	quantum number, m	= –1. This can not be
	1) s- orbital	2) p-orbital	3) d-orbital	4) f-orbital
151.	The shape of orbital	for which $l = 1$ is		
	1) Spherical	2) Dumb-bell	3) Double dumb-b	ell 4) Circular
152.	The maximum numb	per of electrons in a sub-	-shell is given by the	expression.
	1) (l+2)	2) (21+2)	3) (41+2)	4) (l+1)
153.	The magnetic quantu	Im number, m for the or	utermost electron in	the sodium atom is
	1) 1	2) 0	3) 2	4) -1
154.	For the configuration	$1s^22s^1$, the quantum network	umbers for the outer	most electron are
	1) 2,1,0, -1/2	2) 2,0,0,+1/2	3) 2,1,0,+1/2	4) 2,0,1,+1/2
155.	The maximum numb	per of electrons that a p-	orbital can accomod	ate is
	1) 6	2) 2	3) 10	4) 14
156.	The number of orbita	als in the quantum leve	ln = 4 is	
	1) 4	2) 9	3) 16	4) 18
157.	The quantum numbe	er which is equal for all	l the d-electrons in a	n atom is
	1)1	2) m	3) s	4) n
158.	_	antum numbers for the		
	1) 5, 0, 0, +1/2	2) 5, 1, 0, +1/2	3) 5, 1, 1, +1/2	4) 6, 0, 0, +1/2
159.	n, l and m values of t	-		
	1) 3,2,1	2) 2,1,0	3) 1,2,0	4) 2,0,1
160.	-	rum number for the last		
	1) 1	2) 2	3) 0	4) 3
161.	Which of the follow electron with n = 3?	ing is not a possible v	alue of azimuthal q	uantum number (l) for an
	1) zero	2) 1	3) 2	4) 3
162.	Maximum number o	f electrons that can be p	present in M and N -	shells respectively are
	1) 18, 32	2) 8, 18	3) 32, 50	4) 32, 48
163.	What is the maximum orbit?	m number of electrons	that can be theoretic	cally present in the seventh
	1) 49	2) 32	3) 72	4) 98
164.	The correct set of qua	intum numbers for a 4d	l electron is	
	1) 4, 3, 2, +1/2	2) 4, 2, 1, 0	3) 4, 3, -2, +1/2	
	4) 4, 2, 1, -1/2		5) 4, 2, -2, 0	
165.		· -		n electron in 4f - orbitals?
	1) $n = 4, 1 = 3, m = 4, s$		2) n = 4, l = 4, m =	
	3) n = 4, l = 3, m = +1	, s = +1/2	4) n = 3, l = 2, m =	-2, s = +1/2

ATO	MIC STRUCTURE 😽					
166.	No two electrons in an orbital can have par	allel spin. This stateme				
	1) Hund's rule	2) Aufbau principle				
	3) Pauli's exclusion principle	4) (n+l) rule				
167.	Electrons never pair, if there are empty orb	itals in a given sub-shel	l. This is			
	1) Aufbau principle	2) Paulis exclusion p	-			
	3) Hund's rule of maximum multiplicity	4) Heisenberg's unce				
168.	Which of the following explains the sequer	8				
	1) Hund's rule2) Aufbau principle	3) Pauli's principle	4) All of these.			
169.	Nitrogen atom has 3 unpaired electrons in	its ground state. It can	be explained by			
	1) Auf - bau principle 2) Paulis principle	3) Hund's rule	4) None of these			
170.	The electronic configuration of sodium is					
	1) [Ne]3s ² 2) [Ne]3s ¹	3) [Ar]4s ¹	4) [Ar] $4s^2$			
171.	Which of the following may represent the ground state of nitrogen atom?					
	$^{1)} \boxed{\downarrow \uparrow} \boxed{\downarrow \uparrow} \boxed{\uparrow} \boxed{\downarrow} \boxed{\downarrow}$	$2) \downarrow \uparrow \downarrow \uparrow \uparrow \uparrow$	\uparrow			
	$3) \boxed{\downarrow\uparrow} \boxed{\downarrow\uparrow} \boxed{\downarrow} \boxed{\downarrow} \boxed{\uparrow}$	$4) \downarrow \uparrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$	\downarrow			
172.	Electronic configuration of the element wit	h atomic number 56 and	d mass number 138 is			
	1) [Xe]6s ² 2) [Kr]5s ²	3) [Xe]6s ² 6p ²	4) [Xe]3d ² 5d ²			
173.	(A): The electronic configuration of boror	cannot be $1s^22s^3$,				
	(R) : No two electrons in an atom can have	the same set of all the fo	ur quantum numbers			
	1) Both (A) and (R) are true and (R) is the c	orrect explanation of (A	.)			
	2) Both (A) and (R) are true and (R) is not t	he correct explanation of	of (A)			
	3) (A) is true but (R) is false					
	4) (A) is false but (R) is true					
174.	The correct valence electronic configura-tic	on for Cu (Z =29) is				
	1) $3d^9 4s^2$ 2) $3d^{10} 4s^1$	3) $3d^{10} 4s^2$	4) $3d^8 4s^2$			
175.	Which one of the following pairs of ions ha	ve the same electronic c	configuration			
	1) Cr^{3+} , Fe^{3+} 2) Fe^{3+} , Mn^{2+}	3) Fe ³⁺ , Co ³⁺	4) Sc ³⁺ , Cr ³⁺			
176.	The (n + l) value for 4f-sub shell is					
	1) 4 2) 5	3) 6	4) 7			
177.	The energy of the electron in the hydrogen	atom depends on				
	1) The principal quantum number only	2) All the quantum n	umbers			
	3) The Azimuthal quantum number numbers	4) The principal a	nd azimuthal quantum			
178.	After 3d-sub level is completely filled the d	ifferentiating electron er	nters into sub level.			
	1) 4s 2) 4p	3) 4f	4) 5s			

CHEN	MISTRY «			TOMIC STRUCTURE		
179.	The correct ground	d state electronic config	guration of chromium a	tom is		
	1) [Ar] $3d^5 4s^1$	2) [Ar] $3d^4 4s^2$	3) [Ar] 3d ⁶	4) [Ar] $3d^5 4s^2$		
180.	The configuration	$1s^22s^22p^63s^23p^3$ corres	ponds to			
	1) S	2) P	3) Na	4) Ar		
181.	1. The configuration $1s^2 2s^1 2p_x^{-1} 2p_y^{-1} 2p_2^{-1}$ represents					
	1) Nitrogen atom (ground state)	2) Carbon atom (g	2) Carbon atom (ground state)		
	3) An excited carb	onatom	4) An excited nitrogen atom			
182.	. The total number of 'p' electrons present in phosphorous atom is					
	1) 9	2) 2	3) 8	4) 3		
183.	The valence electr	on configuration of an e	element with atomic nu	ement with atomic number 23 is		
	1) 3d ⁵	2) $3d^3 4s^2$	3) $3d^2 4s^1 4p^1$	4) $3d^2 4s^2 4p^1$		
184.	Mg ²⁺ and Al ³⁺ hav	ve same				
	1) Protons		2) Neutrons			
	3) Electronic confi	guration	4) Neutrons + pro	tons		
185.	The number of un	paired electrons in the	valence shell of silicon	is		
	1) 2	2) 3	3) 1	4) 0		
		EXERC	CISE - II			

1. If $\lambda_0 \& \lambda$ be threshold wavelength & wavelength of incident light, the velocity of photo electron ejected from the metal surface is

1)
$$\sqrt{\frac{2h}{m}(\lambda_0 - \lambda)}$$
 2) $\sqrt{\frac{2hc}{m}(\lambda_0 - \lambda)}$ 3) $\sqrt{\frac{2hc}{m}\left(\frac{\lambda_0 - \lambda}{\lambda_0\lambda}\right)}$ 4) $\sqrt{\frac{2h}{m}\left(\frac{1}{\lambda} - \frac{1}{\lambda_0}\right)}$

02. A light source of wavelength ' λ ' illuminates on a metal surface, a photoelectron of K.E 1 eV is emitted. The another light source of wavelength $\lambda/3$ ejects photo electron from the same metal surface with K.E is 4eV, the value of work function is 1) 1 eV 2) 2 eV 3) 4 eV 4) 0.5 eV

03. Threshold frequency of metal is f_0 . When light of frequency $\vartheta = 2f_0$ is incident on the metal plate, velocity of electron emitted in V_1 . When a frequency of incident radiation is $5f_0$, V_2 is velocity of emitted electron, then $V_1 : V_2$ is 1) 1 : 4 2) 1 : 2 3) 2 : 1 4) 4 : 1

04. When light of wavelength 470 nm falls on the metal surface, photo electrons emitted with a velocity $6.4 \times 10^4 m/s$. Then work function of metal is

1) $421.14 \times 10^{-21} J / mole$	2) $421.14 \times 10^{-21} J / atom$
3) 253.6 <i>KJ/mole</i>	4) 213.6 <i>KJ</i> / atom

05. Which of the following characteristic property of a metal should have to exhibit photoelectric effect

	1) Low ionisation potential	2) High ionisation potential
--	-----------------------------	------------------------------

ATOMIC STRUCTURE -

ΑΤΟ	MIC STRUCTURE	→ CHEMISTRY
•	3) High electronegativity	4) High electron affinity
06.	The wavelength & number of spectral lines	for an electronic transition is depends on
	1) Number of electrons undergoing transition	on
	2) Nuclear charge of atom	
	3) Difference in the energy of energy levels	involved in the transition
	4) The velocity of an electron undergoing tr	ansition.
07.	The wavelength of H-spectrum lines in give	en as
	$\lambda = c \left(\frac{n^2}{n^2 - 4} \right)$ when $n > 2$ the value of co	onstant 'e' in the above expression is
	1) $3 \times 10^5 m / \text{sec}$ 2) $3 \times 10^{10} cm / \text{sec}$	3) $1.06 \times 10^7 m$ 4) 364.7 nm
08.	Ratio of m th to n th wavelength of Lyman ser	
	1) $\frac{\lambda_m}{\lambda_n} = \frac{(m^2 - 1) \times n^2}{(n^2 - 1) \times m^2}$	2) $\frac{\lambda_m}{\lambda_m} = \frac{(m+1)^2}{(n+1)^2} \times \frac{(n+1)^2 - 1}{(m+1)^2 - 1}$
	" ()	$\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
	3) $\frac{\lambda_m}{\lambda_n} = \frac{(n+1)^2}{(m+1)^2} \times \frac{(m+1)^2 - 1}{(n+1)^2 - 1}$	4) $\frac{\lambda_m}{\lambda_n} = \frac{(n^2 - 1) \times m^2}{(m^2 - 1) \times n^2}$
)9.	If the first emission in the Lyman series of H	-spectrum occurs at $\lambda = 121.5 nm$ then, energy
	difference (KJ mole ⁻¹) between the first & se	cond shell of H-atom
	1) 985 KJ mole ⁻¹ 2) 9850 KJ mole ⁻¹	3) 9.85 <i>KJ</i> / mole 4) 98.5 <i>KJ</i> / mole
10		
10.		of visible light, x-ray & microwave respectively,
	then:	
	1) $\lambda_m > \lambda_v > \lambda_x$ 2) $\lambda_m > \lambda_x > \lambda_v$	3) $\lambda_v > \lambda_m > \lambda_x$ 4) $\lambda_v > \lambda_x > \lambda_m$
11.	The which of the following statements are in	ncorrect about the photoelectric effect
	1) The kinetic energy of photo electron depe	ends on nature of metal
	2) The no. of photo electrons is proportiona	
	3) The kinetic energy of photo electron is pr	oportional to the intensity of light
	4) Highly electropositive metals like cesium	
2.	The kinetic energy (KE) of photoelectron emi	tted on irradiating a metal surface with frequency
	' ϑ ' is related by KE = $h\vartheta$ -IE. The plots of	K.E vs incident frequency ϑ shows
	1) A straight line, slope equal to plank's co	
		equal to the product of threshold frequency &
	3) A straight line with extrapolated on y-ax	is is equal to IE
	4) A straight line with intercept on-x-axis ed	qual to threshold frequency
.3.		hold frequency ϑ_0 for a certain metal. If incident
	photons has wavelengths $\lambda_1 = 2200 \stackrel{0}{A}$ & KE ₁ & KE ₂ receptivity & KE ₁ = 2KE ₂ . Then	$\lambda_2 = 1900 \stackrel{0}{A}$ produce two photo electrons with
	1) ϑ_0 is 1.1483×10 ¹⁵ sec ⁻¹	2) λ_0 is 2.6126×10 ⁻⁷ m
	3) λ_0 is 1.1483×10 ⁻¹⁶ m	4) ϑ_0 is 2.16×10 ⁻⁷ sec ⁻¹ .

CHEMISTRY 🗬

ATOMIC STRUCTURE **

14. Which of the following graph(s) are incorrect about photoelectric effect.

15. A certain photon emitted by an excited Li⁺² sample is unable to ionise a H-atom sample from grand state then the photon can be related as following transition in Li⁺² sample 1) First line of Lyman series 2) Last line of Bracket series 4) Second line of Paschen series

3) Second line of Balmer series

The value of constant 'R' in the following expression $\overline{\vartheta} = R \left(\frac{1}{n_{\star}^2} \right)$ $\frac{1}{n_2^2}$ is 16.

1) $2.18 \times 10^{-18} J / atom$

4) 9.1086
$$\times 10^{-8} m$$

17. Which of the following graphs represents photoelectric effect

2) $3.29 \times 10^{-15} s^{-1}$

18. The graph between photo electron current (3) & intensity of photon (I)

19. Kinetic energy of photo electron varies with 1) Nature of metal 2) Intensity 3) Amplitude

4) Both A & C

3) $1.09677 \times 10^7 m^{-1}$

ATOMIC STRUCTURE -

➡CHEMISTRY

				EXER	ICSE-	Ι			
1) 3	2) 3	3) 4	4) 3	5) 1	6) 4	7) 2	8) 2	9) 4	10) 2
11) 3	12) 4	13) 4	14) 2	15) 2	16) 4	17) 3	18) 3	19) 3	20) 1
21) 1	22) 4	23) 3	24) 4	25) 4	26) 2	27) 2	28) 1	29) 2	30) 4
31) 2	32) 4	33) 4	34) 2	35) 4	36) 1	37) 1	38) 1	39) 1	40) 1
41) 1	42) 3	43) 1	44) 4	45) 1	46) 1	47) 1	48) 1	49) 2	50) 1
51) 4	52) 3	53) 4	54) 1	55) 1	56) 2	57) 1	58) 3	59) 4	60) 2
61) 3	62) 1	63) 1	64) 4	65) 2	66) 1	67) 3	68) 4	69) 4	70) 3
71) 3	72) 1	73) 1	74) 1	75) 2	76) 2	77) 3	78) 1	79) 2	80) 4
81) 2	82) 2	83) 2	84) 3	85) 3	86) 1	87) 3	88) 2	89) 2	90) 4
91) 1	92) 3	93) 2	94) 2	95) 1	96) 3	97) 3	98) 1	99) 3	100) 1
101) 4	102) 2	103) 2	104) 3	105) 3	106) 1	107) 3	108) 3	109) 4	110) 2
111) 2	112) 2	113) 3	114) 3	115) 3	116) 2	117) 1	118) 2	119) 1	120) 4
121) 2	122) 1	123) 2	124) 1	125) 4	126) 3	127) 2	128) 3	129) 2	130) 4
131) 2	132) 3	133) 1	134) 4	135) 3	136) 1	137) 4	138) 3	139) 2	140) 4
141) 3	142) 2	143) 3	144) 4	145) 3	146) 1	147) 3	148) 3	149) 4	150) 1
151) 2	152) 3	153) 2	154) 2	155) 2	156) 3	157) 1	158) 1	159) 2	160) 3
161) 4	162) 1	163) 4	164) 4	165) 3	166) 3	167) 3	168) 2	169) 3	170) 2
171) 2	172) 1	173) 1	174) 2	175) 2	176) 4	177) 1	178) 2	179) 1	180) 2
181) 3	182) 1	183) 2	184) 3	185) 1					

EXERCISE - II

01) 3	02) 4	03) 2	04) 2	05) 1	06) 3	07) 4	08) 2	09) 1	10) 1
11) 23	12) 134	13) 12	14) 123	4 15) 24	16) 123	34 17) 3	18) 1	19) 1	

EXERCISE - I

1.	The maximum num	ber of elements availabl	e in elemental form			
	1) 26	2) 92	3) 111	4) 118		
2.	Which of the followi	ng is Dobereiner triad				
	1) Li, Na, K	2) Fe, Co, Ni	3) Ru, Rh, Pd	4) Os, Ir, Pt		
3.	Number of short per	riods in short form of pe	riodic table			
	1) 3	2) 2	3) 4	4) 6		
4.	Considering the che on	mical properties, atomi	c weight of the element	'Be' was corrected based		
	1) Valency	2) Configuration	3) Density	4) Atomic volume		
5.	Eka silicon is now k	nown as				
	1) Scandium	2) Gallium	3) Germanium	4) Boron		
6.	The element 'Sc' is k	nown long back as				
	1) eka-aluminium	2) eka-boron	3) eka-silicon	4) eka-mercury		
7.	By taking chemical properties into consideration, the atomic weights of the following element were corrected					
	1) Te & I	2) Ar & K	3) Co & Ni	4) Be & In		
8.	Anomalous pair am	ong the following is				
	 Boron - Silicon Aluminium - Gall 	ium	2) Beryllium - Indiun	n 4) Cobalt - Nickel		
9.	The longest and sho			4) Cobalt - Mickel		
).	1) 1 & 6	2) 2 & 6	3) 6 & 1	4) 1 & 7		
10.	,		d, 4th and 5th periods	of modern periodic table		
	1) 2, 8, 8 & 18	2) 8, 8, 18 & 32	3) 8, 8, 18 & 18	4) 8, 18, 18 & 32		
11.	Which of the followi	ng pair of elements are	from the same group o	f the periodic table		
	1) Mg, Cs	2) Mg, Sr	3) Mg, Cl	4) Na, Cl		
12.	Elements of a vertica	al group have				
				A		
	1) Same atomic num		2) Same electronic co	0		
13	3) Same number of v	alency electrons	4) Same number of co	0		
13.	3) Same number of v		4) Same number of co	0		
13. 14.	 3) Same number of v The general electron 1) ns² np⁴ Outer shell 'octet' co 	alency electrons ic configuration of elem 2) ns ² np ³ nfiguration is observed	 4) Same number of contents of carbon family 3) ns² np¹ for the elements of the 	ore electrons 4) ns ² np ² group		
	 3) Same number of v The general electron 1) ns² np⁴ 	alency electrons ic configuration of elem 2) ns ² np ³ nfiguration is observed 2) 8	 4) Same number of contents of carbon family 3) ns² np¹ 	fore electrons 4) $ns^2 np^2$		

PER	IODIC TABLE							
16.	Element with atomic number 15 a	nd mass number 31 is present ir	ı					
	1) group 5 and period 4	2) group 5 and perio	od 3					
	3) group 15 and period 3	4) group 15 and peri	iod 4					
17.	In the periodic table, the elements	are arranged in the periods follo	owing the					
	1) Hund's rule of maximum multi	olicity 2) Pauli's exclusion	principle					
	3) Aufbau principle	4) Both (1) and (2)						
18.	Which of the following pairs of at group?	omic numbers represents eleme	nts belonging to the same					
	1) 11, 20 2) 12, 30	3) 13, 31	4) 14, 33					
19.	As per the modern periodic law, th functions of their	e physical and chemical properti (E1998)	es of elements are periodic					
	1) atomic number	2) electronic configu	iration					
	3) atomic weight	4) atomic size						
20.	An element with atomic number 2	0 will be placed in which period	l of the periodic table?					
	1) 4 2) 3	3) 2	4) 1					
21.	If the atomic number of an elemer	t is 33, it will be placed in the pe	eriodic table in the					
	1) First group 2)Third group		4) Seventh group					
			, 01					
22.	The number of periods present in	he long form of the periodic tab	le					
	1) 6 2) 7	3) 8	4) 18					
23.	The electronic configuration of gro	up III elements is						
	1) $ns^2 np^3$ 2) $ns^2 np^5$	3) ns^2np^1	4) ns^2np^2					
24.	The total number of gaseous eleme	ents are						
	1) 8 2) 9	3) 10	4) 11					
25.	In a period, elements are arranged	in strict sequence of						
	1) Decreasing charges in the nucle	-	es in the nucleus					
	3) Constant charges in the nucleus							
26.	The general electronic configuration							
20.	0	$d^{1}(n-2)f^{1-14}3) ns^{1-2} (n-1)d^{1-9}$	4) ns ¹⁻² np ⁶ (n-1)d ¹⁻¹⁰					
27.	Identify the correctly matched set	among the following						
	1) Scandium-d-block-representative element							
	2) Lanthanum-d-block-innertrans	ition element						
	3) Cerium - f - block - transition ele	ement						
	4) Actinium - d - block - transition	element						
28.	The representative elements get th	e nearest inert gas configuratior	1					
	1) By losing electrons	2) By gaining electro	ons					
	By sharing electrons or sharing electrons		4) By losing or gaining					
29.	In transition elements, the shells the	at are incompletely filled						
	1) Ultimate shell only	2) Penultimate shell	only					
	3) Both ultimate & penultimate sh	ells 4) Outermost three s						

CHE	MISTRY -			PERIODIC TABLE
30.	The characteristic pro	perties of transition ele	ements are due to	
	 1) Unpaired electrons 3) Presence of 2 nodal 		2) d-orbitals have fiv4) Because they below	0
31.	Rare earths are genera	ally		
	1) Actinides		2) f-block elements	
	3) Inner transition ele	ments	4) Lanthanides	
32.	Lanthanum belongs t 1) s-block	o 2) p-block	3) d-block	4) f-block
33.	In the periodic table t	ransition elements beg	in with	
	1) Scandium	2) Zinc	3) Copper	4) Mercury
34.	Inert gas element whi 1) Xe	ich has a different vale 2) Ne	nce shell configuratior 3) Kr	1 4) He
35.	Atomic numbers of ac	,	-)	-)
	1) 57 to 71	2) 80 to 103	3) 58 to 71	4) 90 to 103
36.	Most of the non-metals are present in the long form of the periodic table in			
	1) p-block	2) f-block	3) d-block	4) s-block
37.	Metal used as catalys	t in the hydrogenation	of vegetable oils	
	1) Iron	2) Molybdenum	3) Nickel	4) Sodium
38.	The 4f-subshell is suc	cessively filled for		
	1) Rare earths	2) Rare gases	3) Transition metals	4) Alkaline earth metals
39.	The role of 'Molybder	num' in Haber's synthe	esis is	
	1) A positive catalyst	2) A negative catalys	t 3) Poison for catalys	t 4)Promoter for catalyst
40.	The period in which s	-block, p-block and d-l	olock elements are pre	sent
	1) 1	2) 6	3) 7	4) 3
41.	Elements of p-block as	re		
	1) Only non-metals		2) Only metalloids	
	3) Metalloids and nor	n-metals	4) Metalloids, non-m	netals and metals
42.	The following ion is c	colourless in aqueous s	olution	
	1) Ca ²⁺	2) Sc ³⁺	3) Zn ²⁺	4) all the above
43.	Which of the followin	ng configuration corres	ponds to an inert gas?	
	1) $1s^2 2s^2 2p^5$	2) $1s^2 2s^2 2p^6$	3) $1s^22s^1$	4) $1s^2 2s^2 2p^6 3s^1$
44.	The rare gas that is m	ost abundant in the ati	nosphere is	
	1) He	2) Ne	3) Ar	4) Kr
45.	In lanthanides, the dif	fferentiating electron e	nters into	
	1) d - subshell	2) f - subshell	3) p - subshell	4) s - subshell
46.	Which is not a transit	ion metal?		
	1) Ag	2) Pb	3) Cr	4) Pt
47.	The general electronic the group	configuration (n-1)d ³ r	ns ² indicates that the pa	rticular element belong to
	1) VB	2) VA	3) IVB	4) IIB

PER	IODIC TABLE					
48.	The electronic con	figuration of chromium i	S			
	1) [Ar] $4d^4 4s^2$	2) [Ar] $4d^5 4s^1$	3) [Ar] $3d^43s^2$	4) [Ar] $3d^5 4s^1$		
49.	Which of the follow	wing pairs of ions have t	he same electronic co	onfiguration		
	1) Cr ⁺³ , Fe ⁺³	2) Fe ⁺³ , Mn ⁺²	3) Fe ⁺³ , Co ⁺³	4) Sc ⁺³ , Cr ⁺³		
50.	The electronic con	figuration 1s ² 2s ² 2p ⁶ 3s ²	3p ⁴ represents			
	1) Oxygen	2) Magnesium	3) Calcium	4) Sulphur		
51.	What is wrong abo	out transition metals?				
	1) They are diamag	gnetic	2) They are param	nagnetic		
	3) They form comp	blexes	4) They show vari	iable oxidation state		
52.	Which of the follow	wing is a rare earth elem	ent?			
	1) Cadmium	2) Californium	3) Cerium	4) Cesium		
53.	Variable valency is	s exhibited by				
	1) Normal element	S	2) Metallic elemer	2) Metallic elements		
	3) Transitional elements 4) Non-metal			ements		
54.	Which one of the f	ollowing is correct about	t stability of the giver	n ions (2003)		
	1) $Pb^{2+} > Pb^{4+}$	2) $Pb^{4+} > Pb^{2+}$	3) $Si^{2+} > Si^{4+}$	4) $Sn^{4+} > Sn^{2+}$		
55.	The transition elem	ent among the following i	s			
	1) Cu	2) Sn	3) Pb	4) Zn		
56.	Which of the following is not a periodic property					
/0.	1) Valency	0 1 1	2) Specific heat			
	3) Ionisation porte	ntial		4) Atomic size		
57.	Elements of the sa	me vertical group of the j	periodic table have			
	1)same atomic size	e				
	2) same electronic	configuration				
	3) same number of	3) same number of electrons in outermost shell of their atoms				
	4) same number of	atoms				
58.	The appoximate si	ze of an atom is				
	1) 10 ⁻⁶ m	2) 10 ⁻⁸ m	3) 10 ⁻¹⁰ m	4) 10 ⁻¹² m		
59.	Atomic radius is m	neasured by				
	1) Mulliken oil dro	p method	2) Rutherford's a-ray scattering experiment			
	3) X-ray diffraction	n technique	4) Electric dischar	ge tube experiment		
50.	Atomic radius dep	oends upon				
	1) Number of bond	ls formed by the atom	2) Nature of the bonding			
	3) Oxidation state	of the atom	4) All the above			
61.	Covalent bond len	gth of chlorine molecule	is 1.98Å. Then coval	lent radius of chlorine is		
	1) 1.98Å	2) 1.7Å	3) 2.05Å	4) 0.99Å		
62.	Van der waal's rac	lius is used for				
	1) Molecular subst	tances in gaseous state o	nly			
40		-				

CHE	MISTRY 4			PERIODIC TABLE
L	2) Molecular substa	nces in solid state only		
	3) Molecular substa	nces in liquid state only	4) Molecular substan	ces in any state
63.	If the atomic radius	of non-metal bromine is	1.14Å, its covalent rad	ius is
	1) 1.14Å	2) 1.12Å	3) 1.16Å	4) 0.57Å
64.	The covalent and va	n der waals radii of chlo	rine respectively are	
	1) 1.80Å & 0.99Å	2) 0.99Å & 1.80Å	3) 1.80Å & 1.80Å	4) 0.99Å & 0.99Å
65.	In the isoelectronic s	species the ionic radii (A) of N ³⁻ , O ²⁻ , F ⁻ are res	pectively given by
	1) 1.36, 1.71, 1.40	2) 1.36, 1.40, 1.71	3) 1.71, 1.36, 1.40	4) 1.71, 1.40, 1.36
66.	Correct statement ar	nong the following is		
	1) Covalent radius i	s 40% more than Van de	er waals radius	
	2) Van der waals ra	dius is less than covaler	ıt radius	
	3) Van der waal's ra	dius is 40% more than c	ovalent radius	
	4) Radii cannot be co	ompared		
67.	5 0			
	in a representative s			
	1) Shielding effect	2) Penetrating effect		4) Inert pair effect
68.	-	anides from their mixtur	2	f
	1) Shielding effect	1	2) Penetrating effect	
(0)	, <u> </u>	lanthanide contraction	4) Inert pair effect	
69.		is $0.76 A^\circ$; the radius of Fe		4) 1 00 4 0
-	1) 0.64A°	2) 0.76A°	3) 0.88A°	4) 1.08A°
70.	Among elements wi	th the following electron	ic configurations, the or	ne with the largest radius
		2) 1s ² 2s ² 2p ⁶ 3s ² 3p ¹	3) $1s^2 2s^2 2p^6 3s^2 3p^3$	4) $1s^2 2s^2 2p^6 3s^2 3p^5$
71.	Largest ion among t	, <u> </u>	r - r	, <u>r</u> <u>r</u>
71.	1) Na ⁺	2) O^{-2}	3) S ⁻²	4) Cl-
72.	,	ing has the largest atomi	,	,
,	1) Al	2) Si	3) Cl	4) Na
73.		ng order is correct for th	,	,
10.	1) Fe $<$ Fe ²⁺ $<$ Fe ³⁺	2) $Fe^{2+} < Fe^{3+} < Fe$	3) Fe < Fe ³⁺ < Fe ²⁺	
74.	,	a is 200pm. Covalent ra	,)
, 1,	1) 200 pm	2) 230 pm	3) 280 pm	4) 174 pm
75.	, <u>1</u>	ius of Zr and Hf is expla	, I) r
70.	1) Lanthanide contr	-	2) Inert pair effect	
	3) Same outershell c		4) Anomalous config	uration
76.		rect order of the size of t	,	
70.	, , men one is the cor		ne toune species:	

PERI	ODIC TABLE			
	1) $I > I^+ > I^-$	2) $I > I^- > I^+$	3) $I^+ > I^- > I$	4) $I^- > I > I^+$
77.	The correct sequence	e which shows decreasi	ng order of the ionic rac	lii of the elements is
	1) $Na^+ > Mg^{2+} > Al^{3+}$	$^{>}O^{2-}>F^{-}$	2) $Na^+ > F^- > Mg^{2+} > G^{2+}$	O ²⁻ > Al ³⁺
	3) $O^{2-} > F^{-} > Na^{+} > Na^{+}$	$1g^{2+} > Al^{3+}$	4) $Al^{3+} > Mg^{2+} > Na^+$	$> F^{-} > O^{2-}$
78.	The Lanthanide cont	raction relates to		
	1) Oxidaion states	2) Magnetic state	3) Atomic radii	4) Valence electrons
79.	Which of the followi	ng process refers to ior	visation potential?	
	1) $X_{(s)} \to X^{+}_{(g)} + e^{-}$	$2)X_{(g)} + aq \rightarrow X^{+}_{(aq)} +$	$(e^{-3}) X_{(g)} \rightarrow X^{+}_{(g)} + e^{-3}$	4) $X_{(g)} + e^- \rightarrow X_{(g)}^-$
80.	When the screening	effect increases, ionisati	ion energy	
	1) Decreases		2) Increases	
	3) First increases and	l then decreases	4) Remains constant	
81.	With an increase in t	he extent of penetratior	n of valence electrons, ic	onisation energy
	1) Decreases	2) Increases	3) Remains constant	4) Both are not related
82.	The group of elemer	its with highest second	ionisation energy is	
	1) IIA group	2) Zero group	3) VIIA group	4) IA group
83.	How many ionisatio	n energies can carbon h	ave? Electronic configu	aration of carbon
	in Ground state : $1s^2 2s^2 2p_x^{-1} 2p_y^{-1}$			
	in Excited state : 1s ²	$2s^{1} 2p_{x}^{1} 2p_{y}^{1} 2p_{z}^{1}$.		
	1) 1	2) 2	3) 4	4) 6
84.	-	• •	reater than that of alum	inium because
	,	is very large when com	- Ű	
	,	stable electronic config		
		stable electronic config	sitive (energy is absorbe	(be
85.	-	ghest penetrating powe		(. .)
00.	1) p-electrons	2) s-electrons	3) d-electrons	4) f-electrons
86.			on energy among the fo	,
00.	1) Oxygen	2) Fluorine	3) Sulphur	4) Nitrogen
87.			ighest ionisation energi	, C
07.	1) IA	2) IIA	3) VA	4) Zero
00	,	,	,	
88.	1) IA	2) IIA	west ionisation energie 3) VA	4) Zero
89.		element with the highe	,	4) 2010
09.	1) [Ne]3s ¹	2) [Ne] $3s^2 3p^3$	3) [Ne] $3d^{10} 4s^2 4p^3$	4) [Ne] 3s ² 3p ⁴
90.	,	, , , , , , , , , , , , , , , , , , , ,		al difference between the
	-		-	The ionisation energy of

CHE	MISTRY -			PERIODIC TABLE
•	1) 54 ev	2) 520 kJ mol ⁻¹	3) 54 kJ atom ⁻¹	4) 5.4 ev atom ⁻¹
91.	Which of the followi	ing transition involves i	maximum amount of er	nergy?
	1) $M^{(g)} \rightarrow M^{(g)}$	2) $M_{(g)} \rightarrow M^+_{(g)}$	3) $M^+_{(g)} \to M^{2+}_{(g)}$	4) $M_{(g)}^{+2} \to M_{(g)}^{3+}$
92.	The first ionisation p	potential is maximum fo	or	
	1) Lithium	2) Uranium	3) Iron	4) Hydrogen
93.	The lowest first io configurations.	nization energy woul	d be associated with	which of the following
	1) $1s^22s^22p^63s^1$	2) $1s^22s^22p^5$	3) $1s^22s^22p^6$	4) $1s^22s^22p^63s^23p^2$
94.	The maximum tend configuration	lency to form uniposi	tive ion is for the eler	ment with the electronic
	1) $1s^22s^22p^63s^2$	2) $1s^22s^22p^63s^23p^1$	3) $1s^22s^22p^63s^23p^2$	4) $1s^22s^22p^63s^23p^3$
95.	As one moves along	a given row in the peri	odic table, ionisation er	nergy
	1) Remains same		2) Increasing from le	0
	3) First increases an		4) decreases from lef	0
96.	number of valence e	lectrons in the element	is	872 and 5972 K.Cals The
	1) 4	2) 3	3) 1	4) 2
97.	Ionisation potential 1) 801, 899, 520	values of Li, Be and B a 2) 520, 801, 899	re respectively in kJ mo 3) 899, 801, 520	bl ⁻¹ 4) 520, 899, 801
98.	Screening effect is no	ot common for the elem	ents of the period	
	1) 7	2) 3	3) 1	4) 4
99.	2)The tendency of a3)Energy absorbed	o take out an electron fr n atom to attract an elec when an electron is add vhen an electron is add	ctron towards itself led to an isolated atom	in gaseous state
100.	The property of an e from Born-Haber cy		etermined directly but	can be obtained indirectly
	1) Ionisation potenti character	ial 2) Electron affinity	3) Electronegativity	4) Electropositive
101.	Electron affinity is n	neasured in		
	1) No units	2) kcal mol ⁻¹	3) kJ mol ⁻¹	4) Both (2) and (3)
102.	 Which of the follow. 1) First electron affir 2) Second electron at 3) Formation of NaC 4) Hydration of MgC 	ffinity of oxygen Il from gaseous ions	process?	
103.	In a period from left 1) Increases	to right, electron affinit 2) Decreases	y 3) Remains constant	:

PERIODIC TABLE

	4) First increases and	then decreases		
104.		nows the highest energy	released when an elec	tron is added to the atom
	is 1) $1s^2 2s^2 2p^3$	2) $1s^2 2s^2 2p^4$	3) $1s^2 2s^2 2p^5$	4) $1s^2 2s^2 2p^6$
105.	Electron affinity of F	luorine is less than that	of Chlorine because	
	1) Electronegativity of	of Fluorine is more	2) 2p sub shell of F is	smaller
	3) Chlorine is a stron	ger oxidant	4) Bond dissociation	energy of F ₂ is less
106.	Among chalcogens e	lectron affinity is highe	st for	
	1) O	2) S	3) Se	4) Te
107.	The element with hig	hest electron affinity is		
	1) Fluorine	2) Cesium	3) Helium	4) Chlorine
108.	Incorrect statement is	5		
	1) Fluorine has the highest electron affinity			
	2) Greater the nuclear charge, greater is the electron affinity			
	3) The electron affinity of Nitrogen is positive (energy is absorbed)			
	4) Chlorine has highest electron affinity			
109.	Pauling's electronega	ativity is based on		
	1) Electron affinity	2) Ionisation potentia	al 3) Both IP and EA	4) Bond energies
110.	Pauling's electronega	ativity values for eleme	nts are useful in predic	ting
	1) Polarity of the mol		2) Position in the E.M	I.F. series
	3) Coordination num	lbers	4) Dipole moments	
111.	Correct relation amor and B.	$\log X_A, X_B$ and D, where λ	X_A and X_B are the electro	negativities of elements A
	1) $X_A + X_B = 0.208 \sqrt{2}$	Δ	2) $\sqrt{X_A - X_B} = 0.208$	x D
	3) $X_{A} - X_{B} = 0.208 \sqrt{\Delta}$	 	4) $X_{\rm A} - X_{\rm B} = \sqrt{0.208 \mathrm{x}}$	$\overline{\Delta}$
112.	Reference element fo	r Pauling's electronegat	ivity is	
	1) H	2) C	3) Cl	4) He
113.	Electronegativity of according to	an element is the avera	ge of its ionisation ene	ergy and electron affinity
	1) Pauling	2) Rutherford	3) Bohr	4) Mulliken
114.	The electronegativity scale	v values according to M	Iulliken scale are	times to those in Pauling
	1) 0.208	2) 2	3) 2.8	4) 544
115.	Electronegativity on	Mulliken scale is limite	d to	
	1) Monovalent atoms	3	2) Bivalent atoms	

CHE	MISTRY			PERIODIC TABLE	
L	3) Both monovalent a	and bivalent atoms	4) All multivalent at	oms	
116.	If I and E are ionisatic is given as	on energy and electron a	ffinity of an element in l	kJ mole ⁻¹ electronegativity	
	1) $\frac{I+E}{2}$	2) $\frac{I+E}{5.6}$	3) $\frac{I+E}{129}$	4) $\frac{I+E}{544}$	
117.	In a period electrone	gativity is highest for			
	1) Chalcogen	2) Halogen	3) Inert gas	4) Alkali metal	
118.	The values that are u are	seful in writing chemic	al formulae and in calc	ulation of oxidation states	
	1) Ionisation potentia	al 2) Electron affinity	3) Electronegativity	4) Metallic character	
119.	Elements with high e	electronegativity are ge	nerally		
	1) Good reductants	2) Hard solids	3) Good oxidants	4) Soft solids	
120.	The stable oxidation	state of Thallium, a IIIA	A group element is		
	1) +1	2) +3	3) -3	4) +5	
	EXERCISE - II				
1.	The triad not present 1) Li, Na, K	in Group VIII of Mend 2) Fe, Co, Ni	eleeff's table 3) Ru, Rh, Pd	4) Os, Ir, Pt	
2.	In the periodic table,	inversion of atomic we	eights took place in this	spair	
	1) Argon - Potassium	1 2) Boron - Scandium	3) Hydrogen - Heliu	m 4) Beryllium - Boron	
3.	-	ains only gaseous elem			
	1) 1	2) 2	3) 3	4) 4	
4.	The element which b 1) Silicon	elong to 3rd period and 2) Carbon	3) Germanium	4) Tin	
5.	(A) : According to M masses.	lendeleeff, periodic pro	operties of elements is	a function of their atomic	
	(R) : Atomic number	is equal to number of p	rotons		
	The correct answer i	5			
	1) Both (A) and (R) a	re true and (R) is the co	prrect explanation of (A	A)	
	2) Both (A) and (R) a	re true and (R) is not th	e correct explanation of	of (A)	
	3) (A) is true but (R)	is false			
	4) (A) is false but (R)	is true			
6.	Pair of elements with	the following atomic r	numbers have the same	chemical properties	
	1) 13 & 22	2) 3 & 11	3) 4 & 24	4) 2 & 1	
7.	The sub-shells filled 1) 3d, 4s and 4p	one by one for 4th perio 2) 4s, 4p and 4d	od elements are 3) 4s, 3d and 4p	4) 3d, 4p and 4s	
8.	, 1	and last element in the 2) Cs and I	, 1	, <u> </u>	

PERI	ODIC TABLE				
9.		wing has both members	from the same period of	of the periodic table	
	1) Na, F	2) Mg, Ca	3) Na, Cl	4) Be, Al	
10.	Atomic number of	nitrogen is 7. The atomi	ic number of the third m	nember in the same family is	
	1) 23	2) 15	3) 33	4) 51	
11.	Element with ator	nic number 38, belongs	to		
	1) II A group and S	5 th period	2) II A group and 2	nd period	
	3) V A group and	2 nd period	4) III A group and	5 th period	
12.	Set of elements wi	th the following atomic	numbers belong to the	same group	
	1) 9, 16, 35, 3	2) 12, 20, 4, 38	3) 11, 19, 27, 5	4) 24, 47, 42, 55	
13.	Which of the follo	wing pairs has both me	mbers from the same gr	oup of the periodic table?	
	1) Mg-Ba	2) Mg-Na	3) Mg-Cu	4) Mg-Cl	
14.	The elements with	n atomic number 10,18,3	36,54 and 86 are all		
	1) Light metals	2) Inert gases	3) Halogens	4) Rare earths	
15.	Which of the follow orbit?	ving pairs has elements c	ontaining same number	of electrons in the outermost	
	1) N,O	2) Na, Cl	3) Ca, Cl	4) Cl, Br	
16.	The period that in	cludes all blocks of elen	nents is		
	1) 1	2) 2	3) 6	4) 7	
17.	7. Among s-block metals and transition metals, which are more metallic?				
	1) s-block metals		2) Transition meta	ls	
	3) Both are equally metallic		4) Cannot be pred	icted	
18.	Element with ator	nic number 52 belongs t	0		
	1) s-block	2) p-block	3) d-block	4) f-block	
19.	The general electr	onic configuration of f-b	block elements is		
	1) ns ² np ⁶ (n-1) d^0	$(n-2)f^{1-14}$	2) ns ² (n-1)d ^{0,1} (n-	2) $ns^2 (n-1)d^{0,1} (n-2)f^{1-14}$	
	3) ns ² nd ^{0,1} nf ¹⁻¹⁴		4) ns ² (n-1)d ^{0,1} (n-	-1)f ¹⁻¹⁴	
20.	The common oxida is	ation state exhibited by i	nner transition elements	s usually in their compounds	
	1) + 2	2) + 3	3) + 5	4) Zero	
21.	The pair of atomic	numbers which represe	ent the p-block element	S	
	1) 6, 12	2) 7, 53	3) 19, 35	4) 38, 51	
22.	Which of the follo	wing is an element pres	ent in the d-block, but 1	not a transition element	
	1) Cd	2) Cu	3) Ca	4) Cr	
23.	Which of the follo	wing is an alloy of non-	transition elements		
	1) Elektron	2) Brass	3) Bronze	4) German silver	
24.	Common oxidatio	on state of elemental trai	nsition metal is		
	1) +1	2) 0	3) + 3	4) + 2	
25.	Configuration tha	t does not denote a tran	sition element		
	1) $3d^{1} 4s^{2}$	2) $3d^{10} 4s^1$	3) $3d^{10} 4s^2 4p^2$	4) $3d^8 4s^2$	
26.	An element of 5f-s	series but has no electro	ns filled in 5f-sub shell		
10					

CHI	EMISTRY «			PERIODIC TABLE
	1) Ac	2) Ce	3) Th	4) U
27.	An element has 18 el	ectrons in the outer mo	ost shell. The element is	1
	1) Transition metal	2) Rare earth metal	3) Alkaline earth met	al 4) Alkali metal
28.		nic arrangement [Ar]3	•	
•	1) s-block	2) p-block	3) d - block	4) f - block
29.		0 ,	paramagnetic in natur	
		1	rbitals are paramagnet	ic in nature.
	The correct answer i 1) Both (A) and (R) a		prrect explanation of (A	
	1) Both (A) and (R) are true and (R) is the correct explanation of (A) 2) Both (A) and (R) are true and (R) is not the correct explanation of (A)			
	3) (A) is true but (R)	is false	4) (A) is false but (R)	istrue
30.	Number of outer she	lls partially filled for re	presentative elements	
	1) Zero	2) One	3) Two	4) Three
31.				n body of the period table
	1) 43	2) 57	3) 68	4) 80
32.	2 Zinc is not considere 1) It is diamagnetic	ed as a transition metal	2) It is not known to	from allows
	3) It has no unpaired	electrons	4) It has white shade	•
33.	The electronic confi	guration of an elemen	t 'X', is $1s^2 2s^2 2p^6 3s^2$	$3p^3$. What is the atomic
			X' in the periodic table	() (Q
	1) 33	2) 34	3) 31	4) 49
34.	Atomic radii of fluor 1) 0.72, 1.62	1ne and neon in angstro 2) 0.72, 0.72	om units are respective 3) 1.2, 1.2	4) 1.62, 0.72
35.	,	ng will have largest siz	,	_),
	1) Br	2) I	3) I	4) F
36.	The size of the follow	ving species increases i	n the order	
	1) Mg ²⁺ < Na ⁺ < F ⁻ <	Al ³⁺	2) Al ³⁺ < Mg ²⁺ < Na ⁺	- < F-
	3) Na ⁺ < F ⁻ < Al ³⁺ < $\frac{1}{2}$	Mg ²⁺	4) Na ⁺ < Al ³⁺ < Mg ²⁺	- < F-
37.	In a period of represe corresponding decre		lecrease in ionic radius	when compared with the
	1) is equal	2) is less	3) is more	4) Cannot be predicted
38.	In which of the follow	wing sets, elements hav	ve nearly same atomic r	adii?
	1) Li, Be, B	2) Mg, Ca, Sr	3) Fe, Co, Ni	4) O, S, Se
39.	Correct order of atom 1) N < C < P < S		3) C < N < P < S	4) N < C < S < P
40.				

PERI	ODIC TABLE			
41.	Which of the followin 1) Be ⁺²	ng has smallest radius? 2) Li ⁺	3) O ⁻²	4) F ⁻
42.	Which of the followir 1) Mg, Ca, Sr, Ba	ng series of elements ha 2) Ca, Ge, As, Se	ve most nearly the sam 3) B, C, N, O	e atomic radius ? 4) Cr, Mn, Fe, Co
43.	If the Ionisation poter 1) 4.34 eV	ntial (I.P.) of Na is 5.48 e 2) 5.68 eV	eV. The I.P. of K will be 3) 10.88 eV	4) 5.48 eV
44.	,	een the values of secon	,	energies of an element is
	1) $1s^22s^22p^63s^1$	2) $1s^22s^22p^63s^23p^1$	3) $1s^22s^22p^63s^23p^2$	4) $1s^22s^22p^63s^2$
45.	having the highest fir	st ionization energy is	-	are given below), the one
	1) [Ne]3s ² 3p ¹	2) [Ne]3s ² 3p ³	3) [Ne]3s ² 3p ²	4) [Ar] $3s^{10}4s^{2}4p^{2}$
46.	The first ionization er 1) Greater than Be	nergy of Lithium will b 2) Less than Be	e 3) Equal to that of Na	4) Equal to that of F
47.	,	,	, I	n energies of an element
	would be associated	with the electronic conf	iguration	0
	,	, <u> </u>	3) 1s ² , 2s ² , 2p ⁶ , 3s ² , 3p ²	, 1
48.	one which is not an e	xception is		re some exceptions. The
10	1) Be & B	2) N & O	3) Mg & Al	4) Na & Mg
49.	1) Ca	2) Mg	energy among the follo 3) Al	4) Si
50.	1) the greater attraction	on of the electrons by t of the half filled p - orbi nitrogen		ause of
51.	Which element has th	e greatest tendency to	lose electrons ?	
	1) F	2) S	3) Fe	4) Be
52.	Second ionisation por 1) Equal to that of flue 3) Greater than that of	orine	2) Less than that of flu 4) Half of that of fluor	
53.	correct order of ionisa	ation energies is		1 and 12 respectively the
	1) A > B > C > D	2) B > A > D > C	3) B > A > C > D	4) D > C > B > A
54.		ving process maximum 2) $O^{-}_{(g)} + e^{-} \rightarrow O^{-2}_{(g)}$	energy is released 3) $S_{(g)} + e^- \rightarrow S^{(g)}$	4) $S^{-}_{(g)} + e^{-} \rightarrow S^{-2}_{(g)}$
55.	Ionisation energy of	F ⁻ is equal in magnitud	le with the electron affi	nity of
	1) F ⁻	2) F	3) F ⁺	4) F ²⁺
56.	When an electron is a	,	ed in which of the follo	wing?
	1) C	2) N	3) F	4) O
50				

CHE	MISTRY -			PERIODIC TABLE
57.	The correct order of e (Roorkee)	electron affinity of the e	lements of oxygen fami	ly in the periodic table is
	1) $O > S > Se$	2) S > O > Se	3) S > Se > O	4) Se > O > S
58.	The I.P of X ⁻ ion is equ	ual to		
	1) EA of X	2) EN of X	3) IP of X	4) IP of X ⁺
59.	Energy is released in	-		
		(8)	3) $N^{-2}_{(g)} + e \rightarrow N^{-3}_{(g)}$	4) $O_{(g)} + e \rightarrow O_{(g)}^{-}$
60.	Which of the followir 1) I > Br > F > Cl	ng is the correct order of 2) F < Cl < Br < I	f electron affinity 3) F > Cl > Br > I	4) I < Br < F < Cl
61.	,	equal values of electro	,	
01.	1) Be, Al	2) Mg, Al	3) Mg, Ca	4) F, Ne
62.	The electronegativity	of the following eleme	nts increase in the order	ſ
	1) C, N, Si ,P	2) N , Si, C, P	3) Si, P, C, N	4) P, Si, N, C
63.	Two elements A and compound formed be $A = 1s^2 2s^2 2p^6 3s^2 3p^6$	etween them can be	electronic configuration	ons. The formula of the
	1) AB	2) AB ₂	3) A ₂ B ₃	4) A ₃ B ₂
64.	The formula of a .met 1) MClO ₄	tallic carbonate is MCO 2)M ₂ ClO ₄	3. The formula of that n 3) M ₃ ClO ₄	netallic perchlorate is 4)M(ClO ₄) ₂
65.	Formula of the Phosp	bhate of the metal is	-	osphoric acid is H ₃ PO ₄ .
	1) M ₃ PO ₄	2) MPO ₄	3) $M_3(PO_4)_2$	$4) \mathrm{M}_{2} \mathrm{PO}_{4}$
66.	An oxide of an element belongs to	nt is a gas and dissolves	s in water to give an acio	lic solution. The element
	1) II group	2) IV group	3) VIII group	4) Zero group
67.		imilar oxides of a group	-	
	1) Increases then decreases	2) Decreases	3) Remains constant	4) First increases and
68.	Which of the followir	ng properties increases	across a period	
	 Reducing property Acidic nature of ox 		2) Size of atom	
(0			4) Metallic property	
69.	1) Al	gelements most acidic o 2) P	3) N	4) Sb
70	,	,	3)11	4)50
70.	The strongest reducir 1) K	2) Al	3) Mg	4) Br
71	The more basic oxide	,	5) IVIg	
71.	1) CaO	2) MgO	3) K ₂ O	4) Na ₂ O
70		, C	, 2	, <u>2</u>
72.		-	rangement will be form	0
70	1) Acidic oxide	2) Basic oxide	3) Neutral oxide	4) Amphoteric oxide
73.	Diagonal relationship	p is present between the	e lighter elements of per	riods

PER	IODIC TABLE				
	1) Second, third	2) Second, fourth	3) Third, fourth	4) Third, fifth	
74.	The diagonal relati	onship phenomenon is	not observed after		
	1) I A Group	2) II A Group	3) III A Group	4) IV A Group	
75.	The polarising pow	ver of which of the follo	wing pair is similar		
	1) Li, Mg	2) Li ⁺ , Mg ²⁺	3) Li ²⁺ , Mg ²⁺	4)Li+, Mg+	
76.	(A) : Be and Al have	e similar properties.			
	(R) : Cations of Be a	and Al have same polar	ising power		
77.	Which of the follow	ving oxide is amphoteri	c?		
	1) CrO	2) Cr ₂ O ₃	3) CrO ₃	4) CrO ₅	
78.	(A) : Li forms coval	ent compounds			
	(R) : Li^+ ion is smal	l and has high polarizi	ng power		
79.	$(A): As_2O_3, Sb_2O_3 a$	are amphoteric in natur	e		
	(R) : As, Sb are meta	alliods			
80.	(A) :Lithium resem	bles magnesium in its p	roperties		
	(R) : The ratio of ionic charge to (Ionic radius) ² is almost same for Li^+ and Mg^{2+}				
81.					
		greater than that of Ma			
	-	greater than IP ₁ of Heli	-		
	c) IP ₂ of sodium is §	greater than IP ₁ of Neor	ı		
	d) IP ₁ of oxygen is g	greater than that of Nit	rogen		
	1) All are correct		2) Only a, b and c a	re correct	
	3) Only a,b are corr	ect	4) Only a, d are cor	rect	
82.	Elements X, Y and Z statements is true a		19, 37 and 55 respective	ely. Which of the following	
	1) Their ionization potential would increase with increasing atomic number				
	2) 'Y' would have an ionization potential between those of X and Z.				
	3) Z would have the highest ionization potential				
	4) Y would have th	e highest ionization po	otential		
83.	The statement that	is false for the long for	m of the periodic table	is	
	1) It reflects the sequence of filling the electrons in the order of sub energy levels s,p,d and f				
	, 1 1	2) It helps to predict the stable valency states of the element			
		in physical and chemic			
~ .		t the relative ionicity of	-		
84.	the formula:	-		The vanadium chloride has	
	1) VCl ₂	2) VCl ₃	3) VCl ₄	4) VCl ₅	

CHEMISTRY **«** PERIODIC TABLE The frequency of the characteristic X ray of K_{α} line of metal target 'M' is 2500 cm⁻¹ and the 85. graph between $\sqrt{\mathbf{v}}$ Vs 'z' is as follows, then atomic number of M is OA=1 Ζ 0 Х 1) 49 2) 50 3) 51 4) 25 (IE)₁ and (IE)₂ of Mg_(σ) are 740, 1540 kJ mol⁻¹. Calculate percentage of Mg⁺_(σ) and Mg²⁺_(σ) if 1 g of Mg_(σ) 86. absorbs 50.0 kJ of energy. 1) $\%Mg^+ = 70\%$ $\%Mg^{+2} = 30\%$ 2) %Mg⁺ = 68.35% %Mg⁺² = 31.65%3) %Mg⁺ = 72% %Mg⁺² = 28% 4) %Mg⁺ = 60% %Mg⁺² = 40% 87. Use (IE) and (EA) listed below to determine whether the following process is endothermic exothermic. $(IE)_1$ of $Mg_{(g)} = 737.7 \text{kJmol}^{-1}$ $Mg_{(g)} + 2F_{(g)} \rightarrow Mg^{2+}_{(g)} + 2F^{-}_{(g)}$ $(IE)_2$ of $Mg_{(g)} = 1451 \text{ kJ mol}^{-1}$ (EA) of $F(g) = -328 \text{ kJ mol}^{-1}$ 1) Exo 2) Endo 3) both 4) None 88. If Aufbau rule is not followed, K - 19 will be placed in block 4) f 1) s 2) p 3) d 89. $M(g) \rightarrow M^+(g) + e^-, \Delta H = 100 eV$ $M(g) \rightarrow M^{2+}(g) + 2e^{-}, \Delta H = 250eV$ which is incorrect statement? 1) $I_1 \text{ of } M_{(g)} \text{ is } 100 \text{ eV}$ 2) $I_1 \text{ of } M_{(g)}^+ \text{ is } 150 \text{ eV}$ 3) $I_2 \text{ of } M_{(g)} \text{ is } 250 \text{ eV}$ 4) $I_2 \text{ of } M_{(g)} \text{ is } 150 \text{ eV}$ AB is predominantly ionic as A⁺ B⁻ if 90. 1) $(IP)_{A} < (IP)_{B}$ 2) $(EA)_A < (EA)_B$ 3) $(EN)_A < (EN)_B$ 4) $(IP)_B < (IP)_A$ 91. EN of the element (A) is E_1 and IP is E_2 . Hence EA will be 1) $2E_1 - E_2$ 2) $E_1 - E_2$ 3) $E_1 - 2E_2$ 4) $(E_1 + E_2)/2$ 92. Gd (64) has.... unpaired electrons with sum of spin 1) 7.3.5 2) 8, 3 3) 6, 3 4) 8, 4 93. For the process $X_{(g)} + e^- \rightarrow X^-(g), \Delta H = x$ and $X^{-}_{(g)} \rightarrow X_{(g)} + e^{-}, \Delta H = y$ Select correct alternate: 1) ionisation energy of $X^{-}(g)$ is y 2) electron affinity of X(g) is X 3) electron affinity of X(g) is -y 4) all are correct statements.

PER	IODIC TABLE							
94.	i) In second perio ii) In third period	are given regarding natu d, nitrogen form stronge , sodium froms stronges alloids are generally amp	st acidic oxide t basic oxide					
	rect							
	1) I and II are correct2) II and III are correct3) I and III are correct4) I, II and III are correct							
		EXERCI						
1.	The long form of	the periodic table is base	d on the properties of	elements as a function of				
2.	1) atomic size What is the electr	2) electronegativity onic configuration of the		4) atomic mass nents of Group 14 ?				
	1) ns²np⁴	2) ns^2np^6	3) ns^2np^2	4) ns^2				
3.	, 1	nation tendency is maxin	, I	,				
4.	1) s-block	2) p-block owing elements are rare e	3) d-block	4) none of these				
ч.	1) Niobium	-	3) Uranium	1) Ocmium				
5.	,	2) Samarium nic configuration of d-blo		4) Osmium riodic table is				
	1) $3d^{10}4s^2$	2) 3s ² 3p ⁴	3) $6s^24p^3$	4) $3s^23p^64s^2$				
6.	,	wing has the maximum	, 1	, I				
	1) Ti ³⁺	2) V ³⁺	3) Fe ²⁺	4) Mg ²⁺				
7.	,	the atomic number 21 be	,	1) 1416				
	1) s-block	2) p-block	3) d-block	4) f-block				
8.	,	wing can not be iso elect	,)				
	1) two different ca 4) two different at		2) two different an	ions 3) cation and anion				
9.		the chracterstic X-ray of \sqrt{v} vs 'Z' is as follows, the $\frac{v}{z}$		get 'M' is 2500 cm ⁻¹ and the hat metal (M) is				
10.	Which one of the	following is a different p	air					
	1) Li, Na	2) Be, Ba	3) N, As	4) O, At				
11.	1	among the following are						
	(i) Co, Cu	(ii) Ar - K	(iii) Te - I	(iv) Th - Pr				
10	1) (i) and (ii)	2) (i) and (iii)	3) (iii) and (iv)	4) (ii), (iii) and (iv)				
12.	1) Mendeleev's pe 2) The table prese 3) Each group in 1	owing statements are true eriodic law is based on th nted by Mendeleev did r Medeleev's periodic table eriodic table consists of t	e atomic number of el not have the zero grou e was divided into two	p. o subgroups				
54	,							

CHE	MISTRY -			• PERIODIC TABLE		
13.	Which of the follow	ing belong to a triad ?				
14.	1) Osmium Which of the follow:	2) Platinum ing elements are prese	3) Iridium ent in Group 16 of the p	4) Palladium eriodic table ?		
	1) Cerium	2) Tungsten	3) Thorium	4) Platinum		
15.	Which of the follow periodic table ?	ving outer electronic c	onfigurations correspo	onds to the d-block of the		
16.	1) 3s ² 3p ³ Which of the follow:	2) 3d⁵4s¹ ing are correct ?	3) $3s^23p^64s^2$	4) 5d ¹ 6s ²		
	 The configuration of Mo (Z=42) is [Kr]4d⁵5s¹. The configuration of Mo (Z = 42) is [Kr]4d⁴5s². The configuration of Ag (Z=47) is [Kr]4d¹⁰5s¹. The configuration of Ag (Z = 47) is [Kr]4d⁹5s². 					
Comp	rehension - I (Read the	e following passage an	nd answer the questior	n no's 17 to 19)		
17.	chemical properties	are periodic functions studying the adjacent		ic law is the physical and Mendeleeff predicted the npounds.		
17.	1) Aluminium	2) Gallium	3) Scandium	4) Germanium		
18.	,	ing are absent in Mend	,	1) Communican		
	1) zero group	2) Halogens	3) Metals	4) liquids		
19.	Which elements atom	nic weights are correct	ted			
	1) Be	2) In	3) U	4) All the above		
Comp	rehension - II (Read th	e following passage a	nd answer the questio	n no's 20 to 22)		
				assified into 4 blocks s, p, d es, elements are classified		
20.	are called r	are-earths,				
	1) Lanthanides	2) actinides	3) transuranic elem	ents 4) all the above		
21.	Many gases, non - m	etals and metalloids a	re present in the			
	1) d-block	2) s -block	3) p-block	4) f-block		
22.	All transition eleme	nts are solids except				
	1) Fe	2) Ag	3) Hg	4) Sc		
23.	Match List - 1 with I	List - II :				
	List - I (Group/Perio	od)	List - II (Element)			
	1) 7th period		p) Transition eleme	nts		
	2) IIIB group		q) Inner transition e	lements		
	3) IA		r) Hydrogen			
	4) VIIA		s) Halogens			
24.		umber in List - I, with g	-			
	List - I (Atomic num	lber)	List - II (Group)			
	1) 55		p) VIII			
	2) 45		q) IIIB			

PER	ODIC TABLE				
	3) 81 r) IIIA				
	4) 64 s) IA				
25.	An element 'Y' belong to 1^{st} period & 1^{st} group in Modern Periodic Table. Its atomic number is				
26.	 The number of groups which contains only gaseous elements is				
27.	The atomic number of newly predicted Noble gas element may be 110 + a. value of 'a' is				
28.	The number of elements present in short periods are				
29.	Maximum number of elements are present in III_B group. Among them d-block elements present are				

30. All the four blocks and four types of elementsare present in the ------ period

CHEMISTRY	Y ←	CHEMISTRY
-----------	-------	-----------

PERIODIC TABLE

				EXE	RCISE	- I			
1) 2	2) 1	3) 1	4) 1	5) 3	6) 2	7) 4	8) 4	9) 3	10) 3
11) 2	12) 3	13) 4	14) 3	15) 2	16) 3	17) 3	18) 3	19) 2	20) 1
21) 3	22) 2	23) 3	24) 4	25) 2	26) 1	27) 4	28) 4	29) 3	30) 1
31) 4	32) 3	33) 1	34) 4	35) 4	36) 1	37) 3	38) 1	39) 4	40) 2
41) 4	42) 4	43) 2	44) 3	45) 2	46) 2	47) 1	48) 4	49) 2	50) 4
51) 1	52) 3	53) 3	54) 1	55) 1	56) 2	57) 3	58) 3	59) 3	60) 4
61) 4	62) 2	63) 1	64) 2	65) 4	66) 3	67) 1	68) 3	69) 1	70) 1
71) 3	72) 4	73) 4	74) 4	75) 1	76) 4	77) 3	78) 3	79) 3	80) 1
81) 2	82) 4	83) 4	84) 3	85) 2	86) 3	87) 4	88) 1	89) 2	90) 4
91) 4	92) 4	93) 1	94) 2	95) 2	96) 2	97) 4	98) 3	99) 4	100) 2
101) 4	102) 2	103) 1	104) 3	105) 2	106) 2	107) 4	108) 1	109) 4	110) 1
111) 3	11 2) 1	113) 4	114) 3	115) 1	116) 4	117) 2	118) 3	119) 3	120) 1

EXERCISE-II

1) 1	2) 1	3) 1	4) 1	5) 2	6) 2	7) 3	8) 3	9) 3	10) 3
11) 1	12) 2	13) 1	14) 2	15) 4	16) 3	17) 1	18) 2	19) 2	20) 2
21) 2	22) 1	23) 1	24) 2	25) 3	26) 3	27) 1	28) 3	29) 1	30) 2
31) 3	32) 3	33) 1	34) 1	35) 2	36) 2	37) 3	38) 3	39) 4	40) 2
41) 1	42) 4	43) 1	44) 4	45) 2	46) 2	47) 2	48) 4	49) 4	50) 2
51) 3	52) 3	53) 2	54) 3	55) 2	56) 2	57) 1	58) 1	59) 4	60) 4
61) 1	62) 3	63) 3	64) 4	65) 3	66) 2	67) 2	68) 3	69) 3	70) 1
71) 3	72) 2	73) 1	74) 4	75) 2	76) 1	77) 2	78) 1	79) 1	80) 1
81) 2	82) 2	83) 2	84) 3	85) 3	86) 2	87) 2	88) 3	89) 4	90) 3
91) 1	92) 4	93) 4	94) 1						

EXERCISE - III

1) 3	2) 3	3) 3	4) 2	5) 1	6) 3	7) 3	8) 4	9) 2	10) 4
11) 34	12) 24	13) 123	5 14) 13	15) 24	16) 13	17) 3	18) 1	19) 4	20) 1
21) 3	22) 3	23) 1-P,	,Q; 2-P, Ç	Q; 3-R; 4-	R,S	24) 1-S	; 2- P; 3-R	;;4 - Q	25) 1
26) 1	27) 7	28) 8	29) 4	30) 6					

57

CHE	MICAL BONDING 🔫		
L	EXE	ERCISE - I	
1.	Valency of an element indicates 1) combining power with hydrogen 3) electrons in the outermost orbit	2) acidity 4) none of these	
2.	Between atoms of a molecule, there ex 1) only attractive forces 3) both attractive and repulsive forces	2) only repulsive for	
3.	 When two atoms of chlorine combine molecule is 1) greater than separate atoms 3) lower than that of separate atoms 	e to form one molecule of chlor n that of separate atoms 4) none of these	rine gas, the energy of the 2) equal to that of
4.	Most energetic species among the fol 1) H_2 2) Ne	,	4) F ₂
5.	The coordination numbers of cation a1) 8, 62) 8, 8	and anion in NaCl crystal are 3) 6, 6	respectively 4) 6, 8
6.	Which of the following is easily form 1) Calcium chloride 2) Calcium bro		e 4) Potassium bromide
7.	Among the compounds NaCl, KCl, R 1) NaCl 2) KCl	bCl and CsCl, the one with gr 3) CsCl	eatest ionic character is 4) RbCl
8.	The 8:8 type of packing is present in 1) NaCl 2) KCl	3) CsCl	4) MgF ₂
9.	Which of the following is favourable 1) Small cation with small charge 3) Large differecne in the electronega	2) Small anion with I	arge charge
10.	The toal number of Na ⁺ ions present 1) 1 2) 6	per unit cell of NaCl is 3) 8	4) 4
11.	The number of ion pairs that constitute 1) 4 2) 2	te one unit cell of CsCl 3) 8	4) 1
12.	Which of the following is not involve 1) Sublimation energy 2) Ionisation p	•	4) Electonegativity
13.	In a NaCl crystal, cations and anions 1) Electrons 2) Electrostation	are held together by c forces 3) Nuclear forces	4) Covalent bonds
14.	Molten sodium chloride conducts ele 1) Free electrons 2) Free ions	ctricity due to the presence of 3) Free molecules	4) Free atoms
15.	Number of electrons transferred from fluoride	-	
16.	1) 12) 2Which one of the following has an ele1) CH_4 2) $MgCl_2$	3) 3 ectrovalent linkage? 3) SiCl₄	4) 4 4) BF ₃
17.	Which of the following is least ionic? 1) CaF_2 2) $CaBr_2$, <u>1</u>	4) Cal ₂

CHE	MICAL BONDING	₩					
18.	The strongest ionic bo	nd is present in					
	1) LiF	2) NaF	3) RbF	4) CsF			
19.	Which is more stable a	0 0	3) Cs ⁺	4) No ⁺			
• •	1) Li ⁺	2) K ⁺	3) CS	4) Na ⁺			
20.	What is the crystal stru						
	1) Body centered cubic	,	3) Tetrahedral	4) Octahedral			
21.	Which of the following is a favourable factor for cation formation1) High electronegativity2) High electron affinity3) Low ionisation potential4) Smaller atomic size						
22.	Which of the following	g is not correct					
	1) low ionisation poter	ntial is a favourable co	ndition for the formation	on of cation			
	2) coordination number	er of Cs in CsCl is 8	3) ionic bond is direct	tional			
	4) ionic compounds ha	ave high melting poin	ts				
23.	AB is an ionic solid. Th is proportional to	e ionic radii of A ⁺ and	B ⁻ are respectively r _c an	d r _a . Lattice energy of AB			
	1) $\frac{r_c}{r}$		$\frac{\mathbf{r}_{a}}{\mathbf{r}_{a}}$	4) $\frac{1}{r_{c} + r_{a}}$			
	r_{a}	2) $(r_{c} + r_{a})$	3) $\frac{I_a}{r_c}$	$^{(4)}$ $r_{c} + r_{a}$			
24.	(A) : Ionic compounds						
	(R) : Inter ionic forces i						
25.	(A) : Among Ca^{2+} and						
	(R) : Both Ca^{2+} and Zn	Ũ					
26.	(A) : NaCl is bad cond						
	(R) : Na ⁺ and Cl ⁻ ions a		l state				
27.	(A) : Ionic compounds						
	(R) : Ionic bond is non						
28.	The element that exhib						
	1) Neon	2) Sodium	3) Barium	4) Chlorine			
29.	The total number of e V.B.T.	lectrons that take part	in forming bonds in C	D_2 molecule according to			
	1) 2	2) 4	3) 6	4) 10			
30.	In the farmation of cov	valent bond					
	1) transter of electrons	take place	2) electrons are gained	d by only one atom			
	3) sharing of electrons	take place	4) gaining of electrons	s take place			
31.	The bond between two	o identical non-metal a	itoms has a pair of elect	rons			
	 1) unequally shared be 3) with identical spin 	etween the two	2) transferred fully from4) equally shared betw	om one atom to another veen them			
32.	A covalent bond is like	ely to be formed betwe	en two elements which				
	1) have high electrone	gativities	2) have low ionization	n energies			
	3) have low melting po	oints	4) form ions with a sn	nall charge			
33.	Covalent compounds	are generally soluble i	n				
	1) polar solvents	• •	3) concentrated acids	4) all solvents			
34.	Which of the following						
	·						

CHE	MICAL BONDING	*		
L	1) ionic bond		2) metallic bond	
	3) covalent bond		4) both covalent and	ionic bonds
35.	Maximum number of	covalent bonds by wh	ich two atoms can be b	onded to each other
	1) Four	2) Two	3) Three	4)No fixed number
36.	Among the alkaline ea	arth metals, the elemen	t forming predominan	tly covalent compound is
	1) Be	2) Mg	3) Sr	4) Ca
37.	Which of the followin	ıg substances has cova	lent bonding?	
	1) Sodium chloride	2) Solid neon	3) Copper metal	4) Germanium
38.	The molecule that devi	iates from octet rule is		
	1) CCl ₄	2) BF ₃	3) MgO	4) NCl ₃
39.	1) Overlap of atomic o	ept of valence bond the rbitals results in the bor	nd	
		nber of electrons for bo	•	
40		s follow the octet rule	,	ns follow the octet rule.
40.	-	oms are bonded by the		
	1)1σ,2π	2) 1 σ , 1 π	3)2σ,1π	4)3σ,2π
41.	Bond present in iodin			A 3 6 1 11
	1) Coordinate	2) Electrovalent	3) Covalent	4) Metallic
42.		e	have more number of s	
	1) Benzene	2) Acetylene	3) Ethane	4) Ethylene
43.		g has homoatomic ove	-	
	1) H-Cl	2) Li–Cl	3) C-Cl	4) Cl-Cl
44.		-	in forming bonds in a C	2 1
	1) 12	2) 14	3) 6	4) 10
45.	Which of the followin 1) CH_4	eg molecules contain or 2) PH ₃	ne lone pair of electrons 3) CCl ₄	s on the central atom? 4) H ₂ S
46.	The type of overlap p	resent in the bonds of h	ydrogen sulphide mol	ecule is
	1) σs-p	2) σs-s	3) σ p-p	4) σ sp ³ -s
47.	Hydrogen chloride m	olecule contains		
	1) Covalent bond	2) Double bond	3) Co-ordinate bond	4) Electrovalent bond
48.	Iodine monochloride	molecule is formed by	the overalap of	
	1) s-s orbitals		2) s-p orbitals	
	3) p-p orbitals end to	end	4) p-p orbitals sidewa	ays
49.	Which is true regardi	ng a sigma bond		
	1) It has lateral overla		2) It has two electron	pairs in the bond
	3) It has electron trans	-	4) It has head – to – h	-
50.	,	ms are held together b	,	1
	1) Ionic bonds	2) Hydrogen bonds		s 4) Hydrophobic forces
51.	Which of the followin	g boils at higher tempe	erature.	
	1) CCl ₄	2) CO ₂	3) C ₆ H ₁₂ O ₆	4) KCl
		60		

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CHEN	MICAL BONDING]₩		
53. CCl ₄ is insoluble in water because 1) H ₂ O is non-polar 2) CCl ₄ is non-polar 3) They do not form inter molecular H-bonding 4) They do not form intra molecular H-bonding 54. Which of the following molecule does not obey the octet rule and also has lone pair on the central atom. 1) CCl ₄ 2) PCl ₅ 3) NH ₃ 4) SCl ₄ 55. Which of the following overlap is the strongest? 1) 2p - 2p 2) 3p - 3p 3) P_2^- 1) 2p - 2p 2) 3p - 3p 3) Q_2^- 4) N ₂ ⁺ 56. The ion that is iso -electronic with CO 1) O_2^+ 2) CN ⁻ 3) O_2^- 4) N ₂ ⁺ 57. Which is a covalent compound? 1) RbF 2) MgCl ₂ 3) CaC ₂ 4) NH ₃ 58. Double bonds are present in 1) CO ₂ 2) BeCl ₂ 3) HgCl ₂ 4) MgO 59. Six electrons are mutually shared in 1) F ₂ 2) CL ₂ 3) BeCl ₂ 4) Nl 61. Silicon has 4 electrons in the outermost orbit. In forming the bonds 1) I gains electrons 1) It has electrons 4) None of the above 62. The type of bonds present in ammonium chloride are 1) Only ionic and da	52.	Anhydrous AlCl ₃ is c	- ovalent while AlF ₃ is ic	onic. This is justified by	
1) H_2 O is non-polar2) CCl_4 is non-polar3) They do not form intra molecular H-bonding4) They do not form intra molecular H-bonding54.Which of the following molecule does not obey the octet rule and also has lone pair on the central atom.1) CCl_4 2) PCl_5 3) NH_3 4) SCl_4 55.Which of the following overlap is the strongest?1) $2p - 2p$ 2) $3p - 3p$ 3) $p - 5p$ 4) π (5p-5p)56.The ion that is iso -electronic with CO 1) O_2^* 2) CN^- 3) O_2^- 4) N_2^+ 57.Which is a covalent compound?1) RbF 2) $MgCl_2$ 3) CaC_2 4) NH_3 58.Double bonds are present in1) CO_2 2) BCl_2 3) CaC_2 4) NgO 59.Six electrons are mutually shared in1) F_2 2) Cl_2 3) O_2^- 4) N_2 60.Cetter rule is not followed in1) SF_6 2) PF_5 3) $BeCl_2$ 4) Nue of the above61.Silicon has 4 electrons in the outermost orbit. In forming the bonds1) It gains electrons2) It loses electrons3) It shares electrons4) None of the above62.The type of bonds present in ammonium clloride are1) Only ionic and dative2) CO_2 3) CO 4) $Ardgraph ond63.PH3 and BF3 form an adduct readily because they form1) A coordinate bond2) A covalent bond3) An ionic bond4) A hydrogen bond64.Dative bond is present in the molecule of1) NH32) CO_23) Cos - a_2 (Sa - p a)4) CF_565.Acccord$		1) Crystal structure	2) VB theory	3) Fajan's rules	4) Lattice energy
3) They do not form inter molecular H-bonding 4) They do not form intra molecular H-bonding 54. Which of the following molecule does not obey the octet rule and also has lone pair on the central atom. 1) CCl ₄ 2) PCl ₃ 3) NH ₃ 4) SCl ₄ 55. Which of the following overlap is the strongest? 1) 2p - 2p 2) 3p - 3p 3) 5p - 5p 4) π (5p-5p) 56. The ion that is iso - electronic with CO 1) O ₂ [*] 2) CN 3) O ₂ ⁻ 4) N ₂ [*] 57. Which is a covalent compound? 1) RbF 2) MgCl ₂ 3) CaC ₂ 4) NH ₃ 58. Double bonds are present in 1) CO ₂ 2) BeCl ₂ 3) HgCl ₂ 4) MgO 59. Six electrons are mutually shared in 1) F ₂ 2) Cl ₂ 3) O ₂ 4) N ₂ 60. Octet rule is not followed in 1) SF ₆ 2) PF ₅ 3) BeCl ₂ 4) All the three 61. Silicon has 4 electrons in the outermost orbit. In forming the bonds 1) It gains electrons 2) It loses electrons 3) It shares electrons 4) None of the above 62. The type of bonds present in animonium chloride are 1) Only ionic and dative 2) Only covalent and electrovalent 3) Only covalent and coordinate 4) Ionic, covalent and coordinate 63. PH ₃ and BF ₃ form an adduct readily because they form 1) A coordinate bond 2) A covalent bond 3) An ionic bond 4) A hydrogen bond 64. Dative bonds and bond angle 90° 3) Two dative bonds and b	53.	CCl_4 is insoluble in w	ater because		
4) They do not form intra molecular H-bonding 54. Which of the following molecule does not obey the octet rule and also has lone pair on the central atom. 1) CCl ₄ 2) PCl ₃ 3) NH ₃ 4) SCl ₄ 55. Which of the following overlap is the strongest? 1) 2p - 2p 2) 3p - 3p 3) 5p - 5p 4) π (5p-5p) 56. The ion that is iso - electronic with CO 1) O ₂ ⁺ 2) CN ⁻ 3) O ₂ ⁻ 4) N ₂ ⁺ 57. Which is a covalent compound? 1) RbF 2) MgCl ₂ 3) CaC ₂ 4) NH ₃ 58. Double bonds are present in 1) CO ₂ 2) BeCl ₂ 3) HgCl ₂ 4) MgO 59. Six electrons are mutually shared in 1) F ₂ 2) Cl ₂ 3) O ₂ 4) N ₂ 60. Octet rule is not followed in 1) SF ₆ 2) PF ₅ 3) BeCl ₂ 4) All the three 61. Silicon has 4 electrons in the outermost orbit. In forming the bonds 1) It gains electrons 2) It loses electrons 3) It shares electrons 4) None of the above 62. The type of bonds present in ammonium chloride are 1) Only ionic and dativ 2) CO ₂ 3) CO 4) PCl ₅ 63. PH ₃ and BF ₂ form an adduct readily because they form 1) A coordinate bond 2) A covalent bond 3 1) NH ₃ 2) CO ₂ 3) CO 4) PCl ₅ 64. Dative bond is present in the molecule of 1) NH ₃ 2) CO ₂ 3) CO 4) PCl ₅ 65. According to valence bond theory, water molecule has 1) Two dative bonds and bord angle 90° 2) Two covalent and bond angle 90° 3) Two dative bonds and bond angle 104.5° 4) Two covalent bonds and bond angle 90° 3) Two dative bonds and bond angle 104.5° 4) Two covalent bonds and bond angle 90° 3) Two dative bonds and bond angle 104.5° 4) Two covalent bonds and bond angle 90° 3) Two dative bonds and bond angle 104.5° 4) Two covalent bows the order, 1) Licl > BeCl ₂ > BCl ₃ < CCl ₄ 4) Licl > BeCl ₂ > BCl ₃ < CCl ₄ 3) Licl > BeCl ₂ > BCl ₃ < CCl ₄ 4) Licl > BeCl ₂ > BCl ₃ < CCl ₄ 4) Which of the following does not contain co-rimate covalent bond?					
54. Which of the following molecule does not obey the octet rule and also has lone pair on the central atom. 1) CCl ₄ 2) PCl ₃ 3) NH ₃ 4) SCl ₄ 55. Which of the following overlap is the strongest? 1) 2p - 2p 2) 3p - 3p 3) 5p - 5p 4) π (5p-5p) 56. The ion that is iso - electronic with CO 1) O ₂ ⁺ 2) CN ⁻ 3) O ₂ ⁻ 4) N ₂ ⁺ 57. Which is a covalent compound? 1) RbF 2) MgCl ₂ 3) CaC ₂ 4) NH ₃ 58. Double bonds are present in 1) CO ₂ 2) BeCl ₂ 3) HgCl ₂ 4) MgO 59. Six electrons are mutually shared in 1) SF ₆ 2) Cl ₂ 3) O ₂ 4) N ₂ 60. Octet rule is not followed in 1) SF ₆ 2) Cl ₂ 3) O ₂ 4) N ₂ 61. Silicon has 4 electrons in the outermost orbit. In forming the bonds 1) It gains electrons 2) It loses electrons 3) It shares electrons 4) None of the above 62. The type of bonds present in ammonium chloride are 1) Only ionic and dative 2) Only covalent and coordinate 63. PH ₃ and BF ₃ form an adduct readily because they form 1) A coordinate bond 2) A covalent bond 3) An ionic bond 4) A hydrogen bond 64. Dative bond is present in the molecule of 1) NH ₃ 2) CO ₂ 3) CO 4) PCl ₅ 65. According to valence bond theory, water molecule has 1) Two dative bonds and bond angle 90° 3) Two dative bonds and bond angle 104.5° 41. More overlant bond 3) A form covalent bonds and bond angle 90° 3) Two dative bonds and bond angle 104.5° 41. Two covalent bond 3) A form covalent bonds and bond angle 90° 3) Two dative bonds and bond angle 104.5° 41. Two covalent bond 3) A form covalent bonds and bond angle 90° 3) Two dative bonds and bond angle 104.5° 41. Two covalent bond 3) A form covalent bonds and bond angle 90° 3) Two dative bonds and bond angle 104.5° 41. Two covalent bonds and bond angle 104.5° 41. Two covalent bonds and bond angle 104.5° 41. Two covalent bonds and bond angle 104.5° 42. Among LiCl, BeCl ₂ > BCl ₃ < CCl ₄ 2) LiCl > BeCl ₂ < BCl ₃ < C				-	
central atom.1) CCl ₄ 2) PCl ₃ 3) NH ₃ 4) SCl ₄ 55.Which of the following overlap is the strongest?1) $2p - 2p$ 2) $3p - 3p$ 3) $5p - 5p$ 4) π (5p-5p)56.The ion that is iso -electronic with CO1) O_2^+ 2) CN ⁻ 3) O_2^- 4) N ₂ ⁺ 57.Which is a covalent compound?1) RbF2) MgCl ₂ 3) CaC ₂ 4) NH ₃ 58.Double bonds are present in1) CO ₂ 2) BeCl ₂ 3) HgCl ₂ 4) MgO59.Six electrons are mutually shared in1) F ₂ 2) Cl ₂ 3) O ₂ 4) N ₂ 60.Octet rule is not followed in1) SF ₆ 2) PF ₅ 3) BeCl ₂ 4) All the three61.Silicon has 4 electrons in the outermost orbit. In forming the bonds1) None of the above62.The type of bonds present in ammonium chloride are1) Only covalent and coordinate4) Ani onci, covalent and electrovalent3) Only covalent and coordinate2) A covalent bond3) An ionic bond4) A hydrogen bond63.PH ₃ and BF ₃ form an adduct readily because they form 1) A coordinate bond2) A covalent bond3) An ionic bond4) A hydrogen bond64.Dative bond is present in the molecule of 1) NH ₃ 2) CO ₂ 3) CO4) PCl ₅ 65.According to valence bond theory, water molecule has 1) Two dative bonds and bond angle 90°2) Two covalent bond-s and bond angle 90°3) Two dative bonds are bond angle 014.5°4) Two covalent bond-s and bond angle 90°3) Two covalent bond-s and bond angle 90°		4) They do not form ir	ntra molecular H-bond	ing	
55. Which of the following overlap is the strongest? 1) $2p - 2p$ 2) $3p - 3p$ 3) $5p - 5p$ 4) π ($5p - 5p$) 56. The ion that is iso - electronic with CO 1) O_2^+ 2) CN^- 3) O_2^- 4) N_2^+ 57. Which is a covalent compound? 1) RbF 2) MgCl ₂ 3) CaC_2 4) NH ₃ 58. Double bonds are present in 1) CO_2 2) $BeCl_2$ 3) $HgCl_2$ 4) MgO 59. Six electrons are mutually shared in 1) F_2 2) Cl_2 3) O_2^- 4) N_2^- 60. Octet rule is not followed in 1) SF_6 2) PF_5 3) $BeCl_2$ 4) All the three 61. Silicon has 4 electrons in the outermost orbit. In forming the bonds 1) It gains electrons 2) It loses electrons 3) It shares electrons 4) None of the above 62. The type of bonds present in ammonium chloride are 1) Only ionic and dative 2) Only covalent and electrovalent 3) Only covalent and coordinate 4) Ionic, covalent and coordinate 63. PH_3 and BF_3 form an adduct readily because they form 1) A coordinate bond 2) A covalent bond 3) An ionic bond 4) A hydrogen bond 64. Dative bond is present in the molecule of 1) NH ₃ 2) CO_2 3) CO 4) PCl_5 65. According to valence bond theory, water molecule has 1) Two dative bonds and bond angle 90° 2) Two covalent bonds and bond angle 90° 3) Two dative bonds and bond angle 90° 3) Two dative bonds and bond angle 90° 3) Two dative bonds and bond angle 90. Two covalent bonds and bond angle 90° 3) Two dative bonds and bond angle 90. Two covalent bonds and bond angle 90° 3) Two dative bonds and bond angle 90. Two covalent bonds and bond angle 90° 3) Two dative bonds and bond angle 90. Two covalent bonds and bond angle 90° 3) Two dative bonds and bond angle 90. Two covalent bonds and bond angle 90° 3) Two dative bonds and bond angle 90. Two covalent bonds and bond angle 90. 3) Two dative bonds and bond angle 90. So $2 T = 5.73 = p = 4$ 4 $\sigma sp^3 - s$ 67. Among LiCl, $BeCl_2, BCl_3 = CCl_4$ 2) LiCl > $BeCl_2 > BCl_3 < CCl_4$ 3) LiCl > $BeCl_2 < BCl_3 < CCl_4$ 4) LiCl > $BeCl_2 > BCl_3 < CCl_4$ 68. Which of the following does not	54.		ig molecule does not o	bey the octet rule and a	also has lone pair on the
1) $2p - 2p$ 2) $3p - 3p$ 3) $5p - 5p$ 4) π ($5p-5p$)56.The ion that is iso - electronic with CO 1) O_2^+ 2) CN^- 3) O_2^- 4) N_2^+ 57.Which is a covalent compound? 1) RbF2) MgCl_23) CaC_2 4) NH_358.Double bonds are present in 1) CO_2 2) BeCl_23) $HgCl_2$ 4) MgO59.Six electrons are mutually shared in 1) F_2 2) Cl_2 3) O_2 4) N_2 60.Octet rule is not followed in 1) SF_6 2) PF_5 3) $BeCl_2$ 4) All the three61.Silicon has 4 electrons in the outermost orbit. In forming the bonds 1) It gains electrons2) It loses electrons3) It shares electrons62.The type of bonds present in ammonium chloride are 1) Only ionic and dative2) Only covalent and coordinate63.PH_3 and BF_3 form an adduct readily because they form 1) A coordinate bond2) A covalent bond3) An ionic bond4) A hydrogen bond64.Dative bonds is present in the molecule of 1) NH_32) CO_2 3) CoO4) PCl_565.According to valence bond theory, water molecule has 1) Two dative bonds and bond angle 90° 3) Two dative bonds and bond angle 90°- 3) Two dative bonds and bond angle 90°- 3) Two cotalent bonds and bond angle 90°- 3) Two cotalent bonds and bond angle 90°- 3) Two cotalent bonds and bo		1) CCl_4	2) PCl ₃	3) NH ₃	4) SCl ₄
1) $2p - 2p$ 2) $3p - 3p$ 3) $5p - 5p$ 4) π ($5p-5p$)56.The ion that is iso - electronic with CO 1) O_2^+ 2) CN^- 3) O_2^- 4) N_2^+ 57.Which is a covalent compound? 1) RbF2) MgCl_23) CaC_2 4) NH_358.Double bonds are present in 1) CO_2 2) BeCl_23) $HgCl_2$ 4) MgO59.Six electrons are mutually shared in 1) F_2 2) Cl_2 3) O_2 4) N_2 60.Octet rule is not followed in 1) SF_6 2) PF_5 3) $BeCl_2$ 4) All the three61.Silicon has 4 electrons in the outermost orbit. In forming the bonds 1) It gains electrons2) It loses electrons3) It shares electrons62.The type of bonds present in ammonium chloride are 1) Only ionic and dative2) Only covalent and coordinate63.PH_3 and BF_3 form an adduct readily because they form 1) A coordinate bond2) A covalent bond3) An ionic bond4) A hydrogen bond64.Dative bonds is present in the molecule of 1) NH_32) CO_2 3) CoO4) PCl_565.According to valence bond theory, water molecule has 1) Two dative bonds and bond angle 90° 3) Two dative bonds and bond angle 90°- 3) Two dative bonds and bond angle 90°- 3) Two cotalent bonds and bond angle 90°- 3) Two cotalent bonds and bond angle 90°- 3) Two cotalent bonds and bo	55.	Which of the followin	g overlap is the strong	est?	
56. The ion that is iso - electronic with CO 1) O_2^+ 2) CN^- 3) O_2^- 4) N_2^+ 57. Which is a covalent compound? 1) RbF 2) MgCl ₂ 3) CaC ₂ 4) NH ₃ 58. Double bonds are present in 1) CO ₂ 2) BeCl ₂ 3) HgCl ₂ 4) MgO 59. Six electrons are mutually shared in 1) F_2 2) Cl ₂ 3) O ₂ 4) N ₂ 60. Octet rule is not followed in 1) SF_6 2) PF ₅ 3) BeCl ₂ 4) All the three 61. Silicon has 4 electrons in the outermost orbit. In forming the bonds 1) It gains electrons 2) It loses electrons 3) It shares electrons at electrovalent and electrovalent and oordinate 62. The type of bonds present in ammonium chloride are 1) Only ionic and dative 2) Only covalent and coordinate 71) Only covalent and coordinate 4) Ionic, covalent and coordinate 4) Ionic, covalent and coordinate 63. PH ₃ and BF ₃ form an adduct readily because they form 1) A coordinate bond 2) A covalent bond 3) An ionic bond 4) A hydrogen bond 64. Dative bond is present in the molecule of 1) NH ₃ 2) CO ₂ 3) CO 1) NH ₃ 2) CO ₂ 3) CO					4) π (5p–5p)
1) O_2^+ 2) CN^- 3) O_2^- 4) N_2^+ 57.Which is a covalent compound? 1) RbF2) MgCl ₂ 3) CaC_2 4) NH ₃ 58.Double bonds are present in 1) CO_2 2) BeCl ₂ 3) HgCl ₂ 4) MgO59.Six electrons are mutually shared in 1) F_2 2) Cl_2 3) O_2 4) N_2 60.Octet rule is not followed in 1) SF_6 2) PF_5 3) $BeCl_2$ 4) All the three61.Silicon has 4 electrons in the outermost orbit. 1) It gains electrons2) It loses electrons3) It shares electrons4) None of the above62.The type of bonds present in ammonium churcher 3) Only covalent and coval and a dative 3) Only covalent and duct readily because they form 1) A coordinate bond2) A covalent bond 3) An ionic bond4) A hydrogen bond63.PH ₃ and BF ₃ form an adduct readily because 1) NH ₃ 2) CO ₂ 3) CO4) PCl ₅ 64.Dative bond is present in the molecule of 1) NH ₃ 2) CO ₂ 3) CO4) PCl ₅ 65.According to valence bond theory, water molecule has 1) Two dative bonds and bond angle 90° 3) Two dative bonds and bond angle 90° 3) Two dative bonds and bond angle 90° 3) Two dative bonds and bond angle 90.4 Si and Si and bond angle 90.5 Si and conding the si and bond angle 90.5 Si and conding to V.B theorem3) $2\sigma s - s 2\sigma s - p$ 4) $4\sigma sp^3 - s$ 67.Among LiCl, BeCl ₂ $B Cl_3 > CCl_4$ 4) LiCl > BeCl ₂ $2 B Cl_3 > CCl_4$ 4) LiCl > BeCl ₂ $2 B Cl_3 > CCl_4$ 68.Which of the following does not contain cov-timate covalent bord?2) Col ₄ 4) $LiCl > BeCl_$	56	, <u> </u>	ectronic with CO		
57.Which is a covalent compound? 1) RbF2) MgCl23) CaC24) NH358.Double bonds are present in 1) CO22) BeCl23) HgCl24) MgO59.Six electrons are mutually shared in 1) F22) Cl23) O24) N260.Octet rule is not followed in 1) SF62) PF53) BeCl24) All the three61.Silicon has 4 electrons in the outermost orbit. In forming the bonds 1) It gains electrons2) It loses electrons3) It shares electrons4) None of the above62.The type of bonds present in ammonium chloride are 1) Only ionic and dative2) Only covalent and electrovalent 3) Only covalent and coordinate4) Ionic, covalent and coordinate63.PH3 and BF3 form an adduct readily because they form 1) A coordinate bond2) A covalent bond3) An ionic bond4) A hydrogen bond64.Dative bond is present in the molecule of 1) NH32) CO23) CO4) PCl565.According to valence bond theory, water molecule has 1) Two dative bonds and bond angle 90° 3) Two cotalent bonds and bond angle 90° 3) Two cotalent bonds and bond angle 104.5°4) Two covalent bonds and bond angle 90° 3) Two cotalent bonds and bond angle 104.5°66.According to V.B theory the bonds in methane are formed due to the overlapings 1) liGs = s, 3\sigma s - p2) los = p, 3\sigma s - s3) 2\sigma s - s, 2\sigma s - p4) 4 σ sp ³ - s67.Among LiCl, BeCl2 > BCl3 > CCl4 3) LiCl > BeCl2 < BCl3 < CCl4	00.			3) O	4) N ₂ +
1) RbF2) MgCl23) CaC24) NH358.Double bonds are present in 1) CO22) BeCl23) HgCl24) MgO59.Six electrons are mutually shared in 1) F22) Cl23) O24) N260.Octet rule is not followed in 1) SF62) PF53) BeCl24) All the three61.Silicon has 4 electrons in the outermost orbit. In forming the bonds 1) It gains electrons2) It loses electrons3) It shares electrons4) None of the above62.The type of bonds present in ammonium chloride are 1) Only ionic and dative2) Only covalent and electrovalent 3) Only covalent and coordinate4) Ionic, covalent and coordinate63.PH3 and BF3 form an adduct readily because they form 1) A coordinate bond2) A covalent bond3) An ionic bond4) A hydrogen bond64.Dative bond is present in the molecule of 1) NH32) CO23) CO4) PCl565.According to valence bond angle 90° 3) Two dative bonds and bond angle 90° 3) Two dative bonds and bond angle 104.5°4) Two covalent bonds and bond angle 90° 3) Two covalent to theory, water molecule has 1) Iors - s,3\sigma s - p2) Iors - p,3\sigma s - s 3) 2 $\sigma s - s, 2\sigma s - p$ 4) 4 $\sigma sp^3 - s$ 67.Among LiCl, BeCl2 > BCl3 > CCl4 3) LiCl > BeCl2 < BCl3 < CCl4	57	, 2	,	$\mathcal{O}_{\mathcal{O}}}}}}}}}}$	-) - 2
58.Double bonds are present in 1) CO22) BeCl23) HgCl24) MgO59.Six electrons are mutually shared in 1) F_2 2) Cl23) O24) N260.Octet rule is not followed in 1) SF_62) PF_53) BeCl24) All the three61.Silicon has 4 electrons in the outermost orbit. In forming the bonds 1) It gains electrons2) It loses electrons3) It shares electrons4) None of the above62.The type of bonds present in ammonium chloride are 1) Only ionic and dative2) Only covalent and electrovalent 3) Only covalent and coordinate4) Ionic, covalent and coordinate63.PH3 and BF3 form an adduct readily because they form 1) A coordinate bond 2) A covalent bond3) An ionic bond4) A hydrogen bond64.Dative bond is present in the molecule of 1) NH32) CO23) CO4) PCl565.According to valence bond theory, water molecule has 1) Two dative bonds and bond angle 90° 3) Two dative bonds and bond angle 104.5°4) Two covalent bonds and bond angle 90° 3) Two covalent bonds and bond angle 104.5°66.According to V.B theory the bonds in methane are formed due to the overlapings 1) 10s - s, 30s - p2) 10s - p, 30s - s3) 20s - s, 20s - p4) 4 orsp ³ - s67.Among LiCl, BeCl2 > BCl3 > CCl4 3) LiCl < BeCl2 > BCl3 < CCl4	57.		-	$2)C_{2}C_{3}$	
1) CO_2 2) $BeCl_2$ 3) $HgCl_2$ 4) MgO 59.Six electrons are mutually shared in 1) F_2 2) Cl_2 3) O_2 4) N_2 60.Octet rule is not followed in 1) SF_6 2) PF_5 3) $BeCl_2$ 4) All the three61.Silicon has 4 electrons in the outermost orbit. 1) It gains electrons2) It loses electrons3) It shares electrons4) None of the above62.The type of bonds present in ammonium clue dear 3) Only covalent and coordinate2) Only covalent and electrovalent 3) Only covalent and duct readily because they form 1) A coordinate bond2) A covalent bond3) An ionic bond4) A hydrogen bond63.PH_3 and BF_3 form an adduct readily because they form 1) A coordinate bond2) A covalent bond3) An ionic bond4) A hydrogen bond64.Dative bond is present in the molecule of 1) NH_32) CO_23) CO4) PCl_565.According to valence bond theory, water molecule has 1) Two dative bonds and bond angle 90° 3) Two dative bonds and bond angle 104.5°4) Two covalent bond angle 104.5°66.According to V.B theory the bonds in methate are formed due to the overlapings 1) $1\sigma_5 - s, 3\sigma_5 - p$ 2) $1\sigma_5 - p, 3\sigma_5 - s$ 3) $2\sigma_5 - s, 2\sigma_5 - p$ 4) $4 \sigma_5 p^3 - s$ 67.Among LiCI, $BeCl_2 > BCl_3 > CCl_4$ 2) LiCI > $BeCl_2 < BCl_3 < CCl_4$ 4) LiCI > $BeCl_2 > BCl_3 > CCl_4$ 68.Which of the following does not contain coordinate covalent bond?4) LiCI > $BeCl_2 > BCl_3 > CCl_4$	-	,		$5) CaC_2$	4) INI 1 ₃
59.Six electrons are mutually shared in 1) F_2 2) Cl_2 3) O_2 4) N_2 60.Octet rule is not followed in 1) SF_6 2) PF_5 3) $BeCl_2$ 4) All the three61.Silicon has 4 electrons in the outermost orbit. In forming the bonds 1) It gains electrons2) It loses electrons3) It shares electrons4) None of the above62.The type of bonds present in ammonium chloride are 1) Only ionic and dative2) Only covalent and electrovalent 3) Only covalent and coordinate4) Ionic, covalent and coordinate63.PH_3 and BF_3 form an adduct readily because they form 1) A coordinate bond2) A covalent bond3) An ionic bond4) A hydrogen bond64.Dative bond is present in the molecule of 1) NH_32) CO_2 3) CO 4) PCl_5 65.According to valence bond theory, water molecule has 1) Two dative bonds and bond angle 90° 3) Two dative bonds and bond angle 104.5°4) Two covalent bonds and bond angle 90° 3) $2\sigma s - s, 2\sigma s - p$ 4) $4 \sigma sp^3 - s$ 66.According to V.B theory the bonds in methane are formed due to the overlapings 1) $1\sigma s - s, 3\sigma s - p$ 2) $1\sigma s - p, 3\sigma s - s$ 3) $2\sigma s - s, 2\sigma s - p$ 4) $4 \sigma sp^3 - s$ 67.Among LiCl, $BeCl_2 > BCl_3 > CCl_4$ 2) LiCl $> BeCl_2 < SCl_3 < CCl_4$ 3) LiCl $< BeCl_2 > BCl_3 < CCl_4$ 4) LiCl $> BeCl_2 > BCl_3 < CCl_4$ 68.Which of the following does not contain coordinate covalent bond ?4) LiCl $> BeCl_2 > BCl_3 < CCl_4$ 4) LiCl $> BeCl_2 > BCl_3 > CCl_4$	58.	-			
1) F_2 2) Cl_2 3) O_2 4) N_2 60.Octet rule is not followed in 1) SF_6 2) PF_5 3) $BeCl_2$ 4) All the three61.Silicon has 4 electrons in the outermost orbit. In forming the bonds 1) It gains electrons3) It shares electrons4) None of the above62.The type of bonds present in ammonium chloride are 1) Only ionic and dative2) Only covalent and electrovalent 3) Only covalent and coordinate4) Ionic, covalent and electrovalent 3) Only covalent and addict readily because they form 1) A coordinate bond2) A covalent bond 3) An ionic bond4) A hydrogen bond64.Dative bond is present in the molecule of 1) NH32) CO_2 3) CO4) PCl_5 65.According to valence bond theory, water molecule has 1) Two dative bonds and bond angle 90° 3) Two dative bonds and bond angle 104.5°4) Two covalent bonds and bond angle 90° 3) Two covalent bonds and bond angle 104.5°66.According to V.B theory the bonds in methate are formed due to the overlapings 1) $1\sigma s - s, 3\sigma s - p$ 2) $1\sigma s - p, 3\sigma s - s$ 3) $2\sigma s - s, 2\sigma s - p$ 4) 4 $\sigma s p^3 - s$ 67.Among LiCl, $BeCl_2 > BCl_3 > CCl_4$ 2) LiCl > $BeCl_2 < BCl_3 < CCl_4$ 2) LiCl > $BeCl_2 > Bcl_3 < CCl_4$ 68.Which of the following does not contain coordinate covalent bond ?		· _	, 2	3) HgCl_2	4) MgO
60.Octet rule is not followed in 1) SF_62) PF_53) BeCl_24) All the three61.Silicon has 4 electrons in the outermost orbit. In forming the bonds 1) It gains electrons2) It loses electrons3) It shares electrons4) None of the above62.The type of bonds present in ammonium chloride are 1) Only ionic and dative 3) Only covalent and coordinate2) Only covalent and electrovalent 3) Only covalent and coordinate4) Ionic, covalent and coordinate63.PH3 and BF3 form an adduct readily because they form 1) A coordinate bond2) A covalent bond3) An ionic bond4) A hydrogen bond64.Dative bond is present in the molecule of 1) NH32) CO23) CO4) PCl565.According to valence bond theory, water molecule has 1) Two dative bonds and bond angle 90° 3) Two dative bonds and bond angle 104.5°4) Two covalent bonds and bond angle 90° 3) Two dative bonds and bond angle 104.5°66.According to V.B theory the bonds in methane are formed due to the overlapings 1) $1\sigma s - s, 3\sigma s - p$ 2) $1\sigma s - p, 3\sigma s - s$ 3) $2\sigma s - s, 2\sigma s - p$ 4) 4 $\sigma sp^3 - s$ 67.Among LiCl, BeCl2 BCl3 CCl4 3) LiCl < BeCl2 < BCl3 < CCl4 3) LiCl < BeCl2 < BCl3 < CCl4	59.				
1) SF ₆ 2) PF ₅ 3) BeCl ₂ 4) All the three61.Silicon has 4 electronsi the outermost orbit in forming the bonds 1) It gains electrons2) It loses electrons3) It shares electrons4) None of the above62.The type of bonds present in armonium chlor dative 3) Only covalent and dative2) Only covalent and cordinate4) Ionic, covalent and cordinate63.PH ₃ and BF ₃ form an adduct readily because they form 1) A coordinate bond3) A covalent bond3) An ionic bond4) A hydrogen bond64.Dative bond is present in the molecule of 1) NH ₃ 2) CO ₂ 3) CO4) PCl ₅ 65.According to valence bond theory, water molecule of 1) Two dative bonds and bond angle 90° 3) Two dative bonds and bond angle 90° 3) Two dative bonds are bond angle 90° 3) Two dative bonds are bond angle 104.5°2) Two covalent bond angle 90° 4) Two covalent bond angle 90° 4) Two covalent bond angle 90° 3) Two dative bonds are bond angle 104.5°66.According to V.B theory the bonds in methor 1) $1 \sigma s - s_3 \sigma s - p$ 2) $1 \sigma s - p_3 \sigma s - s$ 3) $2 \sigma s - s_2 \sigma s - p$ 4) 4 $\sigma s p^3 - s$ 67.Among LiCl, BeCl ₂ > BCl ₃ > CCl ₄ 3) LiCl < BeCl ₂ > BCl ₃ < CCl ₄ 2) LiCl > BeCl ₂ > BCl ₃ < CCl ₄ 4) LiCl > BeCl ₂ > BCl ₃ < CCl ₄ 2) LiCl > BeCl ₂ > BCl ₃ < CCl ₄ 68.Which of the following does not contain covaliant covalient bond?4) LiCl > BeCl ₂ > BCl ₃ < CCl ₄ 3) LiCl > BeCl ₂ > BCl ₃ < CCl ₄		1) F ₂	2) Cl ₂	3) O ₂	4) N ₂
61.Silicon has 4 electrons in the outermost orbit. In forming the bonds 1) It gains electrons 2) It loses electrons 3) It shares electrons 4) None of the above62.The type of bonds present in ammonium chloride are 1) Only ionic and dative 3) Only covalent and electrovalent 3) Only covalent and coordinate2) Only covalent and electrovalent 3) Only covalent and coordinate63.PH3 and BF3 form an adduct readily because they form 1) A coordinate bond 2) A covalent bond 3) An ionic bond 4) A hydrogen bond64.Dative bond is present in the molecule of 1) NH32) CO265.According to valence bond theory, water molecule has 1) Two dative bonds and bond angle 90° 3) Two dative bonds and bond angle 104.5°2) Two covalent bonds and bond angle 90° a) Two covalent bonds and bond angle 104.5°66.According to V.B theory the bonds in methane are formed due to the overlapings 1) $1\sigma = s, 3\sigma s = p$ 2) $1\sigma s = p, 3\sigma s = s$ 3) $2\sigma s = s, 2\sigma s = p$ 4) $4 \sigma s p^3 = s$ 67.Among LiCl, BeCl2 > BCl3 > CCl4 3) LiCl > BeCl2 > BCl3 > CCl4 3) LiCl > BeCl2 > BCl3 > CCl4 4) LiCl > BeCl2 > BCl3 > CCl468.Which of the following does not contain coordinate covalent bond ?	60.	Octet rule is not follow	ved in		
1) It gains electrons2) It loses electrons3) It shares electrons4) None of the above62.The type of bonds present in ammonium chloride are 1) Only ionic and dative2) Only covalent and electrovalent a) Only covalent and coordinate4) Ionic, covalent and electrovalent a) Only covalent and coordinate63.PH3 and BF3 form an adduct readily because they form 1) A coordinate bond2) A covalent bond3) An ionic bond4) A hydrogen bond64.Dative bond is present in the molecule of 1) NH32) CO23) CO4) PCl565.According to valence bond theory, water molecule has 1) Two dative bonds and bond angle 90° 3) Two dative bonds and bond angle 104.5°2) Two covalent bonds and bond angle 90° 3) Two dative bonds and bond angle 104.5°4) Two covalent bonds and bond angle 104.5°66.According to V.B theory the bonds in methane are formed due to the overlapings 1) $1\sigma s - s, 3\sigma s - p$ 2) $1\sigma s - p, 3\sigma s - s$ 3) $2\sigma s - s, 2\sigma s - p$ 4) 4 $\sigma sp^3 - s$ 67.Among LiCl, BeCl2, BCl3 and CCl4, the covalent bond character follows the order, 1) LiCl < BeCl2 > BCl3 < CCl4 3) LiCl > BeCl2 < BCl3 < CCl4		1) SF ₆	2) PF ₅	3) BeCl ₂	4) All the three
 62. The type of bonds present in ammonium chloride are Only ionic and dative Only covalent and coordinate Ionic, covalent and coordinate 63. PH₃ and BF₃ form an adduct readily because they form A coordinate bond A coordinate bond A covalent bond angle 90° Two cavalent bonds and bond angle 90° Two cavalent bonds and bond angle 104.5° According to V.B theory the bonds in methane are formed due to the overlapings I cos = s, 3σs = p I σs = s	61.	Silicon has 4 electrons	in the outermost orbit	. In forming the bonds	
1) Only ionic and dative2) Only covalent and electrovalent3) Only covalent and coordinate4) Ionic, covalent and coordinate63.PH3 and BF3 form an adduct readily because they form1) A coordinate bond2) A covalent bond3) An ionic bond4) A hydrogen bond64.Dative bond is present in the molecule of1) NH32) CO265.According to valence bond theory, water molecule has1) Two dative bonds and bond angle 90°2) Two covalent bonds and bond angle 90°3) Two dative bonds and bond angle 104.5°4) Two covalent bonds and bond angle 104.5°66.According to V.B theory the bonds in methane are formed due to the overlapings1) $1\sigma s - s, 3\sigma s - p$ 2) $1\sigma s - p, 3\sigma s - s$ 67.Among LiCl, BeCl2 BCl3 and CCl4, the covalent bond character follows the order,1) LiCl < BeCl2 > BCl3 < CCl4		1) It gains electrons	2) It loses electrons	3) It shares electrons	4) None of the above
3) Only covalent and coordinate4) Ionic, covalent and coordinate63. PH_3 and BF_3 form an adduct readily because they form 1) A coordinate bond2) A covalent bond3) An ionic bond4) A hydrogen bond64.Dative bond is present in the molecule of 1) NH_3 2) CO_2 3) CO 4) PCl_5 65.According to valence bond theory, water molecule has 1) Two dative bonds and bond angle 90° 3) Two dative bonds and bond angle 104.5°4) Two covalent bonds and bond angle 90° 3) Two covalent bonds and bond angle 104.5°66.According to V.B theory the bonds in methane are formed due to the overlapings 1) $1\sigma s - s, 3\sigma s - p$ 2) $1\sigma s - p, 3\sigma s - s$ 3) $2\sigma s - s, 2\sigma s - p$ 4) $4 \sigma sp^3 - s$ 67.Among LiCl, $BeCl_2 > BCl_3 > CCl_4$ 3) LiCl $< BeCl_2 > BCl_3 > CCl_4$ 2) LiCl $> BeCl_2 > BCl_3 < CCl_4$ 3) LiCl $< BeCl_2 < BCl_3 < CCl_4$ 4) LiCl $> BeCl_2 > BCl_3 > CCl_4$ 68.Which of the following does not contain coordinate covalent bond ?	62.	The type of bonds pre	sent in ammonium chl	oride are	
63. PH_3 and BF_3 form an adduct readily because they form1) A coordinate bond2) A covalent bond3) An ionic bond4) A hydrogen bond64. Dative bond is present in the molecule of1) NH_3 2) CO_2 3) CO 4) PCl_5 65. According to valence bond theory, water molecule has1) Two dative bonds and bond angle 90°2) Two covalent bonds and bond angle 90°66. According to V.B theory the bonds in methane are formed due to the overlapings1) $1\sigma s - s, 3\sigma s - p$ 2) $1\sigma s - p, 3\sigma s - s$ 3) $2\sigma s - s, 2\sigma s - p$ 67. Among LiCl, $BeCl_2$, BCl_3 and CCl_4 , the covalent bond character follows the order,1) LiCl < $BeCl_2 > BCl_3 > CCl_4$ 2) LiCl > $BeCl_2 < BCl_3 < CCl_4$ 68. Which of the following does not contain coordinate covalent bond?		1) Only ionic and dati	ve	2) Only covalent and	electrovalent
1) A coordinate bond2) A covalent bond3) An ionic bond4) A hydrogen bond64.Dative bond is present in the molecule of 1) NH32) CO23) CO4) PCl565.According to valence bond theory, water molecule has 1) Two dative bonds and bond angle 90° 3) Two dative bonds and bond angle 104.5°2) Two covalent bonds and bond angle 90° 3) Two dative bonds and bond angle 104.5°4) Two covalent bonds and bond angle 90° 4) Two covalent bonds and bond angle 104.5°66.According to V.B theory the bonds in methane are formed due to the overlapings 1) $1\sigma s - s, 3\sigma s - p$ 2) $1\sigma s - p, 3\sigma s - s$ 3) $2\sigma s - s, 2\sigma s - p$ 4) $4 \sigma s p^3 - s$ 67.Among LiCl, BeCl2, BCl3 and CCl4, the covalent bond character follows the order, 1) LiCl < BeCl2 > BCl3 > CCl4 3) LiCl < BeCl2 < BCl3 < CCl4 4) LiCl > BeCl2 > BCl3 > CCl468.Which of the following does not contain coordinate covalent bond?		3) Only covalent and	coordinate	4) Ionic, covalent and	coordinate
64.Dative bond is present in the molecule of 1) NH32) CO23) CO4) PCl565.According to valence bond theory, water molecule has 1) Two dative bonds and bond angle 90° 3) Two dative bonds and bond angle 104.5°2) Two covalent bonds and bond angle 90° 3) Two dative bonds and bond angle 104.5°4) Two covalent bonds and bond angle 90° 3) Two dative bonds and bond angle 104.5°66.According to V.B theory the bonds in methane are formed due to the overlapings 1) $1\sigma s - s, 3\sigma s - p$ 2) $1\sigma s - p, 3\sigma s - s$ 3) $2\sigma s - s, 2\sigma s - p$ 4) 4 $\sigma sp^3 - s$ 67.Among LiCl, BeCl2, BCl3 and CCl4, the covalent bond character follows the order, 1) LiCl < BeCl2 > BCl3 > CCl4 3) LiCl < BeCl2 < BCl3 < CCl4 4) LiCl > BeCl2 > BCl3 > CCl42) LiCl > BeCl2 > BCl3 > CCl4 4) LiCl > BeCl2 > BCl3 > CCl468.Which of the following does not contain coordinate covalent bond ?	63.	PH_2 and BF_2 form an a	adduct readily because	they form	
1) NH_3 2) CO_2 3) CO 4) PCl_5 65.According to valence bond theory, water molecule has 1) Two dative bonds and bond angle 90° 3) Two dative bonds and bond angle 104.5°2) Two covalent bonds and bond angle 90° 3) Two dative bonds and bond angle 104.5°66.According to V.B theory the bonds in methane are formed due to the overlapings 1) $1\sigma s - s, 3\sigma s - p$ 2) $1\sigma s - p, 3\sigma s - s$ 67.Among LiCl, BeCl ₂ , BCl ₃ and CCl ₄ , the covalent bond character follows the order, 1) LiCl < BeCl ₂ > BCl ₃ > CCl ₄ 3) LiCl < BeCl ₂ < BCl ₃ < CCl ₄ 4) LiCl > BeCl ₂ > BCl ₃ > CCl ₄ 68.Which of the following does not contain coordinate covalent bond ?		1) A coordinate bond	2) A covalent bond	3) An ionic bond	4) A hydrogen bond
1) NH_3 2) CO_2 3) CO 4) PCl_5 65.According to valence bond theory, water molecule has 1) Two dative bonds and bond angle 90° 3) Two dative bonds and bond angle 104.5°2) Two covalent bonds and bond angle 90° 3) Two dative bonds and bond angle 104.5°66.According to V.B theory the bonds in methane are formed due to the overlapings 1) $1\sigma s - s, 3\sigma s - p$ 2) $1\sigma s - p, 3\sigma s - s$ 67.Among LiCl, BeCl ₂ , BCl ₃ and CCl ₄ , the covalent bond character follows the order, 1) LiCl < BeCl ₂ > BCl ₃ > CCl ₄ 3) LiCl < BeCl ₂ < BCl ₃ < CCl ₄ 4) LiCl > BeCl ₂ > BCl ₃ > CCl ₄ 68.Which of the following does not contain coordinate covalent bond ?	64.	Dative bond is presen	t in the molecule of		
65.According to valence bond theory, water molecule has 1) Two dative bonds and bond angle 90° 3) Two dative bonds and bond angle 104.5°2) Two covalent bonds and bond angle 90° 3) Two dative bonds and bond angle 104.5°66.According to V.B theory the bonds in methane are formed due to the overlapings 1) $1\sigma s - s, 3\sigma s - p$ 2) $1\sigma s - p, 3\sigma s - s$ 3) $2\sigma s - s, 2\sigma s - p$ 4) 4 $\sigma s p^3 - s$ 67.Among LiCl, BeCl ₂ , BCl ₃ and CCl ₄ , the covalent bond character follows the order, 1) LiCl < BeCl ₂ > BCl ₃ > CCl ₄ 2) LiCl > BeCl ₂ < BCl ₃ < CCl ₄ 4) LiCl > BeCl ₂ > BCl ₃ > CCl ₄ 68.Which of the following does not contain coordinate covalent bond ?		-		3) CO	4) PCl _r
1) Two dative bonds and bond angle 90°2) Two covalent bonds and bond angle 90°3) Two dative bonds and bond angle 104.5°4) Two covalent bonds and bond angle 104.5°66.According to V.B theory the bonds in methane are formed due to the overlapings1) $1\sigma s - s, 3\sigma s - p$ 2) $1\sigma s - p, 3\sigma s - s$ 3) $2\sigma s - s, 2\sigma s - p$ 4) 4 $\sigma sp^3 - s$ 67.Among LiCl, BeCl ₂ , BCl ₃ and CCl ₄ , the covalent bond character follows the order,1) LiCl < BeCl ₂ > BCl ₃ > CCl ₄ 2) LiCl > BeCl ₂ < BCl ₃ < CCl ₄ 3) LiCl < BeCl ₂ < BCl ₃ < CCl ₄ 4) LiCl > BeCl ₂ > BCl ₃ > CCl ₄ 68.Which of the following does not contain coordinate covalent bond ?	65	. 0	· <u> </u>	,	/ 5
 3) Two dative bonds and bond angle 104.5° 4) Two covalent bonds and bond angle 104.5° According to V.B theory the bonds in methane are formed due to the overlapings 1) 1σs - s,3σs - p 2) 1σs - p,3σs - s 3) 2σs - s,2σs - p 4) 4 σsp³ - s 67. Among LiCl, BeCl₂, BCl₃ and CCl₄, the covalent bond character follows the order, LiCl < BeCl₂ > BCl₃ > CCl₄ LiCl < BeCl₂ < BCl₃ < CCl₄ LiCl < BeCl₂ < BCl₃ < CCl₄ Which of the following does not contain coordinate covalent bond ? 		•	•		ls and bond angle 90°
66.According to V.B theory the bonds in methane are formed due to the overlapings 1) $1\sigma s - s, 3\sigma s - p$ 2) $1\sigma s - p, 3\sigma s - s$ 3) $2\sigma s - s, 2\sigma s - p$ 4) $4\sigma sp^3 - s$ 67.Among LiCl, BeCl ₂ , BCl ₃ and CCl ₄ , the covalent bond character follows the order, 1) LiCl < BeCl ₂ > BCl ₃ > CCl ₄ 2) LiCl > BeCl ₂ < BCl ₃ < CCl ₄ 4) LiCl > BeCl ₂ > BCl ₃ < CCl ₄ 68.Which of the following does not contain coordinate covalent bond ?			0	,	Ũ
1) $1\sigma s - s, 3\sigma s - p$ 2) $1\sigma s - p, 3\sigma s - s$ 3) $2\sigma s - s, 2\sigma s - p$ 4) $4\sigma sp^3 - s$ 67. Among LiCl, $BeCl_2$, BCl_3 and CCl_4 , the covalent bond character follows the order, 1) LiCl < $BeCl_2 > BCl_3 > CCl_4$ 2) LiCl > $BeCl_2 < BCl_3 < CCl_4$ 3) LiCl < $BeCl_2 < BCl_3 < CCl_4$ 4) LiCl > $BeCl_2 > BCl_3 > CCl_4$ 68. Which of the following does not contain coordinate covalent bond ?	66	,	0	,	0
 67. Among LiCl, BeCl₂, BCl₃ and CCl₄, the covalent bond character follows the order, 1) LiCl < BeCl₂ > BCl₃ > CCl₄ 2) LiCl > BeCl₂ < BCl₃ < CCl₄ 3) LiCl < BeCl₂ < BCl₃ < CCl₄ 4) LiCl > BeCl₂ > BCl₃ > CCl₄ 68. Which of the following does not contain coordinate covalent bond ? 	00.	•	•		
1) LiCl < BeCl ₂ > BCl ₃ > CCl ₄ 2) LiCl > BeCl ₂ < BCl ₃ < CCl ₄ 3) LiCl < BeCl ₂ < BCl ₃ < CCl ₄ 4) LiCl > BeCl ₂ > BCl ₃ > CCl ₄ 68.Which of the following does not contain coordinate covalent bond ?	. -	,	<i>,</i> –	,	
 3) LiCl < BeCl₂ < BCl₃ < CCl₄ 4) LiCl > BeCl₂ > BCl₃ > CCl₄ 68. Which of the following does not contain coordinate covalent bond ? 	67.		0 1		
68. Which of the following does not contain coordinate covalent bond ?			-		
		- 0	-	. 2 0	1
1) NH_4^+ 2) H_3O^+ 3) CH_3^- 4) $[Ag(CN)_2]^+$	68.		0		
		1) NH_4^+	2) H ₃ O ⁺	3) CH ⁻ ₃	4) $[Ag(CN)_2]^+$

CHEN	MICAL BONDING]₩		+ CHEMISTRY
69.	In ammonium ion the	covalency of nitrogen	is	
	1) 3	2) 4	3) 2	4) 5
70.	The directional nature	e of covalent bond was	introduced by	
	1) VB theory		2) Kossel and Lewes	theory
	3) Hybridisation theor	ſy	4) VSEPR theory	
71.	Which one of the follo	wing molecules contain	n both ionic and covale	nt bonds ?
	1) CH_2Cl_2	2) K ₂ SO ₄	3) BeCl ₂	4) SO ₂
72.	Molecules with sp ² hy	vbridisation will have	the following shapes	
	1) Linear	2) Trigonal planar	3) Tetrahedral	4) Pyramidal
73.	The hybridization inv	2		
	1) sp	2) sp ²	3) sp ³	4) dsp^2
74.			formation of SF ₆ molect	
	1) sp ³ d	2) sp^{3}	3) $sp^{3}d^{2}$	4) d^2sp^3
75.	• -	ces a set of orbitals whi		
	1) Parallel	2) Perpendicular	3) Equivalent	4) None of these
76.	-	•	central atom of water	
	1) 25%	2) 50%	3) 75%	4) 33.3%
77.		planar atoms in SF ₆ m		
	1) 5	2) 4	3) 6	4) 7
78.	•	is found in NH ₃ and I	-	
	1) sp ³	2) dsp^2	3) sp	4) sp ²
79.	-	ue to the hybridisation		
	1) sp ³ d	2) $sp^{3}d^{2}$	3) sp ³	4) sp
80.		F_4 , hybridisation of 'Xe'		
	1) sp ³	2) sp ³ d	3) $sp^{3}d^{2}$	4) d^2sp^3
81.		g has pentagonal bipy	-	
	1) PCl ₅	2) SO ₄ ²⁻	3) CO ₃ ²⁻	4) IF ₇
82.	The orientation of hyb	orid orbitals is tetrahed	lral in	
	1) NH ₃	2) SCl ₄	3) PCl ₅	4) XeF ₄
83.	Which one of the follo	wing is a linear molec	ule?	
	1) NO ₂	2) SO ₂	3) CO ₂	4) H ₂ S
84.	In BCl ₃ molecule, the	Cl-B-Cl bond angle is		
	1) 90°	2) 120°	3) 109°28	4) 180°
85.	,	g has a planar structur		,
05.		0		1) BE -
0.6	1) NH_4^+	2) SCl ₄	3) XeF ₄	4) BF ₄ ⁻
86.	The shape of sulphate			
	1) Tetrahedral	2) Square planar	3) Trigonal	4) Trigonal planar
87.	The angle between tw	o covalent bonds is mi	nimum in	

CHE	MICAL BONDING	_								
	1) H ₂ O	2) CO ₂	3) NH ₃	4) CH ₄						
88.	The shape of ClO_3^- is									
	1) Linear	2) Angular	3) Tetrahedral	4) Pyramidal						
89.	Angular molecule among the following is									
	1) C ₂ H ₂	2) H ₂ O	3) HCN	4) NH ₃						
90.	Octahedral molecule among the following is									
	1) SO ₃	2) CHCl ₃	3) SF ₆	4) PCl ₅						
91.	Bond angle (H-O-H) in H ₂ O is									
	1) 90°	2) 104°30'	3) 107°18'	4) 109°28'						
92.	In PCl ₅ Bond angle in plane is									
	1) 90°	2) 120°	3) 180°	4) 109°28'						
93.	The orientation of electron pairs and the shape of molecule are different in									
	1) BeCl ₂	2) H ₂ O	3) BCl ₃	4) CCl ₄						
94.	Largest bond angle is	Largest bond angle is present in								
	1) CH ₄	2) C ₂ H ₆	3) C ₂ H ₄	4) C ₂ H ₂						
95.	A molecule AX ₂ has t	wo lone pairs over A. I	ts shape is							
	1) Tetrahedral	2) Pyramidal	3) Angular	4) Linear						
96.	The geometry of H_3O^+ ion is									
	1) Planar	2) Triangular	3) Pyramidal	4) Tetrahedral						
97.	The shape of AB_3E is	The shape of AB_3E is								
	1) Pyramidal	2) Tetrahedral	3) Angular	4) Linear						
98.	As the s-character of	a hybrid orbital increas	ses the bond angle							
	1) Increases	eases 2) Decreases 3) does not change 4) Be								
99.	In the formation of SI	F_6 molecule, the sulphu								
	1) 1st excited state	2) second excited stat	e 3) third excited state	4) fourth excited state						
100.		ion the correct stateme	nt is							
	1) Orbitals of differen	5								
		any two hybrid orbital								
	· •	3) Hybrid orbitals always form sigma bonds4) Only electrons undergo hybridisation and not orbitals.								
101.	Which of the followir	0								
	1) BeCl ₂ , linear	2) NH ₃ , linear	3) CO ₂ , tetrahedral	4) BF _{3'} octahedral						
102.	What is the hybridisa	What is the hybridisation state of the central atom in the conjugate base of NH^{+}_4 ion?								
	1) sp	2) sp ³	3) sp ²	4) dsp ²						
103.	Which one of the following is the correct set with reference to molecular formula, hybridisation of central atom and shape of the molecule?									
	1) CO_2 , sp ² , bent	2) H_2O , sp^2 , bent	3) BeCl ₂ , sp, linear	4) H_2O , sp ³ , linear						

CHE	MICAL	BONI	DING								
104.	Which one of the following is a correct set ?										
	1) H ₂ C) , sp ³ , a	ngular				2) H_2O , sp^2 , linear				
	3) NH_4^+ , dsp^2 , squre planar						4) CH_4 , dsp ² , tetrahedral				
105.	Which	of the f	followir	ng is a lin	s a linear molecule						
	1) BeC	12		2) H ₂ O			3) SO ₂		4)	CH ₄	
106.	Which	of the f	followiı	ng has py	ramidal	shape					
	1) XeF ₄ 2) XeO ₃					3) XeF ₂		4)	XeF ₆		
107.	In which of the following molecules, sigma bonds formed by the overlap of sp^3d p-orbitals are absent										
	1) PCl	5		2) ClF ₃			3) SbCl ₅		4)	HClO ₄	
108.	A) I ₃	ion is linear.									
	 R) It is not in sp hybridized state. 1) Both (A) and (R) are true and (R) is the correct explanation of (A) 2) Both (A) and (R) are true and (R) is not the correct explanation of (A) 3) (A) is true but (R) is false d) (A) is false but (R) is true 										
109.	Which	of the f	followir	ng is not t	etrahedı						
	1) BF_4^- 2) NH_4^+						3) CO ₃ ²⁻		4)	4) SO ₄ ²⁻	
110.											
111	1) BrF_5 2) ClF_3						3) IF ₇ LIST - 2			ClF	
111.	L. LIST - 1 A) Diamond						1) sp^2				
	B) Gra						2) sp^3				
	C) PC	0					3) sp ³ d				
	D) CC	P_2 gas					4) sp 5) sp ³ d ²				
	The co	rrect m	atch is				0) sp a				
	А	В	С	D			А	В	С	D	
	1)	3	4	1	2	2)	2	1	3	4	
	3)	1	2	3	4	4)	2	3	1	2	
112.	-	ara mag theory	netic na		xygen is ridisatio		xplained b 3) M.O.th	-	4)	VSEPR theory	
113.	Bond of	order in	He ₂ sp	ecies is							
	1) 0 2) 1						3) 2		4)	4) 3	
114.	The bond order in O_2^2 - species is										
	1) 1 2) 2					3) 3			4) 4		
115.	In O ₂ molecule the correct order of molecular orbital is										
	1) π 2j	1) $\pi 2py > \pi 2pz$ 2) $\pi 2py^* = \pi 2pz$						$\sigma 2s^{\ast}$	4)	4) $\sigma 2s^* > \sigma 2px^*$	
116.	Fractional bond order is in										
	1) O ₂ 2) O ₂ ⁺						3) O ₂ ²⁻			N ₂	
117.	Amon	Among the following degenerate orbitals are									
	1) σls	,σls [*]		2) o2p	x,σ2px [*]	k	3) $\pi 2p_x$, $\pi 2p_y$			4) π2py, π2pz [*]	
118.	Maximum number of electrons that can be present in any molecular orbital is										

CHE	MICAL BONDING	G 🕊			
·	1) 3	2) 6	3) 8	4) 2	
119.	While filling electro followed is	ons in $\pi 2px$ and $\pi 2py$	the electronic configu	uration rules that one to be	
	1) Paulis exclusion	principle	2) Aufbau principle		
	3) Both Paulis and	Hund's rule	4) All the above		
120.	Number of bonding	electrons in N ₂ molecul	e are		
	1) 4	2) 5	3) 6	4) 10	
121.		num among the followir	•		
	1) N ₂	2) He ₂	3) H ₂	4) O ₂	
122.	The shape of molect 1) Size of the molect 3) Shape of the atom		on 2) Size of the atoms 4) All the above	involved	
123.	Number of anti bon	ding electrons in O ₂ mol	ecule are		
	1) 10	2) 6	3) 4	4) 2	
124.	Which of the follow	ing species have the sam	ne bond order		
	1) CN ⁻ and CN ⁺	2) O_2^- and CN^-	3) NO ⁺ and CN ⁻	4) CN ⁻ and NO ⁻	
125.	In which pair, the st	ronger bond found in th	e first species		
	a) O_2^-, O_2	b) N ₂ .N ⁺ ₂	c) NO ⁺ ,NO ⁻		
	1) a only	2) b only	3) a and c only	4) b and c only	
126.	1) bond order three		 I⁻¹, CO and NO⁺ are 2) bond order three and weak field ligands 4) isoelectronic and weak field ligands 		
127.	Which of the follow	ing species in not diama	ignetic?		
	1) N ₂	2) F ₂	3) Li ₂	4) O ₂	
128.	Bond energy is max	imum in	· _	, <u> </u>	
	1) F ₂	2) N ₂	3) O ₂	4) Br ₂	
129.	The bond order	_) - 12	-,	-) 2	
129.	1) Can have negativ	o valuo	2) Is any number of	her than zero	
	3) Is any integer	e value	4) Can have any va		
130.		ular orbital theory, a mo		-	
150.	1) σ_{1s}	2) σ^*_{2s}	3) σ_{2s}	4) σ_{1s}^*	
101			$_{2s}$	4) 0 _{1s}	
131.	Higher the bond ord	0	$\mathbf{O} = \mathbf{D} + $		
	1) Bond dissociation	henergy	2) Bond length		
	3) Paramagnetism		4) Ionic character		
132.	Which of the follow	ing molecular orbital ha		-	
192.	4		(1) *		
192.	1) σ _{2pz}	2) π _{2py}	3) π* _{2pz}	4) σ* _{2px}	
132.	1) σ _{2pz} Molecular orbitals a		3) π^{+}_{2pz}	4) σ ² _{2px}	

EXERCISE - II

1.	The charge on a cation	n 'M' is +2 and anion 'A	\' is -3. The compound	formed has the formula
	1) MA ₂	2) M ₃ A ₂	3) M ₂ A ₃	4) M ₂ A
2.	Two elements 'X' and	'Y' have the following	configuration	
	$X = 1s^2 2s^2 2p^6 3s^2 3p^6$	$4s^2$	$Y = 1s^2 2s^2 2p^6 3s^2 3p^6$	5
	The compound forme	d by the combination o	of 'X' and 'Y' will be	
	1) XY ₂	2) X ₅ Y ₂	3) X ₂ Y ₅	4) XY ₅
3.	Which of the followin	g reaction involves the	liberation of energy?	
	1) $Na_{(s)} \rightarrow Na_{(g)}^+$		2) $\operatorname{Cl}_{2(g)} \rightarrow 2\operatorname{Cl}_{(g)}$	
	3) $\operatorname{Na}_{(g)}^{+} + \operatorname{Cl}_{(g)}^{-} \to \operatorname{NaC}$	Cl _(s)	4) NaCl _(s) \rightarrow Na ⁺ _(g) +	$Cl^{-}_{(g)}$
4.		ngly electropositive and npound formed would		gly electronegative both
	1) X ⁺ Y ⁻	2) X ⁻ Y ⁺	3) X-Y	$4) X \longrightarrow Y$
5.		re of four elements a,b,		
	1) $1s^2$	2) $1s^2$, $2s^2$, $2p^2$, I	4) $1s^2$, $2s^2$, $2p^6$.
	1) a	electrovalent bond is g 2) b	3) c	4) d
6.	An atom of an eleme			ell and that of 'B' has six rmed between these two
	1) A ₃ B ₄	2) A ₂ B ₃	3) A ₃ B ₂	4) A ₂ B
7.	If Na ⁺ ion is larger that be least soluble in wat		s larger than Cl⁻ ion, W	hich of the following will
	1) NaCl	2) Na ₂ S	3) MgCl ₂	4) MgS
8.	In which of the follow value)	ving solvents should K	Cl be soluble at 25° C	?(D = Dielectric constant
	1) C ₆ H ₆ [D=0]	2) CH ₃ COCH ₃ [D=2]	3) CCl ₄ [D=0]	4) CH ₃ OH[D=32]
9.	The following has mo			
10	1) Na ⁺	2) Cs^+	3) F-	4) Cl-
10.	The mass of one unit of 1) 234amu	2) 234gm	3) 58.5amu	4) 58.5gm
11.	A, B and C are atoms	of elements with atomi	,	+2 respectively. If 'B' has
	1) Covalent bond	2) Ionic bond	3) Dative bond	4) Hydrogen bond
12.	01	Cl is 'X'. If the ionic size y associated with the cr	-	of Na ⁺ and B ⁻² is equal to
	1) X	2) 2X	3) 4X	4) 8X
13.		ells present in 1 mole of	NaCl crystal are	
	1) 6. 023 × 10^{23}	2) 1. 5 × 10^{23}	3) 4	4) 1
14.	The order of relative of	ase of formation of var	ious ions is	
66				

			CH	EMICAL BONDING
	1) $F^- > O^{-2} > N^{-3}$	2) $N^{-3} > O^{-2} > F^{-1}$	3) $O^{-2} > N^{-3} > F^{-1}$	4) $F^- > N^{-3} > O^{-2}$
15.	The incorrect stateme	ent regarding the forma	ation of ionic bond	
	1) It involves electros	tatic attraction	2) It is a redox proces	
	3) It is an exothermic	process	4) It involves the abs	roption of energy
16.		nber of ions present in o		
17.	1) 2 $(A) : Na SO is more$	2) 6 soluble in water while	3) 12 BaSO, is loss soluble	4) 8
17.		$f Na_2 SO_4$ is greater that	1	
	1) Both (A) and (R) an	e true and (R) is the con	rrect explanation of (A)	
	2) Both (A) and (R) and 3) (A) is true but (R) i	e true and (R) is not the	e correct explanation of	f (A)
	4) (A) is false but (R)			
18.		ibits neither electrovale	ency nor covalency is	
	1) Neon	2) Sodium	3) Barium	4) Chlorine
19.	The attraction that no	on-polar molecules hav	e for each other is prim	narily caused by
	1) Van der Waal's for		2) Difference in electr	U
•	3) Hydrogen bonding	-	4) High ionisation er	nergy
20.	-	h contains both ionic a		A V C I
01	1) CH ₄	2) C ₂ H ₂	3) KCN	4) KCl
21.	1) Mg ⁺²	ng ion has maximum p 2) Al ³⁺	olarising power 3) Na ⁺	4) Ca ⁺²
22	, 0	,		4) Ca -
22.	1 he bond between cr 1) ionic	lorine and bromine in	2) non-polar	
	3) polar with negativ	e end on Br	4) polar with negativ	re end on Cl
23.	Oxygen cannot exhib	oit tetravalency and he	kavalency like sulphur	. This is because
	1) Oxygen has two u	•	2) Oxygen can form o	
	3) Oxygen lacks vale	nce d-orbitals	4) Oxygen has only 2	electrons in valence shell
24.	The covalency of nitr	ogen in HNO ₂ is		
	1) 0	2) 2	3) 3	4) 5
25.	Van der Walls' forces	are maximum in the fo	0	
	1) HBr	2) LiBr	3) LiCl	4) AgBr
26.	An aqueous solution	of silver nitrate gives a	white precipitate with	1
	1) C_2H_5Cl	2) CHCl ₃	3) HCl	4) None of the above
27.		ng is very much volatile		
	1) Diamond	2) Sodium chlorde	3) Calcium	4) Dry ice
28.	Which of the following	0		
	1) AgCl	2) KCl	3) BaCl ₂	4) COCl ₂
29.	Which of the following	0		
	1) H ₂	2) CaO	3) KCl	4) Na ₂ S
30.	If the electronegativit	ty of two atoms are low	then expected bond be	tween the elements is

ONE	1) Ionic Bond	2) Covalent Bond	3) Dative bond	4) Metallic Bond		
31.	, Direct overlap leads	,	,	,		
	1) σ bond bond	2) π bond	3) Both $\sigma \& \pi$ Bonds	4) Neither σ nor π		
32.	The bonds present in	N_2O_5 are				
	1) Ionic	2) Covalent	3) Ionic and covalent	4) Covalent and dative		
33.	In which type of bond	d fomation, can a proto	n participate?			
	1) Hydrogen bond	2) Electrovalent	3) Dative	4) Covalent		
34.	The bonds present in	$[Cu(NH_3)_4]SO_4$ betwe	en copper and ammonia	a are		
	1) ionic	2) covalent	3) co-ordinate	4) hydrogen		
35.	The types of bonds present in CuSO ₄ .5H ₂ O are 1) electrovalent and covalent 2) electrovalent, covalent, co-ordinate and hydrogen bond 3) covalent and co-ordinate covalent 4) electrovalent					
36.	The bonds present in	HCl molecule are				
	1) Non-polar Covalen	t 2) Polar Covalent	3) Ionic	4) dative		
37.	(A) : BeF ₂ is predomin	nantly a covalent comp	ound.			
	 (R) : Electronegativity difference between Be and F is too small 1) Both (A) and (R) are true and (R) is the correct explanation of (A) 2) Both (A) and (R) are true and (R) is not the correct explanation of (A) 3) (A) is true but (R) is false 4) (A) is false but (R) is true 					
38.	(A) : SiF_4 has octet cor	nfiguration, but acts as	an electron pair accept	or		
	 (R) : Central atom of Si has vacant d-orbitals is its valence shell 1) Both (A) and (R) are true and (R) is the correct explanation of (A) 2) Both (A) and (R) are true and (R) is not the correct explanation of (A) 3) (A) is true but (R) is false 4) (A) is false but (R) is true 					
39.	Increasing order of siz	ze of hybrid orbitals is				
	1) sp, sp ² , sp ³	2) sp ³ , sp ² , sp	3) sp ² , sp ³ , sp	4) sp^2 , sp , sp^3		
40.	The type of hybridisa	tion present on "S" in S	O ₂ and SO ₃ molecules r	espectively		
	1) sp, sp ²	2) sp², sp²	3) sp, sp ³	4) sp^2 , sp^3		
41.		Ag in the complex [Ag(
	1) sp	2) sp ²	3) sp ³	4) dsp^2		
42.	Atomic number of th Cl	e centrtal atom in MCl ₂ Cl	₂ is 50. The shape of gase			
	M: 1) Cl	2) M	3) Cl $ {M}$ $-$ Cl	4) Cl Cl		
		CI				

43.	An element M reacts M	with chlorine to from a	compound X. The bond	d angle in X is 120 ⁰ . What is	
	1) Be	2) B	3) Mg	4) N	
44.	angle between the hy 1) Decreases gradual	brid orbitals	2) Decreased conside	•	
45	3) No change		4) Increases progress	sivery	
45.		's' and one 'p' orbitals	we get 2) Two orbitals at 18	00	
	 1) Two mutually per 3) Four orbitals direct 	-	4) Three orbitals in p		
46.		2	, I	$xygen atom in O_2 molecule?$	
40.	1) pure p-orbital	2) sp-hybrid orbital		4) sp ³ -hybrid orbital	
47.	The hybrid state of ca	arbon in acetylene is th	e same as that of carbo	n in	
	1) Benzene	2) Carbondioxide	3) Graphite	4) Ethylene	
48.	Regarding hybridisation which is incoreect? 1) BF ₃ , C ₂ H ₄ , C ₆ H ₆ involves sp ² hybridisation 2) BeF ₂ , C ₂ H ₂ , CO ₂ involves sp hybridisation 3) NH ₃ , H ₂ O, CCl ₄ involves sp ³ hybridisation 4) CH ₄ , C ₂ H ₄ , C ₂ H ₂ involves sp ² hybridisation				
49.	sp ² hybrid orbitals a	re not present in			
	1) SO ₂	2) BF ₃	3) B ₂ H ₆	4) SO ₃	
50.		is found in HClO ₄ and	I HClO ₃		
	1) sp ³	2) sp ²	3) sp	4) dsp^2	
51.	The ratio of pure orb	itals to hybridized orbi			
	1) 2:3	2) 3 : 1	3) 1 : 1	4) 1 : 3	
52.	•	•		of a benzene molecule is	
	1) 3:2	2) 1:1	3) 3:1	4) 1:3	
53.	The pair having simi	• •			
	1) BF ₃ , NH ₃	2) H_2O, C_2H_2	3) CO ₂ , SO ₂	4) NH ₃ , PH ₃	
54.		g order of bond angle i			
	. 2 2 5 1	1 2 0 2		² 4) CO ₂ , CH ₄ , BF ₃ , SO ₂	
55.		aximum number of lor	1		
FC	1) XeO ₃	2) SF_4	3) PCl ₃	4) ICl ₃	
56.		ng not observed in the f	-		
	1) $\sigma sp^2 - sp^2$	2) $\sigma sp^2 - p$	3) $\sigma sp^2 - s$	4) $p^{\pi} - p^{\pi}$	
57.	The hybrid orbitals ha	ave a bond angle of 109 ⁰	28 . The ratio of percen	tage of 's' and 'p' characters	
	1) 1:1	2) 1:2	3) 1:3	4) 2:3	
58.	LIST - 1		LIST - 2		
	A) NH_4^+		1) sp ³ hybridisation, t	wo lone pairs	
	B) H ₃ O+		2) sp ² hybridisation,	one lone pair	
	C) XeO ₃		3) sp ³ hybridisation,	no lone pairs	

 $D)SO_3$

4) sp³ hybridisation, one lone pair
5) sp² hybridisation, no lone pairs

	The c	orrect m	natch is								
		Α	В	С	D		Α	В	С	D	
	1)	1	2	4	5	2)	2	2	3	5	
	3)	3	4	4	5	4)	4	4	3	5	
59.	LIST	LIST - 1						LIST - 2			
	A) CI	H_4					1) sp²–sp	² overla	p, sp²-s	overlap	
	B) C ₂	H_4				,	2) sp–sp	overlap,	sp-s ov	erlap	
	C) C ₂	H ₆					3) sp ³ -s o	overlap o	only		
	D) C ₂	H ₂				4	4) sp ³ -sp ³	³ overlap,	sp ³ -sp ²	overlap	
						1	5) sp ³ -sp	³ overla	p, sp ³ -s	overlap	
	The correct match is										
		Α	В	С	D		Α	В	С	D	
	1)	5	2	1	3	2)	3	5	1	2	
	3)	3	4	1	2	4)	3	1	5	2	
60.	Whic	h of the	followin	g statem	ents is n	ot correc	ct from th	ne viewp	oint of n	nolecular or	bital?
	1) Be	₂ is not a	stable n	nolecule							
	2) He	e ₂ is not s	stable bu	t He ⁺ is e	expected	l to exist					

3) Bond strength of N_2 is maximum amongest the homonuclear diatomic molecules

4) The order of energies of molecular orbitals in F₂ molecule is

 $E(\sigma 2s) < E(\sigma^* 2s) < E(\pi 2p_x)$

$$= E(\pi 2p_y) < E(\sigma 2p_z) < E(\pi^* 2p_x)$$

 $= E(\pi^* 2p_y) < E(\sigma^* 2p_z)$

61. Which of the following orders regarding the bond order is correct?

1)
$$O_2^- > O_2 > O_2^+$$
 2) $O_2^- < O_2 < O_2^+$ 3) $O_2^- > O_2 < O_2^+$ 4) $O_2^- < O_2 > O_2^+$

62. Which of the following orders regarding the bond length is correct?

 $1) O_2^- > O_2 > O_2^+ \qquad 2) O_2^- < O_2 < O_2^+ \qquad 3) O_2^- > O_2 < O_2^+ \qquad 4) O_2^- < O_2 > O_2^+$

63. The molecular electronic configuration of B_2 is

- 1) $KK(\sigma_{2s})^{2}(\sigma_{2s}^{*}2s)^{2}(\pi_{2}p)_{x}^{1}(\pi_{2}p)_{y}^{1}$ 2) $KK(\sigma_{2s})^{2}(\sigma_{2s}^{*}2s)^{2}(\pi_{2}p)_{x}^{2}$ 3) $KK(\sigma_{2s})^{2}(\sigma_{2s}^{*}2s)^{2}(\pi_{2}p)^{2}$ 4) $KK(\sigma_{2s})^{2}(\sigma_{2s}^{*}2s)^{2}(\sigma_{2}p)^{1}(\pi_{2}p)^{1}$
- 64. When N_2 goes to N_2^+ , the N-N bond distance and when O_2 goes to O_2^+ , the O-O bond distance:

1) increases,	decreases	2) decreases, increases		
a) ·	•	1) 1	1	

3) increases, increases 4) decreases, decreases

65.	The wave function of a molecular orbital formed by reinforce of wave functions of Ψ_A and Ψ_B of atomic orbital A and B is represented as			
	1) Ψ_{A} + Ψ_{B}	2) Ψ _A -Ψ _B	3) $\Psi_{A} \pm \Psi_{B}$	4) 2 Ψ_{A} + Ψ_{B}
66.	The wavelength of th	ne wave function of a bo	onding molecular orbita	ll formed by LCAO is
	1) Equal to the wave	function of atomic orbi	tal	
	2) Less than the wav	e function of atomic orl	oital	
	3) Greater than the wa	ave function of atomic or	bital	
	4) Double the wave f	unction of atomic orbit	al	
67.	The molecular orbita	al electronic configurati	on is (σ $_{1\mathrm{s}}$)², (σ $^{*}_{1\mathrm{s}}$)¹. It	corresponds to
	1) He ₂	2) He ₂ ⁺	3) H ₂ ⁻	4) Both 2 & 3
68.	A bonding molecula	r orbital is produced by	7	
	1) Destructive interfe	erence of wave function	s 2) Constructive interf	erence of wave functions
	3) Pairing of electror	ns with opposite spins	4) Combination of +ve	e and -ve wave functions
69.	$\pi *_{_{\mathrm{2px}}}$ differs from $ au$	t* _{2py} molecular orbital	in which of the followir	ng
	1) Number of nodal	planes 2) Energy	3) Symmetry	4) Shape
70.	The bond order of in	dividual carbon bonds	s in benzene is	
	1) one	, ,	n one and two 4) On	2
71.		homo diatomic neutral ling molecular orbital fo		rbitals combine, then the
	1) 2N	2) N	3) N/2	4) N /4
72.		,	ron density is minimum	, ,
	1) around one atom of		2) between 2 nuclei	
	3) at a point away fro	om nuclei of the molecu	ıle4) at no place.	
73.	The correct order of	the energy of molecular	orbitals in a molecules	having 4 electrons.
	1) $\sigma_{2s}^{*} > \sigma_{2pz}^{*} > \pi_{2}$	$_{px}$ 2) $\sigma *_{2s} < \pi_{2p} < \sigma_{2pz}$	3) $\sigma_{2s}^{*} < \sigma_{2pz} = \pi_{2p}$	(4) $\sigma_{2pz} < \sigma_{2s} < \pi_{2px}$
74.	Maximum number o	of hydrogen bonds that	one water molecule is ca	apable of forming is
	1) 1	2) 2	3) 3	4) 4
75.		ng compounds has Hy		
	1) HCl	2) C ₂ H ₆	3) RCH ₂ NHCH ₃	4) RCH ₂ CHO
76.		a dimer in benzene du		~
	 Condensation rea presence of pheny 		2) Hydrogen bonding	zen atom at α -carbon
77.	Hydrogen bond may	0 1	i) presence of hydrog	
77.	1) Two hydrogen atc		2) Hydrogen atom an	d electropositive atom
		onegative atom with smal	, , , ,	1
		onegative atom with larg		
78.	The intermolecular a	ittractive forces vary in	theorder	
	1) Water < Alcohol <		2) Ether < Alcohol < V	
	3) Alcohol < Water <	Ether	4) Ether < Water < Al	
				71

CHEN 79.	Which of the followir	ng hydrogen bond is rel	atively weaker?			
17.	1) NH-N	2) FH-F	3) NH-O	4) OH-O		
80.	Boiling point is highe		,	,		
	1) HF	2) H ₂ O	3) NH ₃	4) CH ₄		
81.	Which of the following	ng is soluble in water				
	1) C ₂ H ₅ OC ₂ H ₅	2) C ₂ H ₅ OH	3) C ₂ H ₅ Cl	4) C ₆ H ₆		
82.	Among the three isor	ners of nitro phenol, w	hich is least soluble in v	vater		
	1) ortho isomer	2) para isomer	3) meta isomer	4) all are insoluble		
83.	0 1 0	onds can be formed by				
	1) HF	2) H ₂ O	3) NH ₃	4) HCl		
84.	Hydrogen bonds are	present even in vapour	state of			
	1) H ₂ O		2) HF			
	3) p-hydroxy benzald	lehyde	4) C ₂ H ₅ OH			
85.	(A) : Water is a liquid	whereas sulphurdi-ox	ide is a gas at room ten	ıp		
	(R) : Molecular mass	of SO ₂ is more than tha	t of H ₂ O			
	1) Both (A) and (R) an	re true and (R) is the co	rrect explanation of (A))		
	2) Both (A) and (R) an	re true and (R) is not the	e correct explanation o	f (A)		
	3) (A) is true but (R) i	s false				
	4) (A) is false but (R)	is true				
86.	(A) : O-Hydroxy benzaldehyde is steam volatile but not P-hydroxy benzaldehyde					
	(R) : Intramolecular hydrogen bond is present in orthohydroxy benzaldehyde but					
	intermolecular hydro	ogen bond in parahydro	oxy benzaldehyde			
	1) Both (A) and (R) an	e true and (R) is the con	rrect explanation of (A))		
	2) Both (A) and (R) and	re true and (R) is not the	e correct explanation o	f (A)		
	3) (A) is true but (R) i	s false				
	4) (A) is false but (R)	is true				
87.	Between any two of t	he following molecules	, hydrogen bonding is	not possible		
	1) Two primary amin		2) Two secondary amine molecules			
	3) Two tertiary amine		4) Two ammonia mol	ecules		
88.		owing sets, all the comp				
	- -		3) Al ₂ O ₃ , MgO, SO ₃ 4	0 2 0		
89.	Ũ		e crystal lattice structur			
	*	radii of Na ⁺ and Cl ⁻ ion	0	occupied by sodium ions		
	,		⁺ , face centered ion in it	is Cl⁻.		
	The correct combinat					
	1) only iii is correct	2) only ii is wrong	3) only i is wrong	4) all are wrong		
90.	Which of the following	ng pairs will form the m	nost stable ionic bond?			
	1) Na and F	2) Fe and Cl	3) N and O	4) Li and I		
70						

91. The following are some statements about the characteristics of covalent compound			lent compounds			
	i) The combination of a metal and non-metal must give a covalent compound.					
	ii) All covalent substances are bad conductors of electricity.					
	iii) All covalent subst	ances are gases at room	temperature.			
	The correct combinat	ion is				
	1) all are correct		2) only i and ii are con	rrect		
	3) only ii and iii are co	orrect	4) all are wrong			
92.	Coordination number	r of cation is minimum	in			
	1) NaCl	2) CsCl	3) ZnO	4) KCl		
93.	Some statements about	ut valence bond theory	are given below			
	i)The strength of bond depends upon extent of overlapping.					
	ii) The theory explain	ii) The theory explains the directional nature of covalent bond.				
	iii)According to this t	heory oxygen molecule	e is paramagnetic in nat	cure.		
	1) all are correct		2) only i and iii are co	prrect		
	3) only i and ii are con	rrect	4) all are wrong			
94.	The following are so compound	me statements about t	the type of chemical b	oond present in a given		
	i) All complex compounds contain ionic, covalent and dative bonds.					
	ii)The compound having monoatomic cation and monoatomic anion contains ionic bond.					
	iii) The compound having dative bond must possess covalent bond also.					
	The correct combinat	ion is	-			
	1) all are correct		2) only i and ii are correct			
	3) only ii and iii are correct		4) only i and iii are co	prrect		
95.	Consider the following statements. The common features of the molecules $BF_{3'}$, SF_6 and NO are that					
	i) all contain odd elec	tron bond	ii) all are gases at room temperature			
	iii) all contain unpair		iv) all do not confirm to the octet rule			
	1) i and ii	2) iii and iv	3) i and iii	4) ii and iv		
96.	Which of the followir	ng contains unshared el	lectrons.			
	1) NO ₂	2) CO ₂	3) NO ₂ -	4) CN-		
97.	The formal charges of	n the three oxygen aton	ns in O_3 molecule are			
	1) 0, 0, 0	2) 0, 0, -1	3) 0, 0 + 1	4) 0, +1, -1		
98.	Which of the followir	ng when dissolved in w	ater forms a solution w	vhich is non-conducting		
	1) Chile salt petre	2) Green vitrol	3) Potash alum	4) Alcohol		
99.	i)The formation of a c	ation from a neutral ato	om is favoured by smal	l size of the atom		
	,	xist between two atoms	2			
	*			n potential energy.		
	iii) The formation of chemical bond is associated with an increase in potential energy.The correct combination of the above statements is					

CHEN	IICAL BUNDING					
	1) only i and ii are con	rrect	2) only ii is correct			
	3) only ii and iii are c	orrect	4) only i and iii are co	orrect		
100.	How many unit cells are present in a cube-shped ideal crystal of NaCl of mass 1g ? (atomic masses : Na = 23, Cl=35.5)					
	1) 1.7 × 10^{21} unit cells	5	2) 2.57 × 10 ²¹ unit cel	ls		
	3) 5.14 × 10^{21} unit cel	ls	4) 1.28 × 10 ²¹ unit cel	ls		
101.	In the electronic struc	ture of acetic acid there	eare			
	1) 16 shared and 8 un	shared valence electron	S			
2) 8 shared and 16 unshared valence electrons						
	3) 12 shared and 12 u	nshared valence electro	ns			
	4) 18 shared and 6 unshared valence electrons					
102.	Octet rule is mostly violated in the compounds formed by					
	1) Alkali metals	-	2) Alkaline earth met	als		
	3) p-block elements		4) Transition element	ts		
103.	The following are sor	ne statements about hy	bridisation			
	i) Pure orbitals of sam	ne atom of an element w	vill participate.			
	ii) The number of hybrid orbitals formed is twice the number of pure orbitals that participate in hybridisation.					
	iii) Completely filled	(or) half-filled (or) vaca	int orbitals may partici	pate in this process.		
	The correct combinat	ion is				
	1) all are correct		2) only i and ii are con	rrect		
	3) only iii is correct		4) only i and iii are co	prrect		
104.	The nodal plane in th	ie π -bond of ethene is	located in			
	1) The molecular pla	ne				
	2) A plane parallel to	the molecular plane				
	3) A plane perpendice at right angle.	ular to the molecular pla	ane which bisects the ca	rbon-carbon sigma bond		
	4) A plane perpendic	ular to the molecular pl	lane which contains the	e carbon-carbon σ -bond.		
105.	A square planar comp	olex is formed by hybrid	isation of which of the f	ollowing atomic orbitals?		
	1) s, $p_{x'} p_{y'} d_{yz}$	2) $s, p_x, p_y, d_{x^2-y^2}$	3) s, p_x, p_y, d_{z^2}	4) s, p_y , p_z , d_{xy}		
106.	Which of the followir	ng statements are incorr	ect for PCl ₅			
	1) Its all P-Cl bond le	engths are equal	2) It involves sp^3dhy	bridisation		
	3) It has irregular geo	ometry	4) Its shape is trigona	al bipyramid		
107.	Using MO theory pre	edict which of the follow	ving species has the she	ortest bond length?		
	1) O ₂ ²⁻	2) O ₂ ²⁺	3) O ₂ ⁺	4) O ₂ ⁻		
108.	Some statements are	given below with respe	ct to			

i) 'A' contains intermolecular hydrogen bond and 'B' contains intramolecular hydrogen bond

- ii) Boiling point of 'A' is higher than that of 'B'.
- iii) 'A' is more volatile than 'B'.

The correct combination is

1) all are correct statements2) only iii is correct statement

3) only i is correct statement

4) Both i and iii are correct statements

109. From the following given statements

i) O ----- H hydrogen bond length is more than covalent "O-H" bond length.

ii) The ionic bond strength of CsF is more than that of NaF.

iii) The number of electrons present in all inner shells of sodium atom is 10.

The correct combination is

1) only i is correct	2) only i and ii are correct
3) only ii and iii are correct	4) only i and iii are correct

WORK SHEET - III

Comprehension - I

Ionic bond is defined as the electrostatic force of attraction holding the oppositely charged ions. Ionic compounds are mostly crystalline solids having high melting and boiling points, electrical conductivity in molten state, solubility in water etc. Covalent bond is defined as the force which binds atoms of same or different elements by mutual sharing of electrons in a covalent bond. Covalent compounds are solids, liquids or gases. They are low melting and boiling point compounds. They are more soluble in non polar solvents.

1. The valence electrons not involved in formation of covalent bonds are called.

1) non bonding electrons	2) lone pairs
3) unshared pairs	4) none of these

2. The amount of energy released when one mole of ionic solid is formed by close packing of gaseous ions is called.

	1) Ionisation energy	2) Solvation energy	3) Lattic energy	4) Hydration energy
3.	Examples of covalent	t compounds are		
	1) Urea	2) Sugar	3) Sodium chloride	4) Calcium fluoride

WORK SHEET - IV

Comprehension - I

1.

2.

3.

4.

1.Total number of electron pairs = $\frac{1}{2}$ (number of valence electrons ± electrons (for ionic charge) 2.Number of bond electron pairs = number of atoms - 1 3.Number of electron pairs around central atom = total number of electron pairs - 3 [number atoms (except H)] 4.Number lone pair = (number of central electron pairs – number bond pairs) Pair of species with same shape and same state of hybridisation of the central atom is: 3) NH_{3} , ClO_{3}^{-} 1) PCl₅, ICl -4 2) NH₂, H₂O 4) ICl_{4}^{-}, ClO_{3}^{-} Square planar shape is predicted for: 3) ICl_4^- , PCl_4^+ 1) ICl_{4}^{-}, ClO_{3}^{-} 2) PCl_4^+, PCl_6^- 4) ICl_4^- , XeF_4] Based on above method, structure of the some of the molecules have been matched. Which is the incorrect matching? 1) PCl₅ - trigonal bipyramidal 2) ClO_3^- - square planar 3) ICl_{4}^{-} - square planar 4) PCl_4^+ - tetrahedral Column-I Column-II 1) $I_3^$ p) Linear 2) NH_{4}^{+} q) T-shape

3) CIF ₃	r) Sea-saw
4) SF ₄	s) Tetrahedral

EXERCISE - I / ANSWERS

WORK SHEET - I

1) 1	2) 3	3) 3	4) 3	5) 3	6) 3	7) 3	8) 3	9) 3	10) 4
11) 4	12) 4	13) 2	14) 2	15) 3	16) 2	17) 4	18) 1	19) 3	20) 1
21) 3	22) 3	23) 4	24) 3	25) 2	26) 1	27) 4	28) 4	29) 2	30) 3
31) 4	32) 1	33) 2	34) 3	35) 3	36) 1	37) 4	38) 2	39) 1	40) 1
41) 3	42) 2	43) 4	44) 1	45) 2	46) 1	47) 1	48) 3	49) 4	50) 3
51) 4	52) 3	53) 2	54) 4	55) 1	56) 2	57) 4	58) 1	59) 4	60) 4
61) 3	62) 4	63) 1	64) 3	65) 2	66) 1	67) 3	68) 3	69) 2	70) 1
71) 2	72) 2	73) 1	74) 3	75) 3	76) 3	77) 1	78) 1	79) 2	80) 3
81) 4	82) 1	83) 3	84) 2	85) 3	86) 1	87) 1	88) 4	89) 2	90) 3
91) 2	92) 2	93) 2	94) 4	95) 3	96) 3	97) 1	98) 1	99) 2	100) 3
101) 1	102) 2	103) 3	104) 1	105) 1	106) 2	107) 4	108) 2	109) 3	110) 1

 111) 2
 112) 3
 113) 1
 114) 1
 115) 3
 116) 2
 117) 3
 118) 4
 119) 3
 120) 4

 121) 1
 122) 3
 123) 2
 124) 3
 125) 4
 126) 1
 127) 4
 128) 2
 129) 4
 130) 1

 131) 1
 132) 1
 133) 3
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

WORK SHEET - II

1) 2	2) 1	3) 3	4) 1	5) 3	6) 2	7) 4	8) 4	9) 4	10) 1
11) 2	12) 3	13) 2	14) 1	15) 4	16) 4	17) 3	18) 1	19) 1	20) 3
21) 2	22) 4	23) 3	24) 3	25) 4	26) 3	27) 4	28) 4	29) 1	30) 4
31) 1	32) 4	33) 3	34) 3	35) 2	36) 2	37) 3	38) 1	39) 1	40) 2
41) 1	42) 4	43) 2	44) 4	45) 2	46) 1	47) 2	48) 4	49) 3	50) 1
51) 3	52) 1	53) 4	54) 2	55) 4	56) 2	57) 3	58) 3	59) 4	60) 4
61) 2	62) 1	63) 1	64) 1	65) 1	66) 1	67) 4	68) 2	69) 3	70) 3
71) 3	72) 2	73) 2	74) 4	75) 3	76) 2	77) 3	78) 2	79) 1	80) 2
81) 2	82) 1	83) 1	84) 2	85) 2	86) 1	87) 3	88) 2	89) 1	90) 1
91) 4	92) 3	93) 3	94) 3	95) 4	96) 1	97) 4	98) 4	99) 2	100) 2
101) 1	102) 4	103) 4	104) 1	105) 2	106) 1	107) 2	108) 2	109) 4	

WORK SHEET - III

1) 13 4) 3 3) 12

WORK SHEET - IV

1) 3 2) 4 3) 2 4) 1 - P; 2 - S; 3 - Q; 4 - R

CHEMISTRY 🔫

EXERCISE - I

THERMODYNAMICS

Thermodynamic terms

1.	Which of the following	ng come under the view	v of thermodynamics?		
	1) Predicting the feasibility of chemical change				
	2) Predicting the exte	ent of completion of the	chemical change		
	3) Rate at which cher	nical change occurs at	particular set of condition	tions	
	4) Effect of temperatu	are on the rate of reaction	on		
2.	An isolated system is	s that in which :			
	1) There is no exchar	ge of energy with the s	urroundings		
	2) There is exchange	of mass and energy wi	th the surroundings		
	3) There is no exchar	ige of mass and energy	with the surroundings	3	
	4) There is exchange of	mass with the sounround	dings		
3.	A well stoppered the	ermos flask contains sor	me ice cubes. This is an	example of	
	1) Closed system	2) Open system			
	3) Isolated system	4) Non-thermodynan	nic system		
4.	A system which can	exchange energy with t	he surroundings but n	o matter is called	
	1) A heterogeneous s	ystem	2) An open system		
	3) A closed system		4) An isolated system	ı	
5.	An intensive propert	y of thermodynamics n	neans a property which	n depends	
	1) On the amount of	the substance only	2) On the nature of th	ne substance only	
	3) Both on the amoun	nt as well as nature of th	he substance		
	4) Neither on the am	ount nor on the nature			
6.	The intensive proper	ty among these quantit	ies is		
	1) Mass	2) Density	3) Enthalpy	4) Volume	
7.	Which is an extensive	e property of the system	n?		
	1) Volume	2) Viscosity	3) Temperature	4) Refractive index	
8.	In which of the follow intensive)	ving sets, all the proper	ties belong to same cate	egory (all extensive or all	
	1) Mass, volume, spe	cific heat	2) Temperature, Press	sure, Volume	
	3) Heat capacity, den	sity, entropy	4) Enthalpy, Internal	energy, volume	
9.	Which of the following	ng statements is corect	?		
	1) Only internal ener	gy is a state function bu	ıt not work		
	2) Only work is a stat	te function but not inter	rnal energy		
	3) Both internal energy	gy and work are state fu	unctions		
	4) Neither internal er	nergy nor work is a stat	e function		
10.	Which of the following	ng statement is false ?			
	1) Work is a state fur	nction	2) Temperature is a s	tate function	
	3) Change of state is	completely defined wh	en initial and final sta	tes are specified	
	4) Work appears at th	ne boundary of the syste	em		
11.	A process in which r	o heat change takes pl	ace is called		
	1) An isothermal pro		2) An adiabatic proce	255	
		ss 4) An isochoric proce			
12.	A gaseous system ch	anges from state $A(P_{1'}V)$	V_{1}, T_{1}) to B (P ₂ , V ₂ , T ₂), B	to C ($P_{3'}V_3T_3$) and finally	

CHI	EMISTRY		HERMODYNAMICS
	from C to A. The whole process may be cal		
	1) Reversible process	2) Cyclic process	
	3) Isobaric process	4) Spontaneous pro	cess
Е, Н, І	heat changes, first law		
13.	On which of the following factors the int	••• -	
	1) Mass of the system	2) Temperature of th	ne system
	3) Nature of the system	4) All the above	
14.	For a substance more internal energy is ob	-	•
_	1) Solid state 2) Liquid state	3) Gaseous state	4) All have same
15.	The total heat content of a system at const	-	
16	1) Enthalpy 2) Interanl energy	3) Entropy	4) Free energy
16.	Enthalpy "H" can be given as 1 H. E. BY		
17	1) $H = E - PV$ 2) $H = E + PV$	3) $H = E + P + V$	4) H = E -TS
17.	The enthalpy is maximum for (1) 10 gms of justor (2) 10 gms of justor	2 10 amo of stoom	1) Como for all
	1) 10 gms of water 2) 10 gms of ice	3) 10 gms of steam	4) Same for all
18.	The expression $\left[\Delta E / \Delta T\right]_v$ represent		
	1) Heat capacity at constant volume	2) Heat capacity at o	constant pressure
	3) Enthalpy change	4) Eantropy change	
19.	The heat of reaction at constant volume an		2
	1) DE 2) DH	3) DP	4) DV
20.	Which of the following relationship is co products are in either solid or liquid state		olving both reactants an
	1) $\Delta H > \Delta E$ 2) $\Delta H = \Delta E$	3) Δ H < Δ E	4) Δ H - Δ E = ∞
21.	The difference between Δ H and Δ E for the form	ne reaction	
	$BaCl_2(aq) + K_2SO_4(aq) \rightarrow BaSO_4(s) \downarrow + 2KCl$	(aq)	
	1) RT 2) 2RT	3) (1/2)RT	4) Zero
22.	For which one of the following system DE	, , , ,	,
	1) $2SO_{2(g)} + O_{2(g)} \rightarrow 2SO_{3(g)}$	2) $N_{2(g)} + O_{2(g)} \rightarrow 2N$	NO.
1 2	3) $2NH_{3(g)} \rightarrow N_{2(g)} + 3H_{2(g)}$	4) $H_{2(g)} + I_{2(g)} \rightarrow 2H$	
23.	When a reaction is conducted in an open w		-
	1) Δ H 2) Δ E	3) $P \Delta V$	4) Δ nRT
24.	Which of the following holds good to $C_2H_4(g)+3O_2(g) \rightarrow 2CO_2(g)+2H_2O(l)$	the laws of thermody	ynamics for the reactio
	$\Delta H = \Delta E + RT \qquad 2) \Delta H = \Delta E - RT$	3) Λ H = Λ F + 2RT	4) Λ H = Λ F – 2RT
25.	For which of the following reaction ΔF	,	., — — L 201
-	1) $2SO_{2(g)} + O_{2(g)} \rightarrow 2SO_{3(g)}$	2) $NH_4HS_{(s)} \rightarrow NH_4HS_{(s)}$	$I_{3(a)} + H_2 S_{(a)}$
	3) $N_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$	4) $PCl_{5(g)} \rightarrow PCl_{3(g)}$	
		(0) (0	, (0)
26.	For $N_2+3H_2 \rightarrow 2NH_3$, enthalpy and inter then	nal energy changes re	spectively are, Δ H & Δ

CHE	MISTRY		*	THERMODYNAMICS
	1) ΔH = O	2) ΔH ΔU	3) $\Delta H < \Delta U$	4) $\Delta H > \Delta U$
27.	According to IUPAC	C conventions, which or	ne of the following	g is not correct ?
	1) The heat absorbed	by a system is taken as	s positive	
	2) If a system is accor	mpained by decrease ir	energy, ΔE is neg	gative
	3) The work done by	the system is taken as ne	egative	
	4) All the above three	e statements are correct		
28.	During expansion of	a gas into vaccum (P $_{\rm ex}$	_t = 0), Work done i	s zero if the process is
	1) Reversible	2) Irreversible	3) Isothermal	
			3) A & C are true	4) B & C are false
29.	Mathematical from c	of 1st law		
	1) $C_V = aT^3$	2) $\Delta S_{total} = \Delta S_{sys} + \Delta S$	sur	
	3) $q = \Delta U + \Delta W$	4) $\Delta S_{sys} = \frac{qrev}{T}$		
30.	A system absorbs 'xJ	' heat and does "yJ" wo:	rk. Its ΔE is +Ve v	vhen
	1) $y > x$	2) x > y	3) $y = 2x$	4) $x = y$
31.	In an adiabatic expan	nsion of ideal gas :		
	1) W = $-\Delta E$	2) W = ΔE	3) $\Delta E = 0$	4) W = 0
32.	During isothermal ex	xpansion of an ideal ga	s, its internal ener	gy
	1) Decreases	_	2) Increases	
	3) May increase or de	ecrease	4) Remains unch	nanged
33.	For the gaseous react	tion involving the comp	plete combustion o	f isobutane
	1) $\Delta H = \Delta E$	2) $\Delta H > \Delta E$	3) $\Delta H = \Delta E = 0$	$4) \Delta H < \Delta E$
	1) $\Delta H = \Delta E$	2) ΔH > ΔE	3) $\Delta H = \Delta E = 0$	$4) \Delta H < \Delta E$

Exothermic and endothermic reactions

34.	Which are of the following is an exothemic	reaction ?
	1) $N_{2(g)} + O_{2(g)} + 180.8 \text{ k.J} \rightarrow 2 \text{ NO}_{(g)}$	2) $N_{2(g)} + 3H_{2(g)} - 92 \text{ k.J} \rightarrow 2 \text{ NH}_{3(g)}$
	3) $C_{(graphite)} + H_2O_{(g)} \rightarrow CO_{(g)} + H_{2(g)} - 131.3 k.$	J 4) $C_{(graphite)} + 2S_{(s)} \rightarrow CS_{2(1)} - 91.9 \text{ k.J}$
35.	Which of the following is an endothemic rea	action?
	1) $N_{2(g)} + 3H_{2(g)} - 92KJ \rightarrow 2NH_{3(g)}$	2) $N_{2(g)} + O_{2(g)} + 180.8 \text{ KJ} \rightarrow 2 \text{ NO}_{(g)}$
	3) $H_{2(g)} + Cl_{2(g)} \rightarrow 2HCl_{(g)}; \Delta H = -184.6$	kJ
	4) $C_{(graphite)} + 2H_{2(s)} \rightarrow CH_{4(g)} + 74.8 \text{ k.J}$	
36.	Which of the following is an exothermic reaction	on?
	1) H ₂ (g)+Cl ₂ (g) \rightarrow 2HCl(g); $\Delta H = -184.6$ KJ	2) N ₂ (g)+O ₂ (g) \rightarrow 2NO(g); ΔH = + 180.8KJ
	3) C (graphite) + $H_2O(g) \rightarrow CO_2 + H_2(g) - 131$.	4KJ
	4) C(graphite) +2S(g)+91.9KJ \rightarrow CS _{2(l)}	
37.	Which of the following reaction do you thir	k will result in the absorption of heat ?
	1) Carbon burning in air	
	2) Iron reacting with sulphur to from iron su	alphide

formation of a compound is 1) always negative 2) always positive	is an exothermic reaction because ergy that water rgy that water than water 2) A decrease in enthalpy 4) A decrease in internal energy owing conditions are assumed to be 2) Unity at 298K and 1 atm 4) Unity at 273K and 1 atm ndard enthalpy is not zero ? 3) Liquid mercury 4) Rhombic sulphur states are taken as zero. Hence the enthalpy o
The formation of water from $H_{2(g)}$ and $O_{2(g)}$ if 1) $H_{2(g)}$ and $O_{2(g)}$ have a higher chemical energy 2) $H_{2(g)}$ and $O_{2(g)}$ have a lower chemical energy 3) $H_{2(g)}$ and $O_{2(g)}$ have a higher temperature 4) Energy considerations do not arise When a solid melts there is 1) An increase in enthalpy 3) No change in enthalpy 3) No change in enthalpy <i>formation</i> The enthalpies of elements under the folloc 1) Zero at 298K and 1 atm 3) Zero at 273K and 1 atm For which of the following elements, the stat 1) C (Diamond) 2) C (Graphite) The enthalpy of elements in their standard formation of a compound is 1) always negative 2) always positive In which of the following reactions, heat libe	ergy that water rgy that water than water 2) A decrease in enthalpy 4) A decrease in internal energy owing conditions are assumed to be 2) Unity at 298K and 1 atm 4) Unity at 273K and 1 atm ndard enthalpy is not zero ? 3) Liquid mercury 4) Rhombic sulphur states are taken as zero. Hence the enthalpy o 3) positive (or) negative 4) equal to zero
1) $H_{2(g)}$ and $O_{2(g)}$ have a higher chemical ener 2) $H_{2(g)}$ and $O_{2(g)}$ have a lower chemical ener 3) $H_{2(g)}$ and $O_{2(g)}$ have a higher temperature 4) Energy considerations do not arise When a solid melts there is 1) An increase in enthalpy 3) No change in enthalpy 3) No change in enthalpy <i>formation</i> The enthalpies of elements under the folloc 1) Zero at 298K and 1 atm 3) Zero at 273K and 1 atm For which of the following elements, the stat 1) C (Diamond) 2) C (Graphite) The enthalpy of elements in their standard formation of a compound is 1) always negative 2) always positive In which of the following reactions, heat libe	ergy that water rgy that water than water 2) A decrease in enthalpy 4) A decrease in internal energy owing conditions are assumed to be 2) Unity at 298K and 1 atm 4) Unity at 273K and 1 atm ndard enthalpy is not zero ? 3) Liquid mercury 4) Rhombic sulphur states are taken as zero. Hence the enthalpy o 3) positive (or) negative 4) equal to zero
1) $H_{2(g)}$ and $O_{2(g)}$ have a higher chemical ener 2) $H_{2(g)}$ and $O_{2(g)}$ have a lower chemical ener 3) $H_{2(g)}$ and $O_{2(g)}$ have a higher temperature 4) Energy considerations do not arise When a solid melts there is 1) An increase in enthalpy 3) No change in enthalpy 3) No change in enthalpy <i>formation</i> The enthalpies of elements under the folloc 1) Zero at 298K and 1 atm 3) Zero at 273K and 1 atm For which of the following elements, the stat 1) C (Diamond) 2) C (Graphite) The enthalpy of elements in their standard formation of a compound is 1) always negative 2) always positive In which of the following reactions, heat libe	ergy that water rgy that water than water 2) A decrease in enthalpy 4) A decrease in internal energy owing conditions are assumed to be 2) Unity at 298K and 1 atm 4) Unity at 273K and 1 atm ndard enthalpy is not zero ? 3) Liquid mercury 4) Rhombic sulphur states are taken as zero. Hence the enthalpy o 3) positive (or) negative 4) equal to zero
2) $H_{2(g)}$ and $O_{2(g)}$ have a lower chemical ener 3) $H_{2(g)}$ and $O_{2(g)}$ have a higher temperature 4) Energy considerations do not arise When a solid melts there is 1) An increase in enthalpy 3) No change in enthalpy 3) No change in enthalpy <i>formation</i> The enthalpies of elements under the folloc 1) Zero at 298K and 1 atm 3) Zero at 273K and 1 atm For which of the following elements, the sta 1) C (Diamond) 2) C (Graphite) The enthalpy of elements in their standard formation of a compound is 1) always negative 2) always positive In which of the following reactions, heat libe	rgy that water than water 2) A decrease in enthalpy 4) A decrease in internal energy owing conditions are assumed to be 2) Unity at 298K and 1 atm 4) Unity at 273K and 1 atm ndard enthalpy is not zero ? 3) Liquid mercury 4) Rhombic sulphur states are taken as zero. Hence the enthalpy o 3) positive (or) negative 4) equal to zero
 4) Energy considerations do not arise When a solid melts there is 1) An increase in enthalpy 3) No change in enthalpy 3) No change in enthalpy <i>formation</i> The enthalpies of elements under the folic 1) Zero at 298K and 1 atm 3) Zero at 273K and 1 atm For which of the following elements, the sta 1) C (Diamond) 2) C (Graphite) The enthalpy of elements in their standard formation of a compound is 1) always negative 2) always positive In which of the following reactions, heat libe 	 2) A decrease in enthalpy 4) A decrease in internal energy owing conditions are assumed to be 2) Unity at 298K and 1 atm 4) Unity at 273K and 1 atm ndard enthalpy is not zero ? 3) Liquid mercury 4) Rhombic sulphur states are taken as zero. Hence the enthalpy of 3) positive (or) negative 4) equal to zero
 When a solid melts there is 1) An increase in enthalpy 3) No change in enthalpy 3) No change in enthalpy 3) No change in enthalpy 5) The enthalpies of elements under the follocentric of the following elements, the statent of the following elements, the statent of the following elements, the statent of the following elements in their standard formation of a compound is 1) always negative 2) always positive In which of the following reactions, heat libe 	 4) A decrease in internal energy wing conditions are assumed to be 2) Unity at 298K and 1 atm 4) Unity at 273K and 1 atm ndard enthalpy is not zero ? 3) Liquid mercury 4) Rhombic sulphur states are taken as zero. Hence the enthalpy of 3) positive (or) negative 4) equal to zero
 An increase in enthalpy No change in enthalpy No change in enthalpy The enthalpies of elements under the follor Zero at 298K and 1 atm Zero at 273K and 1 atm For which of the following elements, the sta C (Diamond) C (Graphite) The enthalpy of elements in their standard formation of a compound is always negative always positive In which of the following reactions, heat libe 	 4) A decrease in internal energy wing conditions are assumed to be 2) Unity at 298K and 1 atm 4) Unity at 273K and 1 atm ndard enthalpy is not zero ? 3) Liquid mercury 4) Rhombic sulphur states are taken as zero. Hence the enthalpy of 3) positive (or) negative 4) equal to zero
 3) No change in enthalpy 50rmation The enthalpies of elements under the follor 1) Zero at 298K and 1 atm 3) Zero at 273K and 1 atm 3) Zero at 273K and 1 atm For which of the following elements, the state 1) C (Diamond) 2) C (Graphite) The enthalpy of elements in their standard formation of a compound is 1) always negative 2) always positive In which of the following reactions, heat libe 	 4) A decrease in internal energy wing conditions are assumed to be 2) Unity at 298K and 1 atm 4) Unity at 273K and 1 atm ndard enthalpy is not zero ? 3) Liquid mercury 4) Rhombic sulphur states are taken as zero. Hence the enthalpy of 3) positive (or) negative 4) equal to zero
<i>formation</i> The enthalpies of elements under the folloon 1) Zero at 298K and 1 atm 3) Zero at 273K and 1 atm For which of the following elements, the stan 1) C (Diamond) 2) C (Graphite) The enthalpy of elements in their standard formation of a compound is 1) always negative 2) always positive In which of the following reactions, heat libe	owing conditions are assumed to be 2) Unity at 298K and 1 atm 4) Unity at 273K and 1 atm ndard enthalpy is not zero ? 3) Liquid mercury 4) Rhombic sulphur states are taken as zero. Hence the enthalpy o 3) positive (or) negative 4) equal to zero
The enthalpies of elements under the follo 1) Zero at 298K and 1 atm 3) Zero at 273K and 1 atm For which of the following elements, the sta 1) C (Diamond) 2) C (Graphite) The enthalpy of elements in their standard formation of a compound is 1) always negative 2) always positive In which of the following reactions, heat libe	 2) Unity at 298K and 1 atm 4) Unity at 273K and 1 atm ndard enthalpy is not zero ? 3) Liquid mercury 4) Rhombic sulphur states are taken as zero. Hence the enthalpy of 3) positive (or) negative 4) equal to zero
 I) Zero at 298K and 1 atm I) Zero at 273K and 1 atm I) Zero at 273K and 1 atm For which of the following elements, the stath I) C (Diamond) I) C (Graphite) The enthalpy of elements in their standard formation of a compound is I) always negative I) always negative I) always negative I) always negative 	 2) Unity at 298K and 1 atm 4) Unity at 273K and 1 atm ndard enthalpy is not zero ? 3) Liquid mercury 4) Rhombic sulphur states are taken as zero. Hence the enthalpy of 3) positive (or) negative 4) equal to zero
 3) Zero at 273K and 1 atm For which of the following elements, the sta 1) C (Diamond) 2) C (Graphite) The enthalpy of elements in their standard formation of a compound is 1) always negative 2) always positive In which of the following reactions, heat libe 	 4) Unity at 273K and 1 atm ndard enthalpy is not zero ? 3) Liquid mercury 4) Rhombic sulphur states are taken as zero. Hence the enthalpy of 3) positive (or) negative 4) equal to zero
For which of the following elements, the sta 1) C (Diamond) 2) C (Graphite) The enthalpy of elements in their standard formation of a compound is 1) always negative 2) always positive In which of the following reactions, heat libe	ndard enthalpy is not zero ? 3) Liquid mercury 4) Rhombic sulphur states are taken as zero. Hence the enthalpy c 3) positive (or) negative 4) equal to zero
 C (Diamond) C (Graphite) The enthalpy of elements in their standard formation of a compound is always negative always positive always positive 	 3) Liquid mercury 4) Rhombic sulphur states are taken as zero. Hence the enthalpy of 3) positive (or) negative 4) equal to zero
The enthalpy of elements in their standard formation of a compound is 1) always negative 2) always positive In which of the following reactions, heat libe	3) positive (or) negative 4) equal to zero
formation of a compound is 1) always negative 2) always positive In which of the following reactions, heat libe	3) positive (or) negative 4) equal to zero
In which of the following reactions, heat libe	
-	rated is known as standard heat of formation c
2	
1) $2CO_{(g)} + O_{2(g)} \rightarrow 2CO_{2(g)} + 135.6$ kca	als
2) $C_{(diamond)} + O_{2(g)} \rightarrow 2CO_{2(g)} + 94.5$ kcals	
3) $C_{(graphite)} + O_{2(g)} \rightarrow CO_{2(g)} + 94.05$ kcal	S
4) $CH_{4(g)} + 2O_{2(g)} \rightarrow 2CO_{2(g)} + 2H_2O_{(1)} + 2128 \text{ kc}$	cals
Identify the reaction in which the heat libera	ted corresponds to the heat of formation (ΔH
1) C(diamon4) + $O_2(g) \rightarrow CO_2(g)$ + heat	2) $2H_2(g) + O_2(g) \rightarrow 2H_2O(g) + heat$
	2) Heat of fusion of CS_2
3) Heat of vapourisation of CS_2	4) Heat of transition of Carbon
Which of the following reactions represents	s ΔH_{f}^{0} ?
1) C(diamon4) + $O_2(g) \rightarrow CO_2(g)$	2) $\frac{1}{2}$ H _{2(g)} + $\frac{1}{2}$ F ₂ (g) \rightarrow HF(g)
$3) \operatorname{N}_2(g) + 3\operatorname{H}_2(g) \longrightarrow 2\operatorname{NH}_3(g)$	4) CO(g) + $\frac{1}{2}$ O ₂ (g) \rightarrow CO ₂ (g)
	standard heat of formation of ethanol?
	3) $C_{(graphite)} + O_{2(g)} \rightarrow CO_{2(g)} + 94.05$ kcal 4) $CH_{4(g)} + 2O_{2(g)} \rightarrow 2CO_{2(g)} + 2H_2O_{(1)} + 2128$ kc 4) $C(diamon4) + O_2(g) \rightarrow CO_2(g) + heat$ 4) $C(diamon4) + 2H_2(g) \rightarrow CH_4(g) + heat$ 5) $C(diamon4) + 2H_2(g) \rightarrow CH_4(g) + heat$ The heat change for the following reaction 1) Heat of formation of CS_2 3) Heat of vapourisation of CS_2 4) $C(diamon4) + O_2(g) \rightarrow CO_2(g)$

СПЕ		→ THERMODYNAMICS
	1) $CH_3CHO_{(l)} + \frac{1}{2}H_{2(g)} \xrightarrow{Ni} C_2H_5OH_{(l)}$	2) $2C_{\text{graphite}} + 3H_{2_{(g)}} + \frac{1}{2}O_{2_{(g)}} \rightarrow C_2H_5OH_{(g)}$
	3) $2C_{\text{diamond}} + 3H_{2_{(g)}} + \frac{1}{2}O_{2_{(g)}} \rightarrow C_2H_5OH_5$	I(g)
	4) $2C_{\text{graphite}} + 3H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow C_2H_5OH$	$\mathbf{I}_{(1)}$
48.	The reaction which shows standard heat of	
	1) H ₂ (g) + $\frac{1}{2}$ O ₂ (g) → H ₂ O(l); Δ H = -68.31	
	2) $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(s); \Delta H = -68.31$	
	2) $\Pi_2(g) + \frac{1}{2}O_2(g) \rightarrow \Pi_2O(s), \Delta \Pi = -08.51$	Ktai
	3) $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g); \Delta H = -68.3$	kcal
	4) $2H_2(g) + \frac{1}{2}O_2(g) \rightarrow 2H_2O(l); \Delta H = -13$	6.6 kcal
49.	The enthalpy of the reaction $H_{2(g)} + \frac{1}{2}O_{2(g)}$ $H_2O_{(l)}$ is DH ₂ . Then	\rightarrow H ₂ O _(g) is DH ₁ and that of H _{2(g)} + $\frac{1}{2}$ O _{2(g)} \rightarrow
	1) $\Delta H_1 < \Delta H_2$ 2) $\Delta H_1 + \Delta H_2 = 0$	3) $\Delta H_1 > \Delta H_2$ 4) $\Delta H_1 = \Delta H_2$
Heat o	of combustion	
50.	The chemical process involved in the comb	
	1) Oxidation	2) Reduction
51.	3) Redox reaction The following is not a combustion reaction	4) Disproportionation reaction
	1) CO + $\frac{1}{2}$ O ₂ \rightarrow CO ₂	2) CO + O ₂ \rightarrow CO ₂
	3) C + $\frac{1}{2}$ O ₂ \rightarrow CO	4) $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$
52.	$C_{\text{graphite}} + O_{2(g)} \rightarrow CO_{2(g)}; \Delta H = -393.5 \text{kJ}$	Δ H of the above reaction cannot be
	1) Heat of formation of CO_2	2) Heat of combustion of C
	3) Heat of reaction	4) Heat of transition
Heat o	of neutralization	
53.	For the following reaction $H^+_{(aq)} + OH^{(aq)} - OH^{(aq)}$	\rightarrow H ₂ O ₍₁₎ ; Δ H = -Q, Where Δ H represents
	1) Heat of formation	2) Heat of combustion
	3) Heat of neutralisation	4) Heat of dilution
54.	Enthalpy of neutralisation of all strong acid	ls and strong bases has the same value because
	1) Neutralisation leads to the formation of a	a salt and water
	2) Strong acid and bases are ionic substanc	es
	3) Acids always furnish H^+ ions and bases	always furnish OH ⁻ ions
	4) the net chemical change involes the comb from water.	ination of 1 mol of H^+ ions and 1 mol OH^- ions to
55.	The heat of neutralisation is maximum whe	en
82		

CHE	MISTRY 🕶 🔤			THERMODYNAMICS		
	1) Sodium hydroxide	e is neutralised by acet	ic acid			
	2) Ammonium hydro	oxide is neutralised by	acetic acid			
	3) Ammonium hydro	oxide is neutralized by	hydrochloric acid			
	4) Sodium hydroxide	e is neutralized by hyd	rochloric acid.			
Other	heats of reactions					
56.	$MgSO_{4(s)} + aq. \rightarrow N$	$IgSO_{4(aq)} \Delta H = -84 \text{ K.c}$	als, ΔH of the reaction	on is known as		
	1) Heat of dilution	2) Heat of solution	3) Heat of fusion	4) Heat of transition		
57.	Dissolution of which	n of the following in wa	ater is endothermic			
	1) NaOH	2) Na ₂ CO ₃	3) MgSO ₄	4) NH ₄ Cl		
58.	The enthalpy change	e for the process $C_{(graph})$	$_{ite)} \rightarrow C(g); \Delta H = +x$	KJ represents enthalpy of		
	1) Fusion	2) Sublima1sation	3) Combustion	4) Vapourisation		
59.				c,CH ₄ (g), is 74.8 KJmol ¹ .The gy for C-H bond formation		
	1) The dissociation energy of hydrogen molecule, H ₂					
	2) The dissociation energy of H_2 and enthalpy of sublimation of carbon					
	3) Latent heat of vaporisation of methane.					
	4) The first four ionis	sation energies of carb	on and electron gain	enthalpy of hydrogen		
60.	For the transition $C_{(diamond)} \rightarrow C_{(graphite)}; \Delta H = -1.5 \text{KJ}$. It follows that					
	1) Graphite is stable	r than diamond	2) Diamond is stab	oler than graphite		
	3) Graphite is endotl	nermic substance	4) Diamond is exot	thermic substance		
61.	Which of the following is not correct					
	1) Dissolution of NI	H_4 Cl in excess of water	is an endothermic pr	rocess		
	2) Neutralisation proces is always exothermic					
	3) The absolute value of enthalpy (H) can be determined experimentally					
	4) The heat of reaction	on at constant volume i	s denoted by ΔE			
Hess l	law					
62.	Hess's law states that					
	1) The standard enthalpy of an overall reaction is the sum of the enthalpy chages in individual reaction					
	2) enthalpy of formation of compoud is same as the enthalpy of decomposition of the compound into constituent elements, but with opposite sign					
		-	• • • •	portional to its volume.		
	4) the mass of a gas c equilibrium with the		vent is proportional t	to the pressure of the gas in		
63.	Heat of reaction (DH					
	1) DH = Activation e	nergy of forward react	ion - Activation energ	gy of backward reaction 83		

CHE	MISTRY		— — Т и	THERMODYNAMICS				
	2) DH = Sum of bond energy of reactants - Sum of bond energy of products							
	3) DH = Sum of enthalpy of products - Sum of enthalpy of reactants							
	4) All the above							
64.	The factor which does not influence the heat of the reaction is							
	1) Pressure		2) Temperature					
	3) Physical state of sub		4) Number of steps	involved in the reaction				
65.	Hess's law is based on							
	1) Law of conservation		2) Gibb's equation					
	3) First law of thermod		4) Kirchoff's equation					
66.	In which of the following	ng equations ΔH° re	eaction equals to ΔH	f for the product ?				
	$1) 2CO_{2(g)} + O_2 \rightarrow 2CO_2$		$2) N_{2(g)} + O_{3(g)} \rightarrow N_2$	20 _{3(g)}				
	3) $CH_{4(g)}$ +2 $CI_{2(g)}$ \rightarrow CH	$L_2Cl_{2(l)}+2HCl_{(g)}$	4) $Xe_{(g)}$ +2 $F_{2(g)}$ \rightarrow Xe	F _{4(g)}				
Secon	d, Third laws, S and G							
67.	1st law does not tell ab							
	1) Law of conservation	of energy	2) Workdone wheth	her +Ve (or) - Ve				
	3) Feasibility of a proce	4) ΔE at const T						
68.	For change in entropy units are							
	1) mol/lit	2) Mol. lit ⁻¹ sec ⁻¹	3) J. mol ⁻¹ K ⁻¹	4) s ⁻¹				
69.	In standard state the no	-						
	1) Melting of ice	2) Natural radioactiv	vity					
	3) Freezing of water	, 0						
70.	The incorrect statment		-					
	1) Heat can not flow from	2	2					
	2) All spontaneous pro	5	5					
	3) Heat can be converte the system (or) surro	_	ely without casusing	some permanent change in				
	4) Perpetual motion ma	achine of second kin	d is not possible					
71.	Incorrect statement rela	ated to an irreversib	le process is					
	1) Entropy of the unive	erse goes on increasin	ng					
	2) Gibbs energy of the s	system goes on decre	easing					
	3) Total energy of the u	niverse goes on decr	reasing					
	4) Total energy of the u	niverse remain cons	tant					
72.	False statement regard	ing second law of the	ermodynamics					
	 It is impossible to construct a machine working in cycles which transforms heat from a lower temperature region to higher temperature region with out intervention of any external agency. 							
	2) Heat can not flow from	om a colder body to a	a hotter body on its ov	vn				
	3) Any spontaneous pr	ocess taking place ir	n isolated system ΔS	< 0				
	4) All spontaneous pro increases in all spon		ynamically irreversib	le & entropy of the system				

CHE	MISTRY	→ THERMODYNAMICS				
73.	Entropy of a system depends upon					
	1) Volume only 2) Temperature only	3) Pressure only				
	4) Pressure, Volume and temperature					
74.	One of the following reaction involves in de	crease of entropy				
	1) Sublimation of dry ice	2) Crystallisation of salt from brine (aq)				
	3) Burning of rocket fuel	4) Decomposition of gaseous N_2O_4 .				
75.	The least random state of H_2O system is					
	1) Ice	2) Liquid water				
	3) Steam	4) Randomness is same all.				
76.	Which of the following process has negative	e value of ΔS ?				
	1) Dissolution of sugar in water	2) Stretching of rubber band				
	3) Decomposition of lime stone	4) Evaporation of water				
77.	following	Then choose the correct statement/s from the				
	1) The process is spontaneous at all temperatures					
	2) The process is accompained by an increase entropy					
	3) The process is accompained by a decrease					
	4) The process is accompained by a decreas	e in enthalpy				
	The correct statements are					
78.	 Only a, b and c Only b and d For a spontaneous process in a reaction 	3) Only c and d 4) Only a, c and d				
	1) $\Delta S_{total} = (\Delta S_{system} + \Delta S_{surroundings}) < O$	2) $\Delta S_{\text{total}} = (\Delta S_{\text{system}} + \Delta S_{\text{surroundings}}) = O$				
	3) $\Delta S_{\text{total}} = (\Delta S_{\text{system}} + \Delta S_{\text{surroundings}}) > O$	4) $\Delta S_{sys} > O$ only				
79.	Some statements are given with regard to entropy. The incorrect statements are 1) The absolute entropy of substances cannot be determined 2) In standard state entropy of elements is always positive					
	3) The entropy of universe always decreases					
		tem the entropy of a system generally increases 3) A, C 4) Only C				
	1) A, B 2) B, C	_				
80.	For an irreversible process, the value of $\left\lfloor \Delta S \right\rfloor$	$S_{(system)} + \Delta S_{(surroundings)}$ is (J & K PMT 2004)				
	1) > 0 2) < 0	3) 0 4) $2\Delta S_{(surr)}$				
81.	A process is spontaneous at all temperature	es when				
	1) $\Delta H = -ve, \Delta S = -ve$	2) $\Delta H = +ve, \Delta S = -ve$				
	3) $\Delta H = -ve, \Delta S = +ve$	4) $\Delta H = +ve, \Delta S = +ve$				
82.	$2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(l)}; \Delta H = -ve \text{ and }$	$\Delta G = -ve$ Then the reaction is				

CHI	EMISTRY	THERMODYNAMICS				
	1) Spontaneous and instantaneous	2) Spontaneous and endothermic				
	3) Spontaneous and slow	4) Non spontaneous and slow				
83.	$H^+_{(aq)} + OH^{(aq)} \rightarrow H_2O_{(1)}; \Delta H = -ve \text{ and } L$	$\Delta G = -ve$ then the reaction is				
	1) Spontaneous and instantaneous	2) Spontaneous and endothermic				
	3) Spontaneous and slow	4) Non spontaneous and slow				
84.	What is necessary condition for spontanity	-				
	1) $\Delta S > O$ 2) $\Delta E < O$	3) $\Delta H < O$ 4) $\Delta G < O$				
85.	Which of the following is the condition for a but spontaneous at low temperature	a non spontaneous reaction at high temperature				
	ΔH ΔS ΔH ΔS	ΔH ΔS ΔH ΔS				
1)	2) + + 3)	+ _ 4) _ +				
86.	Based on the third law of themodynamics,	the entropy can be obtained using the equation.				
	1) $\Delta S = \frac{\Delta H}{T}$ 2) $\int_{0}^{T} T. C_{p}^{-1} dT = S$	3) $\Delta G = T\Delta S$ 4) $\int_0^T C_p T^{-1} dT = S$				
87.	A chemical reaction cannot occur at all if its	3:				
	1) Δ H is (+)ve and Δ S is (-)ve	2) Δ H is (-)ve and Δ S is (+)ve				
	3) Δ H and Δ S are (+)ve but Δ H>T Δ S	4) Δ H and Δ S are (-)ve but Δ H>T Δ S				
88.	An equilibrium reaction $X + Y \rightleftharpoons W + Z$	ΔH =+ve is spontaneous in the forward direction.				
	Then corresponding sign of ΔG and ΔS s	hould be respectively				
	1) +ve, -ve 2) -ve, +ve	3) +ve, +ve 4) -ve, -ve				
89.	For the process Dry ice $\rightarrow CO_2(g)$					
	1) ΔH is positive and ΔS are negative	2) Both ΔH and ΔS are negative				
	3) Both Δ H and Δ S are positive	4) ΔH is negative whereas ΔS is positive				
90.	For which of the process, ΔS is negative ?	2) N ₁ (1 atm) \rightarrow N ₁ (8 atm)				
	1) $H_{2(g)} \rightarrow 2H_{(g)}$ 3) $2SO_{3(g)} \rightarrow 2SO_{2(g)} + O_{2(g)}$	2) $N_{2(g)}(1 \text{ atm}) \rightarrow N_{2(g)} (8 \text{ atm})$ 4) $C_{(\text{diamon}} \rightarrow 4) C_{(\text{graphite})}$				
91.	The process of evaporation of a liquid is ac					
	1) Increase in enthalpy	2) Increase in entropy 3) Decrease in Gibbs				
	energy The correct statement (s) is or are					
	1) Only a and c 2) Only b and c	3) Only a and b 4) All				
92.	The favourable conditions for a spontaeous					
	1) T $\Delta S > \Delta H$, $\Delta H = +ve$, $\Delta S = +ve$	2) $T \Delta S > \Delta H$, $\Delta H = +ve$, $\Delta S = -ve$				
93.	3) T Δ S = Δ H , Δ H = +ve, Δ S = -ve A reaction has both DH and DS negative. T	4) T Δ S = Δ H , Δ H = +ve, Δ S = +ve the rate of reaction				
20.	1) Increase with increase of temperature	2) Increase with decrease of temperature				
	3) Remains unaffected by change of temper					
	4) Cannot be predicted for change in tempe					
94.	At 27°C the reaction, $C_6H_{6(1)} + \frac{15}{2}O_{2(g)} \rightarrow 6CO_{2(g)} + 3H_2O_{(1)}$. proceeds spontaneously					

CHI	EMISTRY		→ THERMODYNAMICS
L	because the magnitu	ide of	
	1) $\Delta H = T \Delta S$	2) $\Delta H > T\Delta S$	
	3) $\Delta H < T \Delta S$	4) $\Delta H > 0$ and $T\Delta$	$\Delta S < 0$
95.	Although the dissol then it is spontaneous		chloride in water is an endothermic reaction, even
	1) ΔH is positive, Δ	S is -ve	2) ΔH is +ve, ΔS is zero
	3) ΔH is positive, 7	$\Delta S < \Delta H$	4) Δ H is +ve, Δ S is positive and Δ H < T Δ S
96.	For the precipitation ?	reaction of Ag ⁺ ions v	vith NaCl which of the following statements is correct
	1) ΔH for the reacti	on is zero	2) ΔG for the reaction is zero
	3) ΔG for the reaction	on is negative	4) $\Delta G = \Delta H$
97.	If an endothermic rea at its boiling point, t		eous at freezing point of water and becomes feasible
	1) ΔH is -ve, ΔS is	+ve	2) Δ H and Δ S both are +ve
	3) ΔH and ΔS both	are -ve	4) ΔH is +ve and ΔS is -ve

98. If an irreversible process taking place at constant T and P and in which only pressure - volume work is being done, the change on Gibb's free energy (dG) and change in entropy (dS), satisfy the criteria

1) $(dS)_{V,S} < 0, (dG)_{T,P} < 0$	2) $(dS)_{V,E} > 0, (dG)_{T,P} < 0$
3) $(dS)_{V,E} = 0, (dG)_{T,P} = 0$	4) $(dS)_{V,E} = 0, (dG)_{T,P} > 0$

99. Which one of the following has ΔS^0 greater than zero?

1)
$$CaO(s) + CO_2(g) \longrightarrow CaCO_3(s)$$
 2) $NaCl(aq) \longrightarrow NaCl(s)$

3) NaNO₃(s)
$$\implies$$
 Na⁺(aq) + NO₃⁻(aq) 4) N₂(g) + 3H₂(g) \implies 2NH₃(g)

- 100.For a spontaneous reaction, the DG, equilibrium constant, K and E^0_{cell} will be respectively1) -Ve, >1, +Ve2) +Ve, >1, -Ve3) -Ve, <1, -Ve</td>4) -Ve, >1, -Ve
- 101. Which of the following relationship is correct ?

1) DG⁰ = -RT in K 2) K =
$$e^{-\Delta G^0/RT}$$
 3) K = $10^{-\Delta G^0/2.303RT}$ 4) All are correct

102. For a reaction $R_{1'}$ DG = x KJ mol⁻¹. For a reaction $R_{2'}$ DG = y KJ mol⁻¹. Reaction R_1 is non-spontaneous but along with R_2 it is spontaneous. This means that

1) x is -ve , y is +ve but in magnitude x > y 2) x is +ve, y is -ve but in magnitude y > x

3) Both x and y are -ve but not equal 4) Both x and y are +ve but not equal.

THERMODYNAMICS

103.	$\frac{1}{100}$			
	1) M.P, B.P	2) B. P, B. P	3) B. P, M. P	4) M.P, M.P
Assert	ion - Reason Typ			
		true, R explains A		e, R does not explain A
104	3) A is true, bu		4) A is false, but R	
104.		e reaction $C + O_2 \rightarrow CO_2$ is an		
	Reason is less than the	: total enthalpy of the reactan		otal enthalpy of the product
105.	Assertion :	The enthalpies of elements		ates are taken as zero.
	Reason:	It is impossible to determin	e the absolute entha	lpy of any substance.
106.	Assertion:	Internal energy change in a	a cyclic process is ze	ero
	Reason :	Internal energy is a state fu	nction.	
107.	Assertion:	The enthalpy of neutration	of a strong acid by	a strong base is a constant.
	Reason :	The net reaction that takes	place is the same.	
108.	Assertion :	Heat of neutralization of 1 NaOH.	HClO ₄ with NaOH i	s same as that of HCl with
	Reason :	Both HCl and HClO ₄ are st	rong acids	
109.	Assertion :	The enthalpy of formation	of H ₂ O(<i>l</i>) is greater t	han that of H ₂ O(g)
	Reason :	Enthalpy change is negative	e for the condensatior	reaction $H_2O(g) \rightarrow H_2O(l)$
110.	Assertion:	Entropy of a perfect crystal	lline substance at ab	solute zero is zero.
	Reason :	At absolute zero translatio	nal kinetic energy of	a system is zero.
111.	Assertion :	Absolute values of internal	energy cannot be de	etermined.
	Reason :	It is impossible to determir substance.	e the exact values of	constituent energies of the
112.	Assertion:	Mass and volume are exter	sive properties.	
	Reason :	Mass / volume is also an e	xtensiveproperty.	
	Assertion :	The heat absorbed during vacuum is zero.	isothermal expansi	on of an ideal gas against
	Reason :	The volume occupied by th	e molecules is zero.	

СНЕ	MIST	RY							THER	MODYNAMICS
		lowing T	upe							MODINAMIC
114.	LIST	-	51 -	LIST -	2					
	A) H _l	$_{\rm P}$ > $\rm H_{R}$		1) Exot	hermic					
	B) P∠	۷V		2) Tota	l heat co	ontent				
	C) E -	+ PV		3) Δ H	is posit	ive				
		$_{R}$ > H_{P}		4) Zero	o at cons	tant volu	ıme			
	The c	orrect m		6	Ð			P	6	Ð
	1)	A 3	В 4	C 2	D 1	2)	A 2	В 3	C 1	D 4
	3)	1	3	4	2	4)	1	3	4	2
115.	LIS	ST - 1					LIST - 2			
	A) HI	$NO_3 + K$	OH			-	1) –55. 22	2 KJ		
	B) NH	$H_4OH +$	CH ₃ CC	ОН			2) –58.7 l	KJ		
	C) CI	H ₃ COOF	H + NaC	ЭH		3	3) –57.3 I	KJ		
	D) H	Cl + Na	ЭН			4	4) -49.3 l	KJ		
						Ę	5) -51.46	KJ		
	The c	orrect n	natch is							
		А	В	С	D		А	В	С	D
	1)	1	2	3	4	2)	4	3	2	1
44.6	3)	3	4	1	3	4)	3	2	1	4
116.		st - I		List - Il						
		zing of v			0					
	,	ater at -		I) ΔG						
	B) Wa	ater at 0	⁰ C	II) ΔG	+Ve					
	C) W	ater at +	10^{0} C	III)∆G	-Ve					
	The c	orrect m	natch is							
		А	В	С			А	В	С	
	1)	2	1	3		2)	3	1	2	
	3)	1	2	3		4)	3	2	1	
117.		st - I		List -						
	1) Wo				nsive pr					
	2) En	thalpy		2) Inter	nsive pro	operty				
	3) Tei	mperatu	re	3) State	e variabl	e				
	4) P, '	V, T and	ln	4) Path	1 functio	n				
	The c	orrect n	natch is							
		А	В	С	D		А	В	С	D
	1)	4	1	2	3	2)	1	2	3	4
	3)	4	3	2	1	4)	4	3	1	2

CHE	MIST	RY 🖛						THERMODYNAMICS
118.	Li	ist - I		List -II				
	(Mel	ting of Ic	ce)	(Conditon)				
	1) Ice	at -10°C	2	1) $\Delta G = O$				
	2) Ice	at +10°	2	2) $\Delta G + Ve$				
	3) Ice	at 0°C		3) $\Delta G - Ve$				
	The c	orrect m	atch is					
		А	В	С		А	В	С
	1)	1	2	3	2)	3	2	1
	3)	2	3	1	4)	1	3	2
				WORF	K SHE E	T - II		
	First	law of th	nermoc	lynamics				
1.	2	stem abs gy chang		0J of energy and	does wo	rk equiv	valent to	400J of energy. The internal
	1) 100)0J		2) 200J	3) 600J		4) 300J
2.		0 1		ork equivalent to n internal energy		one on	a systen	n, which gives out of 125J of
	1) 525	5J		2) 375J	3) 275J		4) 200J
3.	Oneli	itre-atmo	sphere	is appromixmatel	y equal to)		
	1) 19.	2 KJ		2) 101 J	3) 8.31 J		4) 831 J
4.				gas at 300 K is exp The DE for this pr			5	ersibly from an initial volume ⁻¹)
	1) 163	3.7 cal		2) Zero	3) 1381.1	cal	4) 9 lit atm
5.	An id	leal gas o	occupir	ng a volume of 2 d	lm ³ and a	pressu	re of 5 ba	ar undergoes isothermal and

- irreversible expansion against external pressure of 1 bar. The final volume of the system and the work involved in the process is
- 3) 10 dm³, -800 J 4) 10 m³, -1000 J 1) 10 dm³, 1000 J 2) 8 dm³, -800 J A system absorbs 10 KJ of heat at constant volume and its temperature rises from 27°C to 37°C. 6. The DE of reaction is
 - 3) 0 1) 100 KJ 2) 10KJ 4) 1 KJ
- An ideal gas expands in volume from $1 \times 10^{-3} \text{m}^3$ to $1 \times 10^{-2} \text{m}^3$ at 300 K against a constant 7. pressure at 1×10^5 Nm⁻¹. The work done is 1) -900 J 2) 900KJ 3) 270KJ 4) -900KJ

Two moles of an ideal gas is expanded spontaneously into a vaccume. The work done is 8. 4) 8 J 1) Zero 2) 2 J 3) 4 J

E, H, heat capacities

9. Latent heat of vapourisation of a liquid at 500k and 1atm pressure is 10K.Cal/mole. What is the change is enthalpy when 3 mole liquid vapourised at the same temperature $(HINT: \Delta H = \Delta E + \Delta nRT)$

СШ	EMISTRY			THERMODYNAMICS
	1) 27K.Cal	2) 7K.Cal	3) 33K.Cal	4) 25K.Cal
10.				¹ mol ⁻¹ . When 1.0KJ of heat in temperature of water is:
	1) 1.2K	2) 2.4K	3) 4.8K	4) 6.6K
11.	Which statements	is correct;		
	$1)\left(\frac{\delta H}{\delta T}\right)_{P} - \left(\frac{\delta U}{\delta T}\right)_{P$	$\left(-\right)_{V} = \mathbf{R}$	$2)\left(\frac{\delta H}{\delta T}\right)_{P} > \left(\frac{\delta U}{\delta T}\right)_{P}$	$\Big)_{V}$
	3) $\left(\frac{\delta H}{\delta V}\right)_{T}$ for ide	al gas is zero	4) All of these	
12.	For a gas having r	nolar mass M, specific l	neat at constant pressur	e can be given as:
	$1)\frac{\gamma R}{M(\gamma-1)}$	2) $\frac{\gamma}{RM}$	3) $\frac{M}{R(\gamma-1)}$	4) $\frac{\gamma RM}{\gamma + 1}$
13.	Molar heat capaci	ty of water in equilibriu	um with the ice at const	ant pressure is:
	1) Zero	2) Infinity (∞)	3) 40.45 KJK ⁻¹ mol ⁻	¹ 4) 5.48 JK ⁻¹ mol ⁻¹
Heat	of formation and com	bustion		
14.	$N_2 + 3H_2 \rightarrow 2NH$ is	$_{3}; \Delta H = -46 \text{ K.Cals. Fro}$	m the above reaction, he	eat of formation of ammonia
	-	2) -46 K.Cals	3) -23 K.Cals	4) 23 K.Cals
15.	Given that $\frac{1}{2}S_8(s)$ of SO ₃ is	$+6O_2(g) \rightarrow 4SO_3(g); \Delta$	$\mathrm{AH}^0 = -1590 \mathrm{kJ}$. The star	ndard enthalpy of formation

1) -1590 KJ mol⁻¹
 2) -397.5 KJ mol⁻¹
 3) -3.975 KJ mol⁻¹
 4) +397.5 KJ mol⁻¹
 16. The amount of heat evolved on combustion of 10 grams of benzoic acid is 10 K.Cals. The heat of combustion of Benzoic acid is

1) -122 K.Cals 2) -112 K.Cals 3) -132 K.Cals 4) -92 K.Cals

17. Heat of combustion of C_2H_4 is -337 K.Cal. If 5.6 lit O_2 is used at STP, in the combustion heat liberated is K.Cal

1) 28.082) 14.043) 42.064) 56.1618.Human body requires 2370 K. Cal of energy daily. The heat of combustion of glucose is
-790 K.cal/mole. The amount of glucose required for daily consumption is
1) 650g2) 540g3) 327g4) 490.5g

19. The heats of combustion of ethane, ethene and acetylene are -341.1KJ, -330 and -310.9K.Calmol⁻¹ respectively. The best fuel among them is

1) Ethane2) Ethene3) Acetylene4) All are equal

20. The heat of combustion of benzene at 27^{0} C found by bomb calorimeter i.e. for the reaction

$$C_{6}H_{6(I)} + 7\frac{1}{2}O_{2(g)} \to 6CO_{2(g)} + 3H_{2}O_{(I)}$$

is 780 K.Cal mol⁻¹. The heat evolved on burning 39g of benzene in an open vessel wil be 1) 390 K.Cal 2) 780.9 K.Cal 3) 390.45 K.Cal 4) 780 K.Cal

	f neutralization:			IERWOD INAMICS			
21.	$H_2SO_{4(aq)} + 2KOH_{(aq)}$	$_{q} \rightarrow K_2 SO_{4(aq)} + 2H_2 O_{(l)}$; Δ H for the above re	action is			
	1) –13.7 K.Cal	2) +57.3 K.J		4) –137 K.J			
22.	For the reaction $2H_2$	$O(l) \rightarrow H_3O^+(aq) + OH^-(aq)$	aq), the value of DH is				
	1) 114.6 KJ	2) -114.6 KJ	3) 57.3 KJ	4) -57.3 KJ			
23.		11 molar HCl and H ₂ SO ₄ a re 'X" K.Cal and "Y" K.C		d by dilute NaOH solution, of the following is true			
	1) x = y	2) x = y/2	3) x = 2y	4) x = y/3			
24.	When 50 cm^3 of 0.2 l	$N H_2 SO_4$ is mixed with 5	50 cm ³ of 1 N KOH, the	e heat liberated is			
	1) 11.45 KJ	2) 57.3 KJ	3) 573 KJ	4) 573 KJ			
25.		on for the reaction NaC 0.25 moles of NaOH is t	-	D is -57.1 K.J. mole ⁻¹ . The s of HCl is			
	1) 22.5 K.J/mole	2) 57.1 K.J/mole	3) 14.3 K.J/mole	4) 28.6 K.J/mole			
26.	Given that the data f	or neutralization of a we	ak acid (H1) and strong	g acid with a strong base is			
	$\mathrm{HA} + \mathrm{OH}^{-} \rightarrow \mathrm{A}^{-} +$	$H_2O; \Delta H = -41.80 \text{kJ}$	$\mathrm{H^{+}+OH^{-}\rightarrow H_{2}O;}$	Δ H = – 55.90kJ			
	The enthalpy of dis	ssociation of weak acid	would be				
	1) -97.20 KJ	2) +97.70 KJ	3) -14.10 KJ	4) 14.10 KJ			
27.				OH with CH ₃ COOH are c acid with NH ₄ OH will be			
	1) -44.6 KJ eq ⁻¹	2) -50.6 KJ eq ⁻¹	3) -51.4 KJ eq ⁻¹	4) -57.4 KJ eq ⁻¹			
28.		he neutralisation of 500 eat of ionisation of NH_4O		500 ml of 1N $\rm NH_4OH$ is			
	1) 10.98 K.Cals	2) -12.34 K.Cals	3) -10.98 K.Cals	4) 12.34 K.Cals			
29.	In which of the foll maximum	lowing combinations of	f HCl and NaOH, the	heat energy liberated is			
	,	l+40 ml of 0.1 M NaOH	,				
	,	l+25 ml of 0.1 M NaOH	,				
30.	when mixed for a to	tal volume of 100 mL pr	oduce the highest rise	-			
01	1) 67:33	2) 33:67	3) 40:60	4) 50:50			
31.		on of HF with NaOH is: 2 > 57.22 VI		1) None of these			
32.	1)57.32KJ2) > 57.32KJ3) < 57.32KJ4) None of theseWhen 1 litre of 1M HCl is mixed with 1 lite of 1M NaOH, the rise in temperature was found to be T_1 . In another experiment 1 litre of 0.5 M NaOH is mixed with 1 lit. of 0.5 M HCl. The rise in temperature was found to be T_2 . Then						
	1) $T_1 = T_2$	2) T ₁ < T ₂	3) $T_1 = 2T_2$	4) $T_2 = 2T_1$			
Other heats of reactions, determination of $\Delta H \& \Delta E$							

- 33. $H_{2(g)} + \frac{1}{2}O_{2(g)} → H_2O_{(\ell)}; \Delta H = -286.2 \text{KJ}$ $H_2O_{(\ell)} → H^+_{(aq)} + OH^-_{(aq)}; \Delta H = +57.3 \text{KJ}$ Enthalpy of ionization OH⁻ in aqueons solution is (AIEEE - 2009) 1) -228.5 \text{KJ} 2) +228.5 KJ 3) -343.5 KJ 4) zero
- 34. Among the following ions, for which one standard anthalpy of ionisation is zero

CHE	MISTRY 🕶			THERMODYNAMICS
	1) OH ⁻ _(aq)	2) Cl ⁻ _(aq)	3) H ⁻ _(aq)	4) H ⁺ _(aq)
35.	$\frac{1}{2}\mathrm{H}_{2(g)} + \frac{1}{2}\mathrm{Cl}_{2(g)} \to \mathrm{HC}$	$\Delta H^0 = -92.4 \text{KJ}/$	mole;	
	$\mathrm{HCl}_{(g)} + \mathrm{nH}_2\mathrm{O} \rightarrow \mathrm{H}^+_{_{(aq)}}$	$^{+} Cl_{(aq)}^{-}; \Delta H^{0} = -74.8$	3KJ/mole	
	$\Delta H^0 f$ for $Cl^{(aq)}$ is			
	1) –17.6KJ/mole	2) –167.2 KJ/mole	3) +17.6KJ/mole	4) -35.2KJ/mole
36.			,C and D are 10mm, 10 nation on heating at atm 3) C	00mm, 200mm and 800mm nospheric pressure 4) D
37.	,	,	e mole of CH_4 in bomb c	,
57.	1) zero	2) -101 J	3) -24.2J	4) –1J
38.	A sample of CH_4 of temperature of the other sectors.	0.08g was subjected	to combustion at 27 ⁰ C as found to be raised b	in a bomb calorimeter. The y 0.25° C. If heat capacity of
	1) -900KJ/mole	2) –905KJ/mole	3) - 895KJ/mole	4) -890KJ/mole
39.	For the reaction of ΔU and w correspo		th one mole sulphuric a	acid in a bomb calorimeter,
	1) $\Delta U < 0, w = 0$	2) $\Delta U < 0, w < 0$	3) $\Delta U > 0, w = 0$	4) $\Delta U > 0, w > 0$
40.				calorimeter untill constant ter equivalent of calorimeter
	1) 50J	2) 104.5J	3) –24.2J	4) 209J
41.	-3233KJ/mole. Whe	en 0.5g of benzoic acio	l is burned in bomb calc	Instant volume at 25^{0} C is primeter, the temperature of eter 1g of C ₂ H ₆ burned then
	temperature increas	ed by 2.04 0 C. Δ H for	combustion of C_2H_6 is	
	1) –1530KJ/mole	2) –1536.2KJ/mole	e 3) –1522.8KJ/mole	4) +1536.2KJ/mole.
42.	The dissociation ene C bond energy is:	rgy fo CH ₄ is 400K.Ca	l mol ⁻¹ and that of ethan	e is 670 K.Cal mol ⁻¹ . The C–
	1) 270K.Cal	2) 70K.Cal	3) 200K.Cal	4) 240K.Cal
43.	The heat of atomisation energy of the P-P bo		al mol ⁻¹ and that of P ₂ H	$I_{4(g)}$ is 355 K.Cal mol ⁻¹ The
	1) 102	2) 51	3) 26	4) 204
	,	,	,	/
Hess l	aw			
44.	The enthalpies of H		H ₂ O are -120, -82, -148 a aOH → NaCl + H ₂ O	nd -68 K.Cals. respectively.
	1) -28.7 K.Cals	2) -18 K.Cals	3) -57.3 K.Cals	4) -14 K.Cals
45.		,	Cl_2 is given as -352.8 KJ.	$\Delta H_{\rm f}^0$ for HF is –268.3KJ mol ⁻¹ ,
	then $\Delta H_{ m f}^0$ of HCl we		/	

CHE	MISTRY		→ T	HERMODYNAMICS		
	1) -22 KJmol ⁻¹	2) 880 KJmol ⁻¹	3) -91.9 KJmol ⁻¹	4) -183.8 KJmol ⁻¹		
46.		rmation of C ₆ H ₆ , given 2, 94 and 68K. Cal resp		oustion of benzene, carbon		
	1) +14 K.Cal	2) –14 K.Cal	3) +28 K.Cal	4) – 28 K.Cal		
47.		stion of carbon, hyd 7. Calculate heat of form	• •	are -394K.J, -286K.J and		
	1) 621 K.J	2) 454 K.J	3) -227 K.J	4) 227 K.J		
48.	The standard enthal	pies of formation of H ₂	$O_2(l)$ and $H_2O(l)$ are -	187.8K.J.mole ⁻¹ and -285.8		
	K.J. mole ⁻¹ respective $O_2(g)$ is	ly. The $\Delta \mathrm{H}^{0}$ for the de	composition of one mo	ble of $H_2O_2(l)$ to $H_2O(l)$ and		
	, .	2) -98.0 K.J. mole ⁻¹	, .	4) +187.8 K.J. mole ⁻¹		
49.	–278 KJ mol ⁻¹ respect	ively. The enthalpy of	formation of carbon m			
EO	1) 668 KJ mol ⁻¹	2) 112 KJ mol ⁻¹	3) -112 KJ mol ⁻¹	4) -668 KJ mol ⁻¹		
50.	Calculate the heat of	formation of KOH from	n the following data			
	$K_{(S)} + H_2O + aq \rightarrow$	$\operatorname{KOH}_{(\operatorname{aq})} + \frac{1}{2}\operatorname{H}_2; \Delta \mathrm{H} =$	= -48.4 K. Cal			
	$\mathrm{H}_{2(g)} + \frac{1}{2}\mathrm{O}_{2(g)} \to \mathrm{H}$	$I_2 O_{(\ell)}; \Delta H = -68.44 K$. Cal			
	$\operatorname{KOH}_{(s)} + \operatorname{aq} \to \operatorname{KOI}$	$H_{(aq)}; \Delta H = -14.01 K.$	Cal			
	1) +102.83	2) +130.85	3) - 102.83	4) - 130.85		
51.	If $S + O_2 \rightarrow SO_2; \Delta H$	H = -398.2 kJ;	$SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$; $\Delta H = -98.7 \text{kJ}$		
	$SO_3 + H_2O \rightarrow H_2SO$	$D_4; \Delta H = -130.2 \text{kJ};$	$H_2 + \frac{1}{2}O_2 \rightarrow H_2O;$	$\Delta H = -227.3 \text{kJ}$		
	The enthalpy of form	nation of sulphuric acid	l at 298 K will be			
	1) -854.4 K.J	2) -754.4 K.J	3) -650.3 K.J	4) -433.7 K.J		
52.	$N_{2(g)} + 2O_{2(g)} \rightarrow 2N$	$NO_2 + X kJ ; 2NO_{(g)} +$	$O_{2(g)} \rightarrow 2NO_{2(g)} + Y$	kJ		
	The enthalpy of form	ation of NO is				
	1) (2X - 2Y)	2) X - Y	3) 1/2 (Y-X)	4) 1/2 (X-Y)		
53.	Given that $S_{(s)} + \frac{3}{2}O_{2(g)} \rightarrow SO_{3(g)} + 2x K.Cal; SO_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow SO_{3(g)} + y K.Cal$ Which would be the enthalpy of formation SO_2 ?					
	1) (2x – y)	2) (2x + y)	3) (y – 2x)	4) $\frac{2x}{y}$		
54.	Given $C_{(s)} + O_{2(g)} - $	$\rightarrow CO_{2(g)}; \Delta H = -395 kJ$	$; S_{(s)} + O_{2(g)} \rightarrow SO_{2(s)}$	$_{\rm (g)};\Delta H = -295 \rm kJ;$		
	$CS_{2(l)} + 3O_{2(g)} \rightarrow C$	$2O_{2(g)} + 2SO_{2(g)}; \Delta H =$	–1110kJ , The heat of	for amation of $CS_2(l)$ is		
	1) + 125 KJ mol ⁻¹	2) 31.25 KJ mol ⁻¹	3) 62.5 KJ mol ⁻¹	4) 250 KJ mol ⁻¹		
55.	1) $C_{\text{Graphite}} + O_{2(g)} \rightarrow$	• $\operatorname{CO}_{2(g)}; \Delta H = -94 \mathrm{K}.$	Cals			
94						

➡ THERMODYNAMICS

2) $C_{\text{Diamond}} + O_{2(g)}$ –	$\rightarrow CO_{2(g)}; \Delta H = -94.5$	K.Cals					
From the above data the heat of transition of $C_{Diamond} \rightarrow C_{Graphite}$							
1) -50 Cal	2) -100 Cal	3) -500 Cal	4) 100 Cal				
	e -11 K.J and -9.78 K.J res	pectively DH of transition					
1) –20.78 K.J	2) -1.22 K.J	3) +1.22 K.J	4) +20.78 K.J				
How much energy is released when 6 mole of octane is burnt in air ? Given ΔH_f^0 for CO ₂ (g), H ₂ O(g) and C ₈ H ₁₈ (l) respectively are -390, -240 and +160 KJ/mol							
1) -32.6 MJ	2) -37.4 MJ	3) -35.5 MJ	4) -20.0 MJ				
$\operatorname{Given} C + 2S \to CS$	$S_2, \Delta Hf^0 = +117.0 KJ$	mol^{-1} ;					
$C + O_2 \rightarrow CO_2, \Delta$	$Hf^0 = -393.0 \text{KJ} \text{ mol}^3$	$^{-1}$ S+O ₂ \rightarrow SO ₂ , Δ	$Hf^0 = -297.0 KJ mol^{-1}$.				
The heat of combust	ion of $CS_2 + 3O_2 \rightarrow C$	$CO_2 + 2SO_2$ is					
1) -807 KJ mol ⁻¹	2) -1104KJ mol ⁻¹	3) +1104KJ mol ⁻¹	4) +807 KJ mol ⁻¹				
The standard heat o	f formation of sodium i	ons in aqueous solutior	from the following data :				
Heat of formation of	of NaOH(aq) at $25^{\circ}C$ =	– 470.7KJ;					
Heat of formation of	of $OH^{-}(aq)$ at $25^{0}C = -$	228.8KJ is:					
1) -251.9KJ	2) 241.9KJ	3) -241.9KJ	4) 300KJmol ⁻¹				
The lattice energy of solid NaCl is 180 K.Cal per mol. The dissolution of the solid in water in the form of ions is endothermic to the extent of 1K.Cal per mol. If the solvation energyies of Na ⁺ and Cl ⁻ ions are in ratio 6:5, what is the enthalpy of hydration of sodium ion?							
1) -85.6K.Cal/ mol		2) –97.5K.Cal/ mol	2) -97.5K.Cal/ mol				
3) 82.6K.Cal / mol		4) +100K.Cal/ mol					
The enthalpy of solution of $BaCl_2$ (s) and $BaCl_2$. $2H_2O(s)$ are -20.6 and 8.8KJ mol ⁻¹ , respectivel							
1) 29.8KJ	2) –11.8KJ	3) –20.6KJ	4) -29.4KJ				
l and third laws Entro	nu - Gibb's Energy						
Enthalpy of vapor	urisation for water is	3 186.5KJmole ⁻¹ . The	entropy change during				
1) 0.5	2) 1.0	3) 1.5	4) 2.0				
$S^{o}_{H_{2(g)}}$ =130.6 J K ⁻¹ mo	$D^{-1}; S^{o}_{H_2 o_{(I)}} = 69.9 \text{JK}^{-1} \text{mos}$	$S_{o_{2(g)}}^{o} = 205 \mathrm{JK}^{-1} \mathrm{mol}^{-1},$	Then the absolute entropy				
change of $H_{2_{(g)}} + \frac{1}{2}$	$O_{2(g)} \rightarrow H_2 O_{(1)}$ is						
1) -163.2 J mol ⁻¹ K ⁻¹		2) +163.2 J mol ⁻¹ K ⁻¹					
3) -303 J mol ⁻¹ K ⁻¹		4) +303J mol ⁻¹ K ⁻¹					
At 0°C ice and wate	r are in equilibrium and	d ΔH = 6.0KJ then ΔS	will be				
1) $22 \mathrm{J} \mathrm{K}^{-1} \mathrm{mol}^{-1}$	2) $35 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$	3) $48 \mathrm{J} \mathrm{K}^{-1} \mathrm{mol}^{-1}$	4) $100 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$				
One mole of ice is co	nverted into water at 27	73 K. The entropies of H	₂ O (s) and H ₂ O(l) are 38.20				
	From the above data 1) -50 Cal DH of combustion of of yellow P to Red P 1) -20.78 K.J How much energy if H ₂ O(g) and C ₈ H ₁₈ (I) 1) -32.6 MJ Given C + 2S \rightarrow CS C + O ₂ \rightarrow CO ₂ , Δ I The heat of combust 1) -807 KJ mol ⁻¹ The standard heat of Heat of formation of 1) -251.9KJ The lattice energy of the form of ions is en and Cl ⁻ ions are in r 1) -85.6K.Cal / mol 3) 82.6K.Cal / mol The enthalpy of solur The of the enthalpy of solur The of the enthalpy of solur The enthalpy of solur The of the enthalpy of solur The enthalpy of solur The of the enthalpy of solur The enthalpy of solur The enthalpy of solur The enthalpy of solur The of the enthalpy of solur The enthalpy of solur 1) 22 J K ⁻¹ mol ⁻¹	From the above data the heat of transition of 1) -50 Cal 2) -100 Cal DH of combustion of yellow P and Red P are of yellow P to Red P is 1) -20.78 K.J 2) -1.22 K.J How much energy is released when 6 mole H ₂ O(g) and C ₈ H ₁₈ (l) respectively are -390, 1) -32.6 MJ 2) -37.4 MJ Given C + 2S \rightarrow CS ₂ , Δ Hf ⁰ = +117.0 KJ C + O ₂ \rightarrow CO ₂ , Δ Hf ⁰ = -393.0 KJ mol The heat of combustion of CS ₂ + 3O ₂ \rightarrow C 1) -807 KJ mol ⁻¹ 2) -1104 KJ mol ⁻¹ The standard heat of formation of sodium if Heat of formation of NaOH(aq) at 25 ⁰ C = Heat of formation of OH ⁻ (aq) at 25 ⁰ C = - 1) -251.9 KJ 2) 241.9 KJ The lattice energy of solid NaCl is 180 K.Ca the form of ions is endothermic to the extent and Cl ⁻ ions are in ratio 6:5, what is the end 1) -85.6 K.Cal / mol 3) 82.6 K.Cal / mol The enthalpy of solution of BaCl ₂ (s) and BaC The enthalpy of solution of BaCl ₂ (s) and BaC The enthalpy of solution of BaCl ₂ (s) and BaC The enthalpy of solution of BaCl ₂ (s) and BaC The enthalpy of solution of BaCl ₂ (s) and BaC The enthalpy of solution of BaCl ₂ (s) and BaC The enthalpy of solution of BaCl ₂ (s) and BaC The enthalpy of solution of BaCl ₂ (s) and BaC The enthalpy of solution of BaCl ₂ (s) and BaC The enthalpy of vapourisation for water is vapourisation is KJmole ⁻¹ 1) 0.5 2) 1.0 $S_{H_{2(s)}}^{o} = 130.6 J K^{-1} mol^{-1}; S_{H_2O_{(1)}}^{O} = 69.9 J K^{-1} mod^{-1}$ At 0 ⁰ C ice and water are in equilibrium and 1) 22 J K ⁻¹ mol ⁻¹ 2) 35 J K ⁻¹ mol ⁻¹	1) -50 Cal 2) -100 Cal 3) -500 Cal DH of combustion of yellow P and Red P are -11 K.J and -9.78 K.J ress of yellow P to Red P is 1) -20.78 K.J 2) -1.22 K.J 3) +1.22 K.J How much energy is released when 6 mole of octane is burnt in air H ₂ O(g) and C ₈ H ₁₈ (l) respectively are -390, -240 and +160 KJ/mol 1) -32.6 MJ 2) -37.4 MJ 3) -35.5 MJ Given C + 2S \rightarrow CS ₂ , Δ Hf ⁰ = +117.0KJ mol ⁻¹ ; C + O ₂ \rightarrow CO ₂ , Δ Hf ⁰ = -393.0KJ mol ⁻¹ S + O ₂ \rightarrow SO ₂ , Δ The heat of combustion of CS ₂ + 3O ₂ \rightarrow CO ₂ + 2SO ₂ is 1) -807 KJ mol ⁻¹ 2) -1104KJ mol ⁻¹ 3) +1104KJ mol ⁻¹ The standard heat of formation of sodium ions in aqueous solution Heat of formation of NaOH(aq) at 25 ⁰ C = -470.7KJ; Heat of formation of OH ⁻ (aq) at 25 ⁰ C = -228.8KJ is: 1) -251.9KJ 2) 241.9KJ 3) -241.9KJ The lattice energy of solid NaCl is 180 K.Cal per mol. The dissolution the form of ions is endothermic to the extent of 1K.Cal per mol. If the and CL ⁻ ions are in ratio 6:5, what is the enthalpy of hydration of s 1) -85.6K.Cal/mol 2) -97.5K.Cal/mol 3) 82.6K.Cal/mol 4) +100K.Cal/mol The enthalpy of solution of BaCl ₂ (s) and BaCl ₂ .2H ₂ O(s) are -20.6 and The enthalpy of solution of BaCl ₂ (s) and BaCl ₂ .2H ₂ O(s) are -20.6 (so and The enthalpy of vapourisation for water is 186.5KJmole ⁻¹ . The vapourisation is _ KJmole ⁻¹ 1) 0.5 2) 1.0 3) 1.5 S ⁰ _{H₁₄₆₀ = 130.6J K⁻¹mol⁻¹; S⁰_{H₁₆₀₀ = 69.9JK⁻¹mol⁻¹ S⁰₀₄₆₀ = 205 JK⁻¹mol⁻¹, change of H_{2(g)} + $\frac{1}{2}$O_{2(g)} \rightarrow H₂O_(i) is 1) -163.2 J mol⁻¹K⁻¹ 2) +163.2 J mol⁻¹K⁻¹}}				

			· · L						
	and 60.01 J mol ⁻¹ K	⁻¹ respectively. The enth	halpy change for the co	onversion is:					
	1) 59.54 mol ⁻¹	2) 5954 J mol ⁻¹	3) 595.4J mol ⁻¹	4) 320.6J mol ⁻¹					
66.	,	, -	& 1600 K. DS for stage -I & II ⁱⁿ						
	-		5	0					
		$Cl_{(l)} \xrightarrow{II} NaCl_{(g)}$							
	$\Delta H_{fus} = 30$	$\Delta H_{vap} = 160 \text{KJ}$							
	DS (I)	DS (II)		DS (I) DS (II)					
	(KJ/mol/K) (H	KJ/mol/K)	(KJ/mol/K) (I						
	(13) 1101/14) (1 1) 3)	1/36	1/10 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
67.				, , ,					
07.	DS for vapousization of 900 g water (in KJ/K) is $[DH_{vap}=40KJ/mol]$								
	1) (900 × 40)	(50×40)	3) $\frac{900 \times 40}{373}$	(18×40)					
	1) (900 × 40)	²⁾ 373	373	⁴⁾ 373					
68.	DS_{ave} for 4Fe(s) +3	$O_2 \rightarrow 2Fe_2O_2(s)$ is -550	J/K/mol at 298 K. If	enthalpy change for same					
	DS _{sys} for 4Fe(s) +3O ₂ → 2Fe ₂ O ₃ (s) is -550 J/K/mol at 298 K. If enthalpy change for sa process is -1600 KJ/mol, DS _{total} (in J/mol/K)								
	1) $\left[\frac{1600}{298} \times 10^3\right] + 3$	550 > 0	2) $550 - \left \frac{1600}{298} \right < $	0					
	3) $\left \frac{1600}{298} \times 10^3 \right - 3$	550 > 0	4) $\left \frac{1600 + 550}{298} \right >$	0					
	⁵ 298		⁴) [298]						
69.	DS_{sur} for H_2 +1/2O	\rightarrow H ₂ O, DH - 280 KJ at	t 400 K is						
	1) 700 J/g / K	2) 700 KJ / mol / K	3) 700 J/mol/K	4) 0.7 J / mol / K					
70.	For a certain reaction, $DH^0 \& DS^0$ respectively are 400 KJ & 200 J/mol/K. The process is no								
	spontaneous at								
	1) 2100 K	2) 2010 K	3) 1990 K	4) 2020 K					
71.	At 27°C for the rea	action $A \rightarrow B \rightarrow B$	the value of \mathbf{AG}^0 is z	ero. Then the value of the					
, 1.	equilibrium consta			cro. men die value of the					
	1) 2.5×10^{-3}	2) 10 ⁻²	3) 1	4) 100					
72.	,		,	ut by the following shown					
	path $A \rightarrow C \rightarrow D$		Given $\Delta S_{A \rightarrow C} = 50 eu$;						
	1		Given $\Delta S_A \rightarrow C^{-1}$	<i>3</i> 0 CU <i>7</i>					
	$\Delta S_{C \rightarrow D} = 30 eu;$	$\Delta S_{B \to D} = 20 eu$							
	Where eu is entropy unit, then $\Delta S_{A ightarrow B}$ is								
	1) +100eu	2) +60eu	3) –100eu	4) -60eu					
			,						

EXERCISE - I ANSWERS

WORK SHEET - I

1) 1	2) 3	3) 3	4) 3	5) 2	6) 2	7) 1	8) 4	9) 1	10) 1
11) 2	12) 2	13) 4	14) 3	15) 1	16) 2	17) 3	18) 1	19)1	20) 2
21) 4	22) 3	23) 1	24) 4	25) 2	26) 3	27) 4	28) 1	29) 3	30) 2
31) 1	32) 4	33) 4	34) 2	35) 2	36) 1	37) 3	38) 1	39) 1	40) 1
41) 1	42) 3	43) 3	44) 4	45)1	46) 2	47) 4	48) 1	49) 1	50) 3
51) 3	52) 4	53) 3	54) 4	55) 4	56) 2	57) 4	58) 2	59) 2	60) 1
61) 3	62) 1	63) 4	64) 4	65) 3	66) 4	67) 3	68) 3	69) 3	70) 3
71) 3	72) 3	73) 4	74) 2	75)1	76) 2	77) 3	78) 3	79) 3	80) 1
81) 3	82) 3	83) 1	84) 4	85) 1	86) 4	87) 1, 3	88) 2	89) 3	90) 2
91) 4	92) 1	93) 1	94) 2	95) 4	96) 3	97) 2	98) 2	99) 3	100) 1
101) 4	102) 2	103) 1	104) 1	105) 2	106) 1	107) 1	108) 1	109) 1	110) 1
111) 1	112) 3	113) 3	114) 1	115) 3	116) 2	117) 1	118) 3		

WORK SHEET - II

1) 2	2) 3	3) 2	4) 2	5) 3	6) 2	7) 1	8) 1	9) 1	10) 2
11) 4	12) 1	13) 2	14) 3	15) 2	16) 1	17) 1	18) 2	19) 3	20)3
21) 3	22) 3	23) 2	24) 4	25) 3	26) 4	27) 1	28) 1	29) 3	30) 4
31) 2	32) 3	33) 1	34) 4	35) 2	36) 4	37) 1	38) 2	39) 1	40) 4
41) 2	42) 2	43) 2	44) 4	45) 3	46) 1	47) 4	48) 2	49) 3	50) 3
51) 1	52) 3	53) 3	54) 1	55) 3	56) 2	57) 1	58) 2	59) 3	60) 2
61) 4	62) 1	63) 1	64) 1	65) 2	66) 1	67) 2	68) 3	69) 3	70) 3
71) 3	72) 2								

EXERCISE - I

Introduction - Characteristics of Chemical Equilibrium

- 1. Attainment of "equilibrium state" with the help of "constancy in intensity of colour" is noticed in the case of ... in a closed vessel
 - 1) Decomposition of $CaCO_3$ 2) Reaction between $N_2 \& O_2$
 - 3) Reaction between $H_2 \& I_2$

4) Decomposition of PCl_s

- 2. At low temperature, Nitrogen dioxide, a reddish brown gas gets associated to form the colourless dinitrogen tetroxide as in the reaction $2NO_{2(g)} \longrightarrow N_2O_{4(g)}$. Then at equilibrium
 - 1) There would be an increase in colour intensity
 - 2) The mixture would become colourless
 - 3) There would be a decrease in colour intensity
 - 4) There would be no change in colour intensity
- 3. In the case of $CaCO_3 \longrightarrow CaO + CO_{2'}$ attainment of equilibrium state is noticed with the help of constancy in
 - 1) $[CaCO_3]$ 2) [CaO] 3) Pressure 4) Colour
- 4. Which of the following is correct for $N_2 + 3H_2 \implies 2NH_3$

1)
$$\begin{bmatrix} C \end{bmatrix}$$
 $\begin{bmatrix} NH_3 \\ H_2 \\ N_2 \end{bmatrix}$ $\begin{bmatrix} C \end{bmatrix}$ $\begin{bmatrix} H_2 \\ N_2 \\ NH_3 \end{bmatrix}$ $\begin{bmatrix} C \end{bmatrix}$ $\begin{bmatrix} NH_3 \\ N_2 \\ H_2 \end{bmatrix}$ $\begin{bmatrix} NH_3 \\ NH_3 \\ H_3 \end{bmatrix}$ $\begin{bmatrix} NH_3 \\ NH_3 \\ NH_3 \\ H_3 \end{bmatrix}$ $\begin{bmatrix} NH_3 \\ NH_3 \\ NH_3 \\ H_3 \end{bmatrix}$ $\begin{bmatrix} NH_3 \\ NH_3 \\ NH_3 \end{bmatrix}$ $\begin{bmatrix} NH_3 \\ NH_3 \\ NH_3 \\ NH_3 \end{bmatrix}$ $\begin{bmatrix} NH_3 \\ NH_3 \\ NH_3 \\ NH_3 \end{bmatrix}$ $\begin{bmatrix} NH_3 \\ NH_3 \\ NH_3 \\ NH_3 \end{bmatrix}$ $\begin{bmatrix} NH_3 \\ NH_3 \\ NH_3 \\ NH_3 \end{bmatrix}$ $\begin{bmatrix} NH_3 \\ NH_3 \\ NH_3 \\ NH_3 \end{bmatrix}$ $\begin{bmatrix} NH_3 \\ NH_3 \\ NH_3 \\ NH_3 \\ NH_3 \end{bmatrix}$ $\begin{bmatrix} NH_3 \\ N$

- 5. $Fe^{+3}(aq)+SCN^{-}(aq) \xrightarrow{} [Fe(SCN)]^{+2}(aq) \text{ is an example of }$
 - 1) Heterogeneous equilibrium
 - 2) Homogeneous equilibrium
 - 3) Reversible process that never attains equilibrium state
 - 4) Irreversible process that attains equilibrium state
- 6. Which of the following is an irreversible reaction

1)
$$PCl_5 \rightarrow PCl_3 + Cl_2$$
2) $2SO_2 + O_2 \rightarrow 2SO_3$ 3) $N_2 + 3H_2 \rightarrow 2NH_3$ 4) $2KClO_3 \rightarrow 2KCl + 3O_2$

7. An example of an irreversible reaction 1) $CH_3COOC_2H_5 + H_2O \rightarrow CH_3COOH + C_2H_5OH$ 2) $N_2 + O_2 \rightarrow 2NO$ 3) $NH_4HS \rightarrow NH_3 + H_2S$ 4) Ba

4)
$$BaCl_{2(aq)} + K_2SO_{4(aq)} \rightarrow BaSO_{4(s)} + 2KCl_{(aq)}$$

- Which of the following is a characteristic property of equilibrium?
 - 1) Number of moles of reactants and products is always equal
 - 2) Catalyst affects the equilibrium state
 - 3) It never proceeds to completion
 - 4) Rate of forward and backward reactions are not equal

8.

CHI	EMISTRY -		
9.	When a system is in equilibrium state		
	1) The concentration of products is equal to	the concentration of	the reactants
	2) The ratio of the product of active masses	of products and reac	tants is constant
	3) Number of moles of reactants and produ	icts is the same	
	4) The ratio of rate constants of the forward	l and backward react	ion is always unity
10.	Attainment of equilibrium can be noticed wi physical properties ?	th the help of constand	cy of which of the following
	1) Intensity of colour 2) Density	3) Pressure	4) All the above
11.	Change in volume of the system does not alt equilibrium ?	er the number of mole	es in which of the following
	1) $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$	2) $PCl_5(g) \rightleftharpoons PCl_5(g)$	$_{3}(g)+Cl_{2}(g)$
	3) $N_2(g)$ +3 $H_2(g)$ \rightleftharpoons 2 $NH_3(g)$	4) $SO_2Cl_2(g) \rightleftharpoons SC$	$D_2(g)+Cl_2(g)$
12.	At equilibrium state		
	1) ΔH =negative 2) ΔG =negative	3) $\Delta G = zero$	4) ΔG is positive
13.	A catalyst		
	1) Alters the equilibrium constant		
	2) Increases the equilibrium concentration of	of products	
	3) helps establishing the equilibrium quick	ly	
	4) Supplies energy to the reactants		
14.	Gas phase homogeneous equilibrium is inv	volved in one of the fo	ollowing
	1) Esterification		
	2) Haber's process		
	3) Dissociation of lime stone in a closed ve	ssel	
4 -	4) Cell reaction of Daniel cell		
15.	The following are some statements about cl	-	
	1) The rate of forward reaction is equal to the		
	2) The chemical equilibrium can be establis		•
	3) The concentration of the reactants and p	roducts remain same	with time.
	The correct statements are	2) P and C	
17	1) A and B 2) A and C The modulus $2F_2 \rightarrow 4H \ O \rightarrow F_2 O$	3) B and C	4) All A, B, C
16.	The reaction $3Fe_{(s)} + 4H_2O_{(l)} \rightleftharpoons Fe_3O_{4(s)}$		
	1) At constant pressure	2) At constant temp	
17	3) In an open vessel	4) In a closed vesse	21
17.	In the lime-kiln; the reaction $CaCO_3 \Leftrightarrow CaC$		
	1) Attains a state of equilibrium after some	time	
	2) Stops after some time		
	3) Does not take place at all		
10	4) Goes to completion eventually	to attack of the	
18.	When H_2 and I_2 are mixed and equilibrium		
	1) Amount of HI formed is equal to the amo	-	
	2) HI dissociation stops	3) the reaction stop	
			99

1)It is a heterogeneous reaction2)Backward reaction is very slow3)CO2 formed escapes out4) K_{C} (or) K_{μ} has no unit3)Chemical reaction2)Chemical equilibrium3)Chemical reaction2)Chemical equilibrium3)Chemical kinetics4)Chemical energeticsauv of mass action - K_{C} K_{p} - units - expressions & Characteristics of Equilibrium constant1.According to law of mass action, for CaCO3 \rightleftharpoons CaO+CO2 (R_{r} = Rate of forward and R_{p} = Rate of backward reactions)1) $R_{f} = K_{b}[CO2]^{-1}$ 2)1) $R_{f} = K_{b}[CaCO3]^{2}$ 3)1) $R_{f} = K_{b}[CO2]^{1}$ 2)2.As per law of mass action, for NH_{r}HS(s) \rightleftharpoons NH_{r}(g) +H_{2}S(g) ratio of rate constants of forward (K_{i}) & backword (K_{2}) reactions at equilibrium equals to1) $[NH_{4}HS]$ 2) $P_{NH_{3}} + P_{H_{2}S}$ 3) $[H_{2}S] + [NH_{3}]$ 4) $[NH_{3}] [H_{2}S]$ 3.Law of mass action is not applicable to $C_{(graphin)} \bigoplus C_{(graphin)} because$ 1)it is a physical equilibrium2)3)The process is not spontaneous3)The process is not spontaneous4)Both forms are crystalline4.Units of K_{c} for $NH_{c}COONH_{2}(s) \Longrightarrow 2NH_{3(0)} + CO_{3(0)}$ is1)No units2)2) \sqrt{X} 3) $1\sqrt{X}$ 4) $1\sqrt{X}$ 5. K_{c} for $NH_{c}COONH_{2}(s) \Longrightarrow 2NH_{3(0)} + CO_{3(0)}$ is1)No units2) </th <th>EQ</th> <th>UILIBRIUM 🖛</th> <th></th> <th></th> <th></th>	EQ	UILIBRIUM 🖛			
1)It is a heterogeneous reaction2)Backward reaction is very slow3)CO2 formed escapes out4) K_{C} (or) K_{p} has no unit3)Chemical reaction2)Chemical equilibrium3)Chemical reaction2)Chemical equilibrium3)Chemical kinetics4)Chemical energeticsauv of mass action - K_{C} K_{p} - units - expressions & Characteristics of Equilibrium constant1.According to law of mass action, for CaCO3 \rightleftharpoons CaO+CO2 (R_{1} = Rate of forward and R_{p} = Rate of backward reactions)1) $R_{r} = K_{b}[CO2]$ 2) $R_{b} = K_{b}[CaCO3]^{2}$ 3) $R_{r} = K_{b}[Co2]^{1}$ 2) $R_{b} = K_{b}[CaCO3]^{2}$ 4) $R_{c} = [CO2]^{1}$ 2)As per law of mass action, for NH_{1}HS(s) \rightleftharpoons NH_{1}(g) +H_{2}S(g) ratio of rate constants of forward (K_{c}) & backword (K_{c}) reactions at equilibrium equals to1) $[NH_{4}HS]$ 2) $P_{NH_{3}} + P_{H_{2}S}$ 3) $[H_{2}S] + [NH_{3}]$ 4) $[NH_{3}] [H_{2}S]$ 3.Law of mass action is not applicable to $C_{(genythet)} \longrightarrow C_{(denote)}$ because1)it is a physical equilibrium2)3)The process is not spontaneous3)The process is not spontaneous4)Both forms are crystalline4.Units of K_{c} for $NH_{4}COONH_{2}(s) \implies 2NH_{3(0)} + CO_{3(0)}$ is5.Unit of K_{p} for $NH_{4}COONH_{2}(s) \implies 2NH_{3(0)} + CO_{3(0)}$ is6.Unit of K_{p} for $NH_{4}COONH_{2}(s) \implies 2NH_{3(0)} + CO_{3(0)}$ is7.Law of mass action can n		4) Both forward an	nd backward reactions j	proceed with same rate	
3) CO ₂ formed escapes out 4) K _C (or) K _P has no unit When the rate of formation of reactants is equal to the rate of formation of products, this is known as 1) Chemical reaction 3) Chemical kinetics 4) Chemical equilibrium 3) Chemical kinetics 4) Chemical energetics atv of mass action - K _C K _P - units - expressions & Characteristics of Equilibrium constant 1. According to law of mass action, for CaCO ₃ ⇒ CaO+CO ₂ (R ₁ = Rate of forward and R ₈ = Rate of backward reactions) 1) R _f = K _b [CO ₂] 2) R _b = K _b [CaCO ₃] ² 3) R _f = K _f [CaO] ² 4) $\frac{R_f}{R_b} = [CO_2]^1$ 2. As per law of mass action, for NH ₁ HS(s) ⇒ NH ₂ (g) +H ₂ S(g) ratio of rate constants of forward (K ₃) & backword (K ₃) reactions at equilibrium equals to 1) [NH ₄ HS] 2) P _{NH3} + P _{H₂S 3) [H₂S] + [NH₃] 4) [NH₃] [H₂S] 3. Law of mass action is not applicable to C_(graphile) $\implies C_{(atamost)}$ because 1) it is a physical equilibrium 2) The process is not spontaneous 3) The process spontaneous 4) Both forms are crystalline 4. Units of K_c for xA(g) \implies yB (g) is lit²-mol²; then the values of x & y cannot be 1) 1, 2 2) 3, 2 3) atm³ 4) All 5. Unit of K_p for NH₄COONH₂(s) \implies 2NH_{3(g)} + CO_{2(g)} is 1) No units 2) atm² 3) atm³ 4) atm³ 5. K_c for N₂+O₂ \implies 2NO is 'X', then for NO \implies 1/2N₂ + 1/2O₂ it is 1) X² 2) \sqrt{X} 3) $\frac{1}{\sqrt{X}}$ 4) $\frac{1}{X^2}$ 7. Law of mass action can not be applied to 1) 2HI_{1(g)} \implies H_{2(g)} + H_{2(g)} 3) S_{[khombic} \implies S_{Monoclinic} 4) CaCO_{3(g)} \implies CaO_(g) + CO_{2(g)} 8. Law of mass action is applicable to 1) Homogeneous chemical equilibrium only 2) Heterogeneous chemical equilibrium only 3) Both homogeneous and Heterogeneous chemical equilibrium only 3) Both homogeneous and Heterogeneous chemical equilibrium only 4) Physical equilibrium 4) Physical equilibrium 5) change to 1/3 4) remain same}	19.	0. $CaCO_3 \rightleftharpoons CaO + CO_2$ reaction in a lime kiln goes to completion because		because	
0. When the rate of formation of reactants is equal to the rate of formation of products, this is known as 1) Chemical reaction 2) Chemical equilibrium 3) Chemical kinetics 4) Chemical energetics atw of mass action - K _C K _p - units - expressions & Characteristics of Equilibrium constant 1. According to law of mass action, for CaCO ₃ ⇒ CaO+CO ₂ (R _r = Rate of forward and R _b = Rate of backward reactions) 1) R _r = K _b [CO ₂] 2) R _b = K _b [CaCO ₃] ² 3) R _r = K _r [CaO] ² 4) $\frac{R_r}{R_b} = [CO_2]^1$ 2. As per law of mass action, for NH ₄ HS(s) ⇒ NH ₃ (g) +H ₂ (g) ratio of rate constants of forward (K ₃) & backword (K ₃) reactions at equilibrium equals to 1) [NH ₄ HS] 2. As per law of mass action is not applicable to C _{(graphilo}) ⇒ C _(dimment) because 1) [NH ₃] [H ₂ S] 3. Law of mass action is not applicable to C _{(graphilo}) ⇒ C _(dimment) because 1) it is a physical equilibrium 2) The process is not spontaneous 3. The process spontaneous 4) Both forms are crystalline 4. Units of K _c for NH ₄ COONH ₂ (s) ⇒ 2NH _{3(g)} + CO _{2(g)} is 1) 1, 2 2) 3, 2 3) 2, 3 4) All 5. Unit of K _v for NH ₄ COONH ₂ (s) ⇒ 2NH _{3(g)} + CO _{2(g)} is 1) No units 2) atm ² 3) atm ³ 4) atm ³ 5. K _v for N ₂ +O		1) It is a heterogen	eous reaction	2) Backward reactio	n is very slow
known as 1) Chemical reaction 2) Chemical equilibrium 3) Chemical kinetics 4) Chemical energetics arw of mass action - $K_{C} K_{P}$ - units - expressions & Characteristics of Equilibrium constant 1. According to law of mass action, for CaCO ₃ \rightleftharpoons CaO+CO ₂ (R_{q} = Rate of forward and R_{b} = Rate of backward reactions) 1) $R_{f} = K_{b}[CO_{2}]$ 2) $R_{b} = K_{b}[CaCO_{3}]^{2}$ 3) $R_{f} = K_{f}[CaO]^{2}$ 4) $\frac{R_{f}}{R_{b}} = [CO_{2}]^{1}$ 2. As per law of mass action, for NH ₄ HS(s) \rightleftharpoons NH ₅ (g) +H ₂ S(g) ratio of rate constants of forward (K _i) & backword (K ₃) reactions at equilibrium equals to 1) [NH ₄ HS] 2) $P_{NH_{3}} + P_{H_{2}S}$ 3) [H ₂ S] + [NH ₃] 4) [NH ₃] [H ₂ S] 3. Law of mass action is not applicable to $C_{(graphile)} \rightleftharpoons C_{(atometh)}$ because 1) it is a physical equilibrium 2) The process is not spontaneous 3) The process spontaneous 4) Both forms are crystalline 4. Units of K _c for xA(g) \rightleftharpoons yB (g) is lit ² -mol ² , then the values of x & y cannot be 1) 1, 2 2) 3, 2 3) 2, 3 4) All 5. Unit of K _µ for NH ₄ COONH ₂ (s) \rightleftharpoons 2NH ₃ (g) + CO ₂ (g) is 1) No units 2) atm ² 3) atm ³ 4) atm ³ 5. K _c for N ₂ +O ₂ \rightleftharpoons 2NO is 'X', then for NO \rightleftharpoons 1/2N ₂ + 1/2 O ₂ it is 1) X^{2} 2) \sqrt{X} 3) $\frac{1}{\sqrt{X}}$ 4) $\frac{1}{X^{2}}$ 7. Law of mass action can not be applied to 1) 2H ₁ (g) \rightleftharpoons H ₂ (g) + H ₂ (g) 2) PCI ₅ (g) \rightleftharpoons CaO ₆ (g) + CO ₂ (g) 3) S ₁ S ₁ Anongeneous and Heterogeneous chemical equilibrium only 3) Both homogeneous and Heterogeneous chemical equilibrium 4) Physical equilibrium 4) Physical equilibrium 4) Physical equilibrium 4) ChacO ₃ (g) \circlearrowright CaO ₆ (g) + CO ₂ (g) 5) Law of mass action is applicable to 1) Homogeneous and Heterogeneous chemical equilibrium only 3) Both homogeneous and Heterogeneous chemical equilibrium 4) Physical equilibrium 4) Physical equilibrium 4) CaCO ₃ (g) \circlearrowright CaO ₆ (g) + CO ₂ (g) 5) Change to 1/3 4) remain same		· <u>-</u>	-		
3) Chemical kinetics 4) Chemical energetics aw of mass action - K _C K _P - units - expressions & Characteristics of Equilibrium constant 1. According to law of mass action, for CaCO ₃ ⇒ CaO+CO ₂ (R _i = Rate of forward and R _b = Rate of backward reactions) 1) R _f = K _b [CO ₂] 2) R _b = K _b [CaCO ₃] ² 3) R _f = K _f [CaO] ² 4) $\frac{R_f}{R_b} = [CO_2]^1$ 2. As per law of mass action, for NH ₄ HS(s) ⇒ NH ₃ (g) +H ₂ S(g) ratio of rate constants of forward (K ₀) & backword (K ₂) reactions at equilibrium equals to 1) [NH ₄ HS] 2) P _{NH3} + P _{H2S} 3) [H ₂ S] + [NH ₃] 4) [NH ₃] [H ₂ S] 3. Law of mass action is not applicable to C _(graphic) ⇒ C _(diament) because 1) it is a physical equilibrium 2) The process is not spontaneous 3) The process spontaneous 4) Both forms are crystalline 4. Units of K _c for xA(g) ⇒ yB (g) is lit ² -mol ⁻² , then the values of x & y cannot be 1) 1, 2 2) 3, 2 3) 2, 3 4) All 5. Unit of K _v for NH ₄ COONH ₂ (s) ⇒ 2NH _{3(g)} + CO _{2(g)} is 1) No units 2) atm ² 3) atm ³ 4) atm ³ 5. K _c for N ₂ +O ₂ ⇒ 2NO is 'X', then for NO ⇒ 1/2N ₂ + 1/2 O _{2'} it is 1) X ² 2) \sqrt{X} 3) $\frac{1}{\sqrt{X}}$ 4) $\frac{1}{X^2}$ 7. Law of mass action can not be applied to 1) 2HI _{1(g)} ⇒ H _{2(g)} + I _{2(g)} 2) PCI _{5(g)} ⇒ PCI _{3(g)} + CI _{2(g)} 3) S _{Rbombic} ⇒ S _{Monoclinic} 4) CaCO _{3(g)} ⇒ CaO _(g) + CO _{2(g)} 3. Law of mass action is applicable to 1) Homogeneous chemical equilibrium only 2) Heterogeneous chemical equilibrium only 3) Both homogeneous and Heterogeneous chemical equilibrium only 4) Physical equilibrium 4) Physical equilibrium 4) Physical equilibrium (S) 2) be halved 3) change to 1/3 4) remain same	20.		ormation of reactants is	equal to the rate of form	nation of products, this is
aw of mass action $-K_{\mathcal{C}} K_{\mathcal{P}}$ - units - expressions & Characteristics of Equilibrium constant 1. According to law of mass action, for CaCO ₃ \rightleftharpoons CaO+CO ₂ (R_i = Rate of forward and R_b = Rate of backward reactions) 1) $R_f = K_b[CO_2]$ 2) $R_b = K_b[CaCO_3]^2$ 3) $R_f = K_f[CaO]^2$ 4) $\frac{R_f}{R_b} = [CO_2]^1$ 2. As per law of mass action, for NH ₄ HS(s) \rightleftharpoons NH ₃ (g) +H ₅ (g) ratio of rate constants of forward (K ₃) & backword (K ₃) reactions at equilibrium equals to 1) [NH ₄ HS] 2) $P_{NH_3} + P_{H_2S}$ 3) [H ₂ S] + [NH ₃] 4) [NH ₃] [H ₂ S] 3. Law of mass action is not applicable to $C_{(graphite)} \rightleftharpoons C_{(diamond)}$ because 1) it is a physical equilibrium 2) The process is not spontaneous 3) The process spontaneous 4) Both forms are crystalline 4. Units of K_c for xA(g) \rightleftharpoons yB (g) is lit ² -mol ² , then the values of x & y cannot be 1) 1, 2 2) 3, 2 3) 2, 3 4) All 5. Unit of K_p for NH ₄ COONH ₂ (s) \rightleftharpoons 2NH ₃₍₀ + CO ₂₍₀₎ is 1) No units 2) atm ² 3) atm ³ 4) atm ³ 5. K_c for N ₂ +O ₂ \Longrightarrow 2NO is 'X', then for NO \rightleftharpoons 1/2N ₂ + 1/2O _{2'} it is 1) X ² 2) \sqrt{X} 3) $\frac{1}{\sqrt{X}}$ 4) $\frac{1}{X^2}$ 7. Law of mass action can not be applied to 1) 2HI _(g) \rightleftharpoons H _{2(g)} + I _{2(g)} 2) PCI _{5(g)} \rightleftharpoons PCI _{3(g)} + CO _{2(g)} 3) S _{Rhombic} \Longrightarrow S _{Monoclinic} 4) CaCO _{3(g)} \rightleftharpoons CaO _(g) + CO _{2(g)} 8. Law of mass action is applicable to 1) Homogeneous chemical equilibrium only 2) Heterogeneous chemical equilibrium only 3) Both homogeneous and Heterogeneous chemical equilibria 4) Physical equilibrium 6. At a given temperature, for a reversible reaction, if the concentration of reactants is doubled then the equilibrium constant will 1) be doubled 2) be halved 3) change to 1/3 4) remain same		,		, 1	
1. According to law of mass action, for CaCO ₃ ⇒ CaO+CO ₂ (R ₁ = Rate of forward and R _b = Rate of backward reactions) 1) R _f = K _b [CO ₂] 2) R _b = K _b [CaCO ₃] ² 3) R _f = K _f [CaO] ² 4) $\frac{R_f}{R_b} = [CO_2]^1$ 2. As per law of mass action, for NH ₄ HS(s) ⇒ NH ₃ (g) +H ₅ (g) ratio of rate constants of forward (K _v) & backword (K ₂) reactions at equilibrium equals to 1) [NH ₄ HS] 2) P _{NH₃} + P _{H₂S} 3) [H ₂ S] + [NH ₃] 4) [NH ₃] [H ₂ S] 3. Law of mass action is not applicable to C _(graphite) ⇒ C _(diamont) because 1) it is a physical equilibrium 2) The process is not spontaneous 3) The process spontaneous 4) Both forms are crystalline 4. Units of K _c for xA(g) ⇒ yB (g) is lit ² -mol ² , then the values of x & y cannot be 1) 1, 2 2) 3, 2 3) 2, 3 4) All 5. Unit of K _p for NH ₄ COONH ₂ (s) ⇒ 2NH _{3(g)} + CO _{2(g)} is 1) No units 2) atm ² 3) atm ³ 4) atm ³ 5. K _c for N ₂ +O ₂ ⇒ 2NO is 'X', then for NO ⇒ 1/2N ₂ + 1/2 O _{2'} it is 1) X ² 2) \sqrt{X} 3) $\frac{1}{\sqrt{X}}$ 4) $\frac{1}{X^2}$ 7. Law of mass action can not be applied to 1) 2HI _(g) ⇒ H _{2(g)} + I _{2(g)} 3) S _{Rhombic} ⇒ S _{Moneclinic} 4) CaCO _{3(g)} ⇒ CaO _(g) + CO _{2(g)} 8. Law of mass action is applicable to 1) Homogeneous chemical equilibrium only 2) Heterogeneous chemical equilibrium only 3) Both homogeneous and Heterogeneous chemical equilibria 4) Physical equilibrium 6. At a given temperature, for a reversible reaction, if the concentration of reactants is doubled then the equilibrium constant will 1) be doubled 2) be halved 3) change to 1/3 4) remain same				, 0	
of backward reactions) 1) $R_f = K_b[CO_2]$ 2) $R_b = K_b[CaCO_3]^2$ 3) $R_f = K_f[CaO]^2$ 4) $\frac{R_f}{R_b} = [CO_2]^1$ 2. As per law of mass action, for NH_4HS(s) \Rightarrow NH ₃ (g) +H ₂ S(g) ratio of rate constants of forward (K _y) & backword (K _y) reactions at equilibrium equals to 1) [NH ₄ HS] 2) $P_{NH_3} + P_{H_2S}$ 3) [H ₂ S] + [NH ₃] 4) [NH ₃] [H ₂ S] 3. Law of mass action is not applicable to $C_{(graphite)} \rightleftharpoons C_{(diamont)}$ because 1) it is a physical equilibrium 2) The process is not spontaneous 3) The process spontaneous 4) Both forms are crystalline 4. Units of K _c for xA(g) \rightleftharpoons yB (g) is lit ² -mol ² , then the values of x & y cannot be 1) 1, 2 2) 3, 2 3) 2, 3 4) All 5. Unit of K _p for NH ₄ COONH ₂ (s) \rightleftharpoons 2NH _{3(g)} + CO _{2(g)} is 1) No units 2) atm ² 3) atm ³ 4) atm ³ 5. K _c for N ₂ +O ₂ \rightleftharpoons 2NO is 'X', then for NO \rightleftharpoons 1/2N ₂ + 1/2 O _{2'} it is 1) X ² 2) \sqrt{X} 3) $\frac{1}{\sqrt{X}}$ 4) $\frac{1}{X^2}$ 7. Law of mass action can not be applied to 1) 2HI _(g) \rightleftharpoons H _{2(g)} + I _{2(g)} 2) \sqrt{X} 3) $CaCO3(g) \rightleftharpoons CaO(g) + CO2(g)3) SKhombic \Leftrightarrow SMonoclinic 4) CaCO3(g) \Leftrightarrow CaO(g) + CO2(g)4. Law of mass action is applicable to1) Homogeneous chemical equilibrium only 2) Heterogeneous chemical equilibrium only3) Both homogeneous and Heterogeneous chemical equilibria4) Physical equilibrium6. At a given temperature, for a reversible reaction, if the concentration of reactants is doubledthen the equilibrium constant will1) be doubled 2) be halved 3) change to 1/3 4) remain same$	Law				
2. As per law of mass action, for NH ₄ HS(s) \rightleftharpoons NH ₃ (g) +H ₂ S(g) ratio of rate constants of forward (K ₂) & backword (K ₂) reactions at equilibrium equals to 1) [NH ₄ HS] 2) P _{NH3} + P _{H2S} 3) [H ₂ S] + [NH ₃] 4) [NH ₃] [H ₂ S] 3. Law of mass action is not applicable to C _(graphile) \implies C _(diamon4) because 1) it is a physical equilibrium 2) The process is not spontaneous 3) The process spontaneous 4) Both forms are crystalline 4. Units of K _c for xA(g) \implies yB (g) is lit ² -mol ² , then the values of x & y cannot be 1) 1, 2 2) 3, 2 3) 2, 3 4) All 5. Unit of K _p for NH ₄ COONH ₂ (s) \implies 2NH _{3(g)} + CO _{2(g)} is 1) No units 2) atm ² 3) atm ³ 4) atm ³ 5. K _c for N ₂ +O ₂ \implies 2NO is 'X', then for NO \implies 1/2N ₂ + 1/2 O _{2'} it is 1) X ² 2) \sqrt{X} 3) $\frac{1}{\sqrt{X}}$ 4) $\frac{1}{X^2}$ 7. Law of mass action can not be applied to 1) 2HH _(g) \implies H _{2(g)} + I _{2(g)} 2) PCI _{5(g)} \implies PCI _{3(g)} + CO _{2(g)} 3) S _{Rthombic} \implies S _{Monoclinic} 4) CaCO _{3(s)} \implies CaO _(s) + CO _{2(g)} 4. Law of mass action is applicable to 1) Homogeneous chemical equilibrium only 2) Heterogeneous chemical equilibrium only 3) Both homogeneous and Heterogeneous chemical equilibria 4) Physical equilibrium 9. At a given temperature, for a reversible reaction, if the concentration of reactants is doubled then the equilibrium constant will 1) be doubled 2) be halved 3) change to 1/3 4) remain same	21.	of backward react	ions)		D
(K_i) & backword (K_2) reactions at equilibrium equals to1) $[NH_4HS]$ 2) $P_{NH_3} + P_{H_2S}$ 3) $[H_2S] + [NH_3]$ 4) $[NH_3] [H_2S]$ 3.Law of mass action is not applicable to $C_{(graphile)} \bigoplus C_{(diamond)}$ because1) it is a physical equilibrium2) The process is not spontaneous3) The process spontaneous4) Both forms are crystalline4.Units of K_c for $xA(g) \bigoplus yB(g)$ is lit²-mol², then the values of x & y cannot be1) $1, 2$ 2) $3, 2$ 3) $2, 3$ 4) No units2) atm²3) atm³5.Unit of K_p for NH_4 COONH $_2(s) \bigoplus 2NH_{3(g)} + CO_{2(g)}$ is1) No units2) atm²3) atm³4) atm³5. K_c for $N_2+O_2 \bigoplus 2NO$ is 'X', then for $NO \bigoplus 1/2N_2 + 1/2 O_{2'}$ it is1) X^2 2) \sqrt{X} 3) $\frac{1}{\sqrt{X}}$ 4) $2HI_{(g)} \bigoplus H_{2(g)} + I_{2(g)}$ 2) PCI $_{5(g)} \bigoplus PCI_{3(g)} + CI_{2(g)}$ 3) S _{Rhombic} $\bigoplus S_{Monoclinic}$ 4) CaCO $_{3(s)} \bigoplus CaO_{(s)} + CO_{2(g)}$ 8.Law of mass action is applicable to1) Homogeneous chemical equilibrium only 2) Heterogeneous chemical equilibrium only3) Both homogeneous and Heterogeneous chemical equilibrium only3) Both homogeneous and Heterogeneous chemical equilibrium4) At a given temperature, for a reversible reaction, if the concentration of reactants is doubled4) be doubled2) be halved3) change to $1/3$ 4) remain same					
3. Law of mass action is not applicable to $C_{(graphite)} \longrightarrow C_{(diamont)}$ because 1) it is a physical equilibrium 2) The process is not spontaneous 3) The process spontaneous 4) Both forms are crystalline 4. Units of K_c for $xA(g) \longrightarrow yB(g)$ is lit ² -mol ⁻² , then the values of x & y cannot be 1) 1, 2 2) 3, 2 3) 2, 3 4) All 5. Unit of K_p for NH ₄ COONH ₂ (s) $\implies 2NH_{3(g)} + CO_{2(g)}$ is 1) No units 2) atm ² 3) atm ³ 4) atm ⁻³ 5. K_c for $N_2+O_2 \implies 2NO$ is 'X', then for NO $\implies 1/2N_2 + 1/2 O_{2'}$ it is 1) X^2 2) \sqrt{X} 3) $\frac{1}{\sqrt{X}}$ 4) $\frac{1}{X^2}$ 7. Law of mass action can not be applied to 1) $2HI_{(g)} \implies H_{2(g)} + I_{2(g)}$ 2) PCI _{5(g)} $\implies PCI_{3(g)} + CI_{2(g)}$ 3) S _{Rhombic} $\implies S_{Monoclinic}$ 4) CaCO _{3(s)} $\implies CaO_{(s)} + CO_{2(g)}$ 8. Law of mass action is applicable to 1) Homogeneous chemical equilibrium only 2) Heterogeneous chemical equilibrium only 3) Both homogeneous and Heterogeneous chemical equilibria 4) Physical equilibrium 9. At a given temperature, for a reversible reaction, if the concentration of reactants is doubled then the equilibrium constant will 1) be doubled 2) be halved 3) change to 1/3 4) remain same <td>22.</td> <td></td> <td>=</td> <td>•</td> <td>f rate constants of forward</td>	22.		=	•	f rate constants of forward
1) it is a physical equilibrium 3) The process spontaneous2) The process is not spontaneous3) The process spontaneous4) Both forms are crystalline4.Units of K_c for $xA(g) \longrightarrow yB(g)$ is lit ² -mol ² , then the values of $x & y$ cannot be 1) 1, 21) 1, 22) 3, 23) 2, 34) Both forms are crystalline5.Unit of K_p for $NH_4COONH_2(s) \longrightarrow 2NH_{3(g)} + CO_{2(g)}$ is 1) No units2) atm ² 3) atm ³ 4) atm ³ 5. K_c for $N_2+O_2 \longrightarrow 2NO$ is 'X', then for $NO \longrightarrow 1/2N_2 + 1/2 O_{2'}$ it is 1) X^2 1) X^2 2) \sqrt{X} 3) $\frac{1}{\sqrt{X}}$ 4) $CaCO_{3(g)} \longrightarrow CaO_{(g)} + Cl_{2(g)}$ 3) $S_{Rhombic} \longrightarrow S_{Monoclinic}$ 4) CaCO_{3(s)} \longrightarrow CaO_{(s)} + CO_{2(g)}8.Law of mass action is applicable to 1) Homogeneous chemical equilibrium only 3) Both homogeneous and Heterogeneous chemical equilibrium only 3) Both homogeneous and Heterogeneous chemical equilibria 4) Physical equilibrium6.At a given temperature, for a reversible reaction, if the concentration of reactants is doubled then the equilibrium constant will 1) be doubled2) be halved3) change to 1/34) remain same		1) [NH ₄ HS]	2) $P_{\rm NH_3} + P_{\rm H_2S}$	3) [H ₂ S] + [NH ₃]	4) [NH ₃] [H ₂ S]
3) The process spontaneous 4) Both forms are crystalline 4. Units of K_c for $xA(g) \longrightarrow yB(g)$ is lit ² -mol ⁻² , then the values of $x & y$ cannot be 1) 1, 2 2) 3, 2 3) 2, 3 4) All 5. Unit of K_p for NH ₄ COONH ₂ (s) $\implies 2NH_{3(g)} + CO_{2(g)}$ is 1) No units 2) atm ² 3) atm ³ 4) atm ³ 5. K_c for $N_2+O_2 \implies 2NO$ is 'X', then for $NO \implies 1/2N_2 + 1/2 O_{2'}$ it is 1) X^2 2) \sqrt{X} 3) $\frac{1}{\sqrt{X}}$ 4) $\frac{1}{X^2}$ 7. Law of mass action can not be applied to 1) $2HI_{(g)} \implies H_{2(g)} + I_{2(g)}$ 2) $PCI_{5(g)} \implies PCI_{3(g)} + CI_{2(g)}$ 3) $S_{Rhombic} \implies S_{Monoclinic}$ 4) $CaCO_{3(s)} \implies CaO_{(s)} + CO_{2(g)}$ 8. Law of mass action is applicable to 1) Homogeneous and Heterogeneous chemical equilibrium only 3) Both homogeneous and Heterogeneous chemical equilibria 4) Physical equilibrium 6. At a given temperature, for a reversible reaction, if the concentration of reactants is doubled then the equilibrium constant will 1) be doubled 2) be halved 3) change to 1/3 4) remain same	23.	Law of mass actio	n is not applicable to C	$C_{(\text{graphite})} \longrightarrow C_{(\text{diamon4})} be$	cause
1) $1, 2$ 2) $3, 2$ 3) $2, 3$ 4) All5.Unit of K_p for $NH_4COONH_2(s) \implies 2NH_{3(g)} + CO_{2(g)}$ is1) No units2) atm ² 3) atm ³ 4) atm ³ 5. K_c for $N_2+O_2 \implies 2NO$ is 'X', then for $NO \implies 1/2N_2 + 1/2O_{2'}$ it is1) X^2 2) \sqrt{X} 3) $\frac{1}{\sqrt{X}}$ 4) $\frac{1}{X^2}$ 7.Law of mass action can not be applied to1) $2HI_{(g)} \implies H_{2(g)} + I_{2(g)}$ 2) $PCI_{5(g)} \implies PCI_{3(g)} + CI_{2(g)}$ 3) $S_{Rhombic} \implies S_{Monoclinic}$ 4) $CaCO_{3(s)} \implies CaO_{(s)} + CO_{2(g)}$ 8.Law of mass action is applicable to1) Homogeneous chemical equilibrium only 2) Heterogeneous chemical equilibrium only3) Both homogeneous and Heterogeneous chemical equilibria4) Physical equilibrium9.At a given temperature, for a reversible reaction, if the concentration of reactants is doubled then the equilibrium constant will1) be doubled2) be halved3) change to $1/3$ 4) remain same			-	, 1	-
5. Unit of K_p for $NH_4COONH_2(s) \implies 2NH_{3(g)} + CO_{2(g)}$ is 1) No units 2) atm ² 3) atm ³ 4) atm ³ 5. K_c for $N_2+O_2 \implies 2NO$ is 'X', then for $NO \implies 1/2N_2 + 1/2O_2$, it is 1) X^2 2) \sqrt{X} 3) $\frac{1}{\sqrt{X}}$ 4) $\frac{1}{X^2}$ 7. Law of mass action can not be applied to 1) $2HI_{(g)} \implies H_{2(g)} + I_{2(g)}$ 2) $PCI_{5(g)} \implies PCI_{3(g)} + CI_{2(g)}$ 3) $S_{Rhombic} \implies S_{Monoclinic}$ 4) $CaCO_{3(s)} \implies CaO_{(s)} + CO_{2(g)}$ 8. Law of mass action is applicable to 1) Homogeneous chemical equilibrium only 2) Heterogeneous chemical equilibrium only 3) Both homogeneous and Heterogeneous chemical equilibria 4) Physical equilibrium 9. At a given temperature, for a reversible reaction, if the concentration of reactants is doubled then the equilibrium constant will 1) be doubled 2) be halved 3) change to $1/3$ 4) remain same	24.	Units of K _c for xA($(g) \implies yB(g) \text{ is lit}^2-r$	nol ⁻² , then the values of x	x & y cannot be
1) No units 2) atm ² 3) atm ³ 4) atm ³ 5. $K_c \text{ for } N_2 + O_2 \Longrightarrow 2NO \text{ is 'X', then for } NO \Longrightarrow 1/2N_2 + 1/2O_{2'} \text{ it is}$ 1) X^2 2) \sqrt{X} 3) $\frac{1}{\sqrt{X}}$ 4) $\frac{1}{X^2}$ 7. Law of mass action can not be applied to 1) $2HI_{(g)} \Longrightarrow H_{2(g)} + I_{2(g)}$ 2) $PCI_{5(g)} \Longrightarrow PCI_{3(g)} + CI_{2(g)}$ 3) $S_{Rhombic} \Longrightarrow S_{Monoclinic}$ 4) $CaCO_{3(s)} \Longrightarrow CaO_{(s)} + CO_{2(g)}$ 8. Law of mass action is applicable to 1) Homogeneous chemical equilibrium only 2) Heterogeneous chemical equilibrium only 3) Both homogeneous and Heterogeneous chemical equilibria 4) Physical equilibrium 9. At a given temperature, for a reversible reaction, if the concentration of reactants is doubled then the equilibrium constant will 1) be doubled 2) be halved 3) change to 1/3 4) remain same		1) 1, 2	2) 3, 2	3) 2, 3	4) All
5. $K_c \text{ for } N_2 + O_2 \rightleftharpoons 2\text{NO is 'X', then for NO} \rightrightarrows 1/2N_2 + 1/2O_{2'} \text{ it is}$ 1) X^2 2) \sqrt{X} 3) $\frac{1}{\sqrt{X}}$ 4) $\frac{1}{X^2}$ 7. Law of mass action can not be applied to 1) $2\text{HI}_{(g)} \rightleftharpoons \text{H}_{2(g)} + \text{I}_{2(g)}$ 2) $P\text{Cl}_{5(g)} \rightleftharpoons P\text{Cl}_{3(g)} + \text{Cl}_{2(g)}$ 3) $S_{\text{Rhombic}} \rightleftharpoons S_{\text{Monoclinic}}$ 4) $CaCO_{3(s)} \rightleftharpoons CaO_{(s)} + CO_{2(g)}$ 8. Law of mass action is applicable to 1) Homogeneous chemical equilibrium only 2) Heterogeneous chemical equilibrium only 3) Both homogeneous and Heterogeneous chemical equilibria 4) Physical equilibrium 9. At a given temperature, for a reversible reaction, if the concentration of reactants is doubled then the equilibrium constant will 1) be doubled 2) be halved 3) change to 1/3 4) remain same	25.	Unit of K_p for NH_4	$COONH_2(s) \longrightarrow 2NH_2(s)$	$H_{3(g)} + CO_{2(g)}$ is	
1) X^2 2) \sqrt{X} 3) $\frac{1}{\sqrt{X}}$ 4) $\frac{1}{X^2}$ 7.Law of mass action can not be applied to1) $2HI_{(g)} \rightleftharpoons H_{2(g)} + I_{2(g)}$ 2) $PCI_{5(g)} \rightleftharpoons PCI_{3(g)} + CI_{2(g)}$ 3) $S_{Rhombic} \oiint S_{Monoclinic}$ 4) $CaCO_{3(s)} \oiint CaO_{(s)} + CO_{2(g)}$ 3.Law of mass action is applicable to1) Homogeneous chemical equilibrium only 2) Heterogeneous chemical equilibrium only3) Both homogeneous and Heterogeneous chemical equilibria4) Physical equilibrium9.At a given temperature, for a reversible reaction, if the concentration of reactants is doubled then the equilibrium constant will1) be doubled2) be halved3) change to $1/3$ 4) remain same		1) No units	2) atm ²	3) atm ³	4) atm ⁻³
7. Law of mass action can not be applied to 1) $2HI_{(g)} \rightleftharpoons H_{2(g)} + I_{2(g)}$ 2) $PCI_{5(g)} \oiint PCI_{3(g)} + CI_{2(g)}$ 3) $S_{Rhombic} \oiint S_{Monoclinic}$ 4) $CaCO_{3(s)} \oiint CaO_{(s)} + CO_{2(g)}$ 3. Law of mass action is applicable to 1) Homogeneous chemical equilibrium only 2) Heterogeneous chemical equilibrium only 3) Both homogeneous and Heterogeneous chemical equilibria 4) Physical equilibrium 9. At a given temperature, for a reversible reaction, if the concentration of reactants is doubled then the equilibrium constant will 1) be doubled 2) be halved 3) change to $1/3$ 4) remain same	26.	$K_c \text{ for } N_2 + O_2 $	\ge 2NO is 'X', then for N	$1/2N_2 + 1/2O_2$	_{2′} it is
7. Law of mass action can not be applied to 1) $2HI_{(g)} \rightleftharpoons H_{2(g)} + I_{2(g)}$ 2) $PCI_{5(g)} \oiint PCI_{3(g)} + CI_{2(g)}$ 3) $S_{Rhombic} \oiint S_{Monoclinic}$ 4) $CaCO_{3(s)} \oiint CaO_{(s)} + CO_{2(g)}$ 3. Law of mass action is applicable to 1) Homogeneous chemical equilibrium only 2) Heterogeneous chemical equilibrium only 3) Both homogeneous and Heterogeneous chemical equilibria 4) Physical equilibrium 9. At a given temperature, for a reversible reaction, if the concentration of reactants is doubled then the equilibrium constant will 1) be doubled 2) be halved 3) change to $1/3$ 4) remain same		1) X ²	2) \sqrt{X}	3) $\frac{1}{\sqrt{y}}$	4) $\frac{1}{v^2}$
1) $2HI_{(g)} \rightleftharpoons H_{2(g)} + I_{2(g)}$ 3) $S_{Rhombic} \oiint S_{Monoclinic}$ 4) $CaCO_{3(s)} \oiint CaO_{(s)} + Cl_{2(g)}$ 3. Law of mass action is applicable to 1) Homogeneous chemical equilibrium only 2) Heterogeneous chemical equilibrium only 3) Both homogeneous and Heterogeneous chemical equilibria 4) Physical equilibrium 9. At a given temperature, for a reversible reaction, if the concentration of reactants is doubled then the equilibrium constant will 1) be doubled 2) be halved 3) change to 1/3 4) remain same	27.	I aw of mass actio	n can not be applied to	$\sqrt{\lambda}$	Λ
3) $S_{Rhombic} \Longrightarrow S_{Monoclinic}$ 4) $CaCO_{3(s)} \rightleftharpoons CaO_{(s)} + CO_{2(g)}$ 3. Law of mass action is applicable to1) Homogeneous chemical equilibrium only 2) Heterogeneous chemical equilibrium only3) Both homogeneous and Heterogeneous chemical equilibria4) Physical equilibrium4) At a given temperature, for a reversible reaction, if the concentration of reactants is doubled1) be doubled2) be halved3) change to $1/3$ 4) remain same	27.		11	2) $PCl_{-1} \rightarrow PCl_{-1}$	(+C)
 B. Law of mass action is applicable to 1) Homogeneous chemical equilibrium only 2) Heterogeneous chemical equilibrium only 3) Both homogeneous and Heterogeneous chemical equilibria 4) Physical equilibrium At a given temperature, for a reversible reaction, if the concentration of reactants is doubled then the equilibrium constant will 1) be doubled 2) be halved 3) change to 1/3 4) remain same 					
 Homogeneous chemical equilibrium only 2) Heterogeneous chemical equilibrium only Both homogeneous and Heterogeneous chemical equilibria Physical equilibrium At a given temperature, for a reversible reaction, if the concentration of reactants is doubled then the equilibrium constant will be doubled be halved change to 1/3 feature and the equilibrium constant will 	28.			1) Cu CO 3(s)	(s) 2(g)
 4) Physical equilibrium At a given temperature, for a reversible reaction, if the concentration of reactants is doubled then the equilibrium constant will 1) be doubled 2) be halved 3) change to 1/3 4) remain same 				nly 2) Heterogeneous ch	nemical equilibrium only
 At a given temperature, for a reversible reaction, if the concentration of reactants is doubled then the equilibrium constant will 1) be doubled 2) be halved 3) change to 1/3 4) remain same 		3) Both homogene	ous and Heterogeneous	s chemical equilibria	
then the equilibrium constant will1) be doubled2) be halved3) change to 1/34) remain same		, , ,			
	29.			action, if the concentrati	on of reactants is doubled
D. If $N_2+3H_2 \longrightarrow 2NH_3(I) \& N_2+3H_2 \xrightarrow{Fe} 2NH_3(II)$ are in equilibrium at same		1) be doubled	2) be halved	3) change to $1/3$	4) remain same
	30.	If $N_2 + 3H_2 \longrightarrow 2$	$2NH_3(I) \& N_2 + 3H_2 =$	$Fe \rightarrow 2NH_3$ (II) are	in equilibrium at same

temperature, then

	temperature, then 1) K_c of I = K_c of II	2) K_c of I = K_p of II	
	3) K_c of I < K_c of II	4) K_p of II > K_p of I	
31.	A vessel (1) contains 1 mole each of $N_2 \& O_2$ and another vesser (2) contains 2 mole each of $N_2 \& O_2$. Both vessels are heated to same temperature till equilibrium established in both cases. Then, correct statement is		
	1) K_c for $N_2 + O_2 \implies 2NO$ in A & B are in	n the ratio 1:2	
	2) K_p for $N_2 + O_2 \longrightarrow$ 2NO in A & B are in	n the ratio 1:2	
	3) K_c for $N_2 + O_2 2NO$ in A & B are e	qual	
	4) K_p for $N_2 + O_2 \longrightarrow 2NO$ in A & B are in	n the ratio 2:1	
32.	The reaction $H_2(g) + I_2(g) \Longrightarrow 2HI(g)$ is calculated out in a 2 litre flask at the same term	perature, the equilibriu	ım constant will be
22	1) same 2) doubled	3) halved	4) decreased
33.	The relationship between Kp and Kc is giv 1) $K_c = K_p (RT)^{Dn}$	•	
	$3) K_{c} = K_{p} + (RT)^{Dn}$	2) $K_{p} = K_{C} (RT)^{Dn}$ 4) $K_{p} = K_{C} + (RT)^{Dn}$	
34.	For the equilibrium reaction, $3Fe_{(s)} + 4H_2$	$_{2}O(g) \Leftrightarrow Fe_{3}O_{4(s)} + 4H$	$_{2(g)}$ the relation between
	K_{p} and K_{c} is		
	1) $K_{\rm p} > K_{\rm c}$ 2) $K_{\rm p} < K_{\rm c}$	i i e i i	4) $K_{p} = K_{C}$
35.	For which of the following reactions, Kp (F	$(T)^2 = Kc$	
	1) $PCl_{5(g)} \Leftrightarrow PCl_{3(g)} + Cl_{2(g)}$	2) $N_{2(g)} + 3H_{2(g)}$	\Leftrightarrow 2NH _{3(g)}
	3) $2SO_{2(g)} + O_{2(g)} \Leftrightarrow 2SO_{3(g)}$	4) $H_{2(g)} + I_{2(g)} \Leftrightarrow$	2HI _(g)
36.	1) $N_2 + 2O_2 \iff 2NO_2 K_c = 2 \times 10^{-31}$	2) 2NO \Leftrightarrow 2N ₂ + O ₂	$K_c = 2.2 \times 10^{-33}$
	3) $2N_2O_5 \iff 2N_2 + 5O_2K_c = 3.8 \times 10^{-32}$	4) $2N_2 + O_2 \Leftrightarrow 2N_2C$	$0 K_{c} = 4 \times 10^{-32}$
	From the above data, the most stable oxide	e is	
	1) NO ₂ 2) NO	3) N ₂ O ₅	4) N ₂ O
37.	The ionisation constant of H_2CO_3 as an acid the first and second ionisation constants of		
	1) $X = \frac{X_1}{X_2}$ 2) $X = \frac{X_2}{X_1}$	3) $X = X_1 X_2$	$4) X = \frac{X_1 X_2}{2}$
38.	In which of the following cases, does the re	eaction go farthest to co	mpletion
	1) $K = 10^2$ 2) $K = 10^{-2}$	3) K = 10	4) K = 1
39.	The units of equilibrium constant Kc for	the following system H	$I_{2(g)} + I_{2(g)} \Leftrightarrow 2HI_{(g)}$ is
	1) mole ⁻¹ lit 2) mol ⁻² litre	3) mole lit ⁻¹	4) no units
40.	$H_2 + I_2 \Leftrightarrow 2HI$, In this reaction,		

EQU	ILIBRIUM 🔫			+ CHEMISTRY
	1) $K_p \neq K_c$	2) $K_{p} = K_{c}$	3) $K_{p} > K_{c}$	4) $K_{p} < K_{c}$
41.				B at equilibrium is affected
	1) Temperature and	pressure	2) Temperature only	
	3) Pressure only		4) Temperature, pre	ssure and Catalyst
42.	The following are so	me statements about e	quilibrium constant.	
	1) The value of K is a	ffected by temperature		
	· –	-	ut the extent of complet	tion of reaction
	· -	onstant is affected by v	olume and pressure	
	The correct combina			
	1) A and B	2) B and C	3) C and A	4) all
43.	0	me statements about a		
	· –	re liquids and solids a	•	
	,	ctrolytes is taken as mo	5	. 1 1 .
		-	the active mass can be	taken as molarity.
	The correct combina			
4.4	1) A and B	2) B and C	3) A and C	4) A, B, C
44.	In which reaction, th at equilibrium	le concentration of pro	duct is higher than the	concentration of reactant
	1) $A \rightleftharpoons B k = 0.0$	01 2) $M \rightleftharpoons N$ $k = 10$	$3) X \rightleftharpoons Y k = 0.0$	5 4) K \rightleftharpoons P k = 0.01
45.	Which one of the fol	lowing has greater acti	ive mass	
	1) 200 gm of lime sto	ne in 2 lit vessel	2) 90 gm of CS_2 liqui	d in 100 ml vessel
	3) 56 gm of N_2 gas in		. 20	
46.			or the system $2SO_{2(g)}$ +	
	1) $K_{p}(K_{c})^{-1} < 1$	2) $K_{p}(K_{c})^{-1} > 1$	3) $K_{p}(K_{c})^{-1} = 1$	4) $K_{p} = K_{c}$
47.	For the reaction CO	$_{g_{j}}$ + $\frac{1}{2}O_{2(g)}$ \rightleftharpoons $CO_{2(g)'}$ K	$F_{\rm P}/K_{\rm C}$ is	
	1) RT	2) (RT) ⁻¹	3) (RT) ^{-1/2}	4) (RT) ^{1/2}
48.	The following are so	me statements about u	inits of Kc and Kp.	
	1) Kp has always un	its.	2) Kc has no units at	all times.
		o and Kc have no units		
	The correct set is.	\mathbf{O} \mathbf{C} 1		
40	1) A and B	2) C only	3) C and A	4) A, B, C
49.		n the two constants is	s of equilibria A and	B respectively, then the
	1) SO _{2(g)} + $\frac{1}{2}$ O _{2(g)} \Leftrightarrow S	$60_{3(g)} \rightarrow K_1$	2) $2SO_{3(g)} \Leftrightarrow 2SO_{2(g)}$	$+O_{2(g)} \rightarrow K_2$
	1) $K_1 = K_2$	2) $K_1 = \frac{1}{K_2}$	3) $K_2 = K_1^2$	4) $K_1^2 = \frac{1}{K_2}$
50	Chartin a from lateral	a of TT and the moles of		I + 2111 is established

50. Starting from 'a' moles of H_2 and 'b' moles of I_2 an equilibrium $H_2 + I_2 \Leftrightarrow 2HI$ is established

with 2x moles of HI. The equilibrium constant K_c is

1)
$$\frac{4x^2}{ab}$$
 2) $\frac{4x^2}{(a-x)(b-x)}$ 3) $\frac{2x^2}{(a-x)(b-x)}$ 4) $\frac{4x^2}{(a-2x)(b-2x)}$

51. The equilibrium constants for the reactions $Zn_{(s)} + Cu^{2+}_{(aq)} \Leftrightarrow Zn^{2+}_{(aq)} + Cu_{(s)}$; $Cu_{(s)} + 2Ag^{+}_{(aq)} \Leftrightarrow Cu^{2+}_{(aq)} + 2Ag_{(s)}$ are K_1 and K_2 respectively then the equilibrium constant for the reaction $Zn_{(s)} + 2Ag^{+}_{(aq)} \rightleftharpoons Zn^{+2}_{(aq)} + 2Ag_{(s)}$ will be $1) K_1 + K_2$ 2) $K_1 \cdot K_2$ 3) K_1 / K_2 4) $K_1 - K_2$

52. The equilibrium constant, Kp for the reaction $A \Leftrightarrow 2B$ is related to degree of dissociation α of A and total pressure P as

1)
$$\frac{4\alpha^2 P}{1-\alpha^2}$$
 2) $\frac{4\alpha^2 P^2}{1-\alpha^2}$ 3) $\frac{4\alpha^2 P^2}{1-\alpha}$ 4) $\frac{4\alpha^2 P}{1-\alpha}$

53. The following equilibria are given

$$N_2 + 3H_2 \rightleftharpoons 2NH_3; K_c = K_1; N_2 + O_2 \rightleftharpoons 2NO; K_c = K_2;$$

 $H_2 + \frac{1}{2}O_2 \rightleftharpoons H_2O; K_c = K_3$

The equilibrium constant of the reaction. $2NH_3 + \frac{5}{2}O_2 \rightleftharpoons 2NO + 3H_2O$ in terms of $K_{1'}K_2$ and K_3 is

1)
$$K_1 K_2 K_3$$
 2) $K_1 K_2 / K_3$ 3) $K_1 K_3^2 K_2$ 4) $K_2 K_3^3 / K_1$
For which of the following reactions, the degree of dissociation (α) and equilibrium

54. For which of the following reactions, the degree of dissociation (
$$\alpha$$
) and equilibrium constant

$$(K_{p}) \text{ are related as } K_{p} = \frac{4\alpha^{2}p}{(1-\alpha^{2})}$$

$$(1) N_{2}O_{4(g)} \rightleftharpoons 2NO_{2(g)}$$

$$(2) H_{2(g)} + I_{2(g)} \rightleftharpoons 2HI_{(g)}$$

$$(3) N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$$

$$(4) PCl_{3(g)} + Cl_{2(g)} \rightleftharpoons PCl_{5(g)}$$

55. The equilibrium constants for the stepwise formation of MCl, MCl₂ and MCl₃ are a, b and c respectively. If the equilibrium contant of formation of MCl₃ is K, which of the following is correct?

1) K=a+b+c
2)
$$\frac{1}{K} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$$

3) log K = log a + log b + log c
4) K = $\frac{1}{a} \times \frac{1}{b} \times \frac{1}{c}$

56. What is the equilibrium expression for the reaction, $P_{4(s)} + 5O_{2(g)} \rightleftharpoons P_4O_{10(s)}$? (AIEEE, 2004)

EQUILIBRIUM 🕶

1)
$$K_{c} = \frac{[P_{4}O_{10}]}{[P_{4}][O_{2}]^{5}}$$
 2) $K_{c} = \frac{1}{[O_{2}]^{5}}$ 3) $K_{c} = [O_{2}]^{5}$ 4) $K_{c} = \frac{[P_{4}O_{10}]}{5[P_{4}][O_{2}]}$

57. For the reaction $CO_{(g)} + Cl_{2(g)} \rightleftharpoons COCl_{2(g)}$. The K_p / K_c is equal to

1)
$$\frac{1}{RT}$$
 2) 1.0 3) \sqrt{RT} 4) RT

58. PCl_5 dissociates as follows in a closed reaction vessel $PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$. If total pressure at equilibrium of the rea-ction mixture is P and degree of disso-ciation of PCl_5 is x, the partial pressure of PCl_3 will be

1)
$$\left[\frac{x}{x-1}\right]P$$
 2) $\left[\frac{x}{1-x}\right]P$ 3) $\left[\frac{x}{x+1}\right]P$ 4) $\left[\frac{2x}{1-x}\right]P$

Lechatelier Principle - applications - Miscellaneous

59. High temperature and high pressure (as per Lechatelier principle) favour

1) N_2 +3 H_2 \longrightarrow 2 NH_3 , $DH = -Q_1$	2) $CaCO_3 \longrightarrow CaO + CO_2 DH = +Q_2$
3) $3O_2 2O_{3'} DH = +Q_3$	4) $N_2 + O_2 2NO, DH = +Q_4$
For CaCO ₃ (s) \longrightarrow CaO(s)+CO ₂ (g), Δ H=	+Q at equilibrium, to shift equilibrium towards

For CaCO ₃ (s) \longrightarrow CaO(s)+CO ₂ (g), Δ H= +Q at equilibrium, to shift equilibrium towards			
right,			
1) $[CO_2]$ should be inc	reased	2) $[CO_2]$ should be de	creased
3) Pressure should be	increased	4) Temperature shoul	ld be decreased
	5		
1) LT ; LP	2) LT ; HP	3) HT ; HP	4) HT ; LP
2 2 3	5 -		e which of the following
1) Adding more O ₂	2) Removing SO_3	3) Applying high P	4) Change of catalyst
1) A, B, C, & D	2) A, B & D	3) A & D	4) A, B & C
I) $H_2O(l) \longrightarrow H_2O(g)$	II) $I_2(s) I_2(vap)$	III) $H_2O(l) \longrightarrow H_2O(s)$	(aq) IV) $CO_2(g) CO_2(aq)$
Rise of T shifts equilil	orium towards right ir	the case of	
1) I & IV	2) II, III & IV	3) I & II	4) I, II & III
$K_c \text{ for } H_2 + 1/2 O_2 =$	H_2O at 500 K is 2.4 x	1047, Now backward re	action is fovoured by
1) High P	2) High T	3) Presence of Pt	4) Addition of He(g)
With increase in temp	perature, the value of e	quilibrium constant	
1) Increases		2) Decreases	
3) May increase or de	crease	4) Remains constant	
	1) $[CO_2]$ should be inc 3) Pressure should be As per Braun's princip conditions (L=Low ; 1) 1) LT ; LP For $2SO_2+O_2 \implies 22$ changes favours forw 1) Adding more O_2 1) A, B, C, & D I) H ₂ O(I) \implies H ₂ O(g) Rise of T shifts equilit 1) I & IV K _c for H ₂ +1/2 $O_2 \implies$ 1) High P With increase in temp 1) Increases	1) $[CO_2]$ should be increased 3) Pressure should be increased As per Braun's principle, yield of Ammonia v conditions (L=Low ; H = high, T = Temp, F 1) LT ; LP 2) LT ; HP For $2SO_2+O_2 \implies 2SO_3$, $\Delta H = -QKJ$, as per- changes favours forward reaction yielding r 1) Adding more O_2 2) Removing SO_3 1) A, B, C, & D 2) A, B & D I) H ₂ O(I) \implies H_2O(g) II) I_2(s) \implies I_2(vap) Rise of T shifts equilibrium towards right in 1) I & IV 2) II, III & IV K _c for H ₂ +1/2 $O_2 \implies H_2O$ at 500 K is 2.4 x 1 1) High P 2) High T With increase in temperature, the value of en-	1) $[CO_2]$ should be increased2) $[CO_2]$ should be de3) Pressure should be increased4) Temperature shouldAs per Braun's principle, yield of Ammonia will be more in Haber's conditions (L=Low; H = high, T = Temp, P = Pressure)1) LT; LP2) LT; HP3) HT; HPFor $2SO_2+O_2 \longrightarrow 2SO_3$, $\Delta H = -QKJ$, as per Lechatelier's principle changes favours forward reaction yielding more SO_3 1) Adding more O_2 2) Removing SO_3 3) Applying high P1) A, B, C, & D2) A, B & D3) H2Q(I) $\longrightarrow H_2O(g)$ II) $I_2(s) \longrightarrow I_2(vap)$ III) $H_2O(I) \longrightarrow H_2O(g)$ II) $I_2(s) \longrightarrow I_2(vap)$ Rise of T shifts equilibrium towards right in the case of1) I & IV2) II, III & IV3) I & II K_c for $H_2+1/2O_2 \longrightarrow H_2O$ at 500 K is 2.4×10^{47} , Now backward re1) High P2) High T3) Presence of PtWith increase in temperature, the value of equilibrium constant1) Increases2) Decreases

66. With increase in temperature generally the value of the equilibrium constant of endothermic104

CHE	MISTRY	
•	reversible reaction	
	1) Increases	2) Decreases
	3) Change can not be predicated	4) Does not change
67	For a given reaction Vn < Va Increases	f musseums formation

- 1) the backward reaction 2) no reaction
- 3) the forward reaction

4) both forward and backward reaction equally

- 68. Le chatelier's principle is applicable to
 - 1) Chemical equilibria only 2) Physical equilibria only
 - 3) Both physical and chemical equilibria 4) Gaseous systems only
- 69. Increase of pressure favours the forward reaction in the following equilibrium

1) $H_{2(g)} + I_{2(g)} \rightleftharpoons 2HI_{(g)}$	2) $2NO_{2(g)} \rightleftharpoons N_2O_{4(g)}$
3) $PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$	4) $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$

In the equilibrium $\mathrm{NH}_4\mathrm{HS}_{(s)} \Leftrightarrow \mathrm{NH}_{3(g)} + \mathrm{H}_2\mathrm{S}_{(g)}$ The forward reaction can be favoured by 70.

- 1) Adding some more NH₄HS 2) Adding some more NH_2
- 3) Removing some Ammonia from the reaction mixture
- 4) Adding some more H₂S
- 71. In the dissociation of CaCO₃ in a closed vessel, the forward reaction is favoured by 1) adding some more $CaCO_3$ 2) removing some CaO 3) increasing the pressure 4) removing CO_{2}

72. The following are some statements regarding dissociation of lime stone according to the equation $CaCO_{3(s)} \rightleftharpoons CaO_{(s)} + CO_{2(g)}$; $\Delta H = 110$ k.J. the reaction is carried in a closed vessel.

A)The pressure of CO₂ increases when temperature is increased.

- B)The pressure of CO₂ increases when temperature is decreased.
- 3) The pressure of CO₂ increases when amount of $CaCO_3$ is decreased.

The incorrect statements are.

1) A and B 2) B and C 3) A and C 4) All A, B, C

- 73. Acetic acid dissociates as $CH_3COOH \Leftrightarrow CH_3COO^- + H^+$. If a little amount of sodium acetate is added to its aqueous solution 1) The acid dissociates further 2) The H⁺ ion concentration increases
 - 3) The acid dissocitaion is suppressed 4) The equilibrium is unaffected
- $N_{2(g)} + 3H_{2(g)} \Leftrightarrow 2NH_{3(g)}$. If some HCl gas is passed into the reaction mixture at the 74. equilibrium of this reaction, 1) Equilibrium shifts towards left 2) Equilibrium shifts towards right 4) The equilibrium is not affected 3) Concentration of H₂ increases 75. K_c value of a gaseous reaction is 5mole / lit. If pressure is increased
 - 1) Forward reaction is favoured 2) Backward reaction is favoured 3) Reaction is uneffected

EQUILIBRIUM

EQU	ILIBRIUM	CHEMISTRY
76.	In a reversible reaction $K_c > K_p$ and $\Delta H = + 4$ amount on	40 K.Cal . The product will be obtained in less
	1) Increasing both pressure & temperature	2) Decreasing both pressure & temperature
	3) Decreasing pressure & increasing tempera	
	4) Increasing pressure & decreasing tempera	
77.	For the physical equilibrium ice \Leftrightarrow water, the second se	
	1) Increasing pressure	2) Increasing temperature
	3) Keeping in contact with hot water	4) Taking more ice
78.		$D_2 + H_2O \rightleftharpoons H_2CO_3 \rightleftharpoons H^+ + HCO_3^-$ then for
	the system	
	1) p^{H} decreases 2) p^{H} increases	, , _
79.	A reaction $N_2 + 3H_2 \rightleftharpoons 2NH_3 + 92$ k.j is at equ the temperature of the system	ilibrium. If the concentration of $\mathrm{N_2}$ is increased
	1) decreases 2) increases	3) remains constant 4) becomes half
80.	In the reversible reaction $CaF_{2(s)} \rightleftharpoons Ca^{+2}_{(aq)}$ made halved, then equilibrium concentration	+ $2F_{(aq)'}^{-}$ the concentration of fluoride ions was n of Ca^{+2}
	1) increases by 2 times	2) decreases by 2 times
	3) increases by 4 times	4) decreases by 4 times
81.	$A_{(s)} + B_{(s)} + heat \rightleftharpoons 2C_{(s)} + 2D_{(g)}$. At equil	ibrium the pressure of 'B' is doubled. By what
	factor the concentration of 'D' should change	e to reattain the equilibrium
	1) $\sqrt{2}$ 2) 2	3) 3 4) $\sqrt{3}$
82.	For the reaction $PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$ to favoured by 1) Introduction of an inert gas at constant volume 2) Introduction of $PCl_{3(g)}$ at constant volume	the forward reaction at constant temperature is lume
	3) Introduction of $PCl_{5(g)}$ at constant volume	4) Introduction of Cl_{α} at constant volume
83.	In the reaction $N_{2(g)} + O_{2(g)} \rightleftharpoons 2NO_{(g)}; \Delta H$	
00.	On increasing the temperature the production $\frac{1}{2(g)} = \frac{1}{2(g)} = \frac{1}{2(g)}$	
	1) Increases 2) Decreases	3) Remains constant 4) Cannot be predicted
84.	Consider the reaction equilibrium, $2SO_{2(g)}$ + basis of Le Chatelier's principle, the condition 1) Lowering of temperature as well as pressed 2) Increasing of temperature as well as pressed 3) Lowering of temperature and increasing of	+ $O_{2(g)} \rightleftharpoons 2SO_{3(g)}; \Delta H^{\circ} = -198 \text{kJ}$. On the on favourable for the forward reaction is are ure
	4) Any value of temperature and pressure	
85.	The gaseous reaction $A + B \rightleftharpoons 2C + D + q B$	
	 High temperature and low pressure Low temperature and high pressure 	2) Low temperature and low pressure4) High temperature and high pressure

CHE	EMISTRY			→ EQUILIBRIUM
86.	Exothermic formation	represented by equa	tion $\operatorname{Cl}_2(g) + 3F_2$	(g) \rightleftharpoons 2ClF ₃ (g), Δ H = -339 KJ.
	Which of the following will increase the quantity of ClF_3 in equilibrium mixture ?			equilibrium mixture ?
	1) Increasing temperat	ure	2) Removing	Cl ₂
	3) Increasing volume of	of vessel	4) Adding F_2	
Asser	tion and Reason Type Qu	estions		
	Choose the correct opt	ion as :		
	1) both A & R are true,	R is the correct expl	anation of A	
	2) both A & R are true,	R is not correct exp	lanation of A	
	3) A is true, R is false		4) A is false,	R is true
87.	Assertion : Introduction	•	-	-
	Reason : For a reversib reaction reacts to s	-	of a catalyst infl	uences both forward & backward
88.	Assertion : For Zn(s) +	$Cu^{+2}(aq) Zn^{+}$	² (aq) +Cu(s), DC	$G = 0$, but $K_{C} = 10^{37}$
	Reason : For a process proceeds more tov	_	Gibb energy ch	ange is zero, but as this process
89.	Assertion: For N_2 +3 H_2	\rightarrow 2NH ₃ , DH =	-Q KJ, high pres	ssure yields more Ammonia
		o Lechatlier's princi ceeds in decrease in r		pressure shifts equilibrium in a s.
90.	Assertion : The degree	of decomposition o	f PCl ₅ is more at	low pressures.
		le reaction, on incre decrease in volume	<u> </u>	ure the equilibrium shifts in the
91.	Assertion : $N_{2(g)} + 3H$	$f_{2(g)} \rightleftharpoons 2NH_{3(g)}$ In t	his equilibrium	system, the yield of ammonia is
		presence of a catalys		
	Reason : A catalyst do	• -	-	
92.	A:The hydrolysis of ar			• -
00			-	ictions taking place in solution.
93.	after sometime. Th	nis colourless gas wi	ll be	n at 0°C which becomes colourless
	1) NO ₂	2) N ₂ O	3) N ₂ O ₄	4) $N_2 O_5$
94.	In the case of gaseous l the expression	nomogeneous reacti	on, the active ma	ass of the reactant is obtained by <i>[TN-2002]</i>
	1) $\frac{PV}{RT}$	2) $\frac{P}{RT}$	3) $\frac{\text{RT}}{\text{P}}$	4) $\frac{n}{V}RT$
95.	Under what conditions molecular hydrogen w		pressure the for	mation of atomic hydrogen from
	1) High temperature a		2) Low temp	erature and low pressure
	3) High temperature a	nd low pressure	4) Low temp	erature and high pressure
96.	Of the following, whic	-		• -
	$I_2(g) 2I(g) \Delta H^o_f$	(298K) = +150kJ		
	1) Increase in concentr	ation of I	2) Decrease i	n concentration of I ₂
				107

EQU	JILIBRIUM ┥		
	3) Increase in temperature	4) Increase in total pressure	
97.	At constant temperature, the equilibrium	constant (Kp) for the decomposition reaction	
	$N_2O_4 2NO_2$ is expressed by $K_p = 4x^2$	2 P/(1-x ²) where P is pressure, x is extent of	
	decomposition. Which of the following stat	ement is true?	
	1) K _p increases with increase of P	2) K_p increases with increase of x	
	3) K_{p} increases with decrease of x	4) $\dot{K_p}$ remains constant with change in P or x	
98.	Consider the following equilibrium PCl ₅ (g)	$\operatorname{Im} \operatorname{PCl}_{s}(g) \rightleftharpoons \operatorname{PCl}_{3}(g) + \operatorname{Cl}_{2}(g)$ in a closed container. At a	
	fixed temperature, the volume of the reaction	on container is halved. For this change, which of	
	the following statements holds true regard	ing the equilibrium constant (K_p) and degree of	
	dissociation(α)?		
	1) Neither K_{p} nor α changes	2) Both K_p and α change [IIT -2002]	
	3) K_p changes, but α does not change	4) K_p does not change, but α changes	
	1	1	

WORK SHEET - II

Active mass - K_C , K_P relationship

1. What is the equation for the equilibrium constant (K_3) for the following reaction?

$$\frac{1}{2}A(g) + \frac{1}{3}B(g) \xrightarrow{T(K)} \frac{2}{3}C_{(g)}$$
1) $K_{c} = \frac{\left[A\right]^{\frac{1}{2}}\left[B\right]^{\frac{1}{3}}}{\left[C\right]^{\frac{3}{2}}}$
2) $K_{c} = \frac{\left[C\right]^{\frac{3}{2}}}{\left[A\right]^{2}\left[B\right]^{3}}$
3) $K_{c} = \frac{\left[C\right]^{\frac{2}{3}}}{\left[A\right]^{\frac{1}{2}}\left[B\right]^{\frac{1}{3}}}$
4) $K_{c} = \frac{\left[C\right]^{\frac{2}{3}}}{\left[A\right]^{\frac{1}{2}} + \left[B\right]^{\frac{1}{3}}}$
Active mass of 5.6 lit N₂ at STP
1) 22.4M
2) 0.25M
3) $\frac{1}{22.4}M$
4) 4M
Active mass of 0.64 g SO₂ in 10 lit vessel is

- 1) 10^{-2} M2) 10^{-3} M3) 10^{-1} M4) 0.64g4. K_p/K_c for $N_2+3H_2 \rightleftharpoons 2NH_3$ (gaseous phase) at 400 K is
 - 1) 400 R 2) $(400R)^2$ 3) $(400R)^{-2}$ 4) $(127)^{-2}$

5. $K_c \text{ for } N_2 + O_2 \stackrel{\longrightarrow}{\longrightarrow} 2NO \text{ at certain temperature is } 1.6 \times 10^{-3}, \text{ then } K_p \text{ for } NO \stackrel{\longrightarrow}{\longrightarrow} 1/2N_2 + 1/2O_2$ at same temperature will be 1) 25 2) 25 atm 3) 5 atm 4) $1.6 \times 10^{-3} \text{ atm}^{-1}$

6. The equilibrium constant for the given reaction $N_{2(g)} + 2O_{2(g)} \implies 2NO_{2(g)}$ is 100. What is the equilibrium constant for the reaction given below :

$$NO_{2(g)} \xrightarrow{1}{2} N_{2(g)} + O_{2(g)}$$
1) 10 2) 1 3) 0.1 4) 0.01

7. Equilibrium constant for the gaseous reaction $N_2+O_2 \rightleftharpoons 2NO$ is $4x10^4$. Now K_c for

108

2.

3.

CHE	MISTRY				
L	NO \implies 1/2N,+1/2O, at same temperature is				
	1) $2.5x \ 10^2$ 2) 0.02 3) $4x \ 10^{-4}$	4) 50			
Calcul	Calculation of $K_C \otimes K_p$				
8.	When the molar concentrations of $SO_{2'}O_2$ and SO_3 at equilbrium	n at certain temperature are			
	0.5, 0.25 & 0.25M respectively, K_c for $2 SO_3 \rightleftharpoons 2SO_2 + O_2$ is				
	1) 1 lit-mol ⁻¹ 2) 1 lit ² -mol ⁻² 3) 1 mol-lit ⁻¹	4) 1 mol ² -lit ⁻²			
9.	At certain temperature, a 10 lit vessel contains 0.4 mole $H_{2'}$ 0	.4 mole $I_2 \& 0.1$ mole HI at			
	equilibrium. Then K_p for $H_2+I_2 \longrightarrow 2HI$ is				
	1) 16 2) 0.0625 3) 4	4) Data insufficient			
10.	For the gaseous phase reaction $2A+B \Longrightarrow 2C+D$, initially there a	re 2 mole each of A&B. If 0.4			
11.	mol of D is present at equilibrium at a given T & P, <u>in-correct</u> ref 1) $P_A < P_B \& P_D < P_C$ 2) $P_A = P_C \& P_B = P_D$ 3) $P_C = 2P_D \& P_A = 3P_B/4$ 4) $P_A > P_D \& P_B > P_C$ 2 mole each of CH ₃ OH & CH ₃ COOH are taken and heated in the p equilibrium is established. If K_C for esterfication process is a equilibrium (in gm) is	presence of $conH_2SO_4$ so that			
	1) 98.4 2) 56.3 3) 224.0	4) 37.2			
12.	A mixture of 2 moles of N_2 and 8 moles of H_2 are heated in a 2 established. At equilibrium, 0.4 moles of N_2 was present. The equilibrium will be				
	1) 2 mole/lit 2) 4 mole/lit 3) 1.6 mole/lit	4) 1 mole/lit			
13.	For the reaction $C(s) + CO_2(g) \Leftrightarrow 2CO(g)$, the partial pressure 4.0 atm respectively at equilibrium. What is the value of Kp 1998)	for this reaction? (Eamcet			
	1) 0.5 2) 4.0 3) 8.0	4) 32			
14.	The equilibrium constant for the reaction $H_{2(g)} + I_{2(g)} \Leftrightarrow 2HI_{(g)}$ The equilibrium concentrations of H_2 and HI are 2 mole.lite concentration(in mole.lit ¹) of I_2 ? 1) 16 2) 4 3) 8				
15.	For the gaseous reaction $3H_2 + N_2 \Leftrightarrow 2NH_3$, the equilibrium p	ressures of H ₂ and N ₂ are			
	0.4 atm and 0.8 atm respectively. The total pressure of the equilibralue of $K_{\!_{\rm p}}$ is	prium system is 2.8 atm. The			
16.	1) 50 2) 5.0 3) 5.0×10^2 Initially 0.8 mole of PCl ₅ and 0.2 mole of PCl ₃ are mixed in one litt	/			
10.	mole of PCl ₃ is present. The value of K _C for the reaction PCl _{5(g)}				
	1) 0.13 molL ⁻¹ 2) 0.05 molL ⁻¹ 3) 0.065 molL ⁻¹				
17.	The compounds A and B are mixed in equimolar proport	'			
	A+B C+D. At equilibrium, one third of A and B are consum	ed. The equilibrium constant			
	for the reaction is				
10	1) 0.5 2) 4.0 3) 2.5 East the base that is a second set (10) and 100 millions of (10) and 100 million	4) 0.25			
18.	For the hypothetical reactions, the equilibrium constant (K) values $A \longrightarrow B: K = 20$ $B \longrightarrow C: K = 40$ $C \longrightarrow D: K = 30$				
	$A \underbrace{\longrightarrow} B; K_1 = 2.0 \qquad B \underbrace{\longrightarrow} C; K_2 = 4.0 \qquad C \underbrace{\longrightarrow} D; K_3 = 3.0$				

EQU	ILIBRIUM 🔫 🛶			
	The equilibrium cons	stant for the reaction A	<u>→</u> D is	
	1) 48	2) 6	3) 24	4) 12
19.				blished at 819 K. If K_p for
	$CaCO_3 \rightleftharpoons CaO+CO$	$_2$ at this temperature is 2	2 atm, equilibrium conc	centration of CO_2 (in mol-
	lit ⁻¹)			
	1) 1/3	2) 1/11.2	3) 1/33.6	4) 1/22.4
20.	equilibrium concentr	ration of HI is 0.05 M, to	otal number of moles p	librium is reached. If the resent at equilibrium is
	1) 3.25	2) 1.75	3) 2.25	4) 2.5
21.	reacts by the time equ	uilibrium is reached, the	e equilibrium pressure	
	1) Data insufficient	2) 180 atm	3) 170 atm	4) 160 atm
22.	At a given temperatu	re, Kc is 4 for the react	ion $H_{2(g)} + CO_{2(g)} \Leftrightarrow I$	$H_2O_{(g)} + CO_{(g)}$. Initially
	0.6 moles each of H_2 a is	and CO_2 are taken in 11i	t flask. The equilibriur	n concentration of $H_2O_{(g)}$
	1) 0.4M	2) 0.46M	3) 0.2M	4) 0.8 M
23.	One mole of $A_{(g)}$ is heated to 300°C in a closed one litre vessel till the following equilibrium is reached. $A_{(g)} \Leftrightarrow B_{(g)}$. The equilibrium constant of the reaction at 300°C is 4. What is the conc. of B (in. mole. lit ⁻¹) at equilibrium ?			
	1) 0.2	2) 0.6	3) 0.8	4) 0.1
24.		-	-	a 10 lit vessel at 500ºC. If
	$K_{C} \text{ of } H_{2} + I_{2} \Leftrightarrow 2H$	II is 64, the amount of	unreacted I ₂ at equilibr	rium is
	1) 0.15 mole	2) 0.24 mole	3) 0.03 mole	4) 0.06 mole
25.	-			N2 and 2 mole of H_2 are n. Then Kc for the above
	1) 4	2) 8	3) 16	4) 32
26.	The reversible reaction		(-)	$SO_{3(g)} + NO_{(g)} \dots \dots \dots \dots (1)$
	takes place in two re-	versible steps (2 and 3)	with equilibrium cons	stant values 2.0 and 0.45
	respectively	$SO_{2(g)} + \frac{1}{2}O_{2(g)} \Leftrightarrow S$	$O_{3(g)}, K = 2.0(2)$	2)
		$2O_{2(g)}, K = 0.45(3)$) The equilibrium con	stant K_{c} for the reaction
	(1) is	o) a cos	\sim	
	1) 0.9	2) 0.225	3) 4.44	4) 1/9
27.	concentration of C i	s half the initial concer	ntration of A. The equ	
20	1) 1	2) 1/4	3) 9	4) 1/9
28.	dissocitated at equili	brium the ' K_p ' value is		19° C. If 50% of CaCO ₃ is
	1) 5 atm	2) 1.6 atm	3) 4.8 atm	4) 10 atm
29.				wo times that of 'A'. But K _c for the above system
	1) 0.18	2) 0.11	3) 0.27	4) 1
	-,	_, ••••	-,	- <i>)</i> -

CHE	MISTRY	
30.	At a certain temperature, the degree of dissociation of PCl_5 was	found to be 0.25 under a
	total pressure of 15 atm. The value of Kp for the dissociation of PC	· · ·
	1)1 2) 0.25 3) 0.5	4) 0.75
31.	$A(g)+3B(g) \longrightarrow 4C(g)$ Initial concentration of A is equal to th concentration of A and C are equal. K _c is equal to,	at of B. The equilibrium
	1) 0.08 2) 8 3) 1/8	4) 80
32.	At constant temperature 80% AB dissociates into A_2 and B_2 , then for $2AB_{(g)} \rightleftharpoons A_{2(g)} + B_{2(g)}$ is	the equilibrium constant
	1) 1 2) 0.25 3) 16	4) 4
33.	HI was heated in a sealed tube at 440°C till the equilibrium was rea 22% decomposed. The equilibrium constant for the dissociation of	
	1) 0.282 2) 0.0796 3) 0.0199	4) 1.99
34.	$\mathrm{N_2O_4}$ at an initial pressure of 2atm. and 300K dissociates to an ex	xtent of 20% at the same
	temperature by the time equilibrium is established. Kp for the read	ction $2NO_2 \rightleftharpoons N_2O_4$ is
	1) 0.4 2) 0.8 3) 2.5	4) 1.6
35.	2 mole of PCl_5 is heated in a one litre vessel. If PCl_5 dissociates equilibrium constant for the dissociation of PCl_5 is	to the extent of 80%, the
	1) 2 ´ 10 ⁻² 2) 6.4 3) 0.67	4) 0.32
36.	The initial concentrations of A and B are same for A = 2B \rightleftharpoons 30 concentrations of B and C are same then K _c is	C and when equilibrium
	1) 0.25 2) 0.75 3) 0.5	4) 1
37.	For the reaction $N_2O_4 \rightleftharpoons 2NO_{2(g)}$, the degree of dissociation at e Then Kp will be	quilibrium is 0.2 at 1 atm.
	1) 1/2 2) 1/4 3) 1/6	4) 1/8
38.	A vessel at 1000 K contains CO ₂ with a pressure of 0.5 atm. Some of on addtion of graphite. The value of 'K' at equilibrium when total p	
	1) 0.18 atm 2) 1.8 atm 3) 2 atm	4) 1 atm
39.	1.2 moles of SO ₃ are allowed to dissociate in a 2 litre vessel the react $O_{2(g)}$ and the concent ration of oxygen at equilibrium is 0.1 mole per of moles at equilibrium will be	tion is $2SO_{3(g)} \Leftrightarrow 2SO_{2(g)} +$ er litre. The total number
	1) 2 2) 1.4 3) 0.8	4) 1.6
40.	$3C_2H_2 \Leftrightarrow C_6H_6$ the above reaction is performed in a 1 lit vessel. Each when 0.5 mole of benzene is present at certain temperature. If equipmole ⁻² . The total number of moles of the substances present at equipmole ⁻² .	iilibrium constant is 4 lit ²
	1) 0.5 2) 1 3) 1.5	4) 2
41.	1.0 mole of ethyl alcohol and 1.0 mole of acetic acid are mixed. At ea ester is formed. The value of equilibrium constant is	quilibrium, 0.666 mole of
	1) 1/4 2) 1/2 3) 4	4) 3
42.	Kp value for $2SO_{2(g)} + O_{2(g)} \Leftrightarrow 2SO_{3(g)}$ is 5.0 atm ⁻¹ . What is pressure of O ₂ if the equilibrium pressures of SO ₂ and SO ₃ are equ	
	1) 0.2 2) 0.3 3) 0.4	4) 0.1 atm
43.	For the following reaction $NH_4 HS_{(s)} \rightleftharpoons NH_{3(g)} + H_2S_{(g)}$, the tota is 30 atm. The value of Kp is	

EQU	EQUILIBRIUM CHEMISTRY					
44.	1) 15 atm² A vessel contains N	_)	,	4) 15 atm equilibrium. Now, K _p for		
	$N_2O_4 \rightleftharpoons 2NO_2$ is					
	1) 9 atm	2) 9 atm ⁻¹	3) 4.5 atm ²	4) 10 atm		
45.		mole PCl_5 (g) at 4 atm e of mixture is (assume		ned at equilibrium. Now,		
	1) 16 atm	2) 6 atm	3) 2 atm	4) 4.5 atm		
46.	P_{eq} for NH ₄ COONH ₂ (s) \rightleftharpoons 2NH ₃ (g) + CO ₂ (g) at certain temperature is 0.9 atm. Then, partial pressure of Ammonia at equilibrium (in atm)					
	1) 0.9	2) 0.81	3) 0.03	4) 0.6		
47.		ms of H ₂ were heated in the approximate value o		At equilibrium, 25.5 gms		
	1) 5.55	2) 21.33	3) 2.54	4) 3.16		
48	For the following th	ree reactions a,b and c e	equilibrium constant ar	e given (AIEEE - 2008)		
	1) $CO_{(g)} + H_2O_{(g)} =$	$\Rightarrow \operatorname{CO}_{2(g)} + \operatorname{H}_{2_{(g)}}; K_1$	2) $CH_{4(g)} + H_2O_{(g)} =$	$\rightleftharpoons CO_{(g)} + 3H_{2_{(g)}}; K_2$		
	3) $CH_{4(g)} + 2H_2O_{(g)}$	\Rightarrow CO _{2(g)} + 4H _{2(g)} ; K	³ Which of the followi	ng relations is correct?		
	1) $K_2 K_3 = K_1$	2) $K_3 = K_1 K_2$	3) $K_3 \cdot K_2^3 = K_1^2$	4) $K_1 \sqrt{K_2} = K_3$		

49. In a 500 ml flask, the degree of dissociation of PCl_5 at equilibrium is 40% and the initial amount is 5 moles. The value of equilibrium constant in mole lit⁻¹ for the decomposition of PCl_5 is(E-08)

1) 3.33 2) 2.66 3) 5.32 4) 4.66

EXERCISE - I ANSWERS

WORK SHEET - I

				-	-				
1) 3	2) 4	3) 3	4) 2	5) 2	6) 4	7) 4	8) 3	9) 2	10) 4
11) 1	12) 3	13) 3	14) 2	15) 2	16) 4	17) 4	18) 4	19) 3	20) 2
21) 1	22) 4	23) 1	24) 4	25) 3	26) 3	27) 3	28) 3	29) 4	30) 1
31) 3	32) 1	33) 2	34) 4	35) 2	36) 2	37) 3	38) 1	39) 4	40) 2
41) 2	42) 1	43) 3	44) 2	45) 3	46) 1	47) 3	48) 2	49) 4	50) 2
51) 2	52) 1	53) 4	54) 1	55) 3	56) 2	57) 1	58) 3	59) 3	60) 2
61) 2	62) 4	63) 3	64) 2	65) 3	66) 1	67) 3	68) 3	69) 2	70) 3
71) 4	72) 2	73) 3	74) 2	75) 2	76) 2	77) 4	78) 2	79) 2	80) 3
81) 1	82) 3	83) 1	84) 3	85) 2	86) 4	87) 1	88) 1	89) 1	90) 1
91) 1	92) 1	93) 3	94) 2	95) 3	96) 3	97) 4	98) 4		
			W	VORK	SHEET	Г - II			
1) 3	2) 3	3) 2	4) 3	5)1	6) 3	7) 4	8) 3	9) 2	10) 2
11) 1	12) 3	13) 3	14) 4	15) 1	16) 1	17) 4	18) 3	19) 3	20) 4
21) 2	22) 1	23) 3	24) 4	25) 3	26) 1	27) 1	28) 2	29) 4	30) 1
31) 2	32) 4	33) 3	34) 3	35) 2	36) 2	37) 3	38) 2	39) 2	40) 2
41) 3	42) 1	43) 2	44) 1	45) 2	46) 4	47) 2	48) 2	49) 2	

EXERCISE - I

IONIC EQUILIBRIUM

Theories of acids and bases

1.	Which of the follow	ving is an Arrhenius ac	id?	
	1) NH ₃	2) SO_2	3) AlCl ₃	4) HNO_3
2.		ving is relatively strong		
	1) H ₂ S	2) HCN	3) HF	4) CH ₃ COOH
3.	•	ould not explain the ac		
	1) HCl	2) HCOOH	3) H ₂ S	4) CO ₂
4.		ving is only Bronsted - I		
	1) HCl	2) NH ₄ ⁺	3) BF ₃	4) CH ₃ COOH
5.		ving species acts as Bro		
	1) CH ₃ COOH	2) HCO ₃ -	3) H ₂ PO ₂ -	4) H ₂ PO ₃ ⁻
6.		ving can act as Lowry-1		
	1) HCl	2) SO ₄ ²⁻	3) HPO ₄ ²⁻	4) Br-
7.		ving is neither Bronsted		
	1) HI	2) HSO ₄ -	3) Cl-	4) BF ₃
8.		ving is a Bronsted acid l		
	1) H ₂ O	2) NH ₃	3) H ₂ S	4) HCO ₃ -
9.	The conjugate base	of hydrazoic acid is		
	1) N ³⁻	2) N ₃ ⁻	3) NH ₂ -	4) <i>NH</i> ₄ ⁺
10.	Identify Bronsted			
101	identify Diolisted -	Lowry acids in the read	tion given below ?	
201	•	-	•	rrect answer is
201	•	$CO_3^- \rightleftharpoons [Al(H_2O)_5(OF_C)]$ B C C C C C C C C C C C C C C C C C C C	•	rrect answer is 4) B, C
11.	$[Al(H_2O)_6]^{3+} + HO_4$ 1) A, C	$CO_{3}^{-} \rightleftharpoons [Al(H_{2}O)_{5}(OH_{C})]$ $(OH_{2}O)_{5}(OH_{C})$ $(OH_{2}O)_{5}(OH_{C})$	•	rrect answer is 4) B, C
	$[Al(H_2O)_6]^{3+} + HO$ 1) A, C Conjugate acid of H	$CO_{3}^{-} \rightleftharpoons [Al(H_{2}O)_{5}(OH_{C})]$ $(OH_{2}O)_{5}(OH_{C})$ $(OH_{2}O)_{5}(OH_{C})$	•	,
	$[Al(H_2O)_6]^{3+} + HO_4$ 1) A, C	$CO_{B}^{-} \rightleftharpoons [Al(H_{2}O)_{5}(OH_{C})]$ $(OH_{2}^{-}) \land D$ $HPO_{4}^{2-} is$ $(2) H_{2}PO_{4}^{-}$	(H)] ²⁺ + H ₂ CO ₃ The cor D 3) B, D	rrect answer is 4) B, C 4) H ₃ PO ₄
11.	$[Al(H_2O)_6]^{3+} + HO_A$ 1) A, C Conjugate acid of H 1) H_3PO_4	$CO_{B}^{-} \rightleftharpoons [Al(H_{2}O)_{5}(OH_{C})]$ $(OH_{2}^{-}) \land D$ $HPO_{4}^{2-} is$ $(2) H_{2}PO_{4}^{-}$	(H)] ²⁺ + H ₂ CO ₃ The cor D 3) B, D	,
11.	$[Al(H_2O)_6]^{3+} + HO_A$ 1) A, C Conjugate acid of H 1) H_3PO_4 Conjugate base of H 1)H_2SO_4	$CO_{3}^{-} \rightleftharpoons [Al(H_{2}O)_{5}(OH_{2}OH_{2$	(H)] ²⁺ + H ₂ CO ₃ The cor 3) B, D 3) PO ₄ ³⁻ 3) SO ₄ ²⁻	4) H ₃ PO ₄
11. 12.	$[Al(H_2O)_6]^{3+} + HO_A$ 1) A, C Conjugate acid of H 1) H_3PO_4 Conjugate base of H 1)H_2SO_4	$CO_{3}^{-} \rightleftharpoons [Al(H_{2}O)_{5}(OH_{2}OH_{2$	(H)] ²⁺ + H ₂ CO ₃ The cor 3) B, D 3) PO ₄ ³⁻ 3) SO ₄ ²⁻	4) H ₃ PO ₄
11. 12.	$[Al(H_2O)_6]^{3+} + HO_A$ 1) A, C Conjugate acid of H 1) H_3PO_4 Conjugate base of H 1)H_2SO_4 Of the given anion 1) ClO ⁻	$CO_{3}^{-} \rightleftharpoons [Al(H_{2}O)_{5} (OH_{2}O)_{5} (OH_{2}O)_{5}$	(H)] ²⁺ + H ₂ CO ₃ The cor D 3) B, D 3) PO ₄ ³⁻ 3) SO ₄ ²⁻ ed base is 3) ClO ₂ ⁻	4) H ₃ PO ₄ 4) H ⁺
11. 12. 13.	$[Al(H_2O)_6]^{3+} + HO_A$ 1) A, C Conjugate acid of H 1) H_3PO_4 Conjugate base of H 1)H_2SO_4 Of the given anion 1) ClO ⁻	$CO_{3}^{-} \rightleftharpoons [Al(H_{2}O)_{5} (OH_{2}O)_{5} (OH_{2}O)_{5}$	(H)] ²⁺ + H ₂ CO ₃ The cor D 3) B, D 3) PO ₄ ³⁻ 3) SO ₄ ²⁻ ed base is 3) ClO ₂ ⁻	4) H ₃ PO ₄ 4) H ⁺
11. 12. 13.	$[Al(H_2O)_6]^{3+} + HO_A$ 1) A, C Conjugate acid of H 1) H_3PO_4 Conjugate base of H 1)H_2SO_4 Of the given anion 1) CIO ⁻ Among the followin 1) F ⁻	$CO_{3}^{-} \rightleftharpoons [Al(H_{2}O)_{5} (OH_{2}O)_{5} (OH_{2}O)_{5}$	(H)] ²⁺ + H ₂ CO ₃ The cor D 3) B, D 3) PO ₄ ³⁻ 3) SO ₄ ²⁻ ed base is 3) ClO ₂ ⁻ e is 3) Br ⁻	4) H ₃ PO ₄ 4) H ⁺ 4) ClO ₄ ⁻
11. 12. 13. 14.	$[Al(H_2O)_6]^{3+} + HO_A$ 1) A, C Conjugate acid of H 1) H_3PO_4 Conjugate base of H 1)H_2SO_4 Of the given anion 1) CIO ⁻ Among the followin 1) F ⁻	$CO_{3}^{-} \rightleftharpoons [Al(H_{2}O)_{5} (OH_{B}^{-})] OH_{C}^{-}$ (A, D) $IPO_{4}^{2-} is$ (A, D) $IPO_{4}^{2-} is$ (A, D) $IPO_{4}^{2-} is$ (A, D)	(H)] ²⁺ + H ₂ CO ₃ The cor D 3) B, D 3) PO ₄ ³⁻ 3) SO ₄ ²⁻ ed base is 3) ClO ₂ ⁻ e is 3) Br ⁻	4) H ₃ PO ₄ 4) H ⁺ 4) ClO ₄ ⁻
11. 12. 13. 14.	$[Al(H_2O)_6]^{3+} + HO_A$ 1) A, C Conjugate acid of H 1) H_3PO_4 Conjugate base of H 1)H_2SO_4 Of the given anior 1) ClO ⁻ Among the followin 1) F ⁻ Among the followin	$CO_{3}^{-} \rightleftharpoons [Al(H_{2}O)_{5} (OI_{B} C)]$ $(OI_{B} C) = C$ $(OI_{B} C) =$	(H)] ²⁺ + H ₂ CO ₃ The cor D 3) B, D 3) PO_4^{3-} 3) SO_4^{2-} ed base is 3) CIO_2^{-} e is 3) Br ⁻ e is	4) H ₃ PO ₄ 4) H ⁺ 4) ClO ₄ ⁻ 4) I ⁻
 11. 12. 13. 14. 15. 	$[Al(H_2O)_6]^{3+} + HO_A$ 1) A, C Conjugate acid of H 1) H_3PO_4 Conjugate base of H 1)H_2SO_4 Of the given anior 1) ClO ⁻ Among the followin 1) F ⁻ Among the followin 1) HSO_4 ⁻ O_2 ²⁻ is the conjugat	$CO_{3}^{-} \rightleftharpoons [Al(H_{2}O)_{5} (OI_{B}^{-})] = C$ $(OI_{B}^{-}) = C$	(H)] ²⁺ + H ₂ CO ₃ The cor D 3) B, D 3) PO_4^{3-} 3) SO_4^{2-} ed base is 3) CIO_2^{-} e is 3) Br ⁻ e is 3) CH_3COO^{-}	4) H ₃ PO ₄ 4) H ⁺ 4) ClO ₄ [−] 4) I [−] 4) Cl [−]
 11. 12. 13. 14. 15. 16. 	$[Al(H_2O)_6]^{3+} + HO_A$ 1) A, C Conjugate acid of H 1) H_3PO_4 Conjugate base of H 1)H_2SO_4 Of the given anion 1) CIO ⁻ Among the followin 1) F ⁻ Among the followin 1) HSO_4 ⁻ O_2 ²⁻ is the conjugat 1) OH ⁻	$CO_{3}^{-} \rightleftharpoons [Al(H_{2}O)_{5} (OI_{B} C)]$ $(OI_{B} C) = C$ $(OI_{B} C) =$	(H)] ²⁺ + H ₂ CO ₃ The cor D 3) B, D 3) PO_4^{3-} 3) SO_4^{2-} ed base is 3) CIO_2^{-} e is 3) Br ⁻ e is	4) H ₃ PO ₄ 4) H ⁺ 4) ClO ₄ ⁻ 4) I ⁻
 11. 12. 13. 14. 15. 	$[Al(H_2O)_6]^{3+} + HO_A$ 1) A, C Conjugate acid of H 1) H_3PO_4 Conjugate base of H 1)H_2SO_4 Of the given anion 1) CIO ⁻ Among the followin 1) F ⁻ Among the followin 1) HSO_4 ⁻ O_2 ²⁻ is the conjugat 1) OH ⁻	$CO_{3}^{-} \rightleftharpoons [Al(H_{2}O)_{5} (OI_{B}^{-})] = C$ $(OI_{B}^{-}) = C$	(H)] ²⁺ + H ₂ CO ₃ The cor D 3) B, D 3) PO_4^{3-} 3) SO_4^{2-} ed base is 3) CIO_2^{-} e is 3) Br ⁻ e is 3) CH_3COO^{-}	4) H ₃ PO ₄ 4) H ⁺ 4) ClO ₄ [−] 4) I [−] 4) Cl [−]

18. Which of the following is not a conjugate acid - base pair

1) HPO32-, PO35-2) H ₂ PO4 ⁻ , HPO42-3) H ₂ PO4 ⁻ , H ₃ PO44) H ₂ PO4 ⁻ , PO35-19.In aqueous solution, HCI and HNO3 are equally strong. This is because1) Their basicities are same2) Both are oxy acids of non-metals3) Both have lower molecular weights4) Levelling effect of water20.Which of the following acts as Lewis acid ?1) H2) He3) S4) B1.21.Which of the following is a Lewis acid ?1) CC142) BF33) H ₂ O4) SO42-2.22.Which of the following acts as a Lewis acid in the following reaction SnC14+2CT→ [SnC14]2-1) CC12) [SnC142-2) BF33) BF34) BF32) BC133) BF34) BI324.Which of the following is not a Lewis acid?1) SnC122) NH4*3) SnC144) H2526.In a complex compound ligand acts as1) HCO0^2) H25Q43) It can give H*4) It can add with OH-28.Nitrogen trihalides are1) Lewis acid2) Arrhenius base3) It can give H*4) It can add with OH-29.Which of the following species acts as a Lewis acid and also as a Lewis base?3) Lewis bases4) Bronsted and Lowry acids29.Which of the following species acts as a Lewis acid and also as a Lewis base?1) Lewis acids2) Arrhenius bases3) It can give H*4) It can add with OH-28.Nitrogen trihalides are1) Lewis acids2) Arrhenius bases<	CHE	MISTRY		IOI 🗮	NIC EQUILIBRIUM
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1) HPO ₃ ²⁻ , PO ₃ ³⁻	2) H ₂ PO ₄ ⁻ , HPO ₄ ²⁻	3) H ₂ PO ₄ ⁻ , H ₃ PO ₄	4) H ₂ PO ₄ ⁻ , PO ₃ ³⁻ .
3) Both have lower weights4) Levelling effect of weights20.Which of the following acts as Lewis acid ? 1) H2) He3) S4) B21.Which of the following is a Lewis acid? 1) CCl2) BF33) H204) SQ42-22.Which of the following acts as a Lewis acid in the following reaction SnCl_*2Cl \rightarrow [SnCl_]2-3) SnCl4) Cl^-21.O'L2) [SnCl_2-3) SnCl4) BI323.Which of the following is relatively strong is not a Lewis acid? 1) SnCl3) BBr34) BI324.Which of the following is not a Lewis acid? 1) SnCl3) NH34) both NH3 and NH4*25.Which of the following is a Lewis acid? 1) SnCl3) SiF44) H2526.In a complex compound ligand acts as 1) Lewis acid2) Lewis base4) H2527.Al ³⁺ is a Lewis acid : because 1) Lewis acid2) Lewis base1) Car obitals3) lotan give H*12) It has completely filled orbitals 3) lt can give H*2) SCl_43) both SO2 and SCl_428.Nitrogen trihalides 1) Lewis acid or a weak base Lewis acid and also as a Lewis base ? 1) SO22) SCl_43) both SO2 and SCl_44) SO329.Which of the following species acts as a Lewis acid and also as a Lewis base? 1) SO22) SCl_43) both SO2 and SCl_44) SO330.Strength of an weak acid or a weak base devise supon is 1) Temperature 2) SCl_43) Solt SO2 and SCl_44) SO331.Conjugate base of [Cur (H2O) ₆] ³⁺ is 1) [Cu (NH3) ₃]ANH2] ² 2) [Cu (NH3) ₃ ANH2] ² 4) [Cu(NH3) ₃ ANH2]	19.	In aqueous solution	, HCl and HNO_3 are eq	qually strong. This is b	ecause
20. Which of the following acts as Lewis acid ? 1) H 2) He 3) S 4) B 21. Which of the following is a Lewis acid ? 1) CC1 2) BF ₅ 3) H ₂ O 4) SQ ²⁻ 22. Which of the following acts as a Lewis acid in the following reaction SnC1 ₄ +2Cl ⁻ → [SnC1 ₄] ²⁻ 1) Cl ⁻ 2) [SnC1 ₄] ²⁻ 3) SnC1 ₄ 4) 2Cl ⁻ 23. Which of the following is not a Lewis acid? 1) BF ₃ 2) BCl ₃ 3) BBr ₃ 4) BI ₃ 24. Which of the following is not a Lewis acid? 1) SnC1 ₂ 2) NH ₄ * 3) NH ₃ 4) both NH ₃ and NH ₄ * 25. Which of the following is a Lewis acid? 1) Lewis acid 2) Lewis base 3) SiF ₄ 4) H ₂ S 26. In a complex compound ligand acts as 1) Lewis acid , because 1) Lewis acid , because 1) Lewis acid , because 1) I Lewis acid , because 1) I Lewis acid , because 2) I thas completely filled orbitals 3) it can give H ⁺ 4) Bronsted and Lowry acids 29. Which of the following species acts as a Lewis acid and also as a Lewis base ? 1) SO ₂ 2) SCI ₄ 3) both SO ₂ and SCI ₄ 4) SO ₃ 30. Strength of an weak acid or a weak base depereds upon its 1)		1) Their basicities ar	e same	2) Both are oxy acids	s of non-metals
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3) Both have lower r	nolecular weights	4) Levelling effect of	water
21. Which of the following is a Lewis acid ? 1) CCl ₄ 2) BF ₃ 3) H ₂ O 4) SO ₄ ²⁻ 22. Which of the following acts as a Lewis acid in the following reaction SnCl ₄ +2Cl ⁻ → [SnCl ₆] ²⁻ 1) Cl ⁻ 2) [SnCl ₂] ²⁻ 3) SnCl ₄ 4) 2Cl ⁻ 23. Which of the following is relatively strong Lewis acid ? 1) BF ₃ 2) BCl ₃ 3) BBr ₃ 4)Bl ₃ 24. Which of the following is not a Lewis acid? 1) SnCl ₂ 2) NH ₄ ⁺ 3) NH ₃ 4) both NH ₃ and NH ₄ ⁺ 25. Which of the following is a Lewis acid? 1) HCOO ⁻ 2) H ₂ SO ₄ 3) SiF ₄ 4) H ₂ S 26. In a complex compound ligand acts as 1) Lewis acid 2) Lewis base 4) Arrhenius base 27. Al ³⁺ is a Lewis acid , because 1) Lewis acid - because 4) Arrhenius base 2 1) I thas vacant orbital 2) I thas completely filled orbitals 3) It can give H ⁺ 4) It can add with OH ⁻ 28. Nitrogen trihalides are 1) Lewis bases 4) SO ₃ 3 30. Strength of an weak acid or a weak base depends upon its 1) Temperature 2) Nature of solvent 3) Degree of dissociation 4) All the above <t< td=""><td>20.</td><td>Which of the follow</td><td>ing acts as Lewis acid</td><td>?</td><td></td></t<>	20.	Which of the follow	ing acts as Lewis acid	?	
$ \begin{array}{ccccc} 1) \operatorname{CCl}_4 & 2) \operatorname{BF}_3 & 3) \operatorname{H}_2 O & 4) \operatorname{SQ}_4^{2-} \\ 22. Which of the following acts as a Lewis acid in the following reaction SnCl_4+2Cl- \rightarrow [SnCl_6]^{2-} \\ 1) \operatorname{Cl}^- & 2) [SnCl_6]^{2-} & 3) \operatorname{SnCl}_4 & 4) 2Cl^- \\ 23. Which of the following is relatively strong Lewis acid ? \\ 1) \operatorname{BF}_3 & 2) \operatorname{BCl}_3 & 3) \operatorname{BF}_3 & 4) \operatorname{BI}_3 \\ 24. Which of the following is not a Lewis acid? \\ 1) \operatorname{SnCl}_2 & 2) \operatorname{NH}_4^+ & 3) \operatorname{NH}_3 & 4) \operatorname{both} \operatorname{NH}_3 \operatorname{and} \operatorname{NH}_4^+ \\ 25. Which of the following is a Lewis acid ? \\ 1) \operatorname{HCOO} & 2) \operatorname{H}_2 \operatorname{SO}_4 & 3) \operatorname{SiF}_4 & 4) \operatorname{H}_2 \operatorname{S} \\ 26. In a complex compound ligand acts as \\ 1) \operatorname{Lewis acid} & 2) \operatorname{Lewis base} \\ 3) \operatorname{Lowry-Bronsted} acid \rightarrow \operatorname{because} \\ 1) \operatorname{Lewis acid} & - 2) \operatorname{Lewis base} \\ 3) \operatorname{Lowry-Bronsted} acid \rightarrow \operatorname{because} \\ 1) \operatorname{If} has vacant orbital & 2) \operatorname{Lewis base} \\ 3) \operatorname{Lowry-Bronsted} acid \rightarrow \operatorname{because} \\ 1) \operatorname{If} has vacant orbital & - 2) \operatorname{It} has completely filled orbitals \\ 3) \operatorname{It} \operatorname{can give} \operatorname{H}^+ & 4) \operatorname{It} \operatorname{can add} with \operatorname{OH}^- \\ 28. \operatorname{Nitrogen trihalides are} \\ 1) \operatorname{Lewis acid} = a \operatorname{Lewis acid} are a sea \operatorname{Lewis acid} and a los as a \operatorname{Lewis base} ? \\ 1) \operatorname{SO}_2 & 2) \operatorname{SCl}_4 & 3) \operatorname{both} \operatorname{SO}_2 \operatorname{and} \operatorname{SCl}_4 & 4) \operatorname{SO}_3 \\ 30. \operatorname{Strength} of an weak acid or a weak base d=pendu to with a los as a Lewis base ? \\ 1) \operatorname{SO}_2 & 2) \operatorname{SCl}_4 & 3 \operatorname{both} \operatorname{SO}_2 \operatorname{and} \operatorname{SCl}_4 & 4) \operatorname{SO}_3 \\ 30. \operatorname{Strength} of an weak acid or a weak base d=pendu to solvent \\ 3) \operatorname{Degree of dissociator} & a weak base d=pendu to solvent \\ 1) \operatorname{Temperature} & 2) \operatorname{Alture of solvent} \\ 3) \operatorname{Degree of dissociator} & 4) \operatorname{All the above} \\ 31. \operatorname{Conjugate base of [\operatorname{L}(H_2O)_6 \operatorname{OH}^{2^+} is \\ 1) [\operatorname{Cu}(\operatorname{NH}_3)_3 \operatorname{NH}_2^- & 2) [\operatorname{Cu}(\operatorname{NH}_3)_5 \operatorname{NH}_2]^+ \\ 3) [\operatorname{Cu}(\operatorname{NH}_3)_4 \operatorname{NH}_2^{1^+} & 2) [\operatorname{Cu}(\operatorname{NH}_3)_4 \operatorname{NH}_2]^{2^+} \\ 31. \operatorname{In the reaction, \operatorname{CH}_2 \operatorname{CO}(\operatorname{H}+H_2 \operatorname{O} \rightleftharpoons \operatorname{H}_3 \operatorname{O}^+ \operatorname{cut} \operatorname{sus} \\ 1) \operatorname{Weak acid} & 2) \operatorname{Weak base} & 3) \operatorname{Strong} \operatorname{acid} 4) \operatorname{Strong} \operatorname{base} \\ 3) \operatorname{Strong} \operatorname{base} \\ 3) \operatorname{Veak} \operatorname{Acid} \\ 2) \operatorname{Weak} \operatorname{Acid} \\ $		1) H	2) He	3) S	4) B
22. Which of the following acts as a Lewis acid in the following reaction SnCl ₄ +2Cl ⁻ → [SnCl ₆] ²⁻ 1) Cl ⁻ 2) [SnCl ₆] ²⁻ 3) SnCl ₄ 4) 2Cl ⁻ 23. Which of the following is relatively strong Lewis acid ? 1) BF ₃ 2) BCl ₃ 3) BBr ₃ 4)BI ₃ 24. Which of the following is not a Lewis acid? 1) SnCl ₂ 2) NH ₄ ⁺ 3) NH ₃ 4) both NH ₃ and NH ₄ ⁺ 25. Which of the following is a Lewis acid? 1) HCOO 2) H ₂ SO ₄ 3) SiF ₄ 4) H ₂ S 26. In a complex compound ligand acts as 1) Lewis acid 2) Lewis base 3) Lewis acid , because 3) Lewis acid , because 1) It has vacant orbital 2) It has completely filled orbitals 3) It can give H ⁺ 4) It can add with OH ⁻ 28. Nitrogen trihalides are 1) Lewis acids 2) Arrhenius bases 3) Lewis bases 4) Bronsted and Lowry acids 29. Which of the following species acts as a Lewis acid and also as a Lewis base ? 1) SO ₂ 2) SCl ₄ 3) both SO ₂ and SCl ₄ 4) SO ₃ 30. Strength of an weak acid or a weak base depends upon its 1) Temperature 2) Nature of solvent 3) Degree of dissociation 4) All the above <	21.	Which of the follow	ing is a Lewis acid ?		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1) CCl ₄	2) BF ₃	3) H ₂ O	4) SO ₄ ²⁻
23. Which of the following is relatively strong Lewis acid ? 1) BF ₃ 2) BCl ₃ 3) BBr ₃ 4)Bl ₃ 24. Which of the following is not a Lewis acid? 1) SnCl ₂ 2) NH ₄ * 3) NH ₃ 4) both NH ₃ and NH ₄ * 25. Which of the folowing is a Lewis acid ? 1) HCOO ² 2) H ₂ SO ₄ 3) SiF ₄ 4) H ₂ S 26. In a complex compound ligand acts as 1) Lewis acid 2) Lewis base 3) Lowry-Bronsted acid 4) Arrhenius base 27. Al ³⁺ is a Lewis acid , because 1) It has vacant orbital 2) It has completely filled orbitals 3) It can give H ⁺ 4) It can add with OH ⁻ 28. Nitrogen trihalides are 1) Lewis acids 2) Arrhenius bases 3) Lewis bases 4) Bronsted and Lowry acids 29. Which of the following species acts as a Lewis acid and also as a Lewis base ? 1) SO ₂ 2) SCl ₄ 3) both SO ₂ and SCl ₄ 4) SO ₃ 30. Strength of an weak acid or a weak base depends upon its 1) Temperature 2) Nature of solvent 3) Degree of dissociation 4) All the above 31. Conjugate base of [Al(H ₂ O) ₆] ³⁺ is 1) [Al(H ₂ O) ₆] ²⁺ 2) [Al(H ₂ O) ₅ OH] ²⁺ 3) [Al(H ₂ O) ₄ OH] ² 4) [Al(H ₂ O) ₄ (OH) ₂] ²⁺ 32. Conjugate base of [Cu (NH ₃) ₆] ²⁺ is 1) [Cu (NH ₃) ₃ NH ₂ ⁻ 2) [Cu (NH ₃) ₅ NH ₂] ¹⁺ 3) [Cu (NH ₃) ₃ NH ₂ ⁻ 2) [Cu (NH ₃) ₆ NH ₂] ¹⁺ 3) [Cu (NH ₃) ₄ NH ₂] [*] 4) [Cu(NH ₃) ₄ NH ₂] ²⁺ 33. In the reaction, CH ₃ -COPH+H ₂ O = H ₃ O ⁺ +CH ₃ COO ⁻ , H ₃ O ⁺ acts as 1) Weak acid 2) Weak base 3) Strong acid 4) Strong base	22.	Which of the followi	ng acts as a Lewis acid	in the following reaction	$\text{on SnCl}_4 + 2\text{Cl}^- \rightarrow [\text{SnCl}_6]^{2-}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1) Cl-	2) [SnCl ₆] ²⁻	3) $SnCl_4$	4) 2Cl-
24. Which of the following is not a Lewis acid? 1) SnCl ₂ 2) NH ₄ ⁺ 3) NH ₃ 4) both NH ₃ and NH ₄ ⁺ 25. Which of the folowing is a Lewis acid? 1) HCOO ⁻ 2) H ₂ SO ₄ 3) SiF ₄ 4) H ₂ S 26. In a complex compound ligand acts as 1) Lewis acid 2) Lewis base 3) SiF ₄ 4) H ₂ S 26. In a complex compound ligand acts as 1) Lewis acid 4) Arrhenius base 27. Al ³⁺ is a Lewis acid , because 1) It has vacant orbital 2) It has completely filled orbitals 3) I can give H ⁺ 4) It can add with OH ⁻ 28. Nitrogen trihalides are 1) Lewis acids 2) Arrhenius bases 3) Lewis bases 4) Bronsted and Lowry acids 29. Which of the following species acts as a Lewis acid and also as a Lewis base ? 1) SO ₂ 2) SCl ₄ 3) both SO ₂ and SCl ₄ 4) SO ₃ 30. Strength of an weak acid or a weak base depends upon its 1) Temperature 2) Nature of solvent 3) Degree of dissociation 4) All the above 3) Degree of dissociation 4) All (H ₂ O) ₄ OH] ² 31. Conjugate base of [Al(H ₂ O) ₆ OH] ²⁺ is 1) [Al((H ₂ O) ₆] ²⁺ is 1) [Au (NH ₃) ₃ NH	23.	Which of the follow:	ing is relatively strong	Lewis acid ?	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1) BF ₃	2) BCl ₃	3) BBr ₃	4)BI ₃
25. Which of the folowing is a Lewis acid ? 1) HCOO ² 2) H ₂ SO ₄ 3) SiF ₄ 4) H ₂ S 26. In a complex compound ligand acts as 1) Lewis acid 2) Lewis base 3) Lowry-Bronsted acid 4) Arrhenius base 27. Al ³⁺ is a Lewis acid, because 1) It has vacant orbital 2) It has completely filled orbitals 3) It can give H ⁺ 4) It can add with OH ⁻ 28. Nitrogen trihalides are 1) Lewis acids 2) Arrhenius bases 3) Lewis bases 4) Bronsted and Lowry acids 29. Which of the following species acts as a Lewis acid and also as a Lewis base ? 1) SO ₂ 2) SCl ₄ 3) both SO ₂ and SCl ₄ 4) SO ₃ 30. Strength of an weak acid or a weak base depends upon its 1) Temperature 2) Nature of solvent 3) Degree of dissociation 4) All the above 31. Conjugate base of [Al(H ₂ O) ₆] ³⁺ is 1) [Al(H ₂ O) ₆] ²⁺ 2) [Al(H ₂ O) ₅ OH] ²⁺ 3) [Al(H ₂ O) ₄ OH] ² 4) [Al(H ₂ O) ₄ (OH) ₂] ²⁺ 32. Conjugate base of [Cu (NH ₃) ₆] ²⁺ is 1) [Cu (NH ₃) ₃ NH ₂ ⁻ 2) [Cu (NH ₃) ₅ NH ₂] ⁺ 3) [Cu (NH ₃) ₄ NH ₂] ⁺ 4) [Cu(NH ₃) ₄ NH ₂] ²⁺ 33. In the reaction, CH ₃ COOH+H ₂ O \rightleftharpoons H ₃ O ⁺ +CH ₃ COO ⁻ , H ₃ O ⁺ acts as 1) Weak acid 2) Weak base 3) Strong acid 4) Strong base	24.	Which of the follow	ing is not a Lewis acida	?	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1) SnCl ₂	2) NH ₄ ⁺	3) NH ₃	4) both $\rm NH_3$ and $\rm NH_4^+$
26.In a complex compound ligand acts as 1) Lewis acid2) Lewis base 3) Lowry-Bronsted acid2) Lewis base 3) Lowry-Bronsted acid4) Arrhenius base27.Al ³⁺ is a Lewis acid , because 1) It has vacant orbital 3) It can give H ⁺ 2) It has completely filled orbitals 3) It can give H ⁺ 4) It can add with OH ⁻ 28.Nitrogen trihalides are 1) Lewis acids 3) Lewis bases2) Arrhenius bases 3) Lewis bases3) It can give H ⁺ 29.Which of the following species acts as a Lewis acid and also as a Lewis base ? 1) SO2 2) SCl43) both SO2 and SCl4 4) SO330.Strength of an weak acid or a weak base depends upon its 1) Temperature 3) Degree of dissociation4) All the above31.Conjugate base of [Al(H2O) ₆] ³⁺ is 1) [Al(H2O) ₆] ²⁺ 2) [Al(H2O) ₅ OH] ²⁺ 3) [Al(H2O) ₄ OH] ² 4) [Al(H2O) ₄ (OH) ₂] ²⁺ 32.Conjugate base of [Cu (NH3) ₆] ²⁺ is 1) [Cu (NH3) ₃ NH2 ⁻ 3) [Cu (NH3) ₃ NH2 ⁺ 3) [Cu (NH3) ₃ NH2 ⁺ 3) [Cu (NH3) ₄ NH2] ⁺ 4) [Cu(NH3) ₄ NH2] ²⁺ 33.In the reaction, CH3COOH+H2O = H3O ⁺⁺ CH3COO ⁻ , H3O ⁺ acts as 1) Weak acid2) Weak base3) Strong acid4) Strong base	25.	Which of the folowi	ng is a Lewis acid ?		
1) Lewis acid2) Lewis base3) Lowry-Bronsted acid4) Arrhenius base27.Al ³⁺ is a Lewis acid, because1) It has vacant orbital2) It has completely filled orbitals3) It can give H ⁺ 4) It can add with OH ⁻ 28.Nitrogen trihalides are1) Lewis acids2) Arrhenius bases3) Lewis bases2) Arrhenius bases3) Lewis bases4) Bronsted and Lowry acids29.Which of the following species acts as a Lewis acid and also as a Lewis base ?1) SO22) SCl ₄ 3) Degree of dissociation4) All the above3) Degree of dissociation4) All the above31.Conjugate base of [Al(H ₂ O) ₆] ³⁺ is1) [Al(H ₂ O) ₆] ²⁺ 2) [Al(H ₂ O) ₅ OH] ²⁺ 3) [Cu (NH ₃) ₃ NH ₂ ⁻ 2) [Cu (NH ₃) ₃ NH ₂] ⁺ 3) [Cu (NH ₃) ₄ NH ₂] ⁺ 4) [Cu(NH ₃) ₄ NH ₂] ²⁺ 33.In the reaction, CH ₃ COOH+H ₂ O = H ₃ O ⁺ C+CH ₃ COO ⁻ , H ₃ O ⁺ acts as1) Weak acid2) Weak base3) Strong acid4) Strong base		1) HCOO-	2) H ₂ SO ₄	3) SiF ₄	4) H ₂ S
3) Lowry-Bronsted acid4) Arrhenius base27. AI^{3^+} is a Lewis acid , because1) It has vacant orbital2) It has completely filled orbitals3) It can give H ⁺ 4) It can add with OH ⁻ 28.Nitrogen trihalides are1) Lewis acids2) Arrhenius bases3) Lewis bases2) Arrhenius bases3) Lewis bases4) Bronsted and Lowry acids29.Which of the following species acts as a Lewis acid and also as a Lewis base ?1) SO22) SCl43) both SO2 and SCl43) Degree of dissociation4) All the above31.Conjugate base of [$ U_{2}O_{0} ^{3^+}$ is1) [Al(H2O)_{6}]^{2^+}2) [Al(H2O)_{4}OH]^231.Conjugate base of [$ U_{2}O_{5}OH]^{2^+}$ 31.Conjugate base of [$ U_{2}O_{5}OH]^{2^+}$ 3) [Cu (NH3)_3 NH2^-2) [Al(H2O)_{5}OH]^{2^+}3) [Cu (NH3)_4 NH2]^+2) [Cu (NH3)_5 NH2]^+3) [Cu (NH3)_4 NH2]4) [Cu(NH3)_4 NH2]^{2^+}33.In the reaction, $CH_2OCH+H_2O \rightleftharpoons H_3O^+ CH3OCO^-, H_3O^+ acts as a1) Weak acid2) Weak base3) Strong acid4) Strong base3) Strong acid4) Strong base$	26.	In a complex compo	ound ligand acts as		
27. AI^{3^+} is a Lewis acid , because 1) It has vacant orbital 2) It has completely filled orbitals 3) It can give H^+ 4) It can add with OH^- 28. Nitrogen trihalides are 1) Lewis acids 2) Arrhenius bases 3) Lewis bases 4) Bronsted and Lowry acids 29. Which of the following species acts as a Lewis acid and also as a Lewis base ? 1) SO2 2) SCl4 3) both SO2 and SCl4 4) SO3 30. Strength of an weak acid or a weak base depends upon its 1) Temperature 2) Nature of solvent 3) Degree of dissociation 4) All the above 4) All the above 31. Conjugate base of $[AI(H_2O)_6]^{3^+}$ is 1) $[AI(H_2O)_6]^{2^+}$ 2) $[AI(H_2O)_5OH]^{2^+}$ 3) $[AI(H_2O)_4OH]^2$ 4) $[AI(H_2O)_4(OH)_2]^{2^+}$ 32. Conjugate base of $[C \cup (NH_3)_6]^{2^+}$ is 1) $[Cu (NH_3)_3NH_2^-$ 2) $[Cu (NH_3)_5NH_2]^+$ 3) $[Cu (NH_3)_4NH_2]^+$ 3) $[Cu (NH_3)_4NH_2]^+$ 4) $[Cu(NH_3)_4NH_2]^{2^+}$ 3. 33. In the reaction, $CH_3 \subset OH^+H_2O \rightleftharpoons H_3O^+ + CH_3COO^-, H_3O^+ acts as allows acid 4) Strong base $		1) Lewis acid		2) Lewis base	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3) Lowry-Bronsted a	cid	4) Arrhenius base	
3) It can give H ⁺ 4) It can add with OH ⁻ 28. Nitrogen trihalides are 1) Lewis acids 3) Lewis bases 3) Lewis bases 4) Bronsted and Lowry acids 29. Which of the following species acts as a Lewis acid and also as a Lewis base ? 1) SO ₂ 2) SCl ₄ 3) both SO ₂ and SCl ₄ 4) SO ₃ 30. Strength of an weak acid or a weak base depends upon its 1) Temperature 2) Nature of solvent 3) Degree of dissociation 4) All the above 31. Conjugate base of [Al(H ₂ O) ₆] ³⁺ is 1) [Al(H ₂ O) ₆] ²⁺ 2) [Al(H ₂ O) ₅ OH] ²⁺ 3) [Al(H ₂ O) ₄ OH] ² 4) [Al(H ₂ O) ₄ (OH) ₂] ²⁺ 3) [Cu (NH ₃) ₃ NH ₂ ⁻ 2) [Cu (NH ₃) ₅ NH ₂] ⁺ 3) [Cu (NH ₃) ₄ NH ₂] ⁺ 4) [Cu(NH ₃) ₄ NH ₂] ²⁺ 3] [Cu (NH ₃) ₄ NH ₂] ⁺ 4) [Cu(NH ₃) ₄ NH ₂] ²⁺ 3] [N the reaction, CH ₃ COOH+H ₂ O \rightleftharpoons H ₃ O ⁺ +CH ₃ COO ⁻ , H ₃ O ⁺ acts as 1) Weak acid 2) Weak base 3) Strong acid 4) Strong base	27.	Al ³⁺ is a Lewis acid	, because		
28.Nitrogen trihalides are 1) Lewis acids 3) Lewis bases2) Arrhenius bases 4) Bronsted and Lowry acids29.Which of the following species acts as a Lewis acid and also as a Lewis base ? 1) SO2 2) SCl43) both SO2 and SCl4 4) SO330.Strength of an weak acid or a weak base depends upon its 1) Temperature 3) Degree of dissociation2) Nature of solvent 4) All the above31.Conjugate base of $[Al(H_2O)_6]^{3+}$ is 1) $[Al(H_2O)_6]^{2+}$ 2) $[Al(H_2O)_5OH]^{2+}$ 3) $[Al(H_2O)_4OH]^2$ 4) $[Al(H_2O)_4(OH)_2]^{2+}$ 32.Conjugate base of $[Cu (NH_3)_6]^{2+}$ is 1) $[Cu (NH_3)_3 NH_2^{-1} 3) [Cu (NH_3)_4 NH_2]^{1} 4) [Cu(NH_3)_4 NH_2]^{2+}2) [Cu (NH_3)_4 NH_2]^{2+}33.In the reaction, CH_3COC+H_2O \rightleftharpoons H_3O^+ + CH_3COO^-, H_3O^+ acts as1) Weak acid2) Weak base3) Strong acid4) Strong base$		1) It has vacant orbit	tal	2) It has completely	filled orbitals
1) Lewis acids2) Arrhenius bases3) Lewis bases4) Bronsted and Lowry acids29.Which of the following species acts as a Lewis acid and also as a Lewis base ?1) SO22) SCl43) both SO2 and SCl430.Strength of an weak acid or a weak base depends upon its1) Temperature2) Nature of solvent3) Degree of dissociation4) All the above31.Conjugate base of $[A (H_2O)_6]^{3+}$ is1) $[Al(H_2O)_6]^{2+}$ 2) $[Al(H_2O)_5OH]^{2+}$ 31.Conjugate base of $[A (H_2O)_5OH]^{2+}$ 31.Conjugate base of $[A (H_2O)_5OH]^{2+}$ 31. $[Al(H_2O)_6]^{2+}$ 3) $[Cu(NH_3)_3 NH_2^{-+}$ 2) $[Al(H_2O)_5OH]^{2+}$ 3) $[Cu(NH_3)_3 NH_2^{-+}$ 2) $[Cu(NH_3)_5 NH_2]^{+}$ 3) $[Cu(NH_3)_4 NH_2]^{+}$ 4) $[Cu(NH_3)_4 NH_2]^{2+}$ 33.In the reaction, $CH_3 COCH + H_2 C \rightleftharpoons H_3 O^+ + CH_3 COC^-, H_3 O^+ acts acts acts acts acts acts acts acts$				4) It can add with O	H-
3) Lewis bases 4) Bronsted and Lowry acids 29. Which of the following species acts as a Lewis acid and also as a Lewis base ? 1) SO ₂ 2) SCl ₄ 3) both SO ₂ and SCl ₄ 4) SO ₃ 30. Strength of an weak acid or a weak base depends upon its 1) Temperature 2) Nature of solvent 3) Degree of dissociation 4) All the above 31. Conjugate base of $[AI(H_2O)_6]^{3+}$ is 1) $[AI(H_2O)_6]^{2+}$ 2) $[AI(H_2O)_5OH]^{2+}$ 3) $[AI(H_2O)_4OH]^2$ 4) $[AI(H_2O)_4(OH)_2]^{2+}$ 32. Conjugate base of $[-U(NH_3)_6]^{2+}$ is 1) $[Cu(NH_3)_3NH_2^{-1}$ 2) $[Cu(NH_3)_5NH_2]^{+}$ 3) $[Cu(NH_3)_4NH_2]^{+}$ 4) $[Cu(NH_3)_4NH_2]^{2+}$ 33. In the reaction, $CH_3COOCH^+H_2O \rightleftharpoons H_3O^++CH_3COO^-, H_3O^+$ acts as 1) Weak acid 2) Weak base 3) Strong acid 4) Strong base	28.		are		
29.Which of the following species acts as a Lewis acid and also as a Lewis base ?1) SO_2 2) SCl_4 3) both SO_2 and SCl_4 4) SO_3 30.Strength of an weak acid or a weak base depends upon its 1) Temperature2) Nature of solvent3) Degree of dissociation4) All the above31.Conjugate base of $[A (H_2O)_6]^{3+}$ is 1) $[Al(H_2O)_6]^{2+}$ 2) $[Al(H_2O)_5OH]^{2+}$ 3) $[Al(H_2O)_4OH]^2$ 4) $[Al(H_2O)_4(OH)_2]^{2+}$ 32.Conjugate base of $[Cu (NH_3)_6]^{2+}$ is 1) $[Cu (NH_3)_3 NH_2^{-}$ 2) $[Cu (NH_3)_5 NH_2]^{+}$ 3) $[Cu (NH_3)_4 NH_2]^{+}$ 4) $[Cu(NH_3)_4 NH_2]^{2+}$ 33.In the reaction, $CH_3COOH+H_2O \rightleftharpoons H_3O^++CH_3COO^-, H_3O^+$ acts as 1) Weak acid2) Weak base3) Strong acid4) Strong base		*			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,		,	5
30. Strength of an weak acid or a weak base depends upon its 1) Temperature 2) Nature of solvent 3) Degree of dissociation 4) All the above 31. Conjugate base of $[AI(H_2O)_6]^{3+}$ is 1) $[AI(H_2O)_6]^{2+}$ 2) $[AI(H_2O)_5OH]^{2+}$ 3) $[AI(H_2O)_4OH]^2$ 4) $[AI(H_2O)_4(OH)_2]^{2+}$ 32. Conjugate base of $[Cu(NH_3)_6]^{2+}$ is 1) $[Cu(NH_3)_3 NH_2^-$ 2) $[Cu(NH_3)_5 NH_2]^+$ 3) $[Cu(NH_3)_4 NH_2]^+$ 4) $[Cu(NH_3)_4 NH_2]^{2+}$ 33. In the reaction, $CH_3COOH+H_2O \rightleftharpoons H_3O^++CH_3COO^-, H_3O^+$ acts as 1) Weak acid 2) Weak base 3) Strong acid 4) Strong base	29.				
1) Temperature2) Nature of solvent3) Degree of dissociation4) All the above31.Conjugate base of $[A!(H_2O)_6]^{3+}$ is 1) $[A!(H_2O)_6]^{2+}$ 2) $[A!(H_2O)_5OH]^{2+}$ 3) $[A!(H_2O)_4OH]^2$ 4) $[A!(H_2O)_4(OH)_2]^{2+}$ 32.Conjugate base of $[C \cup (NH_3)_6]^{2+}$ is 1) $[C u (NH_3)_3 NH_2^{}$ 2) $[C u (NH_3)_5 NH_2]^+$ 4) $[C u (NH_3)_5 NH_2]^+$ 33.In the reaction, $CH_3 \subset OH+H_2O \rightleftharpoons H_3O^+ + CH_3COO^-, H_3O^+$ acts as 1) Weak acid2) Weak base3) Strong acid4) Strong base		/ 2	/ 4	· <u> </u>	$_{4}$ 4) SO ₃
3) Degree of dissociation 4) All the above 31. Conjugate base of $[Al(H_2O)_6]^{3+}$ is 1) $[Al(H_2O)_6]^{2+}$ 2) $[Al(H_2O)_5OH]^{2+}$ 3) $[Al(H_2O)_4OH]^2$ 4) $[Al(H_2O)_4(OH)_2]^{2+}$ 32. Conjugate base of $[Cu(NH_3)_6]^{2+}$ is 1) $[Cu(NH_3)_3NH_2^-$ 2) $[Cu(NH_3)_5NH_2]^+$ 3) $[Cu(NH_3)_4NH_2]^+$ 4) $[Cu(NH_3)_4NH_2]^{2+}$ 33. In the reaction, $CH_3COOH+H_2O \rightleftharpoons H_3O^++CH_3COO^-, H_3O^+$ acts as 1) Weak acid 2) Weak base 3) Strong acid 4) Strong base	30.		acid or a weak base de		
31. Conjugate base of $[Al(H_2O)_6]^{3+}$ is 1) $[Al(H_2O)_6]^{2+}$ 2) $[Al(H_2O)_5OH]^{2+}$ 3) $[Al(H_2O)_4OH]^2$ 4) $[Al(H_2O)_4(OH)_2]^{2+}$ 32. Conjugate base of $[Cu(NH_3)_6]^{2+}$ is 1) $[Cu(NH_3)_3NH_2^-$ 2) $[Cu(NH_3)_5NH_2]^+$ 3) $[Cu(NH_3)_4NH_2]^+$ 33. In the reaction, $CH_3COOH+H_2O \rightleftharpoons H_3O^++CH_3COO^-, H_3O^+$ acts as 1) Weak acid 2) Weak base 3) Strong acid 4) Strong base		, 1		,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				4) All the above	
32. Conjugate base of $[Cu (NH_3)_6]^{2+}$ is 1) $[Cu (NH_3)_3 NH_2^-$ 2) $[Cu (NH_3)_5 NH_2]^+$ 3) $[Cu (NH_3)_4 NH_2]^+$ 4) $[Cu (NH_3)_4 NH_2]^{2+}$ 33. In the reaction, $CH_3COOH+H_2O \rightleftharpoons H_3O^++CH_3COO^-, H_3O^+$ acts as 1) Weak acid 2) Weak base 3) Strong acid 4) Strong base	31.				
1) $[Cu (NH_3)_3 NH_2^-$ 2) $[Cu (NH_3)_5 NH_2]^+$ 3) $[Cu (NH_3)_4 NH_2]^+$ 4) $[Cu (NH_3)_4 NH_2]^{2+}$ 33.In the reaction, $CH_3COOH+H_2O \rightleftharpoons H_3O^++CH_3COO^-, H_3O^+$ acts as1) Weak acid2) Weak base3) Strong acid4) Strong base		2.0		3) $[Al(H_2O)_4OH]^2$	4) $[Al(H_2O)_4(OH)_2]^{2+}$
3) $[Cu (NH_3)_4 NH_2]^+$ 3) $[Cu (NH_3)_4 NH_2]^{2+}$ 33. In the reaction, $CH_3COOH+H_2O \rightleftharpoons H_3O^++CH_3COO^-, H_3O^+$ acts as 1) Weak acid 2) Weak base 3) Strong acid 4) Strong base	32.	Conjugate base of [(Cu (NH ₃) ₆] ²⁺ is		
33. In the reaction, $CH_3COOH+H_2O \rightleftharpoons H_3O^++CH_3COO^-$, H_3O^+ acts as 1) Weak acid 2) Weak base 3) Strong acid 4) Strong base		1) [Cu (NH ₃) ₃ NH ₂ ⁻		2) [Cu (NH ₃) ₅ NH ₂] ⁺	
1) Weak acid2) Weak base3) Strong acid4) Strong base		3) [Cu (NH ₃) ₄ NH ₂] ⁺		4) $[Cu(NH_3)_4 NH_2]^{2-1}$	F
1) Weak acid2) Weak base3) Strong acid4) Strong base	33.	In the reaction, CH_3	$COOH+H_2O \rightleftharpoons H_3O^+$	+CH ₃ COO ⁻ , H ₃ O ⁺ acts	as
	34.	Which of the follow:	ing is relatively strong	base?	-

CHF	MISTRY			ONIC EQUILIBRIUM
	1) CH ₃ O ⁻	2) $C_6 H_5^-$	3) CH ₃ -	$\frac{1}{4} C_2 H^{-}$
35.	Conjugate base of	0 0	, ,	, 2
	1) Electron	2) Hydride ion	3) Proton	4) Neutron
36.	What is the decre	, ,	the bases OH ⁻ , NI	$H_2^-, H-C \equiv C^- and CH_3-CH_2^-$
		$\mathrm{H}_2^- > \mathrm{H} - \mathrm{C} \equiv \mathrm{C}^- > \mathrm{OH}^-$		
	. 0 =	$H - C \equiv C^- > CH_3 - CH_2^-$		°
37.	· 4	ate base among the follow	. 2	5 2
	1) NH ₂ -	2) F ⁻	3) OH-	4) ClO_4^{-}
38.	, 2	owing is an acidic salt ?		, 1
	1) Na ₃ PO ₄	2) Na ₂ H PO ₃	3) NaH ₂ PO ₂	4) NaH ₂ PO ₄
39.	Which of the follo	owing is normal salt?	, <u> </u>	, 2 1
	1) Na ₃ PO ₄	2) CaSO ₄	3) Na ₂ CO ₃	4) all the above
40.	Among the follow	ving, the stronger acid in l	pasic medium is	
	1) Aniline	2) Phenol	3) Ammonia	4) Benzene
41.	Which of the follo	owing does not turn blue l	itmus as red litmu	is?
	1) 1M HCl	2) Pure and dry HCl	3) dil.HCl	4) Conc.HCl
42.	Aniline is a stron	g base in		
	1) H ₂ O	2) NaOH	3) CS ₂	4) HCl
43.	$HClO_4$ is a poor c	onductor in	_	
	1) Water	2) dil.NH ₃	3) Acetic acid	4) NaOH solution
44.	Which of the follo	owing has least tendency	to act as Lewis aci	d ?
	1) I-	2) I ⁺	3) SnCl ₂	4) AlCl ₃
45.	Which of the follo	wing relatively more stro	ong acid in aqueou	s solutions ?
	1) HClO ₄ strong	2) H ₂ SO ₄	3) HI	4) All are equally
46.	Which of the follo	owing is relatively strong	base in aqueous s	olution ?
	1) NaOH strong	2) CsOH	3) Ba(OH) ₂	4) All are equally
47.	Which of the follo	owing is strong Lewis bas	e?	
	1) NF ₃	2) NCl ₃	3) NBr ₃	4) NI ₃
48.	Which of the follo	owing is strong Lewis acid	1?	
	1) Na ⁺	2) Mg ²⁺	3) Al ³⁺	
	4) All show equal	8		
49.		strength of SO ₃ when com	-	
-	1) Less	2) More	3) Equal	4) Can not be predicted
50.		owing failed to explain the	•	
51		ry 2) Bronsted theory	3) Lowry theory	4) Lewis theory
51.	1) Zn^{2+}	owing acts as Lewis acid 3 2) FeCl ₃	3) CO ₂	4) All the above
52.	,	owing acts as Lewis base	, 2	
02.	1) SCN ⁻	$2) R_2 O$	3) RNH ₂	4) All the above

53.	Which of the following 1) $C_{2}H_{2}$	ing acts as Lewis base (2) $C_{2}H_{4}$? 3) Pyridine	4) All the above
54.	Which of the followi	/ 2 4	, ,	,
	1) All Bronsted base		2) All Lewis acids are	e Bronsted acids
	,	ds are Bronsted acids	4) All Arhenius base	
55.		$_3$ +Cl ⁻ \rightarrow AlCl ₄ ⁻ , Cl acts	·	
	1) Bronsted acid	2) Bronsted base	3) Lewis base	4) Lewis acid
56.		,	t in the aqueous solution	
	1) 2	2) 3	3) 4	4) 5
57.	,	′ +	$_2 COO^-$. Its conjugate	,
	1) NH ₂ CH ₂ COOH	2) NH ₂ CH ₂ COO ⁻	3) ⁺ NH ₃ CH ₂ COOH	4) NH ₃ CH ₂ COOH
58.	$CH_3COOH_2^+$ is pres	ent in the solution of a	cetic acid in	
	1) NH ₃	2) Water	3) Benzene	4) HCl
59.	The solution of aceti	c acid in benzene cont	ains	
	1) CH ₃ COO ⁻	2) H ⁺	$3) H_{3}O^{+}$	4) (CH ₃ COOH) ₂
60.	The species which d	oes not have a conjuga	te base is	
	1) H_3PO_4	2) H ₂ PO ₃ ⁻	3) H ₂ PO ₂ -	4) HPO ₄ ²⁻
61.	Which of the follow	ing is a Bronsted nutra	lisation reaction ?	-
	1) $H^+ + OH^- \rightarrow H_2$	0	2) HCl + NH ₃ \rightarrow NF	$I_{4}^{+} + Cl^{-}$
	3) NH ₃ + BF ₃ \rightarrow [H		4) NaOH + HCl \rightarrow N	•
62.	H_2CO_3 ionises in two	o stages as represented	below	
	$H_2CO_3 + H_2O \rightleftharpoons H_3$		$HCO_3^- + H_2O \rightleftharpoons H_3$	$O^{+}+CO_{3}^{2-}$
	the no.of conjugate a	icid-base pairs in the al	pove reaction are	
	1) 2	2) 3	3) 4	4) 5
63.	The reaction, NH_4^+	$+CN^{-} \rightleftharpoons HCN(aq) + N$	NH_3 (aq) proceeds in	
	1) Forward direction		2) Backward directio	n
	3) In both sides		4) Can not be predict	
64.	,	ng statements is true ?	, I	
	1) HNO ₃ is a stronge	•	2) H_3PO_3 is stronger	acid than H_2SO_3
	-	on HF is stronger acid t	than HCl	
	4) HClO ₄ is a weake	r acid than HClO ₃		
65.		nd HNO ₃ have same s	trength. But their stre	ngths in acetic acid are
	different.	. 1 . 1		
		onger acid than water.	. 1	N
			rrect explanation of (A	
			e correct explanation o	
	3) (1) is true but (R) i		4) (1) is false but (R) i	s true
66.	Assertion : HCl is no			
		bes not accept protons		
67.	0	he strongest acid in aq		
	Reason : water levels	s the strength of hydroi		

68.	Assertion : ClO_4^{-} is t	he weakest base			
	Reason : In ClO_4^- , ch	nlorine atom is SP ³ hyb	ridised.		
69.	Assertion : All Bron	sted bases are Lewis ba	ases		
	Reason : A species that accepts a proton necessarily should donate a lone pair of electrons.				
70.	Assertion : HNO_3 is	s not a Bronsted acid in	n CHCl ₃		
	Reason : $CHCl_3$ is an example of aprotic solvent.				
71.	Assertion : Ethoxide ion acts as a strong base.				
	Reason : Ethyl alcoh	ol is a week acid.			
72.	Assertion : $H_2PO_3^-$ i	s a Lowry - Bronsted a	cid and base		
	Reason : $H_2PO_3^-$ is a	proton donor as well	as proton acceptor.		
73.	Species acting as bo	th Bronsted acid and b	pase is		
	1) HSO-4	2) Na_2CO_3	3) NH ₃	4) OH-	
74.	The conjugat base of	f H ₂ PO ₄ ⁻ is			
	1) H ₃ PO ₄	2) P ₂ O ₅	3) PO ₄ ³⁻	4) HPO ₄ ²⁻	
Ionic p	roduct of water				
75.	The units of ionic pr	oduct of water is			
	1) Mole/ lit	2) Mole / kg	3) Mole ² .lit ⁻²	4) No units	
76.	At $100^{\circ}\mathrm{C}$, the value	of $\mathbf{P}^{\mathbf{K}_{w}}$ is			
	1) 14	2) < 14	3) > 14	4) $P^{H} - P^{OH}$	
77.	At 25 ⁰ C , for an acid				
	1) [H ⁺] > 10 ⁻⁷ M	2) [OH ⁻] < 10 ⁻⁷ M	3) pH < 7	4) All the above	
78.	At 298 K, the $[H_3O^+]$	of a solution is 2×10^{-1}	⁹ M. The nature of the s	olution is	
	1) Acidic	2) Basic	3) Neutral	4) Can not be predicted	
79.	Ionic product of wat	er depends on			
	1) Volume of the wat	ter	2) Amout of salt in w	vater	
	3) Temperature		4) All the above		
80.	At a given temperat	ure , When an acid is a	dded to water then the	value of K _w	
	1) Decreases	2) Increases			
	3) Remains same	4) First decreases the	en increases.		
81.	At any temperature,	the proton concentration	ion of water is		
	1) 10 ⁻⁷ M	2) < 10 ⁻⁷ M	3) > 10 ⁻⁷ M	4) $\sqrt{K_w}$	
82.	The value of ionic p	roduct of water increas	ses with increase in		
	1) Acidic nature of s	olution	2) Basic nature of so	lution	
	3) Temperature		4) Volume of the solution	ution	
83.	If the ionic product	of water is 1.96x10 ⁻¹⁴ a	t 35ºC, What is its valu	ue at 10 ⁰ C	
	1)1.96 \times 10 ⁻¹⁴	2) 3.92 \times 10 ⁻¹⁴	3) 2.95 \times 10 ⁻¹⁵	4) 1.96 \times 10 ⁻¹³	
P^{H}, P^{OI}	^H and ionization cons	tants :			
84.	\mathbf{P}^{H} of a solution is gi	ven by			
	1) $P^{H} = -\log [H^{+}]$	2) $P^{H} = \log \frac{1}{[H^{+}]}$	3) $P^{H} = P^{K_w} - P^{OH}$	4) All the above	

	EMISTRY		₩	IONIC EQUILIBRIUM
85.	P ^H of a solution is ir	ndependent of		
	1) Temperature	1	2) Nature of the	e solution
	, -	ation of acid (or) base	4) Volume of th	
86.	Which of the follow		,	
		are P ^H of water is exactl	v equal to 7	
	, , ,	of an acid is less than 7		
	,	of a base is greater than		
		of water is equal to 7		
87.		us solution is zero. The	n the nature of the	e solution is
	1) Slightly acidic	2) Strongly acidic	3) Neutral	4) Basic
88.	Among the followir	ıg		
	1) P ^H of water decr	eases with increase in te	emperature	
	2) P ^H of water decre	eases by the addition of	base	
	3) P ^H of water incre	ases by the addition of	acid	
	4) At any temperatu	are P ^H of water is equal	to $\mathbf{P}^{\mathbf{K}_{\mathbf{w}/2}}$	
	1) All are correct		2) b,c,d are corr	rect
	3) a and d are corre	ct	4) a,b and c are	correct
89.	Assertion addition of sodium		olution of acetic a	cid remains unchanged on the
	Reason addition of sodium a	: acetate due to common		f acetic acid is supressed by the
90.	Assertion: At 90 ⁰ C	, the P ^H of pure water is	s less than 7	
	Reason in temperature.	:	Ionic product o	of water increases with increase
91.	-	, P ^H + P ^{OH} is equal to		
	1) 7	2) 0	3) 14	4) P ^{KW}
92.	The P ^H of 40 ml of a	n 0.02 M HCl will not l	be changed by add	ding
	1) 1 ml of 1M HCl		2) 2 ml of 1M N	laOH
	3) 20 ml of 0.1 M Na	aCl	4) 36 ml of sam	e concentrated HCl solution
93.	Among the following	0		
	/	P ^H of an acid increases		
	,	$p^{H} = 5$ is 100 times more		
		$P^{H} = 8$ is 1000 times mo		plution with P^{H} = 11
	,	KOH is slightly greater		
	1) All are correct		2) a,d are only o	
04	3) a,b,c are only correctly a_{1}^{2}		4) All are wron	0
94.	the following is rela	tively strong acid ?		are given in brackets. Which of
~-	1) A (3.6)	2) B (4.2)	3) C (5.4)	4) D (6.8)
95.	Which of the follow	ring is not correct ?		
	1) $P^{H} = \frac{1}{\log[H^{+}]}$	2) $P^{H} = \log\left(\frac{1}{H^{+}}\right)$	3) [H ⁺] = $10^{-P^{H}}$	4) $P^{H} = -\log[H^{+}]$

96.	For a strong acid,
	1) K_a is very high 2) P^{K_a} is very low 3) α is very high 4) All the above
97.	For a conjugate acid-base pair , ${\rm K_a}$ and ${\rm K_b}$ are related as
	1) $K_a.K_b = 1$ 2) $K_a.K_b = K_w$ 3) $K_a.K_b = 14$ 4) $K_a.K_b = 7$
98.	For a dibasic acid, $H_2A \rightleftharpoons HA^- + H^+$ (K ₁), $HA^- \rightleftharpoons A^{2-} + H^+$ (K ₂),
	$H_2A \rightleftharpoons 2H^+ + A^{2-}(K)$ then
	1) $K = K_1 + K_2$ 2) $K = K_2/K_1$ 3) $K = K_1/K_2$ 4) $K = K_1.K_2$
99.	For H_3PO_4 , $H_3PO_4 \rightleftharpoons H_2PO_4^- + H^+(K_1), H_2PO_4^- \rightleftharpoons HPO_4^{2^-} + H^+(K_2)$,
	$\mathrm{HPO_4}^{2-} \rightleftharpoons \mathrm{PO_4}^{3-} + \mathrm{H}^+(\mathrm{K}_3)$ then
	1) $K_1 > K_2 > K_3$ 2) $K_1 < K_2 < K_3$ 3) $K_1 < K_2 > K_3$ 4) $K_1 \cdot K_2 \cdot K_3 = K_w$
100.	Which of the following is relatively stronger acid? K _a values are given in brackets
	1) HA (2×10^{-4}) 2) HB (3×10^{-5}) 3) HC (1.8×10^{-3}) 4) HD (9.6×10^{-10})
101.	Which of the following is relatively stronger base? P^{kb} values are given in brackets.
100	1) AOH (5.8) 2) BOH (6.8) 3) COH (2.4) 4) DOH (10.9)
102.	For a weak acid (α is very small)
	1) $K_a = C. \alpha^2$ 2) $\alpha = \sqrt{\frac{K_a}{C}}$ 3) $[H^+] = C. \alpha$ 4) all the above
103.	Which of the following statement is not correct ?
	1) Cl ⁻ is a Lewis acid
	2) The P^{H} of 10^{-8} M HCl solution is less than 7
	3) The ionic product of water at 25° C is 10^{-14} M ²
104	4) Bronsted - Lowry theory could not explain the acidic nature of AlCl ₃
104.	Which of the following statement is correct? 1) Bronsted - lowry theory could not explain the acidic nature of BCl ₃
	2) The P^{H} of 0.01M NaOH solution is 2
	3) The ionic product of water at 25° C is 10^{-10} M ²
	4) The P^{H} of a solution can be calculated using the equation $P^{H} = +\log[H^{+}]$
105.	The P^H of a solution of H_2O_2 is 6.0. Some Cl_2 gas is bubbled into this solution. Which of the following is correct?
	1) The P^{H} of the resultant solution becomes 82) H_{2} gas is liberated
	3) The P ^H of the resultant solution becomes less than 6.0 and O_2 gas is liberated.
106.	4) Cl ₂ O is formed in the resultant solution. Which of the following is correct.
100.	1) The P^{H} of one liter solution containing 0.49g of H_2SO_4 is 2.0
	2) The conjugate base of H_2S is S^2 - 3) BF_3 is a Lewis base
	4) Phenophthalein is colourless in basic medium
107.	Which on of the following statements is not correct?
	1) P ^H + P ^{OH} = 14 for all aqueous solutions
	2) The P^H of 10^{-8} M HCl is 8

IONIC EQUILIBRIUM

3) 96, 500 coulombs of electricity diposits one gram equivelant weight of copper from $CuSO_4$ solution

4) The conjugate base of $H_2PO_4^{-1}$ is HPO_4^{2-1}

Strong and weak electrolytes

108.	Which of the following is a weak electrolyte?				
	1) CH ₃ COONa	2) CH ₃ COOH	3) KOH	4) H_2SO_4	
109.	Which of the followi	ng is a strong electroly	te		
	1) NH_4OH	2) Mg(OH) ₂	3) BaCl ₂	4) H ₃ PO ₄	
110.	Which of the followi	ng is the best conducto	r of electricity ?		
	1) 1M HNO ₃	2) 1M H ₂ CO ₃	3) 1M H ₃ PO ₄	4) 1M H_2SO_4	
111.	Ostwald dilution law	v is applicable to			
	1) Strong electrolytes	3	2) Weak electrolytes		
	3) Non - electrolytes		4) All types of electrolytes		

112. The correct expression for Ostwald's dilution law is

1)
$$K_a = \frac{\alpha^2}{(1-\alpha)V}$$
 2) $K_a = \alpha^2 V$ 3) $K_a = \frac{\alpha^2}{1-V}$ 4) $K_a = \frac{\alpha^2}{C(1-\alpha)}$

113. For a weak acid, the concentration of H⁺ ions is given by

1)
$$\sqrt{K_a.C}$$
 2) K_a/C 3) $\sqrt{K_a/C}$ 4) $\sqrt{C/K_a}$

114. Which of the following is wrong? 1) Degree of dissociation of a weak electrolyte increases with dilution. 2) Increase in temperature increases the ionisation. 3) Strong electrolytes are ionised completely even at moderate concentrations. 4) Addition of NH_4Cl to NH_4OH increases the ionisation of the latter. 115. Which of the following does not affect the degree of ionisation? 1) Temperature 2) Current 3) Nature of solvent 4) Concentration 116. At infinite dilution, the percentage ionisation of both strong and weak electrolytes is 1)1% 2) 20 % 3) 50 % 4) 100 % **Buffer Solutions** 117. A solution that has reserve acidity (or) alkalinity is called 1) Standard solution 2) Ideal solution 3) Non - ideal solution 4) Buffer solution 118. An acidic buffer contains 1) Excess of H⁺ ions, few anions and excess of undissociated molecules of weak acid

2) Excess of cations , few OH⁻ ions and some undissociated molecules of weak acid.

3) Excess of anions ,few H⁺ ions and some undissociated molecules of weak acid

4) Strong acid and its salt with a weak base

119. Which of the following is correct for buffer [Salt = S acid = A]

IONIC EQUILIBRIUM

				~ ~
	1) $P^{K_a} = P^H + \log \frac{1}{2}$	<u>s]</u> A]	2) $P^{H} = P^{K_a} + \log \frac{[s]}{[A]}$]
	3) [H ⁺] = $10^{-p^{K_a}}$	4) $P^{H} = -\log \frac{[s]}{[A]}$		
120.	Buffer capacity of a	cidic buffer solution is	maximum when	
	1) $\mathbf{P}^{\mathbf{H}} = \mathbf{P}^{\mathbf{K}_{\mathbf{a}}}$	2) [salt] = [acid]	3) P ^K _a =7	4) [H ⁺]= $\mathbf{P}^{\mathbf{K}_{\mathbf{a}}}$
	1) All are correct	2) b,c,d are correct	3) a and b are correct	4) c and b are correct
121.	To a buffer solution reaction involved is		CH ₃ COONa , some H	ICl is added . Then the
	1) CH ₃ COOH+OH ⁻	$\rightarrow CH_3COO^-+H_2O$	2) CH ₃ COO ⁻ + H ⁺ \rightarrow	CH₃COOH
	3) Na ⁺ +OH ⁻ → Na ⁶	ЭH	4) CH ₃ COO ⁻ + Na ⁺ —	→ CH ₃ COONa
122.	For acetic acid and a P ^H ?	sodium acetate buffer ,	addition of which of th	e following increases the
	1) CH ₃ COONa	2) H ₂ O	3) CH ₃ COOH	4) None of these
123.			se B and its conjugate ac s place to maintain cons	rid BH ⁺ . On adding some stant P ^H ?
	$1) \operatorname{BH}^+ \to \operatorname{B+} \operatorname{H}^+$		2) B + H ₂ O \rightarrow BH ⁺ +	OH-
	3) $\mathrm{H^{+}} + \mathrm{OH^{-}} \rightarrow \mathrm{H_{2}C}$)	4) $BH^+ + OH^- \rightarrow B+H^-$	I ₂ O
124.	For the buffer solution increased by	tion containing $\rm NH_4OH$	H and $\rm NH_4Cl$, $\rm P^{\rm H}$ of the theorem of the second seco	ne buffer solution can be
	1) Adding some mo	1	2) Adding some more	e NH ₄ OH
	3) Removing NH_4C		4) Both 2 and 3	
125.			and A ⁻ . When small qu ving reaction takes plac	antity of NaOH is added re?
	1) HA \rightarrow H ⁺ +A ⁻		2) $H^+ + A^- \rightarrow HA$	
	3) HA+ OH ⁻ \rightarrow H ₂	O + A⁻	4) $A^- + H_2O \rightarrow HA^-$	+ OH-
126.			ueous solution. The sol	
	1) Not a buffer solu		2) Not a buffer soluti	
	3) A buffer solution		4) A buffer solution	
127.		01	bes not form a buffer so	
	1) NaH ₂ PO ₄ and N 3) NH ₄ OH and NH		2) H_2CO_3 and NaHC	03
128.	From the following	1	4) KOH and K_2SO_4	
120.	Buffer	Vol.of 0.1M	Vol.of 0.1M	
	solution	weak acid	sodium saltof weak	
		(in ml)	acid (in ml)	
	I. 	4.0	4.0	
	II.	4.0	40.0	
	III.	40.0	4.0	
	IV.	0.1	10	

CHE	MISTRY		→ IC	NIC EQUILIBRIUM
	Which of the two se	ts of buffer solutions h	nave least pH ?	
	1) I & II	2) I & III	3) II & III	4) II & IV
129.	Few drops of HCl is	added to acetic buffer	r. The P ^H is maintained	d constant by
	1) CH ₃ COOH	2) CH ₃ COO-	3) Na ⁺	4) CH ₃ COONa
130.	in P ^H yet contains or		ouffering agents. Which	efficiently resists a change n one of the following weak
	1) m-chloro benzoio	$acid (P^{K_a} = 3.98)$	2) p- chlorocinnam	nic acid ($\mathbf{P}^{K_a} = 4.41$)
	3) 2,5 - dihydroxy b	enzoic acid ($P^{K_a} = 2.9$	7) 4) Acetoacetic acid	$(P^{K_a} = 3.58)$
131.WI	 1) 100 ml 0.2 M CH₃ 2) 100 ml 0.1M CH₃ 3) 100 ml 0.2M CH₃ 	nixture acts as buffer s COOH +100 ml 0.1M COOH + 100 ml 0.2M COOH + 100 ml 0.2 M e acts as buffer solutio	NaOH NaOH	of strong base, NaOH
Hudroi	lysis of salts		Ĩ	0
132.		f salt of strong acid an	d weak base	
	1) Undergoes cation	Ũ	2) Is acidic in natu	re
	3) Has P ^H less than	5 5	4) All the above	
133.	A salt of weak acid and weak base undergoes			
	1) Only cationic hyd	drolysis	2) Only anionic hy	drolysis
	3) Both cationic and	l anionic hydrolysis	4) No hydrolysis	
134.	The compound who	ose 0.1 M solution is b	basic is	
	1) Ammonium aceta	ate2) Ammonium chlo	oride	
	3) Ammonium sulp	hate	4) Sodium acetate	
135.	Which of the follow	ing salts, does not und	dergo hydrolysis ?	
	1) KCN	2) $ZnSO_4$	3) CH ₃ COONa	4) NaClO ₄
136.	The nature of aqueo	ous solution of $CuSO_4$	is	-
	1) Acidic	2) Basic	3) Neutral	4) Amphoteric
137.	Aqueous solution o	f which of the followi	ng shows lower P ^H ?	
	1) K ₂ SO ₄	2) ZnCl ₂	3) KCN	4) CH ₃ COONH ₄
138.	The hydrolysis cons	stant of CH ₃ COONa is	s given by	
	1) $K_h = \frac{K_w}{K_a}$	$2) K_{\rm h} = \frac{K_{\rm w}}{K_{\rm b}}$	$3) K_{h} = \frac{K_{w}}{K_{a} \cdot K_{b}}$	$4) K_{\rm h} = K_{\rm a}/K_{\rm b}$
139.	Which of the follow	ring salts undergoes a	nionic hydrolysis ?	(IIT 1983)
	1) CuSO ₄	2) NH ₄ Cl	3) FeCl ₃	4) Na_2CO_3
140.	, <u>1</u>	ing shows relatively h	nigher P ^H ?	_ 0
	1) Aq. NaCl	2) Aq. NH ₄ Cl	Ũ	4) Aq.KOH
141.	, 1	f salt of weak acid and	- 0 1	∕ ⊥
	1) Has[H ⁺] < [OH ⁻]		2) Is basic in nature	e
	3) Has P ^H grater that	an 7	,	4) All the above
	, 0			,

CHE	MISTRY		→]	ONIC EQUILIBRIUM
142.		t of weak base, MOH and we		-
	1) Acidic , if I	$K_a < K_b$ 2) Basic , if $K_a > K_b$	3) Neutral , if K _a	= K_b 4) All the above
143.	The \mathbf{P}^{H} of an	aqueous solution of a salt is a	10. The salt is	
	1) NaCl	2) NH ₄ Cl	3) CH ₃ COONa	4) $(NH_4)_2SO_4$
144.	-	ation of potash alum is acidic		
145	1) K ⁺ The baseline large	2) Al ³⁺	3) SO ₄ ²⁻	4) Mg ²⁺
145.		is constant of ammonium ac		
	1) $\frac{K_w}{K_a}$	2) $\frac{K_w}{K_h}$	3) $\frac{K_w}{K_x \cdot K_h}$	4) K _a . K _b
	a	110	a0	
146.	Aqueous solu	ation of KCl is neutral becaus	se	
	1) K ⁺ underge	oes hydrolysis	2) Cl ⁻ undergoes	hydrolysis
	3) Both K ⁺ an	d Cl⁻undergo hydrolysis	4) No hydrolysis	s takes place
147.	The P ^H of 0.1	M solution of the following c	ompounds increase	s in the order
	1) NaCl < NH	H ₄ Cl < NaCN < HCl	2) HCl < NH ₄ Cl	< NaCl < NaCN
	3) NaCN < N	'H₄Cl < NaCl < HCl	4) HCl < NaCl <	NH ₄ Cl < NaCN
148.		M solution of sodium bisulp		т
	1) Acidic	2) Alkaline	3) Neutral	4) Amphoteric
149.	The no.of hyd	droxyl ions produced by one	molecule of Na ₂ CO	on hydrolysis is
	1) 4	2) 2	3) 3	4) 0
150.	Assertion:	The aqueous solution of C	,	,
	Reason:	Acetate ion undergoes an	0	
151.	Assertion :	Aqueous solution of ZnS0		
101.			-	
	Reason:	Salt of strong acid and str		
152.	Assertion :	Aqueous solution of amm		
	Reason:	Dissociation constants of N equal.	$\rm M_4OH(K_2)$ and that	of $CH_3COOH(K_1)$ are nearly
153.	Assertion :	Aqueous solution of Na ₂ O	CO_3 shows P^H > 7.	
	Reason:	Salt of strong base and we	eak acid undergoes	anionic hydrolysis.
Comm	on ion effect and	l solubility product		
154.	Dissociation	of CH ₃ COOH is supressed b	y adding	
	1) HCl	2) H ₂ SO ₄	3) CH ₃ COONa	4) Any of the above
155	Ionisation of	NH OH is supressed by the	addition of NH Cl	hocauso

CHE	MISTRY		→ IO	NIC EQUILIBRIUM
	3) Of the common	ion effect of $\rm NH_4^+$ ion	4) None of the abov	e
156.	The solubility proc	luct of the electrolyte of	the type , A_2B_3 is (S is	the solubility in mol/lit)
	1) 108 S^5	2) 72 S ⁵	3) 108 S ²	4) 10 S ²
157.	For the electrolyte	of type , A_2B , K_{sp} is give	en. Then its solubility	is calculated by
		TZ		
	1) K _{sp} /4	$2) \sqrt[3]{\frac{K_{SP}}{4}}$	3) $\sqrt[3]{K_{sp}}$	4) $\sqrt{\mathrm{K_{sp}}}/4$
158.	The solubility of c equal to	alcium phosphate in wa	ater is x mol L ⁻¹ at 25 ⁰	C. Its solubility product is
	1) 108 x ²	2) 36x ³	3) 36 x ⁵	4) 108 x ⁵
159.	At a certain tempe solubility product		the salt $M_m A_n$ in wate	er is 's' moles per litre. The
	1) $M^m A^n$	2) $(m + n) s^{m+n}$	3) $m^m n^n s^{m+n}$	4) $M^m A^n s$.
160.		s precipitated as As ₂ S ₃ a containing As ⁺³ and Zn ⁺		hen H ₂ S is passed through
	1) Solubility produ	act of As_2S_3 is less than	thatof ZnS	
	2) Enough As ⁺³ are present in acidic medium			
	3) Zinc salt does n	ot ionise in acidic mediu	um	
	4) Solubility produ	act changes in presence	of an acid.	
161.	In qualitative ana before the addition		group sulphides , HO	Cl is added to salt solution
	1) Low S ²⁻ ion con	centration is required to	get ppt	
	2) High S ²⁻ ion con	ncentration is required t	to get ppt	
	3) II _A group metal s	ulphides have higher va	lues of K_{sp} than that of	IV _A group metal sulphides
	4) P ^H value increas	ses.	-	
162.	How do we differe	ntiate between Fe ³⁺ and	Cr ³⁺ in group III ?	
	1) By taking excess	s of NH ₄ OH	2) By increasing NI	H_4^+ ion concentration
	3) By decreasing C	[−] ion concentration	4) Both 2 and 3	
163.	The addition of Na	Cl to AgCl decreases th	e solubility of AgCl , b	pecause
	1) K _{sp} of AgCl dec	reases	2) K _{sp} of AgCl incre	eases
	3) Solution become	es unsaturated	4) Ionic product exc	ceeds the K _{sp} value
164.	Out of Ca^{2+} , Al^{3+} ,	Bi^{3+} , Mg^{2+} and Zn^{2+} the r	reagents NH ₄ Cl and aq	ueous NH ₃ will precipitate
	1) Ca ²⁺ , Al ³⁺	2) Al ³⁺ , Bi ³⁺	3) Bi ³⁺ , Mg ²⁺	4) Mg^{2+} , Zn^{2+}
165.	Which pair will sh	ow common ion effect ?	,	
	1) BaCl ₂ + Ba (NO	$_{3}$) ₂ 2) NaCl + HCl	3) $NH_4OH + NH_4C$	1 4) AgCN + KCN
166.	The correct repres	entation for solubility p	roduct of SnS ₂ is	

CHE	MISTRY		₩_	IONIC EQUILIBRIUM
	1) $[Sn^{4+}] [S^{2-}]^2$	2) [Sn ⁴⁺] [S ²⁻]	3) [Sn ⁴⁺] [2S ²⁻]	4) $[Sn^{4+}] [2S^{2-}]^2$
167.	Which of the follow	ring has the lowest val	lue of K_{sp} at 25 ⁰ C ?	,
	1) Mg (OH) ₂	2) Ca (OH) ₂	3) Ba (OH) ₂	4) Be (OH) ₂
168.	Which of the follow	ring is most soluble ?		
	1) $Bi_2S_3 (K_{sp} = 1 \times 1)$	0 ⁻¹⁷)	2) MnS (K _{sp} =	7×10^{-16})
	3) CuS ($K_{sp} = 8 \times 1$		4) $Ag_2S(K_{sp} =$	
169.	1		-1	I is added , the equilibrium is
	-	it giving more Ag I pre	-	
	1) Both AgCl and A	gI are sparingly solub	le. 2) The K _{sp} of A	gI is lower than K _{sp} of AgCl
	3) The K _{sp} of Ag I is	higher than K_{sp} of Ag	gCl	-
		gI have same solubilit		
170.	At 298 K , the K _{sp} va will increase when	lue of Fe(OH) ₃ in aque	ous solution is 3.8 x	x 10 ⁻³⁸ . The solubility of Fe ³⁺ ions
	1) P^H is increased	2) P ^H is 7	3) P ^H is decrea	sed
	4) Saturated solution	on is exposed to sun li	ght	
171.	In which of the follo	wing, the solubility o	f AgCl will be may	kimum? (CBSE PMT 1993)
	1) 0.1 M AgNO ₃	2) Water	3) 0.1 M NaCl	4) 0.1 M NaBr.
172.	Among the following	ng statements		
	a)If two salts have e	equal solubility then the	neir solubility proc	lucts are equal.
	-	oluble in water than in		
		d to PbI ₂ , then the [Pb		
	 In any solution temperature. 	containing AgCl , tl	he value of [Ag ⁺]	[Cl ⁻] is constant at constant
	1) All are correct		2) a, b and d ar	e correct
	3) a, c and d are cor	rect	4) b, c and d ar	e correct
170	TTL	· · · · · · 119-1 - C · · · · ·		
173.		y in molifit ² of a spat _{sp} is given by the relat		MX_4 is S. The corresponding
	1) S = ($K_{sp}/128$) ^{1/4}	2) S = $(218 \text{ K}_{sp})^{1/4}$	3) S = (256 K_{sp})	$^{1/5}$ 4) S = (K _{sp} /256) ^{1/5}
174.	Let the solubility of	an aqueous solution of	of $Mg(OH)_2$ be 'X'	then its K _{sp} is
	1) $4x^3$	2) 108 x ⁵	3) 27 x ⁴	4) 9x
175.	When HCl gas is precipitated because		urated solution o	of common salt, pure NaCl is
	1) HCl is highly ior	ised in solution		
	2)HCl is highly solu	ıble in water		
	3) The solubility pro	oduct of NaCl is lower	ed by HCl	
	4) The ionic produc	t of [Na ⁺] [Cl ⁻] excee	ds the solubility p	roduct of NaCl
176.	To Ag_2CrO_4 solution	n over its own precipi	tate, CrO_4^{2-} ions a	re added. This results in
	1) increase in Ag ⁺ c		2) decrease in .	Ag ⁺ concentration
	3) increase in solub	iity product		

CHE	MISTRY			NIC EQUILIBRIUM		
	4) shifting of Ag ⁺	ions from the precipitate	e into the solution.			
77.	The least soluble o	compound (salt) of the fo	ollowing is	ollowing is		
	1) CsCl ($K_{sp} = 10^{-1}$	²)	2) HgS ($K_{sp} = 1 \times 10^{-10}$	-52)		
	3) $PbCl_2(K_{sp} = 1.7)$		4) ZnS ($K_{sp}^{e_r} = 1.2 \times 1$			
	ľ	WORK SH	IEET - II			
onic v	roduct of water and	P ^H				
	-	ntration of a solution is 4	4×10 ⁻⁵ M. Then the OH ⁻	ion concentration of th		
	1) $4 \times 10^{-5} \mathrm{M}$	2) 2.5 × 10 ⁻⁹ M	3) 1.0 × 10 ⁻⁷ M	4) $2.5 \times 10^{-10} \mathrm{M}$		
2.	The [OH ⁻] of 0.005	5 MH ₂ SO ₄ is				
	1) 2 × 10 ⁻¹² M	2) $5 \times 10^{-3} \mathrm{M}$	3) 10 ⁻² M	4) 10 ⁻¹² M		
3.	At 25^{0} C , the hydr of K _w is	oxyl ion concentration o	of a basic solution is 6.75	5×10^{-3} M .Then the value		
	1) 13.5 × 10^{-6} M ²	2) $13.5 \times 10^{-12} M^2$	3) 13.5 × 10^{-8} M ²	4) 10 ⁻¹⁴ M ²		
Ł.	At certain temperative at the same temperative same temperative same temperative same temperative same same same same same same same sam	ature, the H ⁺ ion concen rature is	tration of water is 4×10^{-10}) ⁻⁷ M then the value of K		
	1) $10^{-14} \mathrm{M}^2$	2) $4 \times 10^{-14} \mathrm{M}^2$	3) $1.6 \times 10^{-13} \mathrm{M}^2$	4) $4 \times 10^{-7} \mathrm{M}^2$		
5.	The ionic product	of water is 10 ⁻¹⁴ . The H	⁺ ion concentration in 0	.1M NaOH solution is		
	1) 10 ⁻¹¹ M	2) 10 ⁻¹³ M	3) 10 ⁻¹ M	4) 10 ⁻⁴ M		
5.	The no.of H ₃ O ⁺ io	ns present in 10 ml of w	ater at 25ºC is			
	1) 6.023 × 10 ⁻¹⁴	2) 6.023 × 10 ¹⁴	3) 6.023 × 10 ⁻¹⁹	4) 6.023 × 10 ¹⁹		
7.		tant of water at 25 ⁰ C is				
	1) 1.0×10^{-14}	2) 1 × 10 ¹⁴	3) 14	4) 1.8 × 10 ⁻¹⁶		
3.	One litre of water of is	contains 10 ⁻⁷ moles of H ⁺	ions. Degree of ionisatio	n of water (in percentag		
	1) 1.8 × 10 ⁻⁷	2) 1.8 × 10 ⁻⁹	3) 3.6 × 10 ⁻⁷	4) 3.6 × 10 ⁻⁹		
Proble	ms on P ^H concept					
9.	At some high ten temperature is	nperature, K_w of water	is 10^{-13} . Then the P ^H of	of the water at the sam		
	1) 7.0	2) 6.5	3) 7.5	4) 7.23		
0.	The P^{H} of 0.005 M	Ba(OH) ₂ is				
	1) 2.301	2) 11.699	3) 12	4) 7		
1.	The P^{H} of 0.001 M	CH ₃ COOH is				
	1) 3	2) 11	3) Between 3 and 7	4) 7		
2.	The P^H of 10^{-8} M 3	HCl is				
	1) 8	2) 6	3) 7	4) 6.98		
3.	The [OH ⁻] of a sol	ution is 10^{-10} . Its P ^H is				
	1) 4	2) 10	3) 7	4) 9		
4.	Four grams of Na What is the [H ⁺] of	OH solid are dissolved the solution ?	in just enough water to	make 1 litre of solution		
	1) 10 ⁻² moles/litre	e 2) 10 ⁻¹ moles/litre	3) 10 ⁻¹² moles/litre	4) 10^{-13} moles/litre.		
5.	, ,	on is 3.602. Its H ⁺ ion co	, , ,	· · ·		
	1) 4×10^{-14}	2) 2.5 × 10 ⁻¹¹	3) 2.5 × 10 ⁻⁴	4) 5.0 × 10 ⁻⁴		

CHI	EMISTRY			ONIC EQUILIBRIUM
16.	The P ^H of HCl is	3. Then the P^{H} of NaOH	solution having sam	e molar concentration is
	1) 3	2) 6	3) 9	4) 11
17.		N/10 NaOH are added to	50 ml of N/5 HCl, th	${\rm he}{\rm P}^{\rm H}$ of the resulting solution
	is 1)7	2) greater than 7	3) less than 7	4) Zero
18.				the strong electrolyte, calcium s)? ($K_w = 1.0 \times 10^{-14} \text{ mole}^2$ litre ⁻
	1) 9.8	2) 11.7	3) 12.0	4) 3.0
19.	Equal volumes o solution is	of two solutions with P ^H =	3 and $P^{H} = 11$ are mi	xed. Then the P ^H of resulting
	1) 8	2) 7	3) 6	4) 0
20.	The P ^H of a solut solution is	ion is 3.0. This solution is	diluted by 100 times	. Then the P ^H of the resulting
	1) 5	2) 7	3) 1	4) 11
21.	Equal volumes or resulting solution	1 1	ide and 0.1 M sulph	uric acid are mixed. The P^H of
	1) 7	2) 0	3) less than 7	4) greater than 7
22.	The dissociation	constant of a weak acid	is 10 ⁻⁶ . Then the P ^H $ m c$	of 0.01 N of that acid is
	1) 2	2) 7	3) 8	4) 4
23.	The P^H of 0.1M I	NaCl solution is		
	1) 1	2) 13	3) 7	4) Zero
24.	At 100^{0} C , the P ^H	^I of pure water is		
	1)7	2) Greater than 7	3) Less than 7	4) Zero
25.	The P ^H of HCl is	5. It is diluted by 1000 tir	nes. Its P ^H will be	
	1) 5	2) 8	3) 2	4) 6-7
26.	The P ^H of a solut	ion is 6. Its $[H_3O^+]$ is deci	eased by 1000 times.	Its P ^H will be
	1) 9	2) 6.96	3) 7.04	4) 8
27.	,	mono acidic base, if it is	,	,
	1) 5	2) 8	3) 3	4) 9
28.	,	on is 9. It is times	,	,
	1) 3	2) 100	3) 1000	4) 15
29.	,	,	,	n of acid in 0.1 M solution is
_>.	1) 10 ⁻⁴	2) 10 ⁻³	3) 10 ⁻²	4) 10 ⁻¹
30.	,	solution is 2. It is diluted	/	becomes 4. How many litres
	1) 99	2) 9	3) 999	4) 9.9
31.	,	'	/	of such a HCl solution to get
	1) 4g	2) 0.4g	3) 4 mg	4) 0.4 mg
32.			, 0	llowing should be adopted ?
•	1) 1 lit of water is		2) 1 kg of water is	0
	,		, 0	
	<i>5)</i> The volume of	the solution should be d	ioubled by adding w	מוכו

CHE	MISTRY			IONIC EQUILIBRIUM
L		ite present in the soluti	on should be dou	bled
33.	The P^H of a solution	is 11. It is diluted by 1	000 times. Then th	e P ^H of resulting solution is
	1) 8	2) 14	3) 7	4) 7.04
34.	A : The P^H of a solution	tion changes from 5 to 8	8 when the solutio	n is diluted by 1000 times.
	R : When the conc.or unit.	f H ⁺ ion decreases by 10) times , then P^{H} of	the solution increases by one
35.	The P ^H of a dibasic	acid is 3.699 . Its molari	ity is	
	1) $2 \times 10^{-4} \mathrm{M}$	2) $4 \times 10^{-4} \mathrm{M}$	3) 2 × 10 ⁻³ M	4) $1 \times 10^{-4} \mathrm{M}$
36.	At certain temperatu is	are the K_w of D_2O is 10^{-10}	⁶ M . Then the pD o	f pure D_2O at that temperature
	1) 7	2) 16	3) 8	4) 6
37.	50 ml of H ₂ O is adderesulting solution?	ed to 50 ml of 1×10^{-3} M	barium hydroxide	solution. What is the P^{H} of the
	1) 3.0	2) 3.3	3) 11.7	4) 11.0
38.	20 ml of 0.4 M H_2 So solution is	O_4 and 80 ml of 0.2 M 2	NaOH are mixed	. Then the P^H of the resulting
	1) 7	2) 1.097	3) 12.903	4) 11.903
39.		d dissociation constan erall dissociation const		are 1.0 × 10 ⁻⁵ and 5.0 × 10 ⁻¹⁰ l be
	1) 5×10^{15}	2) 5.0 × 10 ⁻¹⁵	3) 0.2×10^5	4) 5.0 × 10 ⁻⁵
40.	A 0.2M solution of 1 1) 9.6 × 10 ⁻³	formic acid is 3.2% ioni 2) 2.1 × 10 ⁻⁴	ised. Its ionisation 3) 1.25 × 10 ⁻⁶	constant is 4) 4.8×10^{-5}
41.	The hydrogen ion c	oncentration of 0.2M C	H ₃ COOH which i	s 4% ionised is
	1) 0.008 N	2) 0.12 N	3) 0.8 N	4) 0.08 N
42.	Degree of dissociati	ion of 0.1 N CH ₃ COOH	is $(K_a = 1.0 \times 10^{-5})$)
	1) 10 ⁻⁵	2) 10 ⁻⁴	3) 10 ⁻⁴	4) 10 ⁻²
Buffer S	Solutions			
43.	An acidic buffer cor ⁴ . The P ^H of the buffe		02 M acid. The diss	sociation constant of acid is 10 ⁻
	1) 4	2) 10	3) 4.48	4) 9.52
44.		ntains equal concentrati of the buffer solution is	ons of acid and sal	lt. The dissociation constant of
	1) 5	2) 9	3) 4.49	4) 5.5
45.	Solution of 0.1 N N	H_4OH and 0.1 N NH_4C	Cl has P^H 9.25. The	n $\mathbf{P}^{\mathbf{K}_{\mathbf{b}}}$ of $\mathrm{NH}_4\mathrm{OH}$ is
	1) 9.25	2) 4.75	3) 3.75	4) 8.25
46.		on of sodium acetate ar The P ^H of the buffer so		acetic acid are mixed. The pKa
	1) 3.76	2) 4.76	3) 5.76	4) 9.24
47.		n acid is added to 2 lit of pacity of the solution is		the \mathbf{P}^{H} of the buffer decreases
	1) 0.6	2) 0.4	3) 0.2	4) 0.1

CHEN			ION	NIC EQUILIBRIUM
48.	A solution consists [OH ⁻] of the resultir	of 0.2 M NH_4OH and ng solution is	0.2 M NH ₄ Cl. If K _b of	$NH_4OH \text{ is } 1.8 \times 10^{-5}$, the
	1) 0.9 × 10 ⁻⁵ M	-	3) 3.2 × 10 ⁻⁵ M	4) 3.6 × 10 ⁻⁵ M
49.	(1) : The P^H of a buff	fer solution containing	equal moles of acetic a	cid and sodium acetate is
	4.8 ($\mathbf{P}^{\mathbf{K}_{a}}$ of acetic ac	cid is 4.8)		
	(R) : The ionic prod	uct of water at 25 ⁰ C is 1	$10^{-14} \text{ mol}^2 \text{ lit}^{-2}$	
Salt hy	drolysis			
50.	The P ^H of aqueous s ⁵)	solution of NH ₄ CN (K _a	of HCN is 9.2×10^{-10} &	$\rm K_b$ of $\rm NH_4OH$ is 1.8 \times 10-
	1) > 7	2) < 7	3) 7	4) 14
51.	The hydrolysis con	stant of NaX (K _a of HX	is 2 × 10 ⁻⁶) is	
	1) 5×10^{-9}	2) 2 × 10 ⁻¹⁰	3) 2 × 10 ⁻⁶	4) 10 ⁻⁷
52.		nt of salt derived from It of the weak base is	n strong acid and we	ak base is 2 × 10^{-5} . The
	1) 5 × 10 ⁻⁸	2) 5 × 10 ⁻⁹	3) 5 × 10 ⁻¹⁰	4) 2 × 10 ⁻¹⁹
Solubil	ity Product			
53.	The solubility prod temperature is	uct of $BaSO_4$ at 18^0C is	1.5×10^{-9} . Its solubilit	y (mole lit ⁻¹) at the same
		2) 1.5 × 10 ⁻⁵	3) 3.9 × 10 ⁻⁹	4) 3.9 × 10 ⁻⁵
54.	The solubility of Ca	F_2 is 2 × 10 ⁻⁴ mole/litre	e. Its solubility product	is
	1) 2.0 × 10 ⁻⁴	2) 4.0 × 10 ⁻⁸	3) $4 \times 8.0 \times 10^{-12}$	4) 3.2 × 10 ⁻⁴
55.	The solubility of Ag	gCl in 0.1M NaCl is (K _{st}	of AgCl = 1.2×10^{-10})	
	1) 0.1M	2) 1.2 × 10 ⁻⁵	3) 1.095 × 10 ⁻⁵	4) 1.2×10^{-9}
56.	If the solubility prod will be	duct of MOH is 1×10^{-1}	⁰ mol ² . dm ⁻² . Then the l	P ^H of its aqueous solution
	1) 12	2) 9	3) 6	4) 3
57.	The molar solubility	y of PbI ₂ in 0.2M Pb(NC	$(P_3)_2$ solution in terms of	solubility product, K _{sp}
	1) $(K_{sp}/0.2)^{1/2}$	2) $(K_{sp}/0.4)^{1/2}$	3) $(K_{sp}/0.8)^{1/2}$	4) $(K_{sp}/0.8)^{1/3}$
58.	4.32×10^{-14} . Its solution	oility is		at room temperature is
	1) 2 × 10 ⁻³ M	2) $2.0 \times 10^{-4} \mathrm{M}$	3) 2 × 10 ⁻⁵ M	4) $2.0 \times 10^{-6} \mathrm{M}$
59.		SO_4 in 0.01M Na ₂ SO ₄ s	1	
	1) 1.25 × 10 ⁻⁷ M	2) 1.25 × 10 ⁻⁹ M	3) $1.25 \times 10^{-10} \mathrm{M}$	4) 0.1 M
60.	The K _{sp} of a salt, hav M ²⁺ ions in the aque	ving the general formul cous solution of the salt	a MX ₂ , in water is 4 × 1 is	0 ⁻¹² . The concentration of
	1) $2 \times 10^{-6} \mathrm{M}$	2) 1 × 10 ⁻⁴ M	3) $1.6 \times 10^{-4} \mathrm{M}$	4) $4 \times 10^{-10} \mathrm{M}$

WORK SHEET - III

Single or more than one option questions

1.In which of the following solution the AgCl is least soluble?1) Water2) 0.1M NaCl3) 0.05 M CaCl24) 0.2 M KCl

CHI	EMISTRY		• IC	ONIC EQUILIBRIUM
2.	Which of the follwo	ing sulphides has m	aximum solubility in w	rater?
	1) CdS($K_{sp} = 36 \times 10^{-10}$	ŋ-30 ₁	2) $F_{0}S(K) = 11 x$	10-20)
	3) HgS(K _{sp} = 36×1		2) FeS ($K_{sp} = 11 x$ 4) ZnS($K_{sp} = 11x$	
3.	1		1	x 10^{-10}) at 25^0 C is { M.W of
	$BaSO_4$ is 283 }		1	,
	1) 820L	2) 450L	3) 205L	4) None of these
4.	K_{sp} of A_2B_3 (s) in wa	ater at 25° C is $1.1 \times 10^{\circ}$	10 ⁻²³ . Concentration of	A ⁺ ions is
	1) 1 x 10 ⁻⁵	2) 2 x 10 ⁻⁵	3) 3 x 10 ⁻⁵ M	4) 5 x 10 ⁻¹¹
5.	Number of moles of	f Cul ($K_{Sp} = 5 \times 10^{-12}$) that will dissolve in 1	L of 0.1 M Nal solution is
	1) 2.2 x 10 ⁻⁶	2) 5 x 10 ⁻¹¹	3) 5 x 10 ⁻¹⁰	4) 2.2 x 10 ⁻⁵
6.	K_{sp} of MX = K_{sp} of I	MX ₂ . Which is more	soluble?	
	1) Mx	2) MX ₂		
	3) Equal	4) K _{sp} value is ree	quired	
7.	Solubility of AgCl ($K_{sp} = 1 \times 10^{-10}$ in 0.2	1M BaCl ₂ is	
	1) 10 ⁻⁹ M	1	3) 5 x 10 ⁻¹⁰ M	4) 0.05 M
8.	100mL each of 0.25	M NaF and 0.015M	$Ba(NO_3)_2$ are mixed. K ₃	$_{50}$ of BaF ₂ = 1.7 x 10 ⁻⁶
	1) A ppt is formed	2) No ppt is forme		r –
	3) Cannot say	4) Some more data	a are needed	
9.	A saturated solutio	n 0 - nitrophenol ha	is a p^{H} equal to 4.53, th	en its solubility in water is
	$(P_{a}^{K} = 7.23)$			
	1) 2.085g/lit	2) 20.85g/lit	3) 10.425g/lit	4) 1.0425g/lit
10.	$K_{sp}(BaSO_4)$ is 1.1 x 1	10 ⁻¹⁰ . In which case i	s $BaSO_4$ precipitated ?	
	1) 100 mL of 4 x 10 ⁻³	M of $BaCl_2 + 300 \text{ mI}$	L of 6.0 x 10^{-4} M of Na ₂ S	O ₄
	2) 100 mL of 4 x 10 ⁻⁴	M of $BaCl_2 + 300 \text{ mI}$	L of 6 x 10 ⁻⁸ M of Na_2SO_2	4
	3) 300mL of 4 x 10 ⁻⁴	M of $BaCl_2$ +100mL	of 6.0 x 10 ⁻⁸ M of Na_2SO	4
	4) in all cases.			
More	than one correct answe	rs		
11.			nd its Ksp value is 4x 1	0 ⁻¹² which of the following
	statement is / are co 1) The solubility is u		he medium	
			puffered medium at pH	at 2
	· · · ·		buffered medium havi	ng pH at 9
	4) Its saturated solu	tion has pH is equal	to 10.3	
12.	A solution contains	0.05 M of each of Na	Cland <i>Na₂CrO</i> ₄.Solid	<i>AgNO</i> ₃ is gradually added
	to it. Which of the fo			
		1 1 1 1 1 1 1 1 1	$(1, \alpha, \alpha)$	27 62

Given : $K_{sp}(AgCl) = 1.7 \times 10^{-10} M^2$ and $K_{sp}(Ag_2CrO_4) = 1.9 \times 10^{-12} M^3$.

CUE	MISTRY			IONIC FOULI IBRIUM
CHE	1) Cl^{-} ions are prec	ipitated first	2) $\operatorname{CrO}_4^{2-}$ ions a	IONIC EQUILIBRIUM
		D_4^{2-} ions are precipitated		
	4) The second ion s	starts precipitating whe	en [C <i>l</i> ⁻] = 2.758 x	10 ⁻⁵
13.	Which of the follow	ving are correct about t	he solubility ?	
		F_2 is more in buffer solu		
		6 in water depends upo		
		Cl increases in presence		-
				$\left[Zn^{2+} \right] \left[H_2S \right]$
	4) Solubility of ZnS	5 in presence of H ⁺ ion	can be derived by	$y K = \frac{\left[Zn^{2+}\right]\left[H_2S\right]}{\left[H^+\right]^2} \text{ where K is}$
	equilibrium constan	nt for the reaction, ZnS	$_{(s)} + 2H^{+}_{(aq)} \rightleftharpoons Z$	$n^{2+}{}_{(aq)} + H_2 S_{(aq)}$
14.		0		ak monoacidic base respectively ollowing statements are correct?
	1) All the above m	ixing would result in n	eutral solution ha	ving pH = 7 at 25°C
	2) If aq. NH_3 is exac	ctly half neutralized by	HCl, then pOH of	resulting solution is equal to pK _b
	3) If acetic acid is ex pK _a	actly half neutralized l	by NaOH, then pI	I of resulting solution is equal to
	4) If acetic acid is e pkW.	xactly neutralized by a	nq. NH ₃ then pH o	of resulting solution is equal 1/2
15.	-	following solution are a se of pH of two solution		ase the pH of resulting solution
	1) pH = $3(HNO_3)$ a	and pH = 5 (HNO ₃)	2) pH = 2(HN	O_3) and pH = 12(KOH)
		OOH) and pH = 9.5 (NH	. –	0
	4) pH = 3 (HCN) an	nd pH = 11 (NaOH) K _a	of (HCN = 10 ⁻¹⁰)	
16.	Which of the follow	ving solution will have	no effect on pH o	n dilution ?
	1) 0.3 M CH ₃ COOK	ζ	2) 2.4 M CH ₃ (COONH ₄
	3) 0.2 M NH ₄ OH -	+ 0.2 M NH ₄ Cl	4) 0.3 H ₂ CO ₃	+ 0.3 M NaHCO ₃
Linked	Comprehension type			-
Passag	ge-I			
	The pH of pure wa	ter at 25 ⁰ C and 60 ⁰ C are	7 and 6.5 respect	vely. HCl gas is passed through
	water at 25 ⁰ C till the	e resulting 1litre solutio	on which acquires	a pH of 3. Now 4×10^{-3} mole of
				CN solution has $pH = 5.1936$.
17.	The volume of HC	l passed through the so	lution at 25° C and	11 atm is:
17.	1) 24.46mL	2) 2.446mL	3) 244.6mL	4) 0.244 mL
18.	,	,		τ_{j} 0.277 IIIL
10.	The degree of diss	ociation of 0.1M HCN s	orution is.	

The degree of dissoen			
1) 6.4 x 10 ⁻⁵	2) 6.4 x 10 ⁻³	3) 6.4 x 10 ⁻²	4) 6.4 x 10 ⁻⁶

CHE	MISTRY			IONIC EQUILIBRIUM							
19.	The pH of solution contain $4x10^{-3}$ mol of NaCN and 10^{-3} mol of HCN is nearly										
	1) 10	2) 11	3) 9	4) 8							
Passag	ge : II										
	The solubility product of a soluble salt $A_x B_y$ is given by : $K_{sp} = [A^{y+}]^x [B^{x-}]^y$. As soon as the										
	product of concentration of A^{y^+} and B^{x^-} increases the n its $K_{sp'}$ the salt starts precipitation. It										
	may practically be noticed that AgCl is more soluble in water and its solubility decreases										
	dramatically in 0.1	dramatically in 0.1 M Nacl or 0.1M AgNO ₃ solution. It may therefore be concluded that in									
	presence of a common ion, the solubility of salt decreases.										
20.	The salting out ac 1) Common ion eff 3) Solubility produ	fect	2) Hydrolysis	ence of NaCl is based on : 2) Hydrolysis of salt 4) Complex formation.							
21.	The pH of a satura	ated solution of Mg	(OH) ₂ is (K _{sp} Mg(OH	$)_2 = 1 \times 10^{-11})_{:}$							
	1) 0	2) 3.87	3) 10.43	4) 5							
22.	The volume of wa	ter needed to disso	lve 1g BaSO ₄ (K_{sp} = 1	x 10 ⁻¹⁰) is :							
	1) 230 litre	2) 429 litre	3) 500 litre	4) 320 litre							
Match	Match the following questions										
23.	Match the Column	n-I with Column-II :									
	Column - I		Column - II								
	1) pH of a basic bu	ffer mixture	p) $pK_a + log \frac{[salt]}{[Acid]}$								
	2) pH of an acidic	buffer mixture	q) $(pK_a)_{C.Acia}$	$_{d} + log \frac{[Base]}{[salt]}$							
	3) pH of a salt solution of weak acid+strong base r) $\frac{1}{2} [pK_w + pK_a + \log c]$										
	4) pH of a salt solution of strong acid+ weak base s) $\frac{1}{2} [pK_w - pK_b - \log c]$										
24.	Column-I		Column-	II							
	(salt solution in water)		(Nature of hydrolysis)								
	1) NaCl		p) Cationic hy	drolysis only							
	2) CH ₃ COONa		q) Anionic hyd	drolysis only							
	3) NH ₄ CN		r) Both cationi	c and anionic hydrolysis							
	4) $CH_{3}COONH_{4}$		s) Does not un	dergo hydrolysis							
Integer answer type Questions											
	Jr - 2	10 - 0									

- 25. K_a for HCN is 5.0×10^{10} at 25^{0} C. For maintaining a constant pH of 9. Calculate the volume of 5.0M KCN is 5.0×10^{-10} at 25^{0} C. For maintaining a constant the pH of solution.
- 26. Calculate the pH at which an acid indicator with $K_a = 1.0 \times 10^{-5}$ changes colour when the

IONIC EQUILIBRIUM

indicator concentrationi is 1.0×10^{-3} M.

- 27. K_{sp} Of M (OH)_x is 27 x 10⁻¹² and its solubility in water is 10⁻³ mol litre⁻¹. Find the value of X.
- 28. If the equilibrium constant for the reaction of weak acid HA with strong base is 10⁹, then calculate the pH of 0.1 M NaA.
- 29. If pK_a of acetic acid and pK_b of ammonium hydroxide are 4.76 each. Find the pH of ammonium acetate.
- 30. The solubility product of a springly soluble metal hydroxide $[M(OH)_2]$ is 5×10^{-16} mol³ dm⁻⁹ at 298 K. Find the pH of its saturated aqueous solution.

3) pH is 5.00 when indicator is 75% red 4) pH is 4.05 when indicator is 75% blue

1) 4	2) 3	3) 4	4) 2	5) 3	6) 3	7) 4	8) 3	9) 2	10) 2		
11) 2	12) 3	13) 1	14) 4	15) 3	16) 4	17) 1	18) 4	19) 4	20) 3		
21) 2	22) 3	23) 4	24) 4	25) 3	26) 2	27) 1	28) 3	29) 3	30) 4		
31) 2	32) 2	33) 3	34) 3	35) 2	36) 1	37) 1	38) 4	39) 4	40) 2		
41) 2	42) 4	43) 3	44) 1	45) 4	46) 4	47) 4	48) 3	49) 2	50) 4		
51) 4	52) 4	53) 4	54) 2	55) 3	56) 2	57) 2	58) 4	59) 4	60) 3		
61) 2	62) 2	63) 1	64) 1	65) 1	66) 1	67) 1	68) 2	69) 1	70) 1		
71) 1	72) 1	73) 1	74) 4	75) 3	76) 2	77) 4	78) 2	79) 3	80) 3		
81) 4	82) 3	83) 3	84) 4	85) 4	86) 1	87) 2	88) 3	89) 4	90) 1		
91) 4	92) 4	93) 1	94) 1	95) 1	96) 4	97) 2	98) 4	99) 1	100) 3		
101) 3	102) 4	103) 1	104) 1	105) 3	106) 1	107) 2	108) 2	109) 3	110) 4		
111) 2	112) 1	113) 1	114) 4	115) 2	116) 4	117) 4	118) 3	119) 2	120) 3		
121) 2	122) 1	123) 3	124) 4	125) 3	126) 1	127) 4	128) 2	129) 2	130) 4		
131) 1	132) 4	133) 3	134) 4	135) 4	136) 1	137) 2	138) 1	139) 4	140) 4		
141) 4	142) 3	143) 3	144) 2	145) 3	146) 4	147) 2	148) 1	149) 2	150) 1		
151) 4	152) 1	153) 1	154) 4	155) 3	156) 1	157) 2	158) 4	159) 3	160) 1		
161) 1	162) 3	163) 4	164) 2	165) 3	166) 1	167) 4	168) 2	169) 2	170) 3		
171) 2	172) 4	173) 4	174) 1	175) 4	176) 2	177) 2					
WORK SHEET - II											
1) 4	2) 4	3) 4	4) 3	5) 2	6) 2	7) 4	8) 1	9) 2	10) 3		
11) 3	12) 4	13) 1	14) 4	15) 3	16) 4	17) 1	18) 3	19) 2	20) 1		
21) 3	22) 4	23) 3	24) 3	25) 4	26) 1	27) 4	28) 3	29) 1	30) 1		
31) 2	32) 3	33) 1	34) 4	35) 4	36) 3	37) 4	38) 1	39) 2	40) 2		
41) 1	42) 4	43) 3	44) 1	45) 2	46) 3	47) 4	48) 2	49) 2	50) 1		
51) 1	52) 3	53) 4	54) 3	55) 4	56) 2	57) 3	58) 2	59) 1	60) 2		

EXERCISE - I /ANSWERS WORK SHEET - I

WORK SHEET - III

1) 4	2) 2	3) 2	4) 2	5) 2	6) 2	7) 3	8) 1	9) 1	10) 1
11) 234	12)	14	13) 123	4		14) 123	4	15) 23	16) 234
17) 1	18) 1	19) 1	20) 3	21) 3	22) 2		23) 1-q;	2-p; 3-r;	4-s
24) 1-s;	2-q; 3-r ;	4-r	25) 2	26) 5	27) 3	28) 9	29) 7	30) 9	

EXERCISE - I

Laws of Chemical Combinations

Linces							
1.	Chemical equation is balanced according to the law of						
	1) Multiple proportion	2) Reciprocal proportion					
	3) Conservation of mass	4) Definite proportions					
2.	The law of multiple proportions was propos	ed by					
	1) Lavoisier 2) Dalton	3) Proust 4) Gay Lussac					
3.	An unbalanced chemical equation is agains	t the law of					
	1) The law of gaseous volumes	2) The law of constant proportions					
	3) The law of mass action	4) The law of conservation of mass					
4.	Which of the following pairs can be cited a proportion?	as an example to illustrate the law of multiple					
	1) Na ₂ O, K ₂ O 2) CaO,MgO	3) $Al_2O_{3'}Cr_2O_3$ 4) CO,CO ₂					
5.	Percentage of copper and oxygen in sample found to be the same. This proves the law of	es of CuO obtained by different methods were					
	1) Constant proportions	2) Reciprocal proportions					
	3) Multiple proportions	4) Conservation of mass					
6.	The law of conservation of mass holds good	for all of the following except					
	1) All chemical reactions	2) Nuclear reactions					
	3) Endothermic reactions	4) Exothermic reactions					
7.	Law of combining volumes was proposed by						
	1) Lavoisier 2) Gay Lussac	3) Avogadro 4) Dalton					
8.	"The total mass of reactants is always equ reaction." This statement is known as	al to the total mass of products in a chemical					
	1) Law of conservation of mass	2) Law of definite proportions					
	3) Law of equivalent weights	4) Law of combining masses					
9.	In the reaction Hydrogen (g)+Oxygen(g) \rightarrow illustrates the law of	water vapour, the ratio of volumes is 2:1:2. This					
	 conservation of mass all the above 	2) combining weights 3) combining volumes					
10.		th 0.57 g oxygen. In compound B, 2.00g nitrogen C, 3.00 g nitrogen combines with 5.11 g oxygen.					
	1) Law of constant proportion	2) Law of multiple proportion					
	3) Law of reciprocal proportion	4) Dalton's law of partial pressure					
11.	The law of multiple proportions is ilustrated	l by the two compounds					
	1) Sodium chloride and sodium bromide	2) Ordinary water and heavy water					
	3) Caustic soda and caustic potash	4) Sulphur dioxide and sulphur trioxide.					
12.		educed to metallic lead by heating in a current of e was half the weight of lead obtained from the					
	1) Law of reciprocal proportions	2) Law of constant proportions					

CIILI	3) Law of mult	iple proi	oortions			4) Law of equivalent proportions				
13.	LIST - 1	1 1 1				LIST - 2				
10.		_				$\frac{V_1}{V_1}$	n ₁			
	A) Law of con	servatio	n of Mas	s		1) $\frac{V_1}{V_2} = \frac{n_1}{n_2}$				
	B) Avogadro's	Law				2) $2H_{2(s)} + O_{2(g)} \rightarrow 2H_2O_{(s)}$				
	C) Gay-Lussac	's Law o	f combin	ning volu	ımes	$33 12g \text{ of } C + 32g \text{ of } O_2 = 44g CO_2$				
	D) Law of cons	servatior	n of Ener	rgy		4) $H_{2(g)} + Cl_{2(g)} \rightarrow 2HCl_{(g)}$				
						5) H _{2(g)} +	$\text{Cl}_{2(g)} \rightarrow$	2HCl _{(s}	_{g)'} Δ H=-184.6k.J	
	The correct ma									
	А	В	C	D	- 1	А	В	C	D	
	1) 3	1	4	5	2)	A 3 1	1	5	4	
14										0/
14.	oxygen. The da	ata suppo	ort	-	cuve				% carbon and 72.73	/0
	1) Law of cons			2) Law of conservtion of mass						
	3) Law of recip	1	1			4) Law of multiple proportions				
15.							d carbon dioxide i 16 and 12:32 Thes:			
	1) Law of mult	iple prop	portions			2) Law of	f reciproca	l prop	ortions	
	3) Law of cons	ervation	of mass			4) Law o	f constant	propo	rtions	
16.						ontained 1.2 g of carbon and 3.2 g of oxygen. The ygen. The experimental data are in accordance				
	1) Law of conse	ervation	of mass			2) Law of definite proportions				
	3) Law of recip	procal pro	oportion	IS		4) Law of multiple proportions				
Mole c	oncept									
17.	The molar volu	ume of a	ny gas at	t STP is						
	1) 1 litre		2) 22.414	4 lit		3) 6.02×1	.0 ²³ lit	4)	22.414 ml	
18.	1 gram - atom o	of oxyge	n is							
	1) 1 g of oxyger	n	2) 16g of	foxygen		3) 22.4 g	of oxygen	4)	8g of oxygen	
19.	One gram mole	ecule of o	oxygen is	s						
	1) 16 gms of ox	ygen	2) 32 gm	s of oxyg	gen	3) 8gms o	of oxygen	4)	1gm of oxygen	
20.	Avogadro number is 1) The number of atoms in one gram-atomic-weight 2) The number of molecules in one gram-molecular-weight 3) The number of atoms in 0.012 kg of C-12									
	4) all of these									
21.	A mole is									
	1) The amount atoms in exa			ntaining	the sa	ame numb	er of chen	nical ur	nits as the number of	of

REDOX REACTIONS

2) The amount of substance containing Avogadro number of chemical units.

3) The unit for expressing amount of a substance

4) all the above

22.	The mass of a mole of	, ,					
	1) 1.008 g	2) 2.016g	3) 6.02×10 ²³ g	4) 1.008 amu			
23.	The molar mass of hy	0					
	1) 1.008 g	2) 2.016 g	3) 6.02×10 ²³ g	4) 2.016 amu			
24.	One mole of atoms of						
	1) 6.02×10^{23} atoms of	oxygen	2) 32 g of oxygen				
	3) 22.4L of O ₂ at STP		4) 8g of oxygen				
25.	One mole of molecule	s of oxygen represents					
	1) 6.02×10 ²³ molecule	s of oxygen	2) 8 gms of oxygen				
	3) 16g of O ₂		4) 11.2L of O ₂ at STP				
26.	One mole of sodium r	epresents					
	1) 6.02×10 ²³ atoms of	sodium	2) 46 gms of sodium				
	3) 11g of sodium		4) 34.5g of sodium				
27.	The charge present or	n 1 mole electrons is					
	1) 96500 Coulombs		2) Coulomb				
	3) 1.60×10 ⁻¹⁹ C		4) 0.1 Faraday				
28.	The weight of 0.1 mol	e of Na ₂ CO ₃ is					
	1) 106 g	2) 10.6 g	3) 5.3 g	4) 6.02×10 ²² g			
29.	The molar mass of a s	ubstance is 20g. The m	olecular mass of the su	bstance is			
	1) 20g	2) 20 a.m.u	3) 10g	4) 10 a.m.u			
30.	Avogadro number of	helium atoms have a m	nass of				
	1) 2g	2) 4g	3) 8g	4) 4×6.02×10 ²³ g			
31.	The volume of two mo	oles of oxygen at STP is					
	1) 22.4 L	2) 11.2 L	3) 40 L	4) 44.8 L			
32.	The following proper	ty of a gas does not var	y with pressure and ten	nperature.			
	1) density	2) volume of a mole	3) volume	4) vapour density.			
33.	The ratio between the	number of molecules i	n equal masses of nitro	gen and oxygen is			
	1) 7:8	2) 1:9	3) 9:1	4) 8:7			
34.	The gas which is twic	e as dense as oxygen u	nder the same conditio	ons is			
	1) Ozone		2) Sulphur trioxide				
	3) Sulphur dioxide		4) Carbon dioxide				
35.	1 mole of water vapor	ur is condensed to liqui	id at 25°C. Now this wa	iter contains			
	i) 3 moles of atoms		ii) 1 mole of hydrogen	n molecules			
				1			

CIIE	IVII 5 I K I	ľ	EDUA KEACTIONS				
	iii) 10 moles of electrons	iv) 16 g of oxygen					
	The correct combination is						
	1) (i) & (ii) are correct 2) (i) & (iii) are correc	ct 3) (i) & (iv) are correc	et 4) All are correct				
36.	A chemical equation is always balanced w	ith respect which one o	ect which one of the following				
	i) Number of atoms	ii) Number of molec	ules				
	iii) Number of moles	iv) Mass					
	1) Only i is correct 2) Only iii correct	3) Only iv Correct	4) Both i & iv correct				
	tion & reason type questions						
Note:	1) Both (A) and (R) are true and (R) is the corr		<i>c</i> ())				
	2) Both (A) and (R) are true and (R) is not the	ne correct explanation of	of (A)				
	3) (A) is true but (R) is false						
	4) (A) is false but (R) is true						
37.	(A): 2 g of hydrogen contains Avogadro nu	mber of molecules					
	(R) : One mole of an ideal gas at STP occup	ies 22.4 lt.					
38.	(A) : One litre of water at 4°C contains 55.5	N molecules					
	(R) : Density of water at 4° C is 1 g/ml and 18g. of water represents one mole.						
39.	(A): 2 g of Hydrogen contains Avogadro number of atoms						
	(R) : One mole of any gas contains Avogadro number of molecules						
40.	(A) : In Haber's process, N_2 and H_2 combine	e in 1 : 3 volume ratio					
41	(R) : Gases combine in simple volume ratio	. 1019 1 1					
41.	(A): 1 c.c. of Nitrogen at STP contains 2.69(R): Molar volume of an ideal gas at STP co		per of molecules				
42.	(A) : 28 g of nitrogen occupies 22.4 lt. at STI	-	ci oi molecules				
	(R) : Vapour density of nitrogen is 14 at all t		ures.				
43.	(A): 8 g CH ₄ and 14 gr. nitrogen together of	ccupy 11.2 lt. of volume	at STP.				
	(R): Equal volumes of all gases under the same	me conditions contain ec	qual number of molecules.				
44.	(A): 58.5 g of solid NaCl contains Avogadr	o number of Cl ⁻ ions					
	(R) : Chlorine is a diatomic gas						
45.	Which of the following has highest mass?						
	1) One gram atom of Iron	2) 5 moles of N_2					
	3) 10^{24} carbon atoms	4) 44.8 lit of He at ST					
46.	1 gram of hydrogen contains 6×10 ²³ atoms.	-					
	1) 6×10^{23} atoms 2) 12×10^{23} atoms	3) 24×10 ²³ atoms	4) 1.5×10^{23} atoms				
47.	Elements 'A' and 'B' combine in the ratio of						
	1) Atomic weights	2) Molecular weight	5				
г ·	3) Equivalent weights	4) Mass numbers	4) Mass numbers				
•	alent weights						
48	Molecular weight of orthophosphoric acid	is M-Its equivalent wei	ohtis				

^{48.} Molecular weight of orthophosphoric acid is M. Its equivalent weight is

	1) 3M	2) M	3) $\frac{M}{2}$	4) $\frac{M}{3}$				
49.	Which of the follow	ing acid has the same m	2	5				
17.	1) H_3PO_2	$2) H_3 PO_3$	3) H_3PO_4	4) H_2SO_4				
50.	The equivalent weig			-)2 4				
50.	1) 100	2) 50	3) 33.3	4) 25				
51.	The following is not	,	0,0010	-) -0				
51.	1) atomic weight of compound		2) equivalent weight of an element (or)					
	3) molecular weight of a compound 4) formula weight of a substance							
52.	Equivalent weight of $K_2Cr_2O_7$ in acidic medium is							
	1) 24.5	2) 49	3) 147	4)296				
53.	The equivalent weig	ght of Bayer's reagent is						
	1) 31.6	2) 52.6	3) 79	4) 158				
54.	Molecular weight of KMnO ₄ is "M". In a reaction KMnO ₄ is reduced to K_2MnO_4 . The equivalent weight of KMnO ₄ is							
	1) M	2) $\frac{M}{2}$	3) $\frac{M}{3}$	4) $\frac{M}{5}$				
55.	When Ferrous sulph	nate acts as reductant, it	s equivalent weight is					
	1) twice that of its m	olecular weight	2) equal to its molecu	ılar weight				
	3) one-half of its mo	lecular weight	4) one-third of its mo	lecular weight				
56.	$2H_2O \rightarrow 4e^- + O_2 + O_2$	4H ⁺ . The equivalent we	eight of molecular oxyg	en is				
	1) 32	2) 16	3) 8	4) 4				
57.	(A) : Normality is al	ways a multiple of mola	arity					
	(R) : Molarity is in n	o way related to normal	lity					
	The correct answer	is						
	1) Both (A) and (R) a	are true and (R) is the co	prrect explanation of (A)				
	, , , , , ,	are true and (R) is not th	ne correct explanation of	of (A)				
	3) (A) is true but (R)							
-	4) (A) is false but (R	·	1 . 11. 1.					
58.	• • •	weights of nitric acid a	nd crystalline oxalic ac	id are same				
	(K): The basicity is s The correct answer:	same for both the acids						
		are true and (R) is the co	proctorplanation of (A)				
	, , , , ,	are true and (R) is not th	-	,				
	3) (A) is true but (R)		ie concerenziananome	/1 (/ 1)				
	4) (A) is false but (R)							
59.	(A) : The basicity of							

	(R) : Three hydrogen atoms are attached to phosphorus through oxygen atoms The correct answer is										
				e true an	d (R) is t	he cor	rect expla	nation of	(A)		
	2) Bot	th (A) ar	nd (R) ar	e true an	d (R) is r	not the	e correct ex	xplanatio	n of (A)		
	3) (A)	is true l	out (R) is	s false			4) (A) is a	false but ((R) is tru	ıe	
60.							errous ior ts equival			the gram-molecul	ar
	1) 294	ł		2) 147			3) 49		4) 2	24.5	
61.	The e	equivale	nt weigl	ht of Hy	po in the	ereact	ion [M = n]	nolecular	weight]	
	$2Na_2S_2O_3 + I_2 \rightarrow 2NaI + Na_2S_4O_6$ is										
				M			3) $\frac{M}{2}$			М	
	1) M			$2)\frac{M}{2}$			$(3)\overline{3}$		4)	4	
62.		quivaler	nt weigh		O_4 when		nverted to	$OCu_2I_2[M]$	[=mol.w	vt]	
	1) $\frac{M}{1}$			$2)\frac{M}{2}$			$3)\frac{M}{2}$		4)	2 M	
	- 1			- 2			3		-) -		
63.	The e wt]	quivaler	nt weight	t of Iodir	ne in the	reactio	on2Na ₂ S ₂ C	$D_3 + I_2 \rightarrow$	2NaI + 1	$Na_2S_4O_6$ is [M=mo	ol.
	1) M			2) $\frac{M}{2}$			3) $\frac{M}{3}$		4)2	2M	
64.		equivale nol. wt]	ent weig	ght of §	glucose i	in the	e reaction	C ₆ H ₁₂ O ₆	+ 602	$\rightarrow 6CO_2 + 6H_2O$	is
	М			М			М			М	
	$1)\frac{M}{4}$			2) $\frac{M}{12}$			3) $\frac{M}{24}$		4) -	$\frac{M}{48}$	
65.	Medi	um Equi	ivalent w	veight of 3	KMnO₄					-	
	A) A			U	Ŧ		a) 158				
	B) Ne	eutral					b) 79				
	-	rongly b					c) 52.6				
	-	'eakly ba					d) 31.6				
		orrect m	-				\mathbf{O} \mathbf{A} 1		D 1		
	/		C - a, D - C - a, D -				2) A - d, B - c, C - a, D - b 4) A - d, B - c, C - a, D - a				
	/			- C			4) A - u, I	D-C, C-a	, D - a		
E.F & I		calculat	ions								
66.	LIST						LIST - 2	1.6 1	`		
		ecules) ucose					· -	al formula	a)		
	,	alic acid	1				1) BNH ₂ 2) CH ₂ O				
	,		Benzene				2) CH ₂ O 3) CH				
		vgenate					4) CHO,				
	., .,	/ 0					5) HO				
	The c	orrect m	atch is				,				
		Α	В	С	D		Α	В	С	D	
	1)	3	5	2	4	2)	2	4	1	5	
	3)	1	3	2	4	4)	4	2	1	3	

REDOX REACTIONS

CHEMISTRY

01121								
67.	 (A): Empirical formula of ethane is CH₃ (R): Empirical formula of all alkenes is CH₂ The correct answer is 							
	 Both (A) and (R) are true and (R) is the correct explanation of (A) Both (A) and (R) are true and (R) is not the correct explanation of (A) (A) is true but (R) is false (A) is false but (R) is true 							
68.	(A) · Empirical form	ila of glucose and acetio	cacid is CH O					
00.	(R) : If percentage composition is same, then empirical formula is same The correct answer is							
		re true and (R) is not th s false	rrect explanation of (A) e correct explanation o					
69.	 (A) : Acetylene on additional polymerization gives benzene (R) : The empirical formulae of acetylene and benzene are same 							
	The correct answer is							
			rrect explanation of (A)					
			e correct explanation o	t (A)				
	3) (A) is true but (R) i							
o 11	4) (A) is false but (R)							
	tion states & balancing	-						
70.	Oxidation state of 'S'	ő						
	1) 0	2) +2	3) +4	4) +6				
71.	Oxidation state of N	in N ₃ H is						
	1) +1/3	2) +3	3) -1/3	4) –1				
72.	Oxidation number of	C in CH ₂ O is						
	1) –2	2) +2	3) 0	4) 4				
73.	Oxidation state of Ni	in Ni(CO) ₄ is						
	1) 0	2) 4	3) 8	4) 2				
74.	Oxidation state of Fe	in K ₄ [Fe(CN) ₆]						
	1) +6	2) +4	3) +2	4) +5				
75.	Oxidation number ar	nd valency of oxygen in	OF_2 are					
	1) +1,2	2) +2, 2	3) +1, 1	4) +2, 1				
76.	In which of the follow	ving the oxidation state	e of chlorine is +5 ?					
	1) HClO ₄	2) HClO ₃	3) HClO ₂	4) HCl				
77.	All elements common	nly exhibit an oxidatior	state of					
	1) +1	2) –1	3) zero	4) +2				
78.	The maximum oxida	tion state that fluorine	exhibits is					
	1) –1	2) zero	3) +1	4) +2				

79.	The element that always exhibits a negative oxidation state in its compounds is										
	1) Nit	rogen		2) Oxyg	gen	3	3) Fluorir	ne EQU	4)	Chlorine	
80.	The n	ninimur	n oxidat	tion state	that nitr	ogen ex	hibits is				
	1) –2			2) –3		3	3) -4		4)	-5	
81.	In the	conver	sion of F	$K_2 Cr_2 O_7 t$	o K ₂ CrO	₄ the oxi	dation n	umber o	f the fol	lowing chan	ges
	1) K			2) Cr		3	3) Oxygei	n		4) None	
82.	The o	xidation	n numbe	er of 'Mn	' in potas	ssium pe	ermanga	nate is			
	1) +6			2) +7		3	3) +5		4)	+8	
83.	The o	xidation	n numbe	er of 'N' i	in HN ₃ is	5					
	1) +1/3 2) 0 3) -1/3 4) 1							1			
84.	What	is the o	xidatior	n state of	carbon i	n carbor	dioxide	?			
	1) +2			2) +4		3	3) +6		4)	+1	
85.	In wh	ich of tł	ne follov	ving com	pounds	oxygen	exhibits	an oxida	tions st	ate of +2?	
	1) H ₂ 0	С		2) H ₂ O	2	3	3) OF ₂		4)	H_2SO_4	
86.	The o	xidatio	nnumbe	er of sulp	ohur in S	S_8, S_7F_7 at	nd H ₂ S a	re			
		- 1 and -			-1 and -		=		4)	-2, +1 and -	2
87.	In the	conver	sion of (CrO_4^{-2} –	$\rightarrow Cr_2O_7^2$	⁻ , the o	kidation 1	number	of chron	nium	
		reases		2) decr	- /		3) becom			remains une	changed
	Oxidation number of carbon is zero in the compound										
88.	Oxida	ation nu	mber of	carbon i	s zero in	the com	pound				
88.		ation nu thyl chle		carbon i 2) chloi			pound 3) glucos	е	4)	carbon tetra	chloride
88. 89.		thyl chlo					-		4)	carbon tetra	chloride
	1) me	thyl chlo				e	3) glucos	2	,	carbon tetra	chloride
	1) me LIST A) + 3	thyl chlo ' - 1 3				3	3) glucos LIST - 2 (Oxidati 1) Nitrog	2 on state) en	,	carbon tetra	chloride
	1) me LIST A) + 3 B) + 1	thyl chlo ' - 1 3				3	3) glucos LIST - 2 (Oxidati 1) Nitrog 2) Nitrou	2 on state) en s oxide	,	carbon tetra	chloride
	1) me LIST A) + 3 B) + 1 C) 0	thyl chlo 7 - 1 3				1	3) glucos LIST - 2 (Oxidati 1) Nitrog 2) Nitrou 3) Nitrate	2 on state) en s oxide e ion		carbon tetra	chloride
	1) me LIST A) + 3 B) + 1	thyl chlo 7 - 1 3				3 1 2 3 4	3) glucos LIST - 2 (Oxidati 1) Nitrog 2) Nitrou 3) Nitrate 4) Hydro	2 on state) en s oxide e ion xylamine		carbon tetra	chloride
	1) me LIST A) + 3 B) + 1 C) 0 D) + 5	thyl chlo 7 - 1 5	oride			3 1 2 3 4	3) glucos LIST - 2 (Oxidati 1) Nitrog 2) Nitrou 3) Nitrate	2 on state) en s oxide e ion xylamine		carbon tetra	chloride
	1) me LIST A) + 3 B) + 1 C) 0 D) + 5	thyl chlo 7 - 1 5 orrect m	oride aatch is	2) chlor	roform	3 1 2 3 4	3) glucos LIST - 2 (Oxidati 1) Nitrog 2) Nitrou 3) Nitrate 4) Hydro 5) Nitrite	2 on state) en s oxide e ion xylamin ion	e		chloride
	1) me LIST A) + 3 B) + 1 C) 0 D) + 5	thyl chlo 7 - 1 5	oride			3 1 2 3 4	3) glucos LIST - 2 (Oxidati 1) Nitrog 2) Nitrou 3) Nitrate 4) Hydro	2 on state) en s oxide e ion xylamine		carbon tetra D 3	chloride
	1) me LIST A) + 3 B) + 1 C) 0 D) + 5 The co	thyl chlo 5 - 1 5 orrect m A	oride natch is B	2) chlor	roform	3 1 2 3 4 5	A) glucos LIST - 2 (Oxidati 1) Nitrog 2) Nitrou 3) Nitrate 4) Hydro 5) Nitrite A	2 on state) en s oxide e ion xylamin ion B	e	D	chloride
	1) me LIST A) + 3 B) + 1 C) 0 D) + 5 The co 1) 3)	thyl chlo - 1 orrect m A 1 4	oride natch is B 4 5	2) chlor C 3	D 2 1	2) 4)	A) glucos LIST - 2 (Oxidati 1) Nitrog 2) Nitrou 3) Nitrate 4) Hydro 5) Nitrite A 5 5	2 on state) en s oxide e ion xylamin ion B 2 2 2	e C 4 1	D 3	chloride
89. 90.	1) me LIST A) + 3 B) + 1 C) 0 D) + 5 The co 1) 3) If thre 1) 0	thyl chlo - 1 orrect m A 1 4 ee electr	atch is B 4 5 ons are	2) chlor C 3 3 lost by M 2) +6	D 2 1 In ⁺³ , its fi	3 1 2 3 4 5 1 1 2 3 3 3 3 3 3	A) glucos LIST - 2 (Oxidati 1) Nitrog 2) Nitrou 3) Nitrate 4) Hydro 5) Nitrite A 5 5 1 ation sta 3) +2	2 on state) en s oxide e ion xylamin ion B 2 2 te would	e C 4 1 d be 4)	D 3 3 +4	chloride
89.	 me LIST A) + 3 B) + 1 C) 0 D) + 5 The co 1) 3) If three 1) 0 Oxida 	thyl chlo - 1 3 5 5 6 7 7 7 8 7 7 8 7 7 7 7 8 7 7 7 7 7 7 7	atch is B 4 5 ons are	2) chlor C 3 lost by M 2) +6 nd Covale	D 2 1 In ⁺³ , its fi	2) 4) inal oxid 2 4)	A B) glucosi LIST - 2 (Oxidati I) Nitrog 2) Nitrou 3) Nitrate 4) Hydro 5) Nitrite A 5 5 Sation sta 3) +2 n S ₈ mole	2 on state) en s oxide e ion xylamin ion B 2 2 te would ecule are	e C 4 1 d be 4) respect	D 3 3 +4 tively	chloride
89. 90. 91.	 me LIST A) + 3 B) + 1 C) 0 D) + 5 The co 1) Oxida 1) 6 at 	thyl chlo - 1 orrect m A 1 4 ee electr ation nu nd 8	oride aatch is B 4 5 ons are mber ar	2) chlor C 3 lost by M 2) +6 nd Covale 2) 0 an	D 2 1 In ⁺³ , its fi ency of s d 8	2) 4) inal oxid ulphur i	A B) glucosi LIST - 2 (Oxidati () Nitrog 2) Nitrou 3) Nitrate 4) Hydro 5) Nitrite A 5 5 slation sta 3) +2 n S_8 mole 3) 0 and 2	2 on state) en s oxide e ion xylamin ion B 2 2 te would ecule are	e C 4 1 d be 4) respect	D 3 3 +4	chloride
89. 90.	 me LIST A) + 3 B) + 1 C) 0 D) + 5 The co 1) Oxida 1) 6 at 	thyl chlo - 1 orrect m A 1 4 ee electr ation nu nd 8	oride aatch is B 4 5 ons are mber ar	2) chlor C 3 lost by M 2) +6 nd Covale	D 2 1 In ⁺³ , its fi ency of s d 8	2) 4) inal oxid 3 ulphur i 3 3a(H ₂ PC	A B) glucosi LIST - 2 (Oxidati () Nitrog 2) Nitrou 3) Nitrate 4) Hydro 5) Nitrite A 5 5 slation sta 3) +2 n S_8 mole 3) 0 and 2	2 on state) en s oxide e ion xylamin ion B 2 2 te would ecule are	e C 4 1 d be 4) respect 4)	D 3 3 +4 tively	chloride

93.	The number of electrons involved in the half-reaction $\operatorname{Cr}_2\operatorname{O}_7^{2-} \to 2\operatorname{Cr}^{3+}$ is						
	1) 3	2) 6	3) 5	4) 10			
94.	Sum of the oxidation	numbers of carbon in a	icetaldehyde is				
	1) – 2	2) +2	3) - 4	4) –1			
95.	In bleaching powder	oxidation states of Cl a	re				
	1) -1, +2	2) -2, +1	3) -1, +1	4) -2,+1			
96.	Oxidation number of	sulphur in oleum (H ₂ S	S_2O_7) is				
	1) +4	2) +2	3) -2	4) +6			
97.	The compound forme state of iron in it is	d in the brown ring test l	has the formula [Fe(H ₂ C	$_5$ NO]SO ₄ . The oxidation			
	1) +1	2) +2	3) +3	4) zero			
98.	In the reaction of chlo	orine with dry slaked li	me, the oxidation num	per of chlorine changes			
	i) from -1 to +1	2	ii) from + 1 to -1	0			
	iii) from zero to –1		iv) from zero to +1				
	The correct combinat	tion is					
	1) Only ii & iii are coi	rect	2) iii & iv are correct				
	3) i & ii are correct		4) All are correct				
99.	When copper is adde	ed to a solution of silver	nitrate, silver is precip	itated. This is due to			
	i) oxidation of silver		ii) oxidation of coppe	r			
	iii) oxidation of silver	r	iv) reduction of silver	tion			
	The correct combinat	ion is					
	1) Only iii & iv are co	rrect	2) i & ii are correct				
	3) ii, iv are correct		4) All are correct				
100.	(A) : Oxidation state	of carbon in $C_6 H_{12} O_6$ is	zero				
		of carbon in all organic					
	1) Both (A) and (R) as	re true and (R) is the co	rrect explanation of (A)			
	2) Both (A) and (R) as	re true and (R) is not th	e correct explanation o	f (A)			
	3) (A) is true but (R) i	is false					
	4) (A) is false but (R)	is true					
101.	(A): Oxidion number	of fluorine is always – 1					
	(R): Fluorine is the m	ost electronegative electronegative	ment				
	1) Both (A) and (R) as	re true and (R) is the co	rrect explanation of (A)			
	2) Both (A) and (R) as	re true and (R) is not th	e correct explanation o	f (A)			
	3) (A) is true but (R) i	is false					
	4) (A) is false but (R)	is true					
102.	Oxidation numbers of	of sodium, mercury in s	odium amalgam are				
	1) zero, zero	2) +1, -1	3) -2, +2	4) 0, +1			
103.	,	o dilute, cold KOH solu	tion What are the oxid	ation numbers of chlorine			
1000	in the products forme						
	1) –1, +5	2) -1, +3	3) +1, +7	4) +1, -1			
104.	,	of sulphur in $Na_2S_4O_6$ is	5				
	1) 3/2	2) 2/3	3) 5/2	4) 2/5			
	, ,	, ,	, ,	, ,			

CHE	VII 5 I K	Y							KEDU	JA KĽA	CHON
105.	The ox	xidation	number	of sulpl	hur in $S_2^{(1)}$	D_8^{2-} is					
	1) +7			2) +6			3) +4		4)	+5	
106.	Phosp	horous	exhibits	highest	oxidatio	on stat	e in				
	1) PH	3		2) H ₃ P	O ₃		3) Ca ₃ (PC	$(4)_{2}$	4)	H ₃ PO ₂	
107.	Iron h	as the l	owest ox	dation	state in						
	1) FeS	O_4		2) K ₄ [F	$e(CN)_6]$		3) Fe(CO) ₅ 4) FeO				
108.	The o	xidatior	n numbe	r of Cr ir	n CrO ₅ is						
	1) + 1(C		2) + 6			3) + 4 4) + 5				
109.							LIST - 2				
	A) NH	0					1) Oxidar				
	B) KM	-					2) Both or				
	C) SO	_					3) Neithe		nt nor rec	luctant	
	D) He						4) Reduct				
	TT1						5) Dehyd	rating a	gent		
	The co	orrect m A	B	С	D		Α	В	С	D	
	1)	4	3	1	5	2)	2	4	1	3	
	3)	4	1	2	3	4)	3	2	1	4	
110.	In the	reaction	n, I ₂ + 2K	$(ClO_2 \rightarrow$	• 2KIO ₃ +	Cl ₂					
		ine is o	-	5	5	2	ii) Chlorii	ne is rec	luced		
	,		places cl	hlorine			iv) KClO				
	-		mbinati				,		-		
	1) Onl	y i & iv	are corr	ect			2) Only ii	i & iv ar	e correct		
	3) i, ii,	iii are c	orrect				4) All are correct				
111.	Oxida	tion nu	mber of	iron in N	Ja ₂ [Fe(CI	N) ₅ NC)]				
	1) +2			2) +3			3) +1		4)	0	
112.	The or	xidatior	n numbe	r of pho	sphorus	in sod	ium hypoj	phosph	ite is		
	1) +3			2) +2			3) +1		4)	-1	
113.	(A) : Iı	n bleach	ning pow	vder ave	rage oxic	lation	no. of chlo	rine is z	ero		
	(R) : C	Oxidatio	on no. of	chlorine	is alway	s zero	,				
114.	(A) : Iı	n CrO ₅ t	the oxida	ation nu	mber of c	hrom	ium is +6				
	(R) : C	CrO ₅ pos	sses two	peroxy l	oonds in	its stru	acture				
115.	Which	n of the	followin	g reactio	ons does	not in	volve the c	hange i	n oxidati	on state of	metal?
	1) VO	$^{-2} \rightarrow V_2$	O ₃	2) Na –	→ Na ⁺		3) CrO ₄ ²⁻	$\rightarrow Cr_2$	O_7^{2-} 4)	$Zn^{2+} \rightarrow Zn^{2+}$	ı
116.	Oxida	ition sta	te of oxy	gen in p	otassiun	n supe	eroxide is				
	1) –1/		5	2) -1		1	3) –2		4)	0	
117.	Avera	ige oxid	ation nu	mber of	iodine in	۱KI3					
	1) +1/	•		2) -1/3		5	3) +3		4)	-1	
118.	The o	xidatior	n numbe	r of nitro	ogen in N	ICl ₃ is					
	1) +3			2) –3	-	0	3) zero		4)	-1/3	

119.	What are the oxidation 1) +3, –5	on numbers of 'N' in N 2) –3, +5	H ₄ NO ₃ ? 3) +3, +6	4) -2, +2	
120.	The oxidation numbe	er of phosphorus in Ba	$(H_2PO_2)_2$ is		
	1) +3	2) +2	3) +1	4) -1	
121.	In which one of the fo 1) IF ₃	llowing compounds th 2) IF ₅	ne oxidation number of 3) IF ₇	Iodine is fractional? 4) KI ₃	
Types o	of redox reactions				
122. K+	$ Cl \rightarrow KCl. This is an extremely 1) oxidation $	xample of 2) reduction	3) a redox reaction	4) none of these	
123.	The conversion KMn(1) oxidation half reac 3) oxidation and redu		ample of 2) reduction half reac 4) neither oxidation n		
124.	PbS+ H_2O_2 → PbSO ₄ + 1) oxidation	4H ₂ O. In this reaction 2) reduction	PbS undergoes 3) both	4) None	
125.	In the reaction MnO ₂ 1) oxidant	+ 4HCl \rightarrow MnCl ₂ + Cl 2) reductant	² + 2H ₂ O, MnO ₂ acts as 3) both	3 4) None	
126.	In the reaction $P_4 + 3OH^- + 3H_2O \rightarrow$ 1) oxidation	• $3H_2PO_2^- + PH_3$ phose 2) reduction	phorus is undergoing 3) disproportionatior	n 4) hydrolysis	
127.	Decomposition of H_2 1) neutralisation	,			
128.		is an oxidation and r $SO_4+H_2O_2$	reduction reaction?	JO ₃	
129.	- 0 -	ng is not a redox reaction	on? 2) $BaO_2+H_2SO_4 \rightarrow BaSO_4+H_2O_2$ 4) $SO_2+2H_2S \rightarrow 2H_2O+3S$		
130.		H with chlorine is a dis ns are disproportion-a	sproportionation reacti tion reactions	on	
131.	2CuI \rightarrow Cu+CuI ₂ , the 1) disproportionation		3) Oxidation	4) Reduction	
132.	In a reaction between 1) Zinc ions	zinc and iodine, in whi 2) Iodide ions	ich zinc iodide is formed 3) Zinc atom	d, what is being oxidised 4) Iodine	
133.	Which one of the follo 1) $VO_2^+ \rightarrow V_2O_3$	<u> </u>	ot involve either oxidat 3) $\operatorname{CrO}_4^{2-} \rightarrow \operatorname{Cr}_2\operatorname{O}_7^{2-}$		
134.	Which of the followin 1) H_2SO_4 with NaOH	g is redox reaction			
		rom O ₂ by lightning n nitrogen and oxygen	3) Evaporation of H_2 by lightning	J	

CHEN	IISTKI		Ν	EDUA REACTIONS	
135.	$C+O_2 \rightarrow CO_2$ the reac	tion is			
	1) Chemical combinat	tion	2) Decomposition reactions		
	3) Displacement react	ions	4) Disproportionation reactions		
136.	Which of the followin	ig is not chemical comb	vinations		
	1) C+O ₂ \rightarrow CO ₂	2) S+O ₂ \rightarrow SO ₂	3) 2Al+N ₂ \rightarrow 2AlN	4) $2H_2O \rightarrow 2H_2+O_2$	
137.	Which of the followin	g is decomposition rea	ction		
	1) $2HgO \rightarrow 2Hg + O_2$		2) $CH_4 + 2O_2 \rightarrow CO_2$	+ 2H ₂ O	
	3) S + $O_2 \rightarrow SO_2$		4) $Cl_2 + 2KBr \rightarrow 2KCl$	l + Br ₂	
138.	Which of the followin	g is not Decomposition	n reactions		
	1) $2HgO \rightarrow 2Hg + O_2$		2) $2H_2O \rightarrow 2H_2+O_2$		
	3) $2\text{KClO}_3 \rightarrow 2\text{KCl+30}$	D ₂	4) $CH_4(g) + 2O_2(g) \rightarrow$	$CO_{2}(g) + 2H_{2}O(1)$	
139.	Following reaction de following statement is		iron 4Fe + $3O_2$ → $4Fe^{3+}$	+6O ²⁻ . Which one of the	
	1) This is an example	of a redox reaction	2) Metallic iron is red	uced to Fe ³⁺	
	3) Fe ³⁺ is an oxidising	agent	4) Metallic iron is a re	educing agent	
140.	Which one of the follo	owing is not prepared f	from halide by chemical oxidation process		
	1) F ₂	2) Cl ₂	3) Br ₂	4) I ₂	
141.	The reaction $\operatorname{Br}_{2'}\operatorname{Cl}_{2}$,	I_2 , P_4 with NaOH invo	lves		
	1) Decomposition	2) Displacement	3) Combination	4) Disproportionation	
142.		g is metal displacemer			
	1) $Zn + CuSO_4 \rightarrow Zn$ 3) $Ca + 2H_2O \rightarrow Ca(0)$		2) $2Na + 2H_2O \rightarrow 2R$ 4) $2HgO \rightarrow 2Hg + O$	-	
143.	$Zn + CuSO_4 \rightarrow ZnSO_4$		4) 21 igo - 21 ig + 0	2	
110.	1) Oxidising agent		3) Reduced	4) Oxidant	
144.	Which of the followin	ig is a redox reaction?			
	1) NaCl+KNO ₃ \rightarrow Na	NO ₃ +KCl	2) CaC_2O_4 +2HCl \rightarrow 0	CaCl ₂ +H ₂ C ₂ O ₄	
	3) $Mg(OH)_2$ +2 NH_4Cl	\rightarrow MgCl ₂ +2NH ₄ OH	4) Zn+2AgCN \rightarrow 2Ag	$g + Zn(CN)_2$	
145.	Which of the followin	ig is not an example of	disproportionation rea	ction?	
	-	JaCl + NaOCl + H ₂ O	2) P ₄ +3NaOH+3H ₂ O	0 1 1	
	3) 2NaOH+2 $F_2 \rightarrow 2N$		4) $2H_2O_2 \rightarrow 2H_2O+O$	2	
146.	In the reaction 3Mg+N				
	 Magnesium is redu Nitrogon is ovidizo 		2) Magnesium is oxid4) None of these	lized	
147	3) Nitrogen is oxidize		,		
147.	1) Cl ₂	gn is prepared by only 2) Br ₂	3) F_2	4) I ₂	
148.	· 2	g disproportionation r	, Z	/ -2	
	1) $2H_2O_2 \rightarrow 2H_2O + O_2O_2$		2) $2H_2O \rightarrow 2H_2 + O_2$	2	
	3) 2HgO \rightarrow 2Hg + O	2	4) Mg CO ₃ \rightarrow MgO +	+ CO ₂	

-				
149.	Layer test is used for	determination of		
	1) Chalogens	2) Pnicogens	3) Halogens	4) Noble gases
150.	Br _{2'} I ₂ dissolve in			
	1) C ₆ H ₆	2) CO ₂	3) CCl ₄	4) NH ₃
151.		ng is not metal displace		
	1) $Zn + CuSO_4 \rightarrow Zi$	-	2) $2Na + 2H_2O \rightarrow 2I$	-
450	3) TiCl ₄ + 2Mg \rightarrow Ti		4) $3Fe_3O_4 + 8A1 \rightarrow 4$	Al ₂ O ₃ + 9Fe
152.	In the reaction 2Al +	-	2) Ovidising agont	4) None of the above
152	1) Reduced	2) Oxidised	, 0 0	,
153.	example of	caustic soua. The prout	ucts are Pring and INAR	$_2PO_2$. This reaction is an
	1) Oxidation		2) Reduction	
	3) Oxidation and red	uction (Redox)	4) Neutralization	
154.	Among the following	g ion the one that cannot	•	
	1) ClO-	2) ClO_2^-	3) ClO_{3}^{-}	4) ClO_{4}^{-}
155.	-	$JaCl + NaClO_3 + 3H_2O$,		
	1) Oxidised	2) Reduced	3) Both 1& 2	4) None of the above
156.		useful to prepare Hydro	-	
	1) Decomposition	2) Displacement	3) Combination	4) Disproportionation
157.	In which of the follow	wing reaction there is no	o change in valency	
	1) $CaCO_3 \rightarrow CaO + O_3$	CO ₂	2) $2H_2O_2 \rightarrow 2H_2O +$	O ₂
	3) $2H_2O \rightarrow 2H_2 + O_2$	2	4) $2HgO \rightarrow 2Hg + C$	\mathcal{D}_2
158.	In C+H ₂ O \rightarrow CO + H	I_2, H_2O acts as		
	1) Oxidising agent	2) Reducing agent	3) (1) and (2) both	4) None of these
159.	The reaction is Decor	nposition but it's not re-	dox reaction	
	1) 2HgO \rightarrow 2H ₂ + O	2	2) $2H_2O \rightarrow 2H_2 + O_2$	2
	3) Mg CO ₃ \rightarrow MgO -	+ CO ₂	4) 2 KClO ₃ \rightarrow 2KCl -	_
160.	-	_		lectro positive metals in
100.	nonmetal displaceme		aloplacea by more el	leedo positive metalo m
	1) H ₂	2) N ₂	3) F ₂	4) Cl ₂
161.	· <u>-</u>	ng statement is correct f	· 2	, <u>r</u>
101.	1) Reduction occurs a		2) Oxidation occurs a	at anode
	3) Electrons flow from		4) All the statements	
162.	Fluorine does not un	dergo disproportionatio	on because	
	1) Fluorine is always	s exhibit -1 oxidation sta	ate	
	2) Fluorine exhibit or	nly two oxidaion numb	ers	
	3) Fluorine exhibit th	ree oxidation numbers	4) None of the above	
163.	$2 \text{HgO} \rightarrow 2 \text{Hg} + \text{O}_{2'}$	-		
	1) Oxidising agent	2) Reducing agent	3) Oxidised	4) none of the above

164.	$2H_2O_2 \rightarrow 2H_2O + O_2$ the 1	reaction is			
	1) Decomposition		2) Combination		
1/5		Disproportionation		4) 1 and 3	
165.	Correct order of tendency t 1) Zn>Cu>Ag 2) Z	n <cu<ag< th=""><td>3) Zn>Cu<ag< td=""><td>4) Cu>Zn>Ag</td></ag<></td></cu<ag<>	3) Zn>Cu <ag< td=""><td>4) Cu>Zn>Ag</td></ag<>	4) Cu>Zn>Ag	
D.1	, ,	III~Cu~Ag	5) ZII~Cu~Ag	4) Cu-Zh-Ag	
	titrations				
166.	The strength of an aqueou standard solution of :	s solution of l_2 ca	an be determined by ti	trating the solution with	
	1) Oxalic acid		2) Sodium thiosulpha	ate	
	3) Sodium hydroxide		4) Mohr's salt		
167.	Equivalent weight of As ₂ C [arsenic at.wt = 75]	\mathbf{D}_3 in the followin	g equation $As_2O_3 + 2I_2$	$_2 + 2H_2O \rightarrow As_2O_5 + 4HI$	
	1) 49. 5 2) 1	56. 6	3) 94	4) None	
168.	Excess of KI reacts with Cu the statements is incorrect		then $Na_2S_2O_3$ solution	n is added to it. Which of	
	 Na₂S₂O₃ is oxidised C Evolved I₂ is reduced 	uI ₂ is formed	3) Cu_2I_2 is formed		
Redox	reactions and electrode proce	esses			
169.	In Cu – Zn cell				
	1) Reduction occurs at the	copper cathode	2) Oxidation occurs a	at the copper cathode	
	3) Reduction occurs at the	anode	4) Chemical energy is converted to light energy		
170.	In a electrochemical cell 1) Potential energy change 2) Kinetic energy changes 3) Chemical energy change 4) Electrical energy change	into potential ene es into electrical e	rgy nergy		
171.	Which one of the following	; is different from	others?		
	1) Daniell cell 2) V	oltaic cell	3) Galvanic cell	4) Electrolytic cell.	
172.	The electrode potential of a	an electrode is			
	1) The potential applied to	the electrode			
	2) The ionization potential	of the material of	the electrode		
	3) The tendency of the elec	ctrode to loose or	gain electrons when it	is in contact with its ions	
	4) The potential energy of	the electrons in ar	n electrode.		
173.	Which of the following ma	y not be present i	n all galvanic cells		
	1) Electrolyte 2) C	athode	3) Anode	4) Saltbridge	
174.	Daniel cell is shown as				
	1) $Zn(s)/Zn^{2+}(aq)//Cu(s)$)/Cu ²⁺ (aq)	2) $Zn(s)/Zn^{2+}(aq)//$	$Cu^{2+}(aq)/Cu(s)$	
	3) $Cu(s)/Cu^{2+}(aq)//Zn^{2+}$	(aq)/Cu(s)	4) $Cu^{2+}(aq)/Cu(s)//$	$Zn^{2+}(aq)/Zn(s)$	
175.	Which of the following me	tals will not react	with solution of CuSO	4 ?	

	1) Fe	2) Zn	3) Mg	4) Ag	
176.	The primary reference	e electrode for the meas	urement of electrode p	otential is :	
	1) SHE (Standard hyd	rogen electrode)	2) Normal calomel ele	ectrode	
	3) Glass electrode	-	4) none of these		
177.	Equal quantities of zir acid. Then	nc are separately treated	l with caustic soda solu	tion and dilute sulphuric	
	1) more hydrogen is l	iberated in the first cas	e		
	2) more hydrogen is l	iberated in the second	case		
	3) equal amount of hy	drogen is liberated in	both cases.		
	4) no reaction takes p	laces			
		WORK SHE	CET - II		
Topic :	Mole Concept				
		SECTION Single correct answer			
1.	7.5 gm of a gas occup	ies 5.6 litres at STP. The			
	1) NO	2) NO ₂	3) CO	4) CO ₂	
02.	,	g pair contain same nu	,	/ 2	
	1) 44 gm CO ₂ , 32 gm S		2) 32 gm SO ₂ , 80 gm S	60 ₃	
	3) 32 gm SO ₂ , 40 gm S	O ₃	4) 44 gm $CO_{2'}$ 40 gm SO_{3} .		
03.	The density of a gas a	t STP is 2.5 gm / lit. Its	molecular weight is		
	1) 22.4	2) 33.6	3) 2.5	4) 56	
04.	Which of the followin	g contain more numbe	r of molecules		
	1) 1 gm H_2	2) 1 gm CO_{2}	3) 1 gm SO ₃	4) 1 gm N ₂	
05.	The ratio of number o	f molecules in equal ma	asses of nitrogen to oxy	vgen is	
	1)7:8	2) 8 : 7	3) 1 : 1	4) 2 : 1.	
06.		'B' combine together to of B_2A_3 is 9 gm and the e respectively		B_2A_3 and B_2A . The ₂ A is 10 gm. The atomic	
	1) 30, 40	2) 50, 50	3) 80, 20	4) 40, 30.	
07.	The weight of 600 ml oxygen in the mixture	of a mixture of ozone a e is	nd oxygen is 1 gm at SI	IP. The volume of	
	1) 200 ml	2) 500 ml	3) 400 ml	4) 300 ml.	
08.	Which of the followir	ng is heaviest ?			
	1) 50 gm of Iron		2) 5 moles of nitrogen		
00	3) 0.1 gram atom of sil		4) 10^{23} atoms of carbo		
09.	valency of the elemen		3) 3	density 59.25. Then the 4) 4	
10.	There are as many not		n atoms in 24.8 gm Na ₂ 9	$S_2O_3 \cdot 5H_2O$ (Mw = 248). A	

REDOX REACTIONS

SECTION - B

	Matching Ty	ing Type Questions			
11.	Column I	Column II			
	1) 16g of O_2	p) 1gm atom of O			
	2) Gram equivalent volume of H_2	q) 22.4 lit at STP			
	3) 18 g of H ₂ O	r) 18 ml			
	4) $1/2$ mole O_2 + 1 gm atm of H_2	s) 11.2 lit at STP			
12.	Column - I	Column - II			
	1) One gram molecules of oxygen gas	p) 11.2 lit at STP			
	2) Gram equivalent volume of H_2	q) one mole of O_2			

3) 44 gm of CO_2 4) 18 gm water

)₂ r) 22.4lit at STP s) 3N_A atoms

EXERCISE - I

WORK SHEET - I

1) 3	2) 2	3) 4	4) 4	5) 1	6) 2	7) 2	8) 1	9) 3	10) 2
11) 4	12) 3	13) 1	14) 1	15) 1	16) 2	17) 2	18) 2	19) 2	20) 4
21) 4	22) 1	23) 2	24) 1	25) 1	26) 1	27) 1	28) 2	29) 2	30) 2
31) 4	32) 4	33) 4	34) 3	35) 4	36) 4	37) 2	38) 1	39) 4	40) 1
41) 1	42) 2	43) 4	44) 2	45) 2	46) 1	47) 3	48) 4	49) 1	50) 2
51) 2	52) 2	53) 2	54) 1	55) 2	56) 3	57) 3	58) 3	59) 3	60) 3
61) 1	62) 1	63) 2	64) 3	65) 1	66) 2	67) 2	68) 1	69) 2	70) 1
71) 3	72) 3	73) 1	74) 3	75) 2	76) 2	77) 3	78) 2	79) 3	80) 2
81) 4	82) 2	83) 3	84) 2	85) 3	86) 1	87) 4	88) 3	89) 4	90) 2
91) 3	92) 3	93) 2	94) 1	95) 3	96) 4	97) 1	98) 2	99) 3	100) 3
101) 4	102) 1	103) 4	104) 3	105) 2	106) 3	107) 3	108) 2	109) 3	110) 3
111) 1	112) 3	113) 3	114) 1	115) 3	116) 1	117) 2	118) 2	119) 2	120) 3
121) 4	122) 3	123) 2	124) 1	125) 1	126) 3	127) 3	128) 4	129) 2	130) 3
131) 1	132) 3	133) 3	134) 4	135) 1	136) 4	137) 1	138) 4	139) 2	140) 1
141) 4	142) 1	143) 2	144) 4	145) 3	146) 2	147) 3	148) 1	149) 3	150) 3
151) 2	152) 2	153) 3	154) 4	155) 3	156) 1	157) 2	158) 1	159) 3	160) 1
161) 4	162) 2	163) 1	164) 4	165) 1	166) 2	167) 1	168) 3	169) 1	170) 3
171) 4	172) 3	173) 4	174) 2	175) 3	176) 1	177) 3			

WORK SHEET - II

1) 1 2) 3 3) 4 9) 3 10) 2 4) 1 5) 2 6) 4 7) 3 8) 2 3) 1-PS;2-S;3-PR;4-PQ 24) 1-QR; 2-P; 3-QRS; 4-S

p-Block Elements (Group - III Elements) EXERCISE - I

IIIA GROUP ELEMENTS

Genera	l introduction and vari	ation of properties :		
1.	Least basic among the	e following are		
	1) In OH	2) TIOH	3) B(OH) ₃	4) Al(OH) ₃
2.	IIIA group element w	rith highest density is		
	1) B	2) Al	3) In	4) Tl
3.	Electronegativity is le	east for		
	1) Tl	2) Al	3) Ga	4) B
4.	(1) : Ga is used as a th	ermometric liquid		
	(R) : The liquid range	of Ga is very wide		
	1) Both (1) and (R) are	e true and (R) is the corr	rect explanation of (A)	
	2) Both (1) and (R) are	e true and (R) is not the	correct explanation of ((A)
	3) (1) is true but (R) is	false	4) (1) is false but (R) is	strue
5.	The most abundant n	netal in earth's crust is		
	1) Oxygen	2) Aluminium	3) Iron	4) Silicon
6.	Among the following	most metallic element	is	
	1) A <i>l</i>	2) Ga	3) In	4) T <i>l</i>
7.	Al ₂ O ₃ is			
	1) Neutral	2) Amphoteric	3) Basic	4) Acidic
8.	The correct order of id	onization potential [IP ₁]	among the IIIA group	elements is:
	1) $B > Ga > Al > Tl > Tl$	In	2) $B > Tl > Al > Ga > I$	ĺn
	3) $B > Tl > Al > Ga = 1$	ĺn	4) $B > Tl > Ga > Al > D$	Ín
9.	The incorrect stateme	ent among the following	gis	
	1) Among IIIA group	elements the densities	increases from B to Tl	
	2) TlCl is more stable	than TlCl ₃		
	. –		as Aluminium has 18 p	enultimate electrons
	4) Boron exhibit allot			
10.		y the same covalent rac		
	, 0	effect of 's' electrons of '		
	2) Poor shielding effe	ct of 's' electrons of 'Ga	' atoms	
	3) Poor shielding effe	ct of 'd' electrons of 'Ga	a' atoms	
	4) Greater shielding e	ffect of 'd' electrons of	'Ga' atoms	
11.	The ionisation energi	es from Ga to Tl do not	decrease due to	
	1) Shielding effect		2) Improper shielding	geffect
	3) Increase in atomic	size	4) Decrease in nuclea	r charge
12.	The corect statement	among the following is		
	1) Tl ⁺ is a powerfull r	educing agent	2) Al ³⁺ is a powerfull	oxidising agent
	3) Al ³⁺ is a reducing a	igent	4) Tl ³⁺ is an oxidisng	agent
13.	The maximum covale	ency of aluminium is '6	' where as that of boron	n is '4' because
	1) Aluminium is more	e electropositive thant b	ooron	
				1

p-Block Elements (Group - III Elements)

·	2) 'Al' can form a cation where as boron can no	ot		
	 3) 'Al' contains vacant 'd' orbitals in its v 4) 'Al' is a metal where as boron is a non metal 		s boron does not	
14.	(1) : The atomic size of gallium is less that	n expected		
	(R) : In gallium the 3d ¹⁰ electrons do not sh	ield effectively		
	1) A and R are true, R explains A	2) A and R are	rue, R does not explain	ıs A
	3) A is true, but R is false	4) A is false, bu	t R is true	
15.	Indium and thallium of IIIrd group have shown by f-electrons in the	nearly similar atom	ic radii due to screenin	g effect
	1) Penultimate shell of thallium	2) Anti penulti	mate shell of indium	
	3) Anti penultimate shell of thallium	4) Penultimate	shell of indium	
16.	Which one of the following has the lowes	t melting point		
	1) B 2) Al	3) Ga	4) Tl	

EXERCISE - I WORK SHEET - I

1) 3	2) 4	3) 2	4) 1	5) 2	6) 1	7) 2	8) 4	9) 3	10) 3
11) 2	12) 4	13) 3	14) 1	15) 3	16) 3				

p-Block Elements (Group IV Elements) EXERCISE - I

Introduction and Variation of Properties

1.	The most abundant I 1) Germanium	VA group element in th 2) Carbon	e earth's crust is 3) Silicon	4) Tin			
2.	Among the following 1) C	amphoteric is 2) S	3) Ge	4) Pb			
3.	Which of the followin 1) C	ng is a semi conductor 2) Si	3) Ge	4) both Si and Ge			
4.	The following bond h 1) Si-Si	nas highest energy 2) C-C	3) Sn-Sn	4) Pb-Pb			
5.	Which has the highes 1) Si	st melting point 2) Pb	3) Sn	4) C			
6.	Carbon has the highe	est catenation character	because				
	1) C is more electrone	gative	2) C has higher ionisa	ation potential value			
	3) C has only one stal	ole isotope	4) C-C bond is strong	5			
7.	-	dergo hydrolysis, wher d-orbitals in its valenc	1	lrolysed. 5 vacant d-orbitals in its			
	1) Both (1) and (R) are	e true and (R) is the corr	rect explanation of (A)				
	, , , , , ,	e true and (R) is not the	-				
	3) (1) is true but (R) is	false	4) (1) is false but (R) is	s true			
8.		ng is a reducing agent a	• • •				
	1) CH ₄	2) $C_2 H_6$	3) C ₃ H ₈	4) SiH ₄			
9.	 The general trend in the properties of elements of carbon family shows that, with the rise in atomic number. 1) The tendency towards catenation increases 2) The tendency to show +2 oxidation state increases 3) The metallic character decreases 4) The tendency to form complexes with covalency higher than four decreases 						
	 2) The tendency to sh 3) The metallic characteristic ch	now +2 oxidation state i cter decreases	ncreases	decreases			
10.	2) The tendency to sh3) The metallic characteristic characterist	now +2 oxidation state i cter decreases	ncreases alency higher than four	decreases			
10.	2) The tendency to sh3) The metallic characteristic characterist	ow +2 oxidation state i cter decreases rm complexes with cov	ncreases alency higher than four	e decreases 4) Sn			
10. 11.	2) The tendency to sh3) The metallic characteristic characterist	ow +2 oxidation state i cter decreases rm complexes with cov V A group element in ea 2) Ge	ncreases alency higher than four arths crust is				
	 2) The tendency to sh 3) The metallic characteristic characteri	ow +2 oxidation state i cter decreases rm complexes with cov V A group element in ea 2) Ge	ncreases alency higher than four arths crust is				
	 2) The tendency to sh 3) The metallic characteristic characteri	ow +2 oxidation state i cter decreases rm complexes with cov V A group element in ea 2) Ge ural source of 2) Si	ncreases alency higher than four arths crust is 3) Pb	4) Sn			
11. 12.	 2) The tendency to sh 3) The metallic characteristic characteri	ow +2 oxidation state i cter decreases rm complexes with cov V A group element in ea 2) Ge ural source of 2) Si	ncreases alency higher than four arths crust is 3) Pb	4) Sn			
11. 12.	 2) The tendency to sh 3) The metallic characteristic characteri	ow +2 oxidation state i cter decreases rm complexes with cov V A group element in ea 2) Ge tral source of 2) Si highest for	ncreases alency higher than four arths crust is 3) Pb 3) Sn 3) SnH ₄	4) Sn 4) Pb			
11. 12. 1)	 2) The tendency to sh 3) The metallic characteristic characteri	now +2 oxidation state i cter decreases rm complexes with cov V A group element in ea 2) Ge ural source of 2) Si highest for 2) SiH ₄	ncreases alency higher than four arths crust is 3) Pb 3) Sn 3) SnH ₄	4) Sn 4) Pb			
11. 12. 1) 13.	 2) The tendency to sh 3) The metallic characteristic characteri	now +2 oxidation state i cter decreases rm complexes with cov V A group element in ea 2) Ge ural source of 2) Si highest for 2) SiH ₄ oup element do not exhi	ncreases alency higher than four arths crust is 3) Pb 3) Sn 3) SnH ₄ bit allotropy	4) Sn 4) Pb 4) PbH ₄			
 11. 12. 1) 13. Carbon 	 2) The tendency to sh 3) The metallic charact 4) The tendency to for The least abundant IV 1) C Cassiterite is the nature 1) C Reducing capacity is CH₄ Which of the IVA grown of the IVA	now +2 oxidation state i cter decreases rm complexes with cov V A group element in ea 2) Ge ural source of 2) Si highest for 2) SiH ₄ up element do not exhi 2) Si	ncreases alency higher than four arths crust is 3) Pb 3) Sn 3) SnH ₄ bit allotropy	4) Sn 4) Pb 4) PbH ₄			
11. 12. 1) 13.	 2) The tendency to sh 3) The metallic characteristic characteri	now +2 oxidation state i cter decreases rm complexes with cov V A group element in ea 2) Ge ural source of 2) Si highest for 2) SiH ₄ up element do not exhi 2) Si	ncreases alency higher than four arths crust is 3) Pb 3) Sn 3) SnH ₄ bit allotropy	4) Sn 4) Pb 4) PbH ₄			

p-Block Elements (Group IV Elements) 15. When diamond is heated in vaccum at 2000°C, the substance formed is

15.	When diamond is heated in vaccum at 2000°C, the substance formed is					
	1) Amorphous carbor	n 2) Coal	3) Graphite	4) Carbon monoxide		
16.	All atoms are sp ³ hyb	ridised in the following	g substsance			
	1) Methane	2) Ethane	3) Diamond	4) Graphite		
17.	Graphite and gas carl	oon are a pair of				
	1) Isosters	2) Allotropes	3) Isomers	4) Compounds		
18.	Layer structure is pre	sent in				
	1) Graphite	2) Coal	3) Diamond	4) Coke		
19.	The allotrope of Carb	on not used in the maki	ing of electrodes is			
	1) Gas Carbon	2) Petroleum Coke	3) Graphite	4) Diamond		
20.	Diamond vacuum 1) lubricant 3) in electrotyping and	$\stackrel{C}{\longrightarrow}$ X. The product, X d electroplating	is used as 2) in the manufacture 4) all the above	e of lead pencils		
21.	 Graphite is not a cc Graphite is a three dimensionally Graphite is a two dimensionally 		r because, the p-electro	rrons ons are delocalised three ns are delocalised two		
22.	Regarding diamond					
	I) C-C bond length is	1.54A°	II) It has least refracti	ve index among solids		
	III) It has a 3-dimension The correct combinat 1) all are correct		3) I & II are correct	4) II & III are correct		

EXERCISE - I

WORK SHEET - I

1) 3	2) 3	3) 4	4) 2	5) 4	6) 4	7) 1	8) 4	9) 2	10) 2
11) 3	12) 4	13) 4	14) 3	15) 3	16) 3	17) 2	18) 1	19) 4	20) 4
21) 3	22) 2								

WORK SHEET - I

V	Α	Group	Elements:	
---	---	-------	-----------	--

1.	The v	alence s	hell elee	ctronic co	nfigura	tion of	VA grou	p elemen	ts is :	
	1) ns ²	np ²		2) ns ² n	p^1		3) ns²np	3	4)	ns²np5
2.	The m	nost abu:	ndant e	lement in	the atm	osphei	e is			
	1) O ₂			2) N ₂			3) F ₂		4).	Ar
3.	The n	nost abu	Indant V	/A group	elemen	t in the	e earth's ci	rust is		
	1) Nit	rogen		2) Phos	phorou	s	3) Arsen	ic	4)	Bismuth
4.	LIST	-1		LI	ST - 2					
	A) Ph	osphori	te	1) KNC) ₃					
	B) Ber	ngal salt	petre	2) Ba(N	$IO_3)_2$					
	C) Flu	ioroapa	tite	3) NaN	O3					
	D) Chili salt petre 4) $3Ca_3(PO_4)_2$. CaF ₂			aF ₂						
				5) Ca ₃ (I	$PO_{4})_{2}$	-				
	The c	orrect m	natch is	0						
		А	В	С	D		А	В	С	D
	1) 3)	1 4	2 3	3 5	5 2	2) 4)	2 5	4 1	3 4	1 3
5.	,							1	4	5
0.	The following can exist as a diatomic molect 1) N 2) P				moneet	3) As		4)	Bi	
6.	,	llowing	vVA or	,	entoccu	rs evei	n in free st	ate		DI
0.	1) Bi	5110 10 11 18	5 11 81	2) As		15 CVC	3) Sb	uic	4)	N
7.	,	'A grou	p elem	,	og more	num	ber of allo	tropes is	-)	
	1) N	11 8100	p cicili	2) P	ig more	main	3) Bi	aopeoio	4)	Sb
8.	,	ollowing	z eleme	ent doesr	n't have	allotro	,		_) `	
	1) N	0	5	2) P			3) As		4)	Bi
9.	,	reactive	allotrop	oic form c	of Phosp	horous	,		,	
	1) Yel		1	2) Red	1		3) Black		4)	Scarlet
10.	(A): I	P_4 is mor	e reacti	ve than N	I,				,	
		-		latively w	-	an N ≡	■N			
	1) Bot	h (A) ar	nd (R) ai	e true an	d (R) is t	he cor	rect expla	nation of	(A)	
	2) Bot	h (A) ar	nd (R) ai	re true an	d (R) is 1	not the	correct e	xplanatic	on of (A)	
	, , , ,	is true l	• • •	s false			4) (A) is	false but	(R) is tru	ie
11.	-	osphine	is							
	1) PH	5		2) $P_2 H_6$			3) PH ₄ ⁺		4)	P_2H_4
12.		0				f nitro	gen are joi	5	deand	ononihond
				nd one pi nd two pi			-	sigma bo		one pi bond
13.		-		s of nitrog		e to	1) 11100	5-6		
				itals of N			2) high b	ond diss	ociation	energy
	-		-	-orbitals	C			seous nat		
14.	The n	naximur	n coval	ency of ni	trogen i	s	-			
	1) 2			2) 3			3) 4		4)	5

15. The VA group element which exhibits wide range of oxida					xidation s	states is					
	1) P			2) As			3) Bi		4)]	N	
16.	The ox	dation	state of	nitrogen	in hydra	azine	is				
	1) —1			2) —2			3) +1		4) ·	+2	
17.	The sta	able oxic	lation s	state of Bis	smuth is						
	1) +1			2) + 5			3) – 3		4) ·	+ 3	
18.	Subst	ance	Oxid	lation stat	e of N						
	A) HN	10 ₃		1) -3, +5	;						
	B) NH	NO ₃		2) -1/3							
	C) N_3	Ŧ		3) + 5							
	D) H ₃ I	PO ₃		4) + 3							
				5) + 1/3							
	The co	rrect ma	atch is								
		А	В	С	D		А	В	С	D	
	1)	3	1	2	4	2)	5	2	3	4	
	3)	1	2	3	4	4)	4	3	2	5	
19.		omicity What are		e Phospho d 'y' ?	orous is '	'x' and	d the ₽−	$\mathbf{P} - \mathbf{P}$ bo	nd angle	e in the m	olecule

1) x = 4; $y = 90^{\circ}$ 2) x = 4; $y = 60^{\circ}$ 3) x = 3; $y = 120^{\circ}$ 4) x = 2; $y = 180^{\circ}$

EXERCISE- I / ANSWERS

WORK SHEET- I

1) 3	2) 2	3) 2	4) 4	5) 1	6) 4	7) 2	8) 4	9) 1	10) 1
11) 4	12) 3	13) 2	14) 3	15) 4	16) 2	17) 4	18) 1	19) 2	

EXERCISE - I WORK SHEET - I

VIA-Group Elements:

	1			
1.	Which of the follow	ing set of atomic numbers be	longs to group 16 eler	nents
	1) 56, 37, 20	2) 52, 8, 84	3) 14, 32, 50	4) 36, 9, 17
2.	Oxygen and Sulphu	ur have same		
	1) outer electronic c	onfiguration	2) Atomic size	
	3) electronic configu	uration	4) electron affinity	
3.	Element with the lo	west atomicity		
	1) Te	2) S	3) Se	4) O
4.	The number of aton	ns present in one molecule of	rhombic sulphur is	
	1) 2	2) 4	3) 6	4) 8
5.	The total number of	covalent bonds present in o	ne S ₈ molecule is	
	1) 4	2) 6	3) 8	4) 10
6.	The S - S - S bond an	ngle in S ₈ molecule is		
	1) 109.5°	2) 105°	3) 120°	4) 60 ⁰
7.	The decreasing tend	lency to exist in puckered 8 - 1	membered ring struct	cure is
	1) S > Se > Te > Po		2) Se > S > Te > Po	1
	3) S > Te > Se > Po		4) Te > Se > S > Po	1
8.	Which of the follow water	ring form of sulphur can be p	repared by pouring l	iquid sulphur into cold
	1) Monoclinic	2) Rhombic	3) Plastic	4) Colloidal
9.	α , β and γ forms of		<i>c) i i i i i c c c c c c c c c c</i>	1) Concrete
	1) Overal packing o	-	2) Molecular weig	ht
	3) Atomicities		4) Their ring struc	
10.		of oxygen is zero in	/ 0000	
	1) CO	2) O ₂	3) SO ₂	4) H ₂ O ₂
11.	,	lowing compounds, oxygen	' <u> </u>	· 2 2
	1) H ₂ O	2) H ₂ O ₂	3) OF ₂	4) H_2SO_4
12.	Which of the follow	ing element does not show a	n oxidation state of +	. 1 1
	1) Oxygen	2) Sulphur	3) Selenium	4) Tellurium
13.	Generally oxygen is	s converted into its ion by		
	1) Losing electrons		2) Increasing oxid	ation number
	3) Decreasing atom	ic size	4) Gaining electro	ns
14.	If X is a member of o	chalcogen family, the highest	stability of X ⁻² is exhi	bited by
	1) Oxygen	2) Selenium	3) Tellurium	4) Sulphur
15. (Oxygen is always div	alent while sulphur can form	12,4 and 6 bonds bec	ause
	1) Oxygen is more e	lectronegative than sulphur		
	2) Sulphur has vaca	nt d-orbitas while oxygen do	es not	
	3) Sulphur has large	e atomic radius than oxygen		
	4) Sulphur is more e	electronegative than oxygen.		
16.	In sulphate ion the	oxidation state of sulphur is	+6 and the hybridizat	tion state of sulphur is

157

r							
_	1) sp	2) sp ²	3) sp ³	4) $sp^2 or sp^3 d^2$			
17.	The second most elect	tronegative element in period	lic table is				
	1) F	2) O	3) Cl	4) N			
18.	Which of the followir	ng has higher IP_1 ?					
	1) Oxygen	2) Sulphur	3) Selenium	4) Tellurium			
19.	Element with higher catenation capacity is						
	1) S	2) Se	3) Te	4) Po			
20.	The order of abundance of VI A group elements is						
	1) $O > S > Se > Te > P$	o	2) S > Se > Te > o > Po				
	3) $O > Se > S > Te > Pe$	0	4) $O > Te > Se > S > Po$				
21.	The most common ox	idation state of VI A group el	ements is				
	1) -2	2) +2	3) +4	4) +6			
22.	Chair form of S ₆ rings	are present in					
	1) α - sulphur	2) β - sulphur	3) Engle's sulphur	4) γ - sulphur			

EXERCISE - I / ANSWERS WORK SHEET - I

1) 2	2) 1	3) 4	4) 4	5) 3	6) 2	7) 1	8) 3	9) 1	10) 2
11) 3	12) 1	13) 4	14) 1	15) 2	16) 3	17) 2	18) 1	19) 1	20) 1
21) 1	22) 3								

EXERCISE - I

WORK SHEET - I

VIIA Group Elements:

	-			
1.	The number	of unpaired electrons pre	esent in the first excited	state of chlorine atom is
	1) 1	2) 3	3) 5	4) 2
2.	Which of the	following halogens has me	etallic character ?	
	1) F ₂	2) CI ₂	3) Br ₂	4) I ₂ .
3.	The name of	the radioactive VII A group	element and its atomic r	number are respectively
	1) Astatine, 8	2) Astatine, 86	3) Astatine, 85	4) Astatine, 87
4.	Super haloge	en is		
	1) F ₂	2) Cl ₂	3) Br ₂	4) I ₂
5.	The element	which never acts as reducin	ng agent in a chemical re	action is
	1) O	2) Li	3) F	4) C
6.	The high read	ctivity of fluorine is mainly	due to	
	1) high heat o	of hydration	2) small size	
	3) low bond d	lissociation energy of the F-F	bond4) high ionisation	potential
7.	According to	mulliken, there is no possi	bility of multiple bondin	g in
	1) Cl ₂	2) F ₂	3) Br ₂	4) I ₂ .
8.	In the reaction	on of I_2 with water, change	e in free energy is	
	1) Negative		2) Positive	
	3) zero		4) cannot be predic	ted
9.	The type of fo	orces present among haloge	en molecules	
	1) H-bonds	2) Covalent bond	s 3) Vander waal's for	rces 4) Ionic bond
10	. The correct o	rder of Vander Waals radiu	is of F, Cl and Br is :	
	1) Cl > F > Br	2) Br > Cl > F	3) $F > Cl > Br$	4) Br > F > C1
11	. Liquid and se	olid halogens are		
	1) Br_2 and Cl_2	$_{2} \qquad 2) I_{2} and Br_{2}$	3) Br_2 and I_2	4) Cl_2 and I_2
12	. The halogen	that undergoes sublimation	nis	
	1) F ₂	2) Cl ₂	3) Br ₂	4) I ₂
13	. Ionisation po	tential of fluorine is abnorr	nally high. It is due to	
	1) Its high EN	V value 2) Its high EA val	ue 3) Its small size	4) Its big size
14	. The elements	with the highest electron affi	nity and electronegativity	respectively are
	1) Cl and Cl	2) F and F	3) F and Cl	4) Cl and F
15	. An element N	A has an atomic mass 19 and	d atomic number 9. Its ion	n is represented by
	1) M+	2) M ²⁺	3) M⁻	4) M ²⁻
16	. General oxid	ation states of halogens are	2	

•	1) -1, +1	2) -1, +1, +3	3) -1, +1, +3, +5	4) -1, +1, +3, +5, +7		
17.	Which one of the follo	owing elements can she	ow both positive and n	egative oxidation state ?		
	1) F	2) I	3) Li	4) He.		
18.	The maximum oxidat	tion state that can be ex	chibited by a halogen i	n its second excited state		
	1) +1	2) +3	3) +5	4) +7		
19.	Which one of the following elements show different oxidation states ?					
	1) Sodium	2) Fluorine	3) Chlorine	4) Potassium		
20.	Enthalpy of dissociat	ion is low for				
	1) F ₂	2) Cl ₂	3) Br ₂	4) I ₂		
21.	F ₂ absorbs porti	on of light and appear	yellow and I ₂ absorbs	portion of light and		
	appears violet					
	1) Red and Green	2) Violet and Yellow	3) Blue and Orange	4) Green and Red		

EXERCISE - I / ANSWERS

WORK SHEET - I

1) 2	2) 4	3) 3	4) 1	5) 3	6) 3	7) 2	8) 2	9) 3	10) 2
11) 3	12) 4	13) 3	14) 4	15) 3	16) 4	17) 2	18) 3	19) 3	20) 4
21) 2									

EXERCISE - I

WORK SHEET - I

NOBL	E GASES:						
1.	The chemistry of zero 1) They are less abun 3) They have octet co		e known because 2) They have low ion 4) They have low boi	-			
2.	The gaseous mixture 1) Ar,Kr,Xe	present in the 'sun' atr 2) Ne, Kr	nosphere 3) Kr,Xe	4) He, H ₂			
3.	Helium gives charact 1) Li⁺	eristic spectrum with o 2) H⁺	orange light which is sir 3) Li	milar to that of 4) Be⁺			
4.	The forces that make the molecules of a noble gas in liquid state1) Dipolar forces2) Dipole - induced dipole forces3) Van der waal's force4) Repulsive forces						
5.	 (1): Helium was discovered in chromosphere of the sun (R): D₃ line is observed along with D₁ and D₂ in the solar spectrum The correct answer is 1) Both (1) and (R) are true and (R) is the correct explanation of (A) 2) Both (1) and (R) are true and (R) is not the correct explanation of (A) 3) (1) is true but (R) is false 4) (1) is false but (R) is true 						
6.	The first ionization er may be 1) 2080.7 KJ/mole	nergy of neon is 2080.7 2) 2372.3 KJ/mole	KJ/mole. The first ioni 3) 1520.5 KJ/mole	satioin energy of helium 4) 1800.4 KJ/mole			
7.	The noble gas which 1) Xe	behaves abnormally ir 2) Ne	n liquid state is 3) He	4) Ar			
8			order 2) He > Ne > Kr > Ar 4) None				
		WORK SH	EET - II				
1.	When a Radioactive s 1) He	substance is kept in a v 2) Ne	essel, the atmosphere a 3) Ar	around it is rich with 4) Xe			
2.	Which element disint 1) Ra	egrates to give two no 2) Th	ble gases 3) Rn	4) He			
3.	The actual density of nitrogen is 1.251glit ⁻¹ . The density of nitrogen obtained from the atmosphere is 1.2572 g lit ⁻¹ . This is because of the fact that atmospheric nitrogen contains 2) Carbon dioxide 3) Neon2) Carbon monoxide						
4.	The percentage by vo 1) 1%	lume of Argon in atmo 2) 2%	sphere 3) 10%	4) 0.2%			
5.	,	ly in monoatomic state	,	ergy			

6. If one litre of air is passed repeatedly over heated copper and magnesium till no further reduction in volume takes place, the volume finally obtained is

r = -								
	1) 800ml	2) 990 ml	3) 10 ml	4) 100 ml				
7.	When 1 lit of air is burnt with a mixture calcium carbide and anhydrous calcium chloride, the reduction in volume of air is about							
	1) 10ml	2) 990ml	3) 100ml	4) 900ml				
8.	The incorrect statement regarding to Noble gases is 1) Their Electron affinity and Electronegetive are zero 2) They are held together by Van der waals forces 3) They occupy the Peaks in the graphs of ionisation potential and atomic number 4) Their boiling points decrease from He to Xe							
9.	The maximum valence	cy (=8) is shown by						
	1) Xe, Os	2) Xe, Ru	3) Xe,Os,Ru	4) Xe,Os, Ru,Mn				
10.	Which of the followir	ng is diamagnetic in na	ture?					
	1) O ₂	2) NO ₂	3) He	4) Fe ²⁺				

EXERCISE - I / ANSWERS

WORK SHEET - I

1) 3	2) 4	3) 1	4) 3	5) 1	6) 2	7) 3	8) 3
· · ·	,	- /) -	- /	- /	/-	- / -

WORK SHEET - II

1) 1 2) 1 3) 1 4) 1 5) 1 6) 2 7) 1 8) 4 9) 3 1	1)1	2) 1	3) 1	4) 1	5) 1	6) 2	7) 1	8) 4	9) 3	10
--	-----	------	------	------	------	------	------	------	------	----

Nomenclature

EXERCISE - I

1.	Secondary butyl group is					
	1) $CH_3 - CH_2 - CH_2 - CH_2 -$	2) $CH_3 - CH - CH_2 - CH_3$				
	CH3					
	3) $CH_3 - C - C - C - C - C - C - C - C - C - $	4) $CH_3 - CH - CH_2 - $ CH_3				
	-	5				
2.	The correct IUPAC name of CH ₃ -CH ₂ -CH 1) 4-Ethyl -3-methyl hexane 3) 4-Methyl-3-ethyl hexane	(CH ₃)–CH(C ₂ H ₅) ₂ is 2) 3-Ethyl-4-methyl hexane 4) 2, 4, -Diethyl pentane				
3.	Which of the following respresents 2,2,3-T	-				
	1) CH ₃ -C(CH ₃) ₂ -CH ₂ -CH ₂ -CH(CH ₃) ₂ 3) CH ₃ -C(CH ₃) ₂ -CH(CH ₃)-CH ₂ -CH ₂ -CH ₃	2) CH ₃ -CH(CH ₃)-CH ₂ -CH(CH ₃)-CH ₂ -CH ₃ 4) CH ₂ -C(CH ₂) ₂ -CH ₂ -C(CH ₂) ₂ -CH ₂				
4.	The IUPAC name of the compund $C_2H_5 - C_1 - CH_2OH$					
	CH ₂					
	1) 2-Ethyl prop-2-en-1-ol	2) 2-Hydroxy methyl butan-1-ol				
	3) 2-Methylene butan-1-ol	4) 2-Ethyl -3-hydroxy prop-1-ene				
	0					
5.	The correct IUPAC name of $H - C - CHO$	is				
	1) Formyl methanal 2) 1,2-Ethanedione	3) 2-Oxoethanal 4) Ethanedial				
6.	The IUPAC name of the following compound	nd is $CH_3 - CH - CH_2 - CH = CH_2$ CH_3				
	1) 2- Methylpentane 3) 1- Hexene	2) 4- Methyl pentene -1 4) 3- Methyl pentene				
7.	The IUPAC name of the compound is CH ₃ -					
	1) 4-Ethyl pentanol-2 3) 2-Ethyl pentanol -2	 2) 4-Methyl hexanol-2 4) 3-Methylhexanol-2 				
8.	The structure of 4-methyl pentene-2 is					
	1) (CH ₃) ₂ CH-CH ₂ CH=CH ₂ 3) (CH ₃) ₂ CH-CH ₂ -CH=CH-CH ₃	2) $(CH_3)_2CH-CH = CH-CH_3$ 4) $(CH_3)_2C = CH-CH_2-CH_3$				
9.	The IUPAC name of $CH_3 - C \equiv C - CH(CH)$	0 =				
	 4 - Methyl-2-pentyne 3) Isopropylmethyl acetylene 	2) 4,4, -Dimethyl -2- butyne 4) 2-Methyl-4-pentyne				
10.	The IUPAC name of $(CH_3)_2$ CH-COOH is					
	1) 2- propanoic acid 3) 2 Mathyl propanoic acid	 Isobutanoic acid 2-Methyl butanoic acid 				
	3) 2-Methyl propanoic acid	+) 2-membri butanoic aciu				

Organic Chemistry - Nomenclature

CH ₃ O						
11.	The IUPAC name of $CH_3 - CH - C - CH_2 - CH_2OH$ is					
	1) 1-Hydroxy-4-methyl-3-pentanone 3) 4-Methyl -3-oxo-1-pentanol CH4	2) 2-Methyl -5-hydroxy-3-pentanone 4) Hexanol-1-one-3 3H				
12.	The IUPAC name of the formula $CH_3 - C = C - COOH$ is					
	1) 2- Methyl-2-butenoic acid 3) 3- Methyl -2-butenoic acid	2) 3- Methyl-3- butenoic acid 4) 2-Methyl-3- butenoic acid				
13.	The correct IUPAC name of Cl ₃ C- CH ₂ CHC 1) 3,3,3-Trichloro propanal 3) 2,2,2-Trichloro propanal) 2) 1,1,1-Trichloro propanal 4) Chloral				
14.	IUPAC name of $CH_2 = CH-CH = CH_2$ is1) 1, 2-Butadiene2) 1,3-Butadiene	3) 1, 4-Butadiene 4) Butadiene				
15.	IUPAC name of $CH_2 = C = CH_2$ is1) Propadiene2) 1, 1-propadiene	3) 2, 2-propadiene 4) 1, 3-propadiene				
16.	IUPAC name of $CH_2 = CH - CH(CH_3)_2$ is1) 1,1-Dimethyl-2-propane3) 2-vinyl propane4) 1-Isopropyl ethyler CH_3	2) 3-Methyl -1- butene ne				
17.	IUPAC name of $CH_3 - C - CH = CH_2$ is CH_3					
	1) 3,3,3 - Trimethyl -1- propene 3) 3,3 -Dimethyl -1- butene	2) 1,1,1- Trimethyl -3- propene 4) 1,1- Dimethyl -3 - butene				
18.	IUPAC name of (CH ₃) ₃ CCH ₃ is 1) 1,1,1-Trimethyl ethane 3) 2,2,2- Trimethyl ethane	2) 2,2,2 - Trimethyl propane 4) Dimethyl propane				
19.	The IUPAC name of $CH_3 - CH_2 - CH - C - CH_3$ CH_3 O 1) Isohexanone 2) 3-methyl 2-pentanone					
	3) either (1) or 2 4) 3- Methyl -4- pentanone					
20.	IUPAC name of CH3 -CHCl-CH2-CHO is1) 2-chloro-4-butanol2) 3-chloro butane3) 2-chloro-4-butanal4) 3-chloro butanal					
21.	The structural formula of 3 - ethyl - 2 - meth 1) CH_3 - $CH(CH_3)$ - $CH(C_2H_5)$ - CH_2 - CH_2 - CH_3 3) either (1) or (2)	hyl hexane is ₃ 2) CH ₃ -CH ₂ -CH(C ₂ H ₅)-CH (CH ₃) -CH ₂ -CH ₃ 4) None of these				
22.	The systematic name of the organic compound $CH_3 - CH_2 - CH_3 $	-				
	\dot{CH}_3 \dot{CH}_3 1) 4 - Isopropyl hexane	2) 2-methyl–3-propyl hexane				

Organic Chemistry - Nomenclature 3) Isodecane 4) 4-(1-Methyl ethyl)heptane 23. IUPAC name of $CH = C-CH = CH_2$ is 1) But-1-yne-3-ene 2) But-1-en-3-yne 3) But-1-yne -2-ene 4) None of the above 24. The IUPAC name of (CH₃)₃C-CH=CH₂ is 1) 2,2-dimethyl but -3-ene 2) 2,2-dimethyl pent-4-ene 3) 3,3-dimethyl but-1-ene 4) 3,3-dimethyl pent-1-ene The compound $CH_3 - C = CH - CH_3$ is 25. $CH_2 - CH_3$ 1) 2-ethyl-2-butene 2) 3-methyl-3-pentene 3) 3-methyl-2-pentene 4) 3-ethyl-2-butene OH IUPAC name of $CH_3 - \overset{|}{C} - CH_2 - CH_2 - CH_3$ 26. 1) 3-methyl-3-hexanol 2) 2-ethyl-2-pentanol 3) 2-ethyl-2-hydroxy pentane 4) Any of these $CH_3 - CH_2 - CH - (CH_2)_3 - CH_3$ The IUPAC name 27. ĊH₃ 2) 4-methyl hexane 1) 3-methyl hexane 3) 5-methyl heptane 4) 3-methyl heptane 28. IUPAC name of (CH₃)₂CH-CHBr₂ 1) 1,1-dibromo -2-methyl propane 2) 2-methyl-3-Bromo propane 4) 3° butyl bromide 3) iso propyl Bromide C_2H_5 $CH_3 - C - CH_3$ IUPAC name is 29. Ċ₂H₅ 1) 2, 2-Diethyl propane 2) 3, 3-Dimethyl pentane 3) 3-ethyl-3-methyl butane 4) 3-ethyl-2-methyl butane $CH_3 - CH_2 - C - C = CH - CH_3$ The IUPAC name is $CH_3 C_2H_5$ 30. 1) 3-ethyl-4, 4-dimethyl-2-hexene 2) 4-ethyl-3, 3-dimethyl-2-hexene 3) 4 - ethyl - 3,3 - dimethyl - 4 - hexene 4) all of these $CH_3 - CH - CH_2 - CH - CH_3$ IUPAC name is 31. 1) 2, 4 - diethyl pentane 2) 3, 5- dimethyl heptane 3) 3 - methyl 5 -ethyl hexane 4) 5 - ethyl -3- methyl hexane

165

32.	$CH_3 - C - CH_2 - C - CH_3$ IUPAC n H_2 CH_2 CH_2	ame is	
	1) 2, 4-pentadiene 3) 2, 4, - butadine	2) 2, 4-dimethyl-1, 4-pe 4) None of the above	entadiene
33.	The IUPAC name of isobutanol is 1) 2-methyl propanol 3) 2-butanol	2) 2-methyl-2-propano 4) 2-methyl-1-propano	
34.	IUPAC name of $CH_3 - O - CH - CH_3$	I ₃	
	 1) methyl propyl ether ether 3) 2-methoxy propane 	4) all the above	2) methyl isopropyl
35.	IUPAC name of n-amyl alcohol is		4) pentanol -1
36.	IUPAC name of $CH_3 - CH_2 - CH_2$	$-CH - CH_3$ is	, 1
		$-CH - CH_3$	
	 1) 2, 3 - dimethyl hexane 3) 2 - isopropyl pentane 	2) 2 - methyl - 3 - prop 4) Nonane	yl butane
37.	IUPAC name of $CH_3 - C(OH) - CH_3$	-3	
	1) sec- butyl alcohol 2) pri-butyl al 2	cohol 3) 2-methyl propanal	4) 2-methyl propanol-
38.	The compound in which C uses only 1) HCOOH 2) $(NH_2)_2CO$		rmation is 4) CH ₃ CHO
39.	The compound having only one type1) Ethane dial2) 2, 4 - pentage	-	atoms is 4) Butyne
40.	The maximum number of linear atom 1) 3 2) 4		4) 6
41.	2, 3- dimethyl hexane contains	tertiary secondary	and primary
	carbon atoms, respectively.		(2003)
	1) 2,2,4 2) 2,4,3	3) 4,3,2	4) 3,2,4
42.	IUPAC name of Allyl chloride 1) 1–chloro –1 – propene 3) 3 – chloro – 2 – propene	2) 1 – chloro – 2 – prop 4) 3 – chloro – 1 – prop	
43.	Among the following which one rep: 1) methyl pentane 2) 2 – propene		ompound 4) none
44.	The IUPAC name of is $CH = CH$		
	CHO NH		
	1) 1-Amino prop-2-enal 3) 1-Amino-2-formyl ethene	2) 3-Amino prop -2-en 4) 3-Amino-1-ovoprop	
166	3) 1-Amino-2-formyl ethene	4) 3-Amino-1-oxoprop	-2-6116

		CH ₃
9.	IUPAC name of the compound having the f	formula $CH_3 - CH_2 - N(CH_3) - CH'_CH_2$
	 N-ethyl, N-methyl isopropane N-ethyl, N-methyl-1-amino propane 	 N-ethyl, N-methyl amino propane N-ethyl, N-methyl-2-propanamine
		NH ₂
10.	IUPAC name of the compound having the f	formula CH ₃ -CH-CH-CH-OH is
	1) 3-amino, 1-methyl, 2-hydroxy, -1- buta	
	2) 3 – amino - 4 – hydroxy -2- pentanol 3) 3 – amino -1- methyl, 1, 3 – butanediol CN	· · ·
11.	$CH_3 - CH_2 - CO - CH - COOH$ The IUPA	AC name of the compund is
	1) 3 - Ketonic -2- cyano pentanoic acid	2) cyanoketohexanoic acid
	3) 3 - oxo -2 - cyano pentanoic acid	4) 2 - cyano -3 -oxo pentanoic acid
12.	The IUPAC name of the compound CH_2 (O	H) CH(NH ₂)COOH isA
	1) 2-Amine-3-hydroxy propanoic acid	2) 1-Hydroxy-2-amino propan-3-oic acid
	3) 2-Amino-3-hydroxy propanoic acid	4) 1-Amino-2-hydroxy propanoic acid
	0 	
13.	The IUPAC name of $CH_3 CH_2 O CH_2 C -H$	
	1) Formyl methyl ethyl ether	2) Ethyl aldo methyl ether
	3) 2-Ethoxy formate	4) 2- Ethoxy ethanal
		CH ₂
14.	The correct IUPAC name of $CH_3CH_2 - C - C$	$CH \longrightarrow CH_2$ is
	CH ₂ C	1
	1) 1-Chloro -2-butyl cyclo propane	2) 1-Chloro-2-cyclopropyl butane
	3) 1-Chloro methyl-1-ethyl cyclo propane	4) 3-Chloro methyl-1,2-methylene pentane
	о 	O II
15.	The correct IUPAC name of $CH_3 - C - C$	O - C - H is
	1) Acetyl methanoate	2) Keto ethanoate
	3) Ethoxy methanoate	4) Ethanoic methanoic anhydride
	C ₂ H ₅ —O	
16.	The IUPAC name of $c = 0$	
	H ₃ C—CH	
	CH_3 1) Ethoxy methanone	2) Ethoxy propanone
	3) Ethyl-2-methyl propanoate	4) 2-methyl ethoxy propanone

- 1) 3-Chloro-3-cyclopropyl-2-methyl-4-nitro hexanal
- 2) 1-formyl-2-methyl-3-chloro-3-cyclopropyl 4-nitro pentane
- 3) 4-chloro -4-cylcopropyl-3-methyl-5-nitro hexanal
- 4) 3-chloro-3-cyclopropyl-2-nitro-4-methyl hexanal
- 30. The IUPAC name of the compound1) Bicyclo [2, 1, 0] pentane
 - 3) cyclopentane (4, 3 annulene)

2) 1, 2 cyclopropyl cyclo butane4) 1, 2 methyl cyclobutane

31. The compound

is known by which of the following names.

- 1) Bicyclo [2, 2, 1] octane
- 3) Bicyclo [1, 2, 1] octane

EXERCISE - I

WORK SHEET - I

1) 2	2) 2	3) 3	4) 1	5) 4	6) 2	7) 2	8) 2	9) 1	10) 3
11) 1	12) 3	13) 1	14)2	15) 1	16) 2	17) 3	18) 4	19) 2	20) 4
21) 1	22) 4	23) 2	24) 3	25) 3	26) 1	27) 4	28) 1	29) 2	30) 1
31) 2	32) 2	33) 4	34) 3	35) 4	36) 1	37) 4	38) 3	39) 1	40) 2
41) 1	42) 4	43) 4	44) 2	45) 1	46) 3	47) 2	48) 3	49) 1	50) 3
51) 2	52) 2	53) 1	54) 1						

WORK SHEET - II

1) 3	2) 1	3) 4	4) 1	5) 1	6) 2	7) 4	8) 4	9) 4	10) 4
11) 4	12) 3	13) 4	14) 2	15) 4	16) 3	17) 1	18) 2	19) 2	20) 4
21) 2	22) 4	23) 3	24) 4	25) 3	26) 3	27) 1	28) 3	29) 3	30) 1
31) 2									

ISOMERISM

EXERCISE - I

WORK SHEET - I

Isomerism

1.	n-propyl amine and isopropyl amine are examples of					
1) Position isomerism 2) Chain isomerism						
	3) Tautomerism	4) Geometrical isome	erism			
2.	The number of prim	ary alcoholic isomers v	vith the formula $C_4 H_{10} C_4$) is		
	1) 1	2) 2	3) 3	4) 4		
172				·		

 ²⁾ Bicyclo [2, 2, 2] octane
 4) Bicyclo [1, 1, 1] octane

3.	The total number of s is	structural and stereo is	omers for the compoun	d of the formula $C_4 H_{10} O$
	1) 7	2) 8	3) 4	4) 3
4.	The type of isomerism 1) Metamerism 3) Geometrical isome	m that is not found in a 2) Chain isomerism erism	llkenes is 4) Position isomerisn	1
5.		compound of structur I ₂ -CH ₃		ws functional isomerism CHO
6.	0	ble isomers for C_3H_5N	,	
	1) 2	2) 3	3) 4	4) 5
7.		natic isomers for $C_8 H_{10}$		
	1) 1	2) 2	3) 3	4) 4
8.		eric amines possible for	0,	
	1) 4	2) 3	3) 5	4) 6
9.		l isomers with the form		
10	1) 2	2) 8	3) 6	4) 5
10.	Compounds with C_4 1) Position isomerism	H ₁₁ N as molecular form n 2) Metamerism	3) Functional isomeris	m4) All the three
11.	Ortho, meta and para 1) Chain isomers	a dichlorobenzenes are 2) Position isomers	3) Functional isomer	s 4) Tautomers
12.	Primary, secondary a 1) Chain isomers	and tertiary amines are 2) Position isomers	3) Functional isomer	s 4) Tautomers
13.	Which pair of isomer 1) Propanal and prop 3) 3° butyl alcohol ar		tion isomers 2) 1º Butyl alcohol ar 4) 2º Butyl alcohol ar	
14.	Which pair does not 1) CH_3COOH and H 3) CH_3 -CHO and CH	COOCH ₃	2) CH ₃ -CHO and CH 4) CH ₃ -CO CH ₃ and	2
15.	Number of isomers f	or the compound dihy	droxy benzene	
	1) 1	2) 2	3) 3	4) 4
16.	Which of the following 1) CH_3COCH_3 . CH_3COCH_3 . CH_3CO_2H , C		al isomers ? 2) C ₂ H ₅ CO ₂ H, CH ₃ C 4) CH ₃ CO ₂ H, CH ₃ CF	- 0
17.	Number of structura 2-methylbutane is	l isomers which can be	obtained theoretically	on monochlorination of
	1) 1	2) 2	3) 3	4) 4
18.	How many cyclic iso 1) 4	mers of C ₅ H ₁₀ are poss 2) 3	sible ? 3) 6	4) 5
Ontice	ıl isomerism :-	,	,	<i>,</i>

Optical isomerism :-

erga		a - 0)
19.	In the representation of specific rotation $\left(\left[\alpha \right] \right)$	$\left {}_{\rm D}^{25^{\circ}{\rm C}} \right $, 'D' indicates
	1) Dextro	2) Configuration of - OH group
	3) Configuration of - NH_2 group	4) Wave length of light
20.	A molecule as a whole is asymmetric if it do	es not passes
	1) Plane of symmetry only	
	2) Centre of symmetry only	
	3) Axis of symmetry and alternating axis of	symmetry only
	4) All	
21.	(1) : $CH_3 CH(OH) COOH$ is optically active	
	(R) : $CH_3 CH(OH) COOH do not possess an$	y element of symmetry.
	The correct answer is	O) Doth A and D and (man and D data and
	1) Both A and R are true and R explains A explains A	2) Both A and R are true and R does not
	3) A is true, R is false	4) A is false, R is true
22.	For an optically active compound ' αobs ' de	pends on
	1) Concentration	2) Length of polarimeter tube
	3) Nature of solvent	4) Temperature
	1) Only a and b 2) Only a, c and d	3) Only a and d 4) a, b, c and d
23.	For an optically active compound specific re	potation $\left(\left[\alpha\right]_{p}^{25}\right)$ depends on
	1) Length of the polarimeter tube	2) Concentration of solution
	3) Temperature	4) Nature of the compound
	1) All 2) Only b and c	3) Only a and c 4) Only d
24.	Which will have enantiomers	
	1) n - butyl chloride 2) ter - butyl chloride	3) sec - butyl chloride 4) iso - butyl chloride
25.	Optically active among the following is	
	1) Meso tartaric acid	2) dl - tartaric acid
	3) Meso - 2, 3 - butanediol	4) Erythro - 2, 3 - dihydroxy butanoic acid
26.	(1) : Meso tartaric acid is optically inactive	
	(R) : Meso tartaric acid has no asymmetric c	
27.	(1) : Meso - 2, 3 - butanediol is optically inac	
• •	(R) : Meso - 2, 3 - butanediol has plane of sy	
28.	The number of optically active forms of the 1×0	6
•	1) 0 2) 1	3) 3 4) 4
29.	Which of the following will have a meso iso	
	1) 2 - chlorobutane 3) 2, 3 - dichloropentane	2) 2, 3 - dichlorobutane 4) 2 - hydroxypropanoic acid
	of 2,0 - archioropentane	1,2 hydroxypropariole actu
30.	(\pm) lactic acid is optically inactive due to	
	1) Internal compensation	2) External compensation
	3) Presence of plane of symmetry	4) Absence of asymmetric carbon

4) Configuration of - OH at at all chiral carbon

- 39. Among the following which has L – configuration. CHO $\begin{array}{ccccccc} COOH & CHO & OH H \\ 1) H H H 2 & 2) H H OH & OH H \\ CH_3 & CH_3 & CH_3 & CH_2OH \end{array}$ 40. If a compound has 'n' different types of asymmetric carbon atoms then the number of possible sterio isomers are 1) 2^{n-1} 3) 3ⁿ 2) 2ⁿ 4) 2n 41. CH₃CH (OH) CH (OH)COOH. Total number of possible sterio isomers (configurational only) are 1) 4 2) 3 3) 2 4)8 For tartaric and total number of possible sterio isomers (configurations only) and total no.of 42. possible optically active isomers are 1) 4,4 3) 4,2 2) 3,3 4) 3,2 43. Total number of possible isomers (configuration only) for 2,3,4 - trichlorohexane are 1) 2 2) 4 3) 8 4) 16 Maximum number of possible stereoisomers (configuration only) with the formula CH₂CH 44. = CHCH (CH₂) COOH 1) 2 2) 3 3) 4 4) 6 Maximum number of possible sterioisomers (configurational only) with the molecular 45. formula C₄H₁₀O are 1)1 2) 2 3) 4 4)7 Type of isomerism not possible with the molecular formula $C_4H_{10}O$ is 46. 2) Optical 3) Functional group 4) Geometrical 1) Chain 47. The number of possible enantiomeric pairs that can be produced during the monochlroination of n - pentane is (are) 1)1 2) 2 3) 3 4) 4 48. Number of possible geometrical isomers for 2, 4 - hexadine are 1)8 2) 4 3) 3 4) 2 The number of optical isomers of the compound is ? CH₃CHCl-CHBr-CH₃ 49. 4) 4 1)02) 1 3) 3 50. The pair of structures given below represent HO HO HO CH₂CH₃ CH₂ H HO CH₂CH₃ 1) Enantiomers 2) Diastereomers 3) Same molecule 4) Regiomers 51. Which of the following statements is not applicable to enantiomers? 1) They have identical melting and boiling points
 - 2) They have identical chemical properties except towards optically active reagents
 - 3) They can be separted by fractional crystallization

4) They rotate the plane polarized light in opposite directions but to the same extent

52. Which of the following will show optical isomerism ?

1)
$$\begin{array}{c} Cl \\ H \\ \end{array} C = C \\ Cl \\ \end{array} \begin{array}{c} CHBr-CH_3 \\ Cl \\ \end{array} \begin{array}{c} 2) \\ H \\ \end{array} \begin{array}{c} CH_3 \\ C = C \\ CH_2CH_3 \\ \end{array} \begin{array}{c} CH_3 \\ CH_3 \\ \end{array} \begin{array}{c} C = C \\ CH_2CH_3 \\ \end{array} \begin{array}{c} CH_3 \\ CH_3 \\ \end{array} \begin{array}{c} C = C \\ CH_3 \\ \end{array} \begin{array}{c} CH_3 \\ CH_3 \\ \end{array} \begin{array}{c} C = C \\ CH_3 \\ \end{array} \begin{array}{c} CH_3 \\ CH_3 \\ \end{array} \begin{array}{c} C = C \\ CH_3 \\ \end{array} \begin{array}{c} CH_3 \\ CH_3 \\ \end{array} \begin{array}{c} C = C \\ CH_3 \\ \end{array} \begin{array}{c} CH_3 \\ CH_3 \\ \end{array} \begin{array}{c} C = C \\ CH_3 \\ \end{array} \begin{array}{c} CH_3 \\ CH_3 \\ CH_3 \\ \end{array} \begin{array}{c} CH_3 \\ CH_3 \\ CH_3 \\ \end{array} \begin{array}{c} CH_3 \\ CH_3$$

53. 2, 3-Pentadiene shows enantiomorphism since it 1) contains one chiral carbon atom 2) contains two chiral atoms but the molecule as a whole is achiral 3) does not contain any chiral carbon atom but the molecule as a whole is chiral 4) none of the above 54. How many chiral carbon atoms are present in 2, 3, 4 - trichoropentane? 1) 3 2) 2 3) 1 4) 4 55. How many structural and isomers could be obtained by replacing one hydrogen of propene with chlorine? 1) 2 2) 4 3) 3 4) 5 **CONFORMATIONAL ISOMERISM:** The dihedral angle between the hydrogen atoms of two methyl groups in staggered 56. conformation of ethane is 1) 120° 3) 45° 2) 180° 4) 60° 57. The dihedral angle between the two methyl groups in gauche conformation of n-butane is 1) 120° 2) 180° 3) 45° 4) 60° 58. The most stable conformation of ethylene glycol is 1) Anti 2) Gauche 3) Partially eclipsed 4) Fully eclipsed 59. Which of the following does not show geometrical isomerism ? 1) 1, 2 - dichloro -1- pentence 2) 1, 3 - dichloro -2- pentence 3) 1, 1 - dichloro -1- pentence 4) 1, 4 - dichloro -2- pentence

WORK SHEET - II

1.	The number of isome	ric structures possible f	for a molecule having r	nolecular formula C_5H_{12}
	1) 2	2) 3	3) 4	4) 5

A pair of functional isomers

 CH₃CH₂CH₂OH, CH₃CH(OH)CH₃
 CH₃CH₂CH₂CH₂OH, (CH₃)₂CHCH₂OH
 CH₃CH₂CH₂CH₂OH, CH₃CH₂CH₂CH
 CH₃CH₂CH₂OH, CH₃CH₂CH₂CH
 CH₃CH₂CH₂OH, CH₃-O-CH₂CH₃

Organic Chemistry - Nomenclature WORK SHEET - III

Topic : GEOMETRICAL ISOMERISM

SECTION - A

Single correct answer Type Questions 01. Geometrical isomerism is possible about which of the following multiple bonds ? 1) C = N2) N = N 3) both a and b 4) none of these 02. Ι II III Which of these cycloalkenes will exhibit geometrical isomerism ? 1) I 3) III 4) all of these 2) II 03. This compound can be named as 1) 3-chloro-6-methyl-(3E,5Z)-octadiene 2) 3-chloro-6-methyl-(3Z,5E)-octadiene 3) 3-chloro-6-methyl-(3Z,5Z)-octadiene 4) 3-chloro-6-methyl-(3E,5E)-octadiene $CH_2 = CH - CH = CH - CH = CH - CH_3$ 04. How many geometrical isomers of this compound are possible ? 1) 2 3) 4 2) 3 4) 8 CH_2 05. CH₃ How many grometrical isomers of this compound are possible ? 1) 0 2) 2 3) 3 4) 4 $I \xrightarrow{CH_3} C = C \xrightarrow{CH_3} H$ 06. (cis-2-butene Π (trans-2-butene Which of the following orders stability is correct among these two isomers ?

 1) I = II
 2) I > II
 3) II > I
 4) not predictable

07. Which of following compound can show geometrical isomerism ?

15. || (maleic aci4) can form : CHCOOH

1) optical isomer 2) grometrical isomer 3) position isomer

4) functional isomer

16.
$$P$$
 Q

Which is/are correct statements about *P* and *Q*? 1) *P* is *cis*- and *Q* is *trans*-2) P is Z and Q is E3) P is R and Q is S4) *P* and *Q* are same structure

WORK SHEET - IV

Topic : OPTICAL ISOMERISM

SECTION - A

Single correct answer Type Questions

- 01. A compound contains 2 dissimilar asymmetric carbon atoms. The number of optical isomers is
 - 1) 2 2) 3 3) 4 4) 5
- 02. How maby total isomers are possible by replacing one hydrogen atom of propane with chlorine 2) 3 1) 2 3) 4 4) 5

03. Which of the following does not show stereoisomerism?

180

04.

1) that group will be of higher priority in which first atom is of higher atomic number (higher atomic weight in case of isotapes) and if first atom is same then this operation is done on second present.

2) that group will be of higher priority in which maximum number of atoms are present.

3) that group will be of higher priority in which minimum number of atoms are present.

4) both a and b

05. Which of the following pairs of compounds is a pair of enantiomers?

06. Among the structure shown below, which has lowest potential energy ?

07. Which of the following compound is (meso) compounds ?

08.

$$\frac{Br}{CH} - D$$

This molecule has one asymmetric centre. Which of the following presentations of this asymmetric centre is called wedge presentation ?

09.

$$\begin{array}{c} CH_3-CH-CH\\ Br & Cl \end{array}$$

Which of the following presentations is a fischer projection formula of this molecule containing two asymmetric centres is correct ?

10.

Which of the following compounds have plane of symmetry ?

EXERCISE - I

WORK SHEET - I

1) 1	2) 2	3) 2	4) 1	5) 4	6) 4	7) 4	8) 1	9) 2	10) 4
11) 2	12) 3	13) 3	14) 3	15) 3	16) 2	17) 4	18) 4	19) 4	20) 4
21) 1	22) 4	23) 4	24) 4	25) 4	26) 3	27) 1	28) 4	29) 2	30) 2
31) 2	32) 3	33) 2	34) 1	35) 3	36) 3	37) 1	38) 1	39) 2	40) 2
41) 1	42) 4	43) 3	44) 3	45) 2	46) 4	47) 1	48) 3	49) 4	50) 3
51) 3	52) 1	53) 3	54) 2	55) 2	56) 2	57) 4	58) 1	59) 3	

WORK SHEET - II

1) 2 2) 4

WORK SHEET - III

1) 3	2) 2	3) 2	4) 3	5) 1	6) 3	7) 4	8) 2	9) 3	10) 3
11) 3	12) 24	13) 34	14) 124	15) 234	16) 12				

WORK SHEET - IV

1) 3 2) 1 3) 3 4) 1 5) 2 6) 1 7) 4 8) 1 9) 4	1) 3	2) 1	3) 3	4) 1	5) 2	6) 1	7) 4	8) 1	9) 4	10)
--	------	------	------	------	------	------	------	------	------	-----

Organic Chemistry (Bond Polarity & Types of Reactions) BOND POLARITY EFFECTS&TYPES OF REACTIONS

EXERCISE - I

1.	Electrophiles are 1) Electron loving spe 3) Necleus loving	ecies	2) Electron hating spo 4) Nucleus hating	ecies
2.	The species having t 1) CH_3^+	rigonal planar shape is 2) :CH ₃ -	3) BF ₄ -	4) Si H_4
3.	Which of the followin 1) BF ₃	ng is not an electrophile 2) AlCl ₃	? 3) ZnCl ₂	4) NH ₃
4.	Which of the following 1) OH ⁻	ng is not a nucleophile 2) HSO ₃	? 3) NH ₃	4) BF ₃
5.	Which of the followin 1) Tertiary	ng free radical is most s 2) secondary	table ? 3) Primary	4) Methyl
6.	Which of the following	ng is a free radical ?		
	1) NO ₂ ⁻	2) Cl	3) Cl•	4) Cl ⁺
7.	Heterolysis of a C-C 1) Carbanion	covalent bond gives 2) Carbonium ion	3) Free radical	4) Both 1 and 2
8.	In carbonium ion, the 1) sp ² hybridised	e carbon bearing the pos 2) sp ³ hybridised	sitive charge is 3) dsp ³ hybridised	4) None
9.	Shape of carbanion i 1) Planar	s 2) Pyramidal	3) Tetrahedral	4) Linear
10.	Shape of carbonium 1) Planar	ion is 2) Linear	3) Octahedral	4) Tetrahedral
11.	Which of the followin 1) Addition	ng types of reactions ma 2) Substitution	jarly occur when a read 3) Elimination	ctant has a double bond ? 4) Photolysis
12.	The +I (inductive effe 1) CH ₃ -	ect) is shown by 2) -OH	3) F	4) - C ₆ H ₅
13.	The -I effect is shown 1) -COOH	by ? 2) -CH ₃	3) -CH ₃ CH ₂	4) -CHR ₂
14.	Which of the followin 1) CH ₃ -	ng groups has highest i 2) CH ₃ CH ₂ -	nductive effect ? 3) (CH ₃) ₂ CH-	4) (CH ₃) ₃ C-
15.	0	of a multiple bond under 2) M-effect	0 -	, (), (
16.	The cleavage of cova 1) Heterolytic fission 3) Carbanion formati		 + B[•] is known as 2) Homolytic fission 4) Carbocation forma 	tion
17.	The reaction of HBr v 1) Polymerisation	vith ethene is an examp 2) Substitution	le of reaction 3) Addition	4) Condensation
18.	Which of the followin 1) -CN	ng substituents has +M 2) -CHO	(Mesomeric) effect ? 3) -NH ₂	4) -NO ₂

^{19.} The C-C bond dissociation energy is

Organ	ic Chemistry (Bond Po 1) 103 K cals mole ⁻¹	olarity & Types of Rea 2) 83 K cals mole ⁻¹	ctions) 3) 8.3 K cals mole ⁻¹	4) 83 cals mole ⁻¹
20.	Which of the followin	g show electromeric ef	fect?	
	1) Alkanes	2) Alkyl amines	3) Alkyl halides	4) Aldehydes
21.	Which of the followir	ng ions does not show :	resonance ?	
	1) NO ₃	2) CH ₃ COO	3) Cl	4) CO_3^2
22.	The bond length is aff	fected by		
	1) Hybridisation	2) Delocalisation	3) Electronegativity	4) All of the above
23.	Mesomeric effect is a	permanent effect in wh	ich π electrons are trar	nsferred from a
	1) Multiple bond to an 3) Both 1 and 2	n atom	2) Multiple bond to a 4) None	single covalent bond
24.	Free radical reactions			
	1) Occur in gas phase	es	2) Are often autocatal	lytic
	3) Are initiated by lig	ht, oxygen or peroxides	s 4) All are correct	
25.		g occur as reaction inte		
	1) Free radicals	2) Carbocations	3) Carbanions	4) All
26.		ng is a more stable carbo		
	1) Sec. pentyl carboca		2) Isopentyl carbocat	
07	3) Tert. Pentyl carboc	ation	4) Neopentyl carboca	ition
27.	-CHO group is	n 2) ME and IE group	2) IME and IE around	A) ME and HE group
0 0	, .		, 01	• 4) -ME and +IE group
28.	are attached to satura		ore powerful electron d	onation group when they
	1) -CH(CH ₃) ₂	2) -CH(CH ₃)C ₂ H ₅	3) -CH ₃	4) - $C(CH_3)_3$
29.	An example of electro		/ 3	/ (5/5
	1) CN ⁻	2) OH-	3) AlCl ₃	4) H ₂
30.	An example of nucleo	ophile is		· -
	1) C ₂ H ₆	2) $C_2 H_2$	3) H ⁺	4) R ⁺
31.	Which one of the follo	owing is not an electrop	phile?	
	1) RNH ₂	2) ROR	3) R-OH	4) All
32.	$C_2H_5Br + NaOH \rightarrow O$	$C_2H_5OH + NaBr$, the ab	ove reaction is	
	1) Free radical substit	ution	2) Nucleophilic subst	titution
	3) Electrophilic subst	itution	4) Condensation	
33.	The hybridization of	central carbon atom in	trimethyl free radical is	
	1) sp	2) sp ²	3) sp^{3}	4) may be sp ² or sp
34.		ch no dispersal of char	0	
	1) R ₃ C [⊕]	2) R ₂ CH [⊕]	3) $\operatorname{RCH}_2^{\oplus}$	4) [⊕] CH ₃
35.	The most stable electr	ophile is	æ	A
	1) $R_3 \overset{\oplus}{C}$	2) $C_6H_5CH_2$	$3) \left(C_6 H_5 \right)_3 \overset{\oplus}{C}$	$4) \left(CH_3 \right)_2 \overset{\oplus}{C}H$
36	5	, , , , , , , , , , , , , , , , , , , ,		
36.	1) Electrometic	2) Inductive	e stability of tertiary bu 3) Hyper Conjugation	•
37.	The most stable meth		e, i i, per conjugation	. i jour 2 und 0
07.	The most studie meth	Junca annene 15		

2) Decreasing hyperconjugation from left to right

3) Decreasing inductive effect from L to R 4) None

Pick up the incorrect statement 6. 1) Mesomeric effect occurs in conjugated compounds

Organ		plarity & Types of Rea				
	2) Inductive effect transmitted over only quite a short length3) Due to mesomeric effect, electron pairs is transferred completely					
	4) Inductive effect is a	-	1 ,			
7.	In benzylamine amin 1) -IE group	o group is a 2) +ME group	3) both	4) +IE group		
8.	Which one of the follo 1) Ethanal 3) Isobutylene	owing does not exhibit 2 2) Allylene 4) Trifluro acetaldehy	, , ,			
9.	Benzyl cation is stabi 1) Resonance	lized by 2) Hyperconjugation	3) Both	4) Inductive		
10.	Which one of the follo 1) Isobutylene	U	3) 2,3-Dimethyl-2-buten	e 4) Ethylene		
11.	, 5	lical) with List-II (stabi	, ,	correct answer using the		
	List-1		List-2			
	A) ⁰ C(CH ₃) ₃ (Free radi	cal)	1) Inductive effect			
	B) PhO-		2) Hyperconjucation			
	C) +CH ₂ C(CH ₃) ₃		3) Resonance			
	1) A-1, B-2, C-3	2) A-2, B-1, C-3	3) A-3, B-1, C-2	4) A-2, B-3, C-1		
12.	Which of the followir	ng is the least stable car	bonium ion ?			
	⊕ 1) CF ₃	 ⊕ CCl₃ 	3) $\overset{+}{C}(NO_2)_3$	4) [⊕] _{CH₃}		
13.	Which of the followin	ng Carbonium ion is sta	bilised by HyperConju	gation ?		
	1) $CH_2 = CH - CH_2^{\oplus}$	2) $CH_3 - CCl_2 - CH_2$	² 3) CH ₂ = CH [⊕]	4) $CH_3 - CH - CH_3$		
14.	Which of the followin	ig is stabilised by meson	mesic effect ?	\oplus		
	1) $CH_3 - CH_2$	2) $CH_2 = CH$	3) $CH_2 = CH - CH_z$	$CH_2 - CH_2$		
15.	Which of the followin 1) isopropyl carboniu 3) n-propyl carbonium	m ion	er of Hyper Conjugatio 2) tertinary butyl carb 4) Benzyl carbonium	ponium ion		
16.	Which of the followin 1) -CH ₃	g shows maximum-I ef 2) -OCH ₃	fect ? 3) -NO ₂	4) -Cl		
17.	β - elimination reaction	on leads to formation of	f			
	1) carbene	2) π -bond	3) Sigmabond	4) Cyclic compound		
18.	The substance stabiliz	zed by resonance				
	1) $CH_2 = CH - Cl$	2) O	3) Cl	4) All		
19.	Which of the followin	g compounds will prod	duce the most stable ca	rbonium ion?		

Organic Chemistry (Bond Polarity & Types of Reactions)

1)
$$CH_{3}CH - CH_{2} - OH$$

 CH_{3}
2) $CH_{3} - C - OH$
 CH_{3}
3) $CH_{3} - CH - CH_{2} - CH_{3}$
 OH
4) $CH_{3} - CH_{2} - CH_{2} - CH_{2} - OH$

20. Which carbonium ion is most stable

1)
$$\bigcirc \textcircled{\oplus}$$
 2) $CH_2 = \overset{\textcircled{\oplus}}{CH}$ 3) $(CH_3)_3 C^{\textcircled{\oplus}}$ 4) $\bigcirc \overset{\textcircled{\oplus}}{CH}_2$

EXERCISE - I / ANSWERS

WORK SHEET - I

1) 1 7) 4	2) 1 8) 1	3) 4 9) 2	4) 4 5) 1 6) 3 10) 1	
11) 1 17) 3	12) 1 18) 3	13) 1 19) 2	14) 4 15) 3 16) 2 20) 4	2
21) 3 27) 2	22) 4 28) 4	23) 3 29) 3	24) 4 25) 4 26) 3 30) 2	3
31) 4 37) 1	32) 2 38) 1	33) 2 39) 3	34) 4 35) 1 36) 4 40) 2	1
41) 2	50)1	575	10) 2	
	WORK SH	EET - II		
1) 1	2) 4	3) 4	4) 4 5) 2 6) 4	
7) 2	8) 4	9) 1	10) 3	
11) 4	12) 3	13) 4	14) 3 15) 2 16) 3	3
17) 2	18) 4	19) 2	20) 2	

Organic Chemistry (Qualitative & Quantitative Analysis) QUALITATIVE & QUANTITATIVE ANALYSIS

EXERCISE - I

PURIFICATION

1.	The best method to se 1) Steam distillation	eparate the mixture of c 2) crystallisation	rtho & Para nitropheno 3) Vapourisation	ol (1 : 1) is 4) Colour spectrum		
2.	Benzoic acid mixed v 1) Treating the mixtu 3) Treating the mixtu		purified by 2) Sublimation 4) Dissolving the mix	ture in benzene		
3.	-	purified by this proces 2) Vacuum distillatio		4) Fractional		
4.	There are several cri considered to be the b		ic compounds. Out of	the following, which is		
	1) Melting point		2) Mixed melting poin	nt		
	3) Microscope examin	nation	4) Colour			
5.	 Fractional crystallization is carried out to separate 1) Organic solids mixed with inorganic solids 2) Organic solids highly soluble in water 3) Organic solids having small difference in their solubilities in a suitable solvent 4) Organic solids having great difference in their solubilities in a suitable solvent 					
6.	Lassaigne's solution : 1) Silver halides are i 3) Ag ₂ S is soluble in H	nsoluble in HNO ₃	NO ₃ before testing for halogens because 2) Na ₂ S and NaCN are decomposed by HNO ₃ 4) AgCN is soluble in HNO ₃			
7.	For which of the follo 1) H ₂ NCONH ₂	wing compounds the I 2) H ₂ NNH ₂ . 2HCl	Lassaigne's test of nitro 3) C ₆ H ₅ NH ₂	gen will fail? 4) CH ₃ CONH ₂		
8.	If 0.02 g of a volatile c weight of the compo		isplaces 11.2 ml of dry	air at STP, the molecular		
	1) 20	2) 30	3) 40	4) 50		
9.	Kjeldahl's method ca 1) Pyridine	nnot be used for the est 2) Nitro compounds	6	4) All the three above		
10.	Sugar containing an i 1) Benzene	mpurity of common sa 2) Ether	lt can be purified by cry 3) Alcohol	ystallisation from 4) Water		
11.	Mixture of glucose ar 1) Distillation	nd water can be separat 2) Crystallation	ed by : 3) Steam distillation	4) All of these		
12.	Water from the mixtu 1) Simole distillation 3) Azeotropic distilla		can be separated by : 2) Fractional distillat 4) Steam distillation	ion		
13.	Presence of nitrogen	in organic compound is	s tested as :			
	1) Nitrogen gas	2) NH ₃	3) NO	4) [⊖] _{CN}		

		Organic C	Chemistry (Qualitative	& Quantitative Analysis)	
14.	When $FeSO_4$ is added in the sodium extract the compound formed as				
	1) Only $Na_4[Fe(CN)]$	₆]	2) Only Fe(OH) ₂		
	3) Only Na_2SO_4		4) Mixture of these th	ree	
15.	confirms the presence	e of	reated with FeCl ₃ . Form	nation of blood red colour	
	1) Only nitrogen	2) Only sulphur			
	3) Only halogens	4) Nitrogen and Sulp	hur both		
16.	Beilstein's test is used		o) II 1		
	1) Nitrogen	2) Sulphur	3) Halogens	4) Phosphorus	
17.	In quantitative deterr 1) Pyrogallol	nination of carbon the (2) KOH	CO ₂ produced is absorb 3) Ca(OH) ₂	eed in the solution of 4) Any one of these	
18.	In Duma's method per 1) N_2 gas	ercentage of nitrogen in 2) NO	organic compound is 6 3) NH ₃	estimated in the form of 4) B_2O_5	
19.	In which of the follow by Kjeldathl's method	0 1 1	itage of nitrogen canno	t be estimated accurately	
	1) Urea	2) Phenyl hydrazine	3) Nitrobenzene	4) Gaunidine	
20.	In Carius method hal	ogens are estimated as			
	1) X ₂	2) BaX ₂	3) PbX ₂	4) AgX	
21.	0.73 g of organic com carbon in the given co		ave 1.32 g of carbon die	oxide. The percentage of	
	1) 49.32	2) 59.32	3) 29.32	4) 98.64	
22.		compound containing n the given compound		of nitrogen at S.T.P. The	
	1) 19.18	2) 38.36	3) 9.18	4) 29.18	
23.	was absorbed in 50 m		excess acid required 2	he ammonia gas evolved 25 ml of 0.1 M NaOH for s	
	1) 11.5	2) 23	3) 12.5	4) 14.5	
24.	Four binary mixtures simple distillation	are given below with	their bp's. Which of th	em can be separated by	
	1) $A(b.p.80^{\circ}C) + B(b.p.80^{\circ}C) + B$	• ·	2) A(b.p. 80° C)+C(1 /	
	3) $B(b.p.90^{\circ}C) + D(b.p.90^{\circ}C) + D$	b.p.70 ⁰ C)	4) $D(b.p.70^{\circ}C) + E($	b.p.75 [°] C)	
25.	fractional distillation	is used to separate liqu	uids which differ in the	ir b.p. by	
	1) 5ºC	2) 10°C to 20°C	3) 30 – 80ºC	4) 3ºC	
26.	Two substances whe phases, the technique		sis of partition coeffici	ient between two liquid	
	1) Column chromatog 3) GLC	graphy	2) Paper chromatogra4) TLC	aphy	
27.	Absolute alcohol is p	repared from rectified s	pirit by		
	1) Fractional distillati	-	2) Steam distillation		
	3) Azeotropic distilla		4) Vacuum distillatio	n	

Organ 28.	Organic Chemistry (Qualitative & Quantitative Analysis) 28. An organic compound containing carbon, hydrogen and nitrogen have the percentage, 40, 13.33 and 46.67 respectively. Its empirical formula will be					
	1) $C_2 H_7 N$	2) $C_2 H_7 N_2$	3) CH ₄ N	4) CH ₅ N		
29.	The least technique us is	ed for the purification o	f organic compounds co	ontaining minute amount		
	1) Chromatography	2) Sublimation	3) Crystallisation	4) Distillation		
30.	Compound (X) of molecular formula C_4H_8 takes up one equivalent of hydrogen in presence of Pt to form another compound (Y). [X] on ozonolysis gives acetaldehyde as the only product. Compound [X] is					
	1) $CH_3 - CH_2 - CH$	$= CH_2$	2) $CH_3 - CH = CH - CH$	- CH ₃		
	3) Cyclobutane		4) Cyclobutene			
31.	0	compound is soluble in cas reagent. Compound	0 0	ve test with 2, 4-DNP but		
	1) -COOH group	2) –OH group	3) Keto group	4) Amide group		
32.		f m-nitrochlorobenzen , the white precipitate f		HNO_3 and then treated		
	1) AgCl	2) AgCN	3) both a and b	4) Ag_2O		
33.	An organic compound [X] of the formula C_7H_8O is soluble in NaOH but not in NaHCO ₃ . It gives colour with alcoholic FeCl ₃ . On treatment with bromine water it gives a tribromo product. The compound (1) is					
	1) o-cresol	2) m-cresol	3) p-cresol	4) either of the three		

WORK SHEET - II

Topic : PURIFICATION AND DETECTION OF ELEMENTS

SECTION - A

Single correct answer Type Questions

1.	A mixture of acetone and methanol can be separated by :					
	1) vacuum distillation 2) steam distillation	3) fractional distillation 4) none of these				
2.	Aniline is purified by :					
	1) steam distillation 2) simple distillation solvent	3) vacuum distillation 4) extraction with a				
3.	Absolute alcohol is prepared from rectified s	pirit by :				
	1) fractional distillation	2) steam distillation				
	3) azeotropic distillation	4) vacuum distillation				
4.	In paper chromatography:					
	1) mobile phase is liquid and stationary phase is solid					
	2) mobile phase is solid and stationary phase is liquid					
	3) both phases are solids	4) both phases are liquids				
5.	The most satisfactory method of separating	sugars from each other is :				
	1) fractional crystallization	2) sublimation				
	3) chromatography	4) benedict solution				

	Organic Chemistry (Qualitative & Quantitative Analys						
6.	Anthracene is purified by :						
	1) filtration	2) crystallization	3) distillation	4) sublimation			
7.		from its aqueous solut 2) steam distillation	ion can be separated b 3) distillation	y 4) fractional distilla-			
8.	Distillation involves all the following processes except:						
	1) change of state	2) boiling	3) condensation	4) evaporation			
9.	Simple distillation can 1) a mixture of benzer	n be used to separate ne (b.p. 80º3) and toluer	ne (b.p.110ºC)				
	2) a mixture of ether (b.p. 35°3) and toluene (b.p.110°C)						
	3) a mixture of ethance	l (b.p. 78º3) and water	(b.p.100°3)				
	4) none of the above						
10.	Impure glycerine can	be purified by:					

1) steam distillation 2) vacuum distillation 3) simple distillation 4) extraction with a solvent

EXERCISE - I / ANSWERS

WORK SHEET - I

1) 1	2) 1	3) 1	4) 2	5) 3	6) 2	7) 2	8) 3	9) 4	10) 1
11) 3	12) 4	13) A	14) 3	15) 4	16) 4	17) 4	18) 3	19) 2	20) 1
21) 3	22) 1	23) 1	24) 2	25) 2	26) 2	27) 3	28) 3	29) 1	30) 2
31) 2	32) 3	33) 2							

WORK SHEET - II

1) 3	2) 1	3) 3	4) 1	5) 3	6) 4	7) 1	8)4	9) 2	10) 2
------	------	------	------	------	------	------	-----	------	-------

ALKANES

EXERCISE - I

1.	Along with methane 1) 90-95	, natural gas contains 2) 70-80	% ethane 3) 50-60	4) 10-20	
2.	When ethyl bromide is heated with sodium in dry ether solvent, the alkane obta				
0	1) Butane	2) Propane	, , ,	ixture of the above three	
3.	the alkane(s) obtaine		dide are heated with so	dium in dry ether solvent,	
	1) Ethane	2) Propane	3) Butane 4) A mi	xture of the above three	
4.	-	eous solution after kol	2		
	1) Acidic neutral	2) Alkaline		lay be acidic, alkaline or	
5.	What is X in the follo	wing sequence of react	tions? X $\xrightarrow{\text{Na}}$ Y $\xrightarrow{\text{Na}}$	$\xrightarrow{\text{NaOH}} \text{CH}_4$	
			$-\frac{1}{2}H_2$	CaO	
	1) Methanoic acid	2) Ethanoic acid	3) Propane	4) Methane	
6.	Pyrolysis of Methane	e and Ethane respective	ly are		
	1) Exothermic & End	othermic	2) Endothermic & Ex	othermic	
	3) Both are endother	mic		4) Both are exothermic	
7	Alkanes with howma	any carbons are solids a	it room temperature		
	1) above C ₁₇	2) above C ₁₀	3) above C ₈	4) above C_4	
8.	Among the following	g boiling point is maxin	num for		
	1) iso butane	2) n-butane	3) propane	4) ethane	
9.	(A) : For a given alka	ne, with increasing the	branching boiling poir	nt decreases.	
	(R) : For a given alkan having minimum sur	0	pranching molecule get	s spherical shape which is	
10.	The correct order of 1	nelting points is			
	1) ethane < propane	< butane	2) butane , propane < ethane		
	3) propane < ethane	< butane	4) ethane < butane <	propane	
11.	Arrange the followir	ng compounds in the de	scending order of their	boiling points	
	a) n-pentane	b) iso pentane	c) neopentane		
	1) e>b>a	2) a>b>c	3) b>c>a	4) c>a>b	
12.	Petroleum refining in	nvolves			
	a) distillation	b) cracking	c) reforming		
	1) only a	2) only b and c	3) only a and c	4) a , b and c	
13.	8	anes in the presence of s	0		
	1) Free radical additi		2) Electrophillic subs		
	3) Nucleophillic sub	stitution	4) Free radical substi	tution	

14.
$$CH_3 - CH_2 - CH_2 + Br_2 \xrightarrow{h_0} \chi_{(mojor)}$$
; here 'X' is
(mojor); here 'X' is1) $CH_3 - CH - CH_2 - CH_2 - Br$
 CH_3 2) $CH_3 - CH - CH Br - CH_3$
 CH_3 3) $CH_3 - CBr - CH_2 - CH_3$
 CH_3 4) $CH_2Br - CH - CH_2 - CH_3$
 CH_3 15.In the chlorination of ethane in the presence of sunlight which one of the following is also
formed in minute quantity
1) CH_4 10 $C_1 = X^{AA} \rightarrow Ethanoicacid, here 'X' is1)(CH_3COO)_2Mg2) acedified KMnO_43)16. $C_2H_6 = X^{AA} \rightarrow Ethanoicacid, here 'X' is1)(CH_3COO)_2Mg2) acedified KMnO_43)17.Folythene is1) $-(H_2C = CH_2)^{-n}$ 3)18.An example of Antifreeze is
1)Polyvinyl chloride
2) Ethylene glycol
Zn3)19. $CH_3 - CH_2 - CH = CH - CH_3 + O_3 - \frac{H_O}{Zn}$
1)(CH_3CH_2CHO & CH_2CHO; each one mole
2) Two moles of CH_3CH_2CHO
3) Propane3) Pentane
4) Hexane21.Methyl magnesium iodide on treatment with D_2O furnished a hydrocarbon of structure ----
along with Mg(CD)I
1) (CHD_3
2) CH_2D_2
3) CH_3D
4) CH_3D_2
4) CH_4 23.Hydrolysis of --- carbide, we get methane
1) $Calcium2) Beryllium3) Aluminium4) Both Be and AI24.Which of the following reactions can be used to prepare Methane?1) CH_3O_3
3) Wurtz reaction
3) Propane
4) Hydrogenation of alkenes25.Methyl alcoholi is treated with$$$

Hvdro	carbons (Alkanes, All	(cenes)				
		led from marshy place	s			
	The correct answer is					
	, , , , , ,	. ,	rrect explanation of (A)			
			e correct explanation of	t (A)		
	 3) (A) is true but (R) is 4) (A) is false but (R) is 					
29.		the chlorination of Me	thanais			
29.	1) CCl_4	2) CHC l_3	$3) CH_2Cl_2$	4) CH ₃ Cl		
30.	Gasoline has alkanes	, 5	, , , , , , , , , , , , , , , , , , , ,	/ 5		
	1) $C_{12} - C_{15}$	2) $C_7 - C_{12}$	3) $C_1 - C_5$	4) $C_5 - C_7$		
31.	12 10	, 12	st batch of vapours evo			
	1) Kerosene	2) Petroleum ether	3) Diesel oil	4) Lubricating oil		
32.	Which of the following	ng has highest knockin	g			
	1) Aromatic hydrocar		2) Olefins			
	3) Branched chain pa	raffins	4) Straight chain par	affins		
33.	Kerosine oil is a mixt	ure of				
	1) Alkanes		2) Aromatic compou	nds		
	3) Alcohols		4) Aliphatic acids			
34.	Reforming on n-hepta	-	0 Et 11			
a-	1) Benzene	2) Toluene	3) Ethyl benzene	4) Benzoic acid		
35.	Reforming improves 1) Gasoline	the quality of 2) Coal tar	2) Doroffin way	4) Petroleum		
26	,	,	3) Paraffin wax	4) i eu oieum		
36.	Petroleum is refined b 1) Steam distillation	<i>y</i>	2) Vacuum distillatio	าท		
	3) Fractional distillat	ion	4) Passing over activ			
37.	Áromatisation of n-h		/ 0			
	1) Benzene	2) Toluene	3) Methane	4) A mixture of octanes		
38.	Natural gas is primar	ily composed of				
	1) n-Butane	2) n - Octane	3) Methane	4) A mixture of octanes		
39.	The order of appearan petroleum is	nce of the following wit	h rising temperature du	aring the refining of crude		
	1) Kerosene oil, gasol	ine, diesel	2) Diesel, gasoline, k	erosine oil		
	3) Gasoline, diesel, ke		4) Gasoline, Kerosen			
40.	The reaction C_0H_{10} –	$\rightarrow C_4 H_{10} + C_2 H_4 + C H_4$				
	1) Synthesis	2) Isomerisation	3) Cracking	4) Cratalytic oxidation		
41.	Which fraction of pet	roleum refining is used	l as motor fuel ?			
	1) Gasoline	2) Lubricating oil	3) Petroleum coke	4) Petroleum ether		
42.	A knocking sound is	produced more in the	engine when the fuel c	ontains mainly		
	1) n - alkanes	2) CO ₂	3) CO	4) Lubricating oil		
43.		vith halogen is explosi-				
	1) F ₂	2) Cl ₂	3) Br ₂	4) I ₂		
4.4	A knocking cound is	nucluoid in the interm	al combustion on size	when the fuel		
44.	1) Burns slowly	produced in the intern	al combustion engine 2) Burns fast			
	3) Contains some wat	ter	4) Is contaminated w	vith lubricating oil		
194	,		, ,	0		

	Hydrocarbons (Alkanes, Alkenes)				
45.	Which of the followir 1) Ethene	ng hydrocarbon is a liqı 2) Ethane	uid at room temperatur 3) Hexane	re ? 4) Butane	
46.	 Cracking is a process in which Petrol is produced by cracks on the surface of wax Combustion of petrol is carried out Compounds of high molecular mass are converted into compounds of lower molecular mass None of the statements is correct. 				
47.	Which of the followir 1) HI/P	ng reagent can be empo 2) $Al_2Cl_6/HCl_{(g)}$	-	of n-butane 4) None	
48.	The reaction ; CH_3 –	$-CH_2 - CH_2 - CH_3 - H_3$	$\xrightarrow{\text{HCl Gas}} \text{CH}_3 - \underset{\text{CH}_3}{\text{CH}_3} - \underset{\text{CH}_3}{\text{CH}_3}$	$\mathrm{H_3}$ is an example of	
	1) Isomerisation	2) Polymerisation	3) Cracking	4) Dehydrogenation	
49.	Iodination of alkane 1) Alcohol	is carried out in the pre 2) HNO_3 or HIO_3		nt 4) Benzene	
CYCLO	O ALKANES :				
50.	Cyclo alkanes are 1) carbocyclic	2) homocyclic	3) hetero cyclic	4) both 1 and 2	
51.	Cycloalkanes mainly 1) alkanes	resemble with 2) alkenes	3) alkynes	4) all the above	
52.	The Greek letter Ome 1) begining	ega (ω) is generally use 2) middle	d to designate a substit 3) end	uent at the of a chain. 4) any length	
53.	Which method is regarded as internal wurtz reaction1) Freunds method2) Wislicenus method 3) Dieckmann method 4) Ziegler method				
54.	Which method is regarded as intra molecular condensation : 1) Freunds method 2) Wislicenus method 3) Dieckmann method 4) Ziegler method			d 4) Ziegler method	
55.	+	$X \xrightarrow{Ni/H_2} Y$; Here	'X' and 'Y' are :		
	1) cyclohexene and c	yclohexane	2) cyclohexane and c	yclohexene	
	3) cyclohexane and c	yclohexane	4) cyclohexene and c	yclohexene	
56.	Ring strain or Angle 1) C_3H_6	strain is maximum in 2) $C_4 H_8$	3) C ₅ H ₁₀	4) C ₆ H ₁₂	
57.	The stability of various cycloparaffins2) $C_3H_6 > C_4H_8 > C_5H_{10} > C_6H_{12}$ 2) $C_6H_{12} > C_5H_{10} > C_4H_8 > C_3H_6$ 3) $C_6H_{12} > C_4H_8 > C_5H_{10} > C_3H_6$ 4) $C_6H_{12} = C_5H_{10} = C_4H_8 = C_3H_6$			1000	
58.	Which one is not effe 1) Cyclobutane	cted by H ₂ in presence 2) Cyclopentane	of nickel ? 3) Cyclohexene	4) both 2 and 3	
59.	Cyclohexane on chlo 1) chloro cyclohexan 3) paradichloro cyclo	e	2) orthodichloro cycl4) a mixture of all the		
60.				th which of the following	

60. Cyclohexanone \leftrightarrow cyclohexane. This conversion can be done with which of the following

Hydrocarbons (Alkanes, Alkenes)

5							
	reagents?						
	a) Na/EtOH	b) Conc.H ₂ SO ₄	c) H ₂ /Ni	d) HI			
	1) a, b, c	2) b, c, d	3) a, b, d	4) c, d			
61.	Cyclohexene + $O_3 \xrightarrow{Zn/H_2O} A_{\prime} A'$ is						
		2) Dialdehyde	3) Diketone	4) Diacid			
62.	Diel's Alder reaction	is an reaction					
	1) Addition	2) Cyclic addition	3) Substitution	4) None			
63	$X \xrightarrow{Na} Cyclopent$	ane : X is					
	1) 1,6 – dibromohexa		2) 1,5 – dibromohexa	2) 1 5 dibromohovono			
	1) 1,0 – dibioinonexa		2) 1,5 - aibioinoitexa				
	3) 1,5 – dibromopenta	ane	4) 1,5 – dibromooctar	ie			
64.	In Dieckmann conde	nsation reaction ethyl h	eptanedioate gives				
	1) Cycloheptane	2) cyclohexane	3) cyclopentane	4) cyclobutane			
	$- 1 + H_2/N$	i. 1 1	,· ·				
65	200 0	\rightarrow product in the read					
	1) n– butane	2) iso - butane	3) Butene	4) reaction not possible			
66.	(A) : Cyclopropane is	more reactive is cycloh	nexane				
	(R): Cycloalkanes wit	h odd number of carbor	ns are more reactive thar	even number of carbons			
67.	In which one of the fo	ollowing ∠CCC bond	angle is 60 ⁰				
	1) Cyclopropane	2) Cyclobutane	3) Cyclopentane	4) Cyclohexane			
ALKEI	NES						
68. In	dehydrohalogenation	, hydrogen and haloger	n are removed from				
	1) the same carbon at		2) from adjacent carb	on atoms			
	3) from isolate carbor		4) from any two carbo				
69.	Dehydration means						
		gen molecule from adja	cent carbons				
	2) Removal of Hydro	gen molecule from the s	2) Removal of Hydrogen molecule from the same carbon				
	3) Removal of water molecule from the same carbon as H and OH						
	3) Removal of water i	nolecule from the same					
	,			DH			
70.	4) Removal of water 1	molecule from the adjac	e carbon as H and OH				
70.	4) Removal of water 1	nolecule from the adjac he product formed wh	e carbon as H and OH cent carbons as H and C				
70.	4) Removal of water to The IUPAC name of t	nolecule from the adjac he product formed wh	e carbon as H and OH cent carbons as H and C en Ethylene reacts with	hypochlorous acid is			
70. 71.	 4) Removal of water i The IUPAC name of i 1) Ethylene chlorohyd 3) 1-chloroethanol 	nolecule from the adjac he product formed wh drin	e carbon as H and OH cent carbons as H and C en Ethylene reacts with 2) 2–chloroethanol	hypochlorous acid is ride			
	 4) Removal of water in The IUPAC name of it 1) Ethylene chlorohyd 3) 1-chloroethanol The oxidation production 	nolecule from the adjac he product formed wh drin ct of ethylene by air at 2	e carbon as H and OH cent carbons as H and C en Ethylene reacts with 2) 2-chloroethanol 4) Hydroxyethyl chlo 200-400°C in presence	hypochlorous acid is ride			
	 4) Removal of water if The IUPAC name of if 1) Ethylene chlorohyd 3) 1-chloroethanol The oxidation product 1) Ethylene glycol 	nolecule from the adjac he product formed wh drin ct of ethylene by air at 2 2) Ethylene oxide	e carbon as H and OH cent carbons as H and O en Ethylene reacts with 2) 2-chloroethanol 4) Hydroxyethyl chlo 200-400°C in presence 3) 1, 2-Ethanediol	hypochlorous acid is ride of silver catalyst is			
71.	4) Removal of water in The IUPAC name of the 1) Ethylene chlorohyd 3) 1-chloroethanol The oxidation product 1) Ethylene glycol $C_2H_5Cl \xrightarrow{alc.KOH} A$	molecule from the adjace the product formed whe drin ct of ethylene by air at 2 2) Ethylene oxide $a \xrightarrow{dil.H_2SO_4} B.$ Here <i>A</i>	e carbon as H and OH cent carbons as H and O en Ethylene reacts with 2) 2-chloroethanol 4) Hydroxyethyl chlo 200-400°C in presence 3) 1, 2-Ethanediol 4 and B are	hypochlorous acid is ride of silver catalyst is 4) Ethylene chlorohydrin			
71. 72.	4) Removal of water in The IUPAC name of t 1) Ethylene chlorohyd 3) 1-chloroethanol The oxidation produc 1) Ethylene glycol $C_2H_5Cl \xrightarrow{alc.KOH} Action1) C_2H_4, C_2H_5OH$	molecule from the adjace the product formed whether the adjace drin (ct of ethylene by air at 2 (2) Ethylene oxide (a) $\xrightarrow{dil.H_2SO_4}$ B. Here A (2) $C_2H_{6'}C_2H_5OH$	e carbon as H and OH cent carbons as H and O en Ethylene reacts with 2) 2-chloroethanol 4) Hydroxyethyl chlo 200-400°C in presence 3) 1, 2-Ethanediol A and B are 3) C ₃ H ₈ , C ₂ H ₅ OH	hypochlorous acid is ride of silver catalyst is 4) Ethylene chlorohydrin			
71. 72.	4) Removal of water in The IUPAC name of t 1) Ethylene chlorohyd 3) 1-chloroethanol The oxidation produc 1) Ethylene glycol $C_2H_5Cl \xrightarrow{alc.KOH} Action1) C_2H_4, C_2H_5OH$	molecule from the adjace the product formed whether the adjace drin (ct of ethylene by air at 2 (2) Ethylene oxide (a) $\xrightarrow{dil.H_2SO_4}$ B. Here A (2) $C_2H_{6'}C_2H_5OH$	e carbon as H and OH cent carbons as H and O en Ethylene reacts with 2) 2-chloroethanol 4) Hydroxyethyl chlo 200-400°C in presence 3) 1, 2-Ethanediol A and B are 3) C ₃ H ₈ , C ₂ H ₅ OH	hypochlorous acid is ride of silver catalyst is 4) Ethylene chlorohydrin			
71. 72.	4) Removal of water in The IUPAC name of it 1) Ethylene chlorohyd 3) 1-chloroethanol The oxidation product 1) Ethylene glycol $C_2H_5Cl \xrightarrow{alc.KOH} A$ 1) C_2H_4 , C_2H_5OH B $\xleftarrow{alc.KOH} C_2H_5Cl$	molecule from the adjace the product formed whether drin ct of ethylene by air at 2 2) Ethylene oxide $\xrightarrow{dil.H_2SO_4}$ B. Here A 2) C_2H_6 , C_2H_5OH $\xrightarrow{Zn-Cu}$ A Here A	e carbon as H and OH cent carbons as H and O en Ethylene reacts with 2) 2-chloroethanol 4) Hydroxyethyl chlo 200-400°C in presence o 3) 1, 2-Ethanediol A and B are 3) C ₃ H ₈ , C ₂ H ₅ OH A and B are	a hypochlorous acid is ride of silver catalyst is 4) Ethylene chlorohydrin 4) C ₂ H ₂ , C ₂ H ₅ OH			
71. 72. 73.	4) Removal of water in The IUPAC name of it 1) Ethylene chlorohyd 3) 1-chloroethanol The oxidation production 1) Ethylene glycol $C_2H_5Cl \xrightarrow{\text{alc.KOH}} A$ 1) C_2H_4 , C_2H_5OH B $\xleftarrow{\text{alc.KOH}} C_2H_5Ch$ 1) CH_4 , C_2H_4	nolecule from the adjac the product formed wh drin ct of ethylene by air at 2 2) Ethylene oxide $\xrightarrow{dil.H_2SO_4}$ B. Here A 2) C_2H_6 , C_2H_5OH $\xrightarrow{Zn-Cu}$ A Here A 2) C_2H_4 , C_2H_6	e carbon as H and OH cent carbons as H and O en Ethylene reacts with 2) 2-chloroethanol 4) Hydroxyethyl chlo 200-400°C in presence 3) 1, 2-Ethanediol A and B are 3) C ₃ H ₈ , C ₂ H ₅ OH	a hypochlorous acid is ride of silver catalyst is 4) Ethylene chlorohydrin 4) C ₂ H ₂ , C ₂ H ₅ OH			
71. 72. 73.	4) Removal of water in The IUPAC name of it 1) Ethylene chlorohyd 3) 1-chloroethanol The oxidation product 1) Ethylene glycol $C_2H_5Cl \xrightarrow{alc.KOH} A$ 1) C_2H_4 , C_2H_5OH B $\xleftarrow{alc.KOH} C_2H_5Cl$	nolecule from the adjace the product formed whether drin ct of ethylene by air at 2 2) Ethylene oxide $\xrightarrow{dil.H_2SO_4}$ B. Here A 2) C_2H_6 , C_2H_5OH $\xrightarrow{Zn-Cu}$ A Here A 2) C_2H_4 , C_2H_6	e carbon as H and OH cent carbons as H and O en Ethylene reacts with 2) 2-chloroethanol 4) Hydroxyethyl chlo 200-400°C in presence o 3) 1, 2-Ethanediol A and B are 3) C ₃ H ₈ , C ₂ H ₅ OH A and B are	a hypochlorous acid is ride of silver catalyst is 4) Ethylene chlorohydrin 4) C ₂ H ₂ , C ₂ H ₅ OH			
71. 72. 73.	4) Removal of water of The IUPAC name of t 1) Ethylene chlorohyd 3) 1-chloroethanol The oxidation produc 1) Ethylene glycol $C_2H_5Cl \xrightarrow{alc.KOH} A$ 1) C_2H_4 , C_2H_5OH B $\xleftarrow{alc.KOH} C_2H_5CH$ 1) CH_4 , C_2H_4 $C_2H_6 \xrightarrow{\Delta}_{1000^{\circ}C} A \xrightarrow{S}_{2}$	nolecule from the adjace the product formed which drin (c) of ethylene by air at 2 (c) Ethylene oxide (c) $C_2H_{4'}C_2H_5OH$ (c) C_2H_5OH (c) C_2H_4 , C_2H_6 (c) C_2H_4 , C_2H_6	e carbon as H and OH cent carbons as H and O en Ethylene reacts with 2) 2-chloroethanol 4) Hydroxyethyl chlo 200-400°C in presence 3) 1, 2-Ethanediol A and B are 3) C_3H_8 , C_2H_5OH and B are 3) C_2H_6 , C_2H_4	a hypochlorous acid is ride of silver catalyst is 4) Ethylene chlorohydrin 4) C ₂ H ₂ , C ₂ H ₅ OH 4) C ₂ H ₆ , CH ₄			
71. 72. 73.	4) Removal of water of The IUPAC name of t 1) Ethylene chlorohyd 3) 1-chloroethanol The oxidation produc 1) Ethylene glycol $C_2H_5Cl \xrightarrow{alc.KOH} A$ 1) C_2H_4 , C_2H_5OH B $\xleftarrow{alc.KOH} C_2H_5CH$ 1) CH_4 , C_2H_4 $C_2H_6 \xrightarrow{\Delta}_{1000^{\circ}C} A \xrightarrow{S}_{2}$	nolecule from the adjace the product formed which drin (c) of ethylene by air at 2 (c) Ethylene oxide (c) $C_2H_{4'}C_2H_5OH$ (c) C_2H_5OH (c) C_2H_4 , C_2H_6 (c) C_2H_4 , C_2H_6	e carbon as H and OH cent carbons as H and O en Ethylene reacts with 2) 2-chloroethanol 4) Hydroxyethyl chlo 200-400°C in presence o 3) 1, 2-Ethanediol A and B are 3) C ₃ H ₈ , C ₂ H ₅ OH A and B are	a hypochlorous acid is ride of silver catalyst is 4) Ethylene chlorohydrin 4) C ₂ H ₂ , C ₂ H ₅ OH 4) C ₂ H ₆ , CH ₄			

196

			5	(
75.	$HC \equiv CH - \frac{Pd - BaSO_4}{Quinoline}$	$\rightarrow A \xrightarrow{HCl} B \xrightarrow{Na} Dry \text{ ether}$	C. Here 'C' is	
	1) C ₂ H ₆	2) C ₄ H ₁₀	3) C ₂ H ₅ Cl	4) C ₃ H ₇ Cl
76.	Ozonolysis of products of 2-methyl-2-buter 1) 2 moles are HCHO 3) $CH_3CHO + CH_3COCH_3$		ne are 2) CH ₃ CHO + HCHO 4) HCHO + CH ₃ COCH ₃	
77.	CH ₃ - CH ₂ Clalcoholi	$ \xrightarrow{\text{c KOH}} A \xrightarrow{\text{Br}_2} B B^- $	$\xrightarrow{Zn} C. C is$	
	1) Acetylene	2) Ethylene	3) Ethene	4) Methane
78.	$\beta - \beta^1$ - dichloro - die	thyl sulphide is known	as	
	1) Lewisite	2) Mustard gas		4) Clatharate
79.	Which is a planar mo			
	1) $CH_2 = CH_2$	2) CH ₃ – CH ₃	3) CH \equiv C-CH ₃	4) Cyclohexane
80.	$C_2H_5Cl \xrightarrow{Alc KOH} Y$	$X \xrightarrow{\text{HBr}} Y$. reaction is	3	
	 hydrohalogenation halogenation 	1 2) dehydrohalogenati4) dehalogenation	on	
81.	LIST - 1 LIST - 2 A) Baeyer's reagent B) Lindlar's catalyst C) Tollen's reagent D) Wurtz reaction The correct match is 1) A - 3; B - 1; C - 5; I 2) A - 5; B - 2; C - 1; I		1) Pd/BaSO ₄ -Quinol 2) Ammonical Silver 1 3) Alkaline Potassium 4) Na,dry ether 5) Br_2 in CCl_4 2) A - 2; B - 1; C - 5; I 4) A - 3; B - 1; C - 2; I	nitrate n Permanganate D - 4
82.	List-1	LIST - 2	LIST - 3	
	Reactant	Reagent	Product	
	A) CH ₃ COONa	1)Alc. KOH	a) Ethylene	
	B) CHCl ₂ -CHCl ₂	2)H ₂ O	b) Acetylene	
	C) C_2H_5MgI	3)NaOH + CaO	c) Methane	
	D) CH ₃ -CH ₂ Cl	4)Zn dust	d) Ethane	
	The correct match is			
	1) A – 3 – c; B – 4 – b; C	C - 2 - d; D - 1 - a	2) A – 1 – a; B - 1 - b; C	C - 2 - a; D - 1 - d
	3) A – 2 – b; B - 3 - c; C	2 - 1 - b; D - 4 - d	4)A-1-d; B-2-d; C	- 1 - b; D - 4 - c
83.	IUPAC name of allyl	chloride is		
	1) 1 – chloro propene		2) 2 – chloro propene	
Q /	3) 3 – chloro propene	no of allonna in	4) 3 – chloropropane	
84.	Characteristic reactio 1) Electrophilic additi		2) Nucleophiclic add	ition

Hydrocarbons (Alkanes, Alkenes)

3) Electrophilic substitution 4) Nucleophilic substitution 85. Correct statement about ethene is 1) \angle HCC is greater than \angle HCH 2) \angle HCC is less than \angle HCH 3) Carbon, carbon bond length is less than C-H bond length 4) Carbon undergo sp³ hybridisation $CH_2=CH_2+H_2 \xrightarrow{Pt,T_1K} C_2H_6$ 86. $CH_2 = CH_2 + H_2 \xrightarrow{\text{Ni}, \text{T}_2\text{K}} C_2H_6. \text{ The carrect relation among the following is}$ 1) $T_1 > T_2$ 2) $T_2 > T_1$ 3) $T_1 = T_2$ 4) $T_1 > 2T_2$ 4) T₁ > 2T₂ 87. Incorrect statement about addition of halogen to alkenes 1) It is electrophilic addition 2) Syn addition of halogen to C = C takes place 3) Three membered cyclic halonium ion is intermediate 4) Vicinal dehalides are formed. $CH_2 = CH_2$ CI_2/H_2O X Here X and Y are 88. $CH_{3}-CH=CH_{2} \xrightarrow{+HBr} X (major)$ Y (major)89. Incorrect statement among the following is 1) X is isopropyl bromide, Y is n-propyl bromide 2) X and Y are position isomers 3) Formation of X is electrophilic addition 4) Formation of Y is electrophilic addition $\begin{array}{ccc} \mathrm{CH}_3 - \mathrm{CH}_2 - \underset{| & \\ \mathrm{CH}_3 \end{array} = \mathrm{CH} - \mathrm{CH}_2 - \mathrm{CH}_3 + \mathrm{HBr} \rightarrow \text{ product formed in this reaction is} \\ \end{array}$ 90. 1) dextro rolatary 2) laevo rotatory 3) meso compound 4) racemic mixture $CH_{3} - C_{H_{2}} = CH_{2} + HCl \underline{(C_{6}H_{5}CO)_{2}O_{2}} X \text{ (major)}$ 91. Here 'X' is ĠЦз 1) (CH₂)₂CHCl 2) $(CH_3)_2CH CH_2Cl 3$) $ClCH_2 - CH - CH_3 4) CH_3 - CCl = CH_2$ ĊH, CH3 92. (A): HCl do not add to unsymmetrical alkene by free radical mechanism (R): Benzoyl free radical unable to break stronger H – Cl bond 93. (A): Peroxide effect is not observed in the addition of HI to unsymmetrical alkene. (R): Free radical unable to break stronger H–I bond 94. (A): In the addition of HBr to propene, isopropyl bromide is major product but n-propyl bromide is minor product. (**R**) : Isopropyl carbonium ion is more stable than n - propyl carbonium ion. CH_3 -CH = CH - CH_3 $\xrightarrow{KMnO_4/H^+}$ product in this reaction. is 95.

198

1) $CH_3 - CH - CH_3 - CH_3$ 2) $2CH_3COOH$ 3) $2CH_3COOH$ 4) $CH_3CHO + CH_3COOH$ 96. $CH_3 - C - CH - CH_3 - KMn04/H^+ \rightarrow products in this reaction CH_301 OH1) CH_3 - C - CH - CH_32) CH_3CHO + CH_3COOH3) CH_3COCH_3 + CH_3COOH4) 2CH_3COOH97. Arrange the following alkenes in the descending order of their reactivity with HBr.a) ethene b) Propene c) 2- Butene d) 2- methyl-2-B1) a > b > c > d2) d > c > b > a3) d > c > a > b1) a > b > c > d2) d > c > b > a3) d > c > a > b1) a > b > c > d2) d > c > b > a3) d > c > a > b1) a > b > c > d2) d > c > b > a3) d > c > a > b1) a > b > c > d2) CH_3 - CH = CH_2 + HBr - Mention 3) CH_3 - CH = CH_2 + HC (-Mention 3) CH_3 - CH = CH_2 + HC (-Mention 3) CH_3 - CH = CH_2 + HBr - Mention 3) CH_3 - CH = CH_2 + HI - Mention 3) CH_3 - CH = CH_2 + HI - Mention 3) CH_3 - CH = CH_2 + HI - Mention 3) CH_3 - CH = CH_2 + HI - Mention 3) Free radical mechanism 3) Free radical mechanism 3) Free radical mechanism 4) Electrophilic addition mechanism 100. Which of the following statements is correct? 1) C - D bond is slightly wather than C-H bond 2) C - D bond is slightly thronger than C-H bond 3) Both C-H & C-D bonds are equally strong 4) Replacement of D in C-D by CI is faster than the replacement of H in C-H 101. Propene + HCI - C4B5COO_CC-G4B5 A. A is 1) n - propyl chloride 2) Isopropyl chloride 3) Allyl chloride 4) None 102. Addition of Br, takes place readily with 1) CH_2 = CH_2 3) CH_3-CH=CH-CH_3 4) CH_3 - C = CH - CH_3(H)103. Which of the following is used as gasoline additive ?1) n - Heptane 2) Isoctane 3) TEL 4) Diethyl lead104. X - Setatione Y - C2^{2/m-light} Z - 2Na + CH_3 - CH_2 - CH_2 - CH_3 + 2NaCI. Then X, Y and Z includes 1) Sodium ethanoate, ethane and ehtyl chloride - Marcha + 2NaCI. Then X, Y and Z includes 1) Sodium ethanoate, ethane and ehtyl chloride - Marcha + 2NaCI. Theometan + CH + C$	Alkenes)	kenes))
96. $CH_3 - C = CH - CH_3 \underline{KMn04/H^+}$ products in this reaction CH_3 OH OH 1) $CH_3 - C - CH - CH_3$ 3) $CH_3COCH_3 + CH_3COOH$ 4) $2CH_3CHO+CH_3CHO$ (H) $2CH_3COCH$ 97. Arrange the following alkenes in the descending order of their reactivity with HBr. a) ethene b) Propene c) $2 - Butene$ d) $2 - methyl-2-B$ 1) $a > b > c > d$ 2) $d > c > b > a$ 3) $d > c > a > b$ 4) $a > b > d > d > c$ 98. In which of the following reactions anti Markownikoff's rule is observed 1) $CH_3 - CH = CH_2 + HC (_ \underline{Peroxide} \ 2) CH_3 - CH = CH_2 + HBr _ \underline{Peroxide} \ 3) CH_3 - CH = CH_2 + HI _ \underline{Peroxide} \ 4) CH_3 - C = CH_2 + H_2SO_4 \rightarrow \ 3) CH_3 - CH = CH_2 + HI _ \underline{Peroxide} \ 4) CH_3 - C = CH_2 + H_2SO_4 \rightarrow \ 3) CH_3 - CH = CH_2 + HI _ \underline{Peroxide} \ 4) CH_3 - C = CH_2 + H_2SO_4 \rightarrow \ 3) CH_3 - CH = CH_2 + HI _ \underline{Peroxide} \ 4) Electrophilic substitution mechanism 3) Free radical mechanism 3) Free radical mechanism 4) Electrophilic substitution mechanism 100. Which of the following statements is correct? 1) C - D bond is slightly stronger than C - H bond2) C - D bond is slightly stronger than C - H bond3) Both C - H \& C - D bonds are equally strong4) Replacement of D in C - D by CI is faster than the replacement of H in C - H101. Propene + HCI _ CgH_2CO_2CO - CgH_3 \rightarrow A. A is1) n - propyl chloride 2) Isopropyl chloride 3) Allyl chloride 4) None102. Addition of Br_2 takes place readily with1) CH_2 = CH_23) CH_3 - CH = CH - CH_34) CH_3 - C = CH - CH_3(H)103. Which of the following is used as gasoline additive ?1) n - Heptane2) Isoctane3) TEL4) Diethyl lead104. X _ Sodatime \rightarrow Y _ CH_2/v - Hight \rightarrow Z _ 2Na_4 \ CH_3 - CH_2 - CH_2 - CH_3 + 2NaCI. Then X, Y and Z includes 1) Sodium ethanoate, ethane and ethyl chloride$			
$\begin{bmatrix} CH_{3} \\ OH \\ OH \\ 1 \end{bmatrix} CH_{3} - \begin{bmatrix} C \\ -CH - CH_{3} \\ CH_{3} \end{bmatrix} CH_{3}COCH_{3} + CH_{3}COOH \\ (H_{3} CH = CH_{2} + CH_{3}COOH \\ (H_{3} - CH = CH_{2} + HC (L - Penvide) \\ (H_{3} - CH = CH_{2} + HC (H - CH_{3} + HC + Penvide) \\ (H_{3} - CH = CH_{2} + HC + CH_{3} + HC + Penvide) \\ (H_{3} - CH = CH_{2} + HC + Penvide) \\ (H_{3} - CH = CH_{2} + HC + Penvide) \\ (H_{3} - CH = CH_{2} + HC + Penvide) \\ (H_{3} - CH = CH_{2} + HC + Penvide) \\ (H_{3} - CH = CH_{2} + HC + Penvide) \\ (H_{3} - CH = CH_{2} + HC + Penvide) \\ (H_{3} - CH = CH_{2} + HC + Penvide) \\ (H_{3} - CH = CH_{2} + HC + Penvide) \\ (H_{3} - CH = CH_{2} + HC + Penvide) \\ (H_{3} - HC + Penvide) \\ (H_{3} - HC + Penvide) \\ (H_{3} - HC + Penvide) \\ (H_{3} $			
3) CH ₃ COCH ₃ + CH ₃ COOH 4) 2CH ₃ COOH 97. Arrange the following alkenes in the descending order of their reactivity with HBr. a) ethene b) Propene c) 2 - Butene d) 2- methyl-2-B 1) a > b > c > d 2) d > c > b > a 3) d > c > a > b 4) a > b > d > c > d > d > b > d > c > d > d > d > b > d > c > d > d > d > b > d > c > d > d > d > b > d > c > d > d > d > d > d > d > d > d			
3) CH ₃ COCH ₃ + CH ₃ COOH 4) 2CH ₃ COOH 97. Arrange the following alkenes in the descending order of their reactivity with HBr. a) ethene b) Propene c) 2 - Butene d) 2- methyl-2-B 1) a > b > c > d 2) d > c > b > a 3) d > c > a > b 4) a > b > d > c 98. In which of the following reactions anti Markownikoff's rule is observed 1) CH ₃ - CH = CH ₂ + HC ℓ <u>Peroxide</u> 3) CH ₃ - CH = CH ₂ + HC ℓ <u>Peroxide</u> 3) CH ₃ - CH = CH ₂ + HI <u>Peroxide</u> 4) CH ₃ - C = CH ₂ + HBr <u>Peroxide</u> 3) CH ₃ - CH = CH ₂ + HI <u>Peroxide</u> 4) CH ₃ - C = CH ₂ + H ₂ SO ₄ → 99. The Kolbe's electrolysis proceeds via 1) Nucleophilic substitution mechanism 3) Free radical mechanism 4) Electrophilic addition mechanism 3) Free radical mechanism 4) Electrophilic subtitution mechanism 3) Both C-H & C-D bonds are equally strong 4) Replacement of D in C-D by Cl is faster than the replacement of H in C-H 101. Propene + HCl <u>C₆H₅COO₂CO-C₆H₅ A. A is 1) n - propyl chloride 2) Isopropyl chloride 3) Allyl chloride 4) None 102. Addition of Br₂ takes place readily with 1) CH₂ = CH₂ 3) CH₃-CH=CH-CH₃ 4) CH₃ - C = CH - CH₃ (H₃) 103. Which of the following is used as gasoline additive ? 1) n - Heptane 2) Isoctane 3) TEL 4) Diethyl lead 104. X <u>Sodalime</u> Y <u>Cl₂/uv-light Z <u>2Na</u> (CH₃-CH₂-CH₂-CH₃+2NaCl. Then X, Y and Z includes 1) Sodium ethanoate, ethane and ethyl chloride</u></u>			
a) ethene b) Propene c) 2 - Butene d) 2- methyl-2-B 1) $a > b > c > d$ 2) $d > c > b > a$ 3) $d > c > a > b$ 4) $a > b > d > c$ 98. In which of the following reactions anti Markownikoff's rule is observed 1) CH ₃ - CH = CH ₂ + HC ℓ <u>Peroxide</u> 2) CH ₃ - CH = CH ₂ + HBr <u>Peroxide</u> 3) CH ₃ - CH = CH ₂ + HI <u>Peroxide</u> 4) CH ₃ - C = CH ₂ + HBr <u>Peroxide</u> 3) CH ₃ - CH = CH ₂ + HI <u>Peroxide</u> 4) CH ₃ - C = CH ₂ + H ₂ SO ₄ \rightarrow 99. The Kolbe's electrolysis proceeds via 1) Nucleophilic substitution mechanism 3) Free radical mechanism 4) Electrophilic addition mechanism 100. Which of the following statements is correct? 1) C - D bond is slightly weaker than C-H bond 2) C - D bond is slightly stronger than C-H bond 3) Both C-H & C-D bonds are equally strong 4) Replacement of D in C-D by Cl is faster than the replacement of H in C-H 101. Propene + HCl <u>C6H5CO02CO-C6H5</u> A. A is 1) n - propyl chloride 2) Isopropyl chloride 3) Allyl chloride 4) None 102. Addition of Br ₂ takes place readily with 1) CH ₂ = CH ₂ 3) CH ₃ -CH=CH -CH ₃ 4) CH ₃ - C = CH - CH ₃ (CH ₃) 103. Which of the following is used as gasoline additive ? 1) n - Heptane 2) Isoctane 3) TEL 4) Diethyl lead 104. X <u>Sodalime</u> $Y = \frac{Cl_2/uv-light}{dry either} Z = \frac{2Na}{dry either} CH3-CH2-CH2-CH3+2NaCl. Then X, Y and Z includes 1) Sodium ethanoate, ethane and ehtyl chloride$			
98. In which of the following reactions anti Markownikoff's rule is observed 1) CH ₃ -CH = CH ₂ + HC ℓ $\xrightarrow{\text{Peroxide}}$ 2) CH ₃ -CH = CH ₂ + HBr $\xrightarrow{\text{Peroxide}}$ 3) CH ₃ -CH = CH ₂ + HI $\xrightarrow{\text{Peroxide}}$ 4) CH ₃ -C = CH ₂ + H ₂ SO ₄ \rightarrow 99. The Kolbe's electrolysis proceeds via 1) Nucleophilic substitution mechanism 2) Electrophilic addition mechanism 3) Free radical mechanism 4) Electrophilic sustitution mechanism 100. Which of the following statements is correct? 1) C - D bond is slightly weaker than C-H bond 2) C - D bond is slightly stronger than C-H bond 3) Both C-H & C-D bonds are equally strong 4) Replacement of D in C-D by Cl is faster than the replacement of H in C-H 101. Propene + HCI $\underline{-C_{6H_5COO_2CO-C_6H_5}}$ A. A is 1) n - propyl chloride 2) Isopropyl chloride 3) Allyl chloride 4) None 102. Addition of Br ₂ takes place readily with 1) CH ₂ = CH ₂ 3) CH ₃ -CH=CH-CH ₃ 4) CH ₃ - C = CH - CH ₃ $ _{CH_3}$ 103. Which of the following is used as gasoline additive ? 1) n - Heptane 2) Isoctane 3) TEL 4) Diethyl lead 104. $X = \frac{\text{Sodalime}}{Y} + \frac{Cl_2/uv-light}{Cl_2/uv-light}} Z = \frac{2Na}{dry either} CH3-CH2-CH2-CH3+2NaCI. Then X, Y and Z includes 1) Sodium ethanoate, ethane and ethyl chloride$		utene	
$1) CH_{3} - CH = CH_{2} + HC (Peroxide → 2) CH_{3} - CH = CH_{2} + HBr Peroxide → 3) CH_{3} - CH = CH_{2} + HI Peroxide → 4) CH_{3} - C = CH_{2} + H_{2}SO_{4} → 99. The Kolbe's electrolysis proceeds via 1) Nucleophilic substitution mechanism 2) Electrophilic addition mechanism 3) Free radical mechanism 4) Electrophilic substitution mechanism 100. Which of the following statements is correct? 1) C - D bond is slightly weaker than C-H bond 2) C - D bond is slightly stronger than C-H bond 3) Both C-H & C-D bonds are equally strong 4) Replacement of D in C-D by Cl is faster than the replacement of H in C-H 101. Propene + HCI CeH_SCO2CO-CeH_S → A. A is 1) n - propyl chloride 2) Isopropyl chloride 3) Allyl chloride 4) None 102. Addition of Br2 takes place readily with 1) CH2 = CH2 2) CH3 - CH = CH - CH 3 CH_{3} - CH + CH - CH 3 CH_{3} - CH - CH - CH 3 CH_{3} - CH_{3$	-		
3) CH ₃ - CH = CH ₂ + HI <u>Peroxide</u> 4) CH ₃ - C = CH ₂ + H ₂ SO ₄ → 99. The Kolbe's electrolysis proceeds via 1) Nucleophilic substitution mechanism 2) Electrophilic addition mechanism 3) Free radical mechanism 4) Electrophilic substitution mechanism 100. Which of the following statements is correct? 1) C - D bond is slightly weaker than C-H bond 2) C - D bond is slightly stronger than C-H bond 3) Both C-H & C-D bonds are equally strong 4) Replacement of D in C-D by Cl is faster than the replacement of H in C-H 101. Propene + HCl <u>C₆H₅COO₂CO-C₆H₅ A. A is 1) n - propyl chloride 2) Isopropyl chloride 3) Allyl chloride 4) None 102. Addition of Br₂ takes place readily with 1) CH₂ = CH₂ 3) CH₃-CH=CH-CH₃ 4) CH₃ - C = CH - CH₃ (CH₃) 103. Which of the following is used as gasoline additive ? 1) n - Heptane 2) Isoctane 3) TEL 4) Diethyl lead 104. X <u>Sodalime</u> Y <u>Cl₂/uv-light</u> Z <u>2Na</u> (CH₃-CH₂-CH₂-CH₃+2NaCl. Then X, Y and Z includes 1) Sodium ethanoate, ethane and ehtyl chloride</u>			
99. The Kolbe's electrolysis proceeds via 1) Nucleophilic substitution mechanism 2) Electrophilic addition mechanism 3) Free radical mechanism 4) Electrophilic sustitution mechanism 100. Which of the following statements is correct? 1) C - D bond is slightly weaker than C-H bond 2) C - D bond is slightly stronger than C-H bond 3) Both C-H & C-D bonds are equally strong 4) Replacement of D in C-D by Cl is faster than the replacement of H in C-H 101. Propene + HCl $_C_{6H_5COO_2CO-C_6H_5}$ A. A is 1) n - propyl chloride 2) Isopropyl chloride 3) Allyl chloride 4) None 102. Addition of Br ₂ takes place readily with 1) CH ₂ = CH ₂ 2) CH ₃ - CH = CH ₂ 3) CH ₃ -CH=CH-CH ₃ 4) CH ₃ - C = CH - CH ₃ $[CH_3]$ 103. Which of the following is used as gasoline additive ? 1) n - Heptane 2) Isoctane 3) TEL 4) Diethyl lead 104. $X = \frac{\text{Sodalime}}{\text{Sodalime}} Y = \frac{Cl_2/uv-light}{dry either}} Z = \frac{2Na}{dry either}$ CH ₃ -CH ₂ -CH ₂ -CH ₃ +2NaCl. Then X, Y and Z includes 1) Sodium ethanoate, ethane and ehtyl chloride	-		
1) C - D bond is slightly weaker than C-H bond 2) C - D bond is slightly stronger than C-H bond 3) Both C-H & C-D bonds are equally strong 4) Replacement of D in C-D by Cl is faster than the replacement of H in C-H 101. Propene + HCl $_C_{6H_5COO_2CO-C_6H_5}$ A. A is 1) n - propyl chloride 2) Isopropyl chloride 3) Allyl chloride 4) None 102. Addition of Br ₂ takes place readily with 1) CH ₂ = CH ₂ 2) CH ₃ - CH = CH ₂ 3) CH ₃ -CH=CH-CH ₃ 4) CH ₃ - C = CH - CH ₃ $ _{CH_3}$ 103. Which of the following is used as gasoline additive ? 1) n - Heptane 2) Isoctane 3) TEL 4) Diethyl lead 104. $X \xrightarrow{Sodalime} Y \xrightarrow{Cl_2/uv-light} Z \xrightarrow{2Na} CH_3-CH_2-CH_2-CH_3+2NaCl.$ Then X, Y and Z includes 1) Sodium ethanoate, ethane and ehtyl chloride			
1) n - propyl chloride 2) Isopropyl chloride 3) Allyl chloride 4) None 102. Addition of Br ₂ takes place readily with 1) CH ₂ = CH ₂ 2) CH ₃ - CH = CH ₂ 3) CH ₃ -CH=CH-CH ₃ 4) CH ₃ - C = CH - CH ₃ CH ₃ 103. Which of the following is used as gasoline additive ? 1) n - Heptane 2) Isoctane 3) TEL 4) Diethyl lead 104. $X \xrightarrow{\text{Sodalime}} Y \xrightarrow{\text{Cl}_2/\text{uv-light}} Z \xrightarrow{2\text{Na}}_{\text{dry either}} CH_3-CH_2-CH_2-CH_3+2NaCl.$ Then X, Y and Z includes 1) Sodium ethanoate, ethane and ehtyl chloride			
102. Addition of Br_2 takes place readily with 1) $CH_2 = CH_2$ 3) $CH_3 - CH = CH_2$ 3) $CH_3 - CH = CH_2$ 4) $CH_3 - C = CH - CH_3$ (CH 3) 103. Which of the following is used as gasoline additive ? 1) n - Heptane 2) Isoctane 3) TEL 4) $Diethyl lead 104. X \xrightarrow{Sodalime} Y \xrightarrow{Cl_2/uv-light} Z \xrightarrow{2Na}_{dry either} CH_3 - CH_2 - CH_2 - CH_3 + 2NaCl.Then X, Y and Z includes1) Sodium ethanoate, ethane and ehtyl chloride$			
1) $CH_2 = CH_2$ 3) $CH_3 - CH = CH_2$ 3) $CH_3 - CH = CH - CH_3$ (CH 3) 103. Which of the following is used as gasoline additive ? 1) n - Heptane 2) Isoctane 3) TEL 4) $Diethyl lead 104. X \xrightarrow{\text{Sodalime}} Y \xrightarrow{Cl_2/uv - light} Z \xrightarrow{2Na}_{dry either} CH_3 - CH_2 - CH_2 - CH_3 + 2NaCl.Then X, Y and Z includes1) Sodium ethanoate, ethane and ehtyl chloride$			
103. Which of the following is used as gasoline additive ? 1) n - Heptane 2) Isoctane 3) TEL 4) Diethyl lead 104. $X \xrightarrow{\text{Sodalime}} Y \xrightarrow{\text{Cl}_2/\text{uv-light}} Z \xrightarrow{2\text{Na}}_{\text{dry either}} CH_3 - CH_2 - CH_2 - CH_3 + 2\text{NaCl.}$ Then X, Y and Z includes 1) Sodium ethanoate, ethane and ehtyl chloride			
103. Which of the following is used as gasoline additive ? 1) n - Heptane 2) Isoctane 3) TEL 4) Diethyl lead 104. $X \xrightarrow{\text{Sodalime}} Y \xrightarrow{\text{Cl}_2/\text{uv-light}} Z \xrightarrow{2\text{Na}}_{\text{dry either}} CH_3 - CH_2 - CH_2 - CH_3 + 2\text{NaCl.}$ Then X, Y and Z includes 1) Sodium ethanoate, ethane and ehtyl chloride			
Then X, Y and Z includes 1) Sodium ethanoate, ethane and ehtyl chloride	1		
Then X, Y and Z includes 1) Sodium ethanoate, ethane and ehtyl chloride			
 2) Sodium propnoate, ethane and methyl chloride 3) Sodium butanoate, ethane and ehtyl chloride 4) Sodium propanoate, ethane and ethyl chloride 			

Hydrocarbons (Alkanes, Alkenes)

Hydro	Hydrocarbons (Alkanes, Alkenes)					
105.	 n - propyl chloride and isopropyl chloride mixture is subjected to the Wurtz reaction, which one of the following compound is not formed 1) hexane 2) 2, 5 dimethyl hexane 					
	3) 2, 3 dimethyl bu	tane	4) 2 - methyl pent			
106.	, 5		, , , ,			
106.		propene gives 2 - brom				
	1) H⊕	2) Br-	3) Br	4) Br ⊕		
107.	Orlon is the polym	erised product of				
	1) CH ₂ =CHCl		2) CH ₂ =CH-O-CC	D-CH ₃		
	3) CH ₂ =CH-CN		4) CH ₂ =CH-CH=	CH ₂		
108.	Anti Markowniko	ff's addition of HBr is n	ot observed in			
	1) 1 - butene	2) 1 - pentene	3) Propene	4) 2 - butene		
	WORK SHEET - II					
1.	By treating ethylm	agnesium bromide wit	h water or alcohol, we	get		
	1) Methane	2) Ethane	3) Propane	4) Butane		
2.	Which of the following reacts with water to give ethane ?					
		C	0			
	1) CH ₄	2) C ₂ H ₅ MgBr	3) C ₂ H ₅ OH	4) $C_2H_5-O-C_2H_5$		
3.	What is the minimum quantity (in grams) of methyl iodide required for preparing one mole of ethane by Wurtz reaction? (Atomic weight of iodine = 127)					
	1) 142	2) 568	3) 326	4) 284		
4.	Which of the follow	wing compounds does	not form an ozonide ?			
	1) Ethane	2) Propyne	3) Propene	4) Ethene		
5.	The number of σ and π bonds present in ethene is					

	1) 6 σ	2) 3 o	3)4σ,2π	4) 5 σ ,1 π
6.	When propyl iodide i	s heated with alcoholic	KOH, the product is	

1) Propene2) Cyclopropane3) Propyne4) Propane

7. On mixing a certain alkane with chlorine and irradiating it with ultraviolet light, it forms only one monochloroalkane. This alkane should be
1) Neopentane 2) Propane 3) Pentane 4) Isopentane

WORK SHEET - III

Topic : AIKANES AND CYCLOALKANES

SECTION - A

Single correct answer Type Questions

1.	A hydrocarbon, C_4H_8 , neither decolourised bromine in CCl_4 solution nor reacted with				
	HBr.When heated to 200°C with hydrogen in the presence of Ni catalyst a new hydroc				
	$C_4 H_{10}$ was formed. The hydrocarbon is				
	1) n-butane	2) Cis-2-butene	3) Iso-butylene	Cyclo butane	
2.	Free radical monochlorination of ter.butyl bromide gives				
	1)11 111	0 (1 1	0 0 1 1 1 1 0	1 . 1	

1) 1- bromo-1-chloro-2-methyl propane2)3) 1- bromo-2-chloro-2-methyl propane4)

2) 2- bromo-1-chloro-2-methyl propane4) Ter.butyl Chloride

3. A compound "x" has molecular formula C_5H_9Cl . It does not react with Bromine in CCl_4 . On treatment with strong base it produces single compound "y" (C_5H_8) and reacts with $Br_2(aq)$. Ozonolysis of "y" produces a compound $C_5H_8O_2$. The structure of x is

4. Propene, $CH_3 - CH = CH_2$ can be converted into 1-propanol by oxidation. Which set of reagents among the following is ideal to effect the conversion? 1) Alkaline KMnO₄ 2) B_2H_6 and alk. H_2O_23) O_3 /zinc dust 4) $OsO_4/CHCl_3$

5.
$$Me_2C = CHCH_2 - CH_2 - C = CH - CH_3 \xrightarrow{H^+}$$
 Product. The main product is
Me

CH₃

- 6. Which of the following will explain the chemical reactivity of ethylene? 1) short carbon to carbon bond distance 2) high double bond energy 3) trigonal planar structure 4) presence of π -electrons
- 7. For which of the following addition reaction Markownikoff's rule is applicable?

1)
$$CH_3CH = CH_2 + Br_2 \rightarrow$$

$$CH_2 = CH_2 + HBr \rightarrow$$

2)
$$CH_3CH = CH_2 + HBr \rightarrow$$

$$CH_2 = CH_2 + HBr \rightarrow$$

4)
$$CH_3CH = CHCH_3 + Br_2 \rightarrow$$

3)

The most suitable set of reagents to perform this conversion is

1) $HBr; (CH_3)_3 COK / (CH_3)_3 C - OH$ 2) NBS; Alcoholic KOH

3) HBr-peroxide; CH_3CH_2OK / CH_3CH_2OH

4) HBr-peroxide; $(CH_3)_3 COK / (CH_3)_3 COH$

- 9. An isolated alkadiene is :
 - 1) penta-1,4-diene 2) penta-1,3-diene 3) penta-1,2-diene 4) Hexa-2,4-diene
- 10. Sample of 2,3-dibromo-3-methyl pentane is heated with zinc dust. The resulting product is isolated and heated with HI in the presence of phosphorus. Indicate which structure does represent the final organic product in the reaction ?

1)
$$CH_2 = CH - CH - CH_2 - CH_3$$
 2) $CH_3 - CH_2 - CH - CH_2 - CH_3$
 CH_3 CH_3

3)
$$\begin{array}{c} CH_3 - CH - CH - CH_2 - CH_3 \\ \downarrow \\ I \\ CH_3 \end{array}$$
4)
$$\begin{array}{c} CH_2 = CH - CH - CH_2 - CH_3 \\ \downarrow \\ CH_3 \\ CH_3 \end{array}$$

SECTION - B

More than one correct answer Type Questions

11. Which of the following can be prepared by wurtz reaction?

15. Which of the following reactions produce the same product?

16. Write theproducts of the following reaction,

WORK SHEET - IV

Topic : AKANES AND CYCLOALKANES

SECTION - A

Single correct answer Type Questions

1.	Select the response that correctly identifies the number of carbon atoms of each type of
	hybridization in the compound given below $H_2C = C = CH - CH = O$

	sp ³	sp ²	sp		sp ³	sp ²	sp
1)	2	2	0	2)	1	3	0
3)	0	3	1	d)	1	2	1

2.	On halogenation, an alkane gives only one monohalogenated product. The alkane may be				
	1) 2-methyl butane		2) 2, 2-dimethyl prop	ane	
	3) cyclopentane		4) both (2) and (c)		
3.	Which of the following compounds can be best prepared by Wurtz-reaction?				
	1) iso-butane	2) n-butane	3) n-pentane	4) iso-pentane	
4.	A hydrocarbon A(V.I	D = 36) forms only one r	nonochloro susbtitutio	n product. A will be :	
	1) iso-pentane	2) neo-pentane	3) cyclohexane	4) methyl-cyclohexane	
5.	Ethyl iodide and n-pr will not be obtained i		d to under go Wurtz rea	action. The alkane which	
	1) butano	2) propaga	3) poptano	1) boyana	

6.
$$\begin{array}{c} CH_{3} - CH - CH_{2} - CH_{3} \xrightarrow{Cl_{2}}{hv}} . \text{Number of chiral centers generated during monochlorination in the above reaction :} \\ 1) 1 2) 2 3) 3 4) 4 \\ \hline \\ 7. CH_{3}Cl \rightarrow CH_{4}. \text{ Above conversion can be achieved by} \\ 1) Zn/H^{+} 2) LiAlH_{4} 3) Mg/H_{2}O (ether) then H_{2}O 4) all of these \\ \hline \\ 8. n - Butane \xrightarrow{Cl_{2}/hv}{}. \text{ Give the total number of monochloro products (including stereoisomers), which are possible in the above reaction.} \\ 1) 2 2) 3 3) 4 4) 5 \\ \hline \\ 9. CH_{4} + Cl_{2} \xrightarrow{hv} CH_{3}Cl + HCl. \text{ To obtain high yields of CH}_{3}Cl, the ratio of CH_{4} to Cl_{2} must be \\ 1) high 2) low 3) equal 4) can't be predicted \\ \hline \\ 10. Double bond equivalent of cubane is 1) 4 2) 5 3) 6 4) 7 \\ \hline \end{array}$$

SECTION - B

More than one correct answer Type Questions

11.
Br

$$+2Na$$
 $\xrightarrow{digether} X + Y + Z$
When Y and Z are salts then
1) X is 2) Molecular formula of X is C_4H_8
3) Molecular weight of X is 54
4) X is 2

- When $CH_2 = CH Br$ is reacted with HBr then the product formed is A and when 12. $CH_2 = C\tilde{H} - COOH$ is treated with HBr then the product formed is C
 - 2) A is $CH_3 CH$ Br 1) A is $CH_2 - CH_2$ $\begin{vmatrix} & | \\ Br & Br \end{vmatrix}$

3) C is
$$CH_3 - CH - COOH$$

Br
Br

Which of the following alkanes cannot be synthesised by the Wurtz reaction in a good yield ?

1)
$$(CH_3)_2 CH - CH_2 - CH (CH_3)_2$$

($CH_3)_2 CH - CH_2 - CH_2 - CH (CH_3)_2$
3) $CH_3 - CH_2 C (CH_3)_2 CH_2 CH_3$
4) $(CH_3)_3 C - CH_2 - CH_2 - CH_3$

14.
$$C_{4}H_{6} \xrightarrow{H_{2}/pt} C_{4}H_{8} \xrightarrow{O_{3}/H_{2}O} CH_{3}COOH$$
. A and B in the above sequence are
1) CH_{3}C = CCH_{3} and CH_{3}CH = CHCH_{3}
2) CH_{2} = CHCH = CH_{2} and CH_{3}CH = CHCH_{3}
3) $(-CH_{3}CH = CHCH_{3} = 4)$ $(-CH_{3})$
15. Hydroboration oxidation and acid hydration will yield the same product in case of
1) $(-CH_{3} = CH_{2} = 4)$ CH_{3}CH = CHCH_{3}
16. $(-CH_{3} = CH_{2} = 4)$ CH_{3}CH = CHCH_{3}
16. $(-CH_{3} = CH_{2} = 4)$ CH_{3}CH = CHCH_{3}
16. $(-CH_{3} = CH_{2} = CH_{2} = 4)$ CH_{3}cH = CHCH_{3}
16. $(-CH_{3} = CH_{2} = CH_{3} = CH_{$

WORK SHEET - V

SECTION - A

Topic :CYCLOALKANES PROPERTIES ALKANES

ropic							
		Single correct answe	r Type Questions				
1.	Which of the following has highest chlorine content ?						
	1) Pyrene	2) DDT	3) Chloral	4) Gammaxene			
2.	Pure methane can be	prepared by					
	1) Wurtz reaction		2) Kolbe electrolysis r	nethod			
	3) Soda-lime de-carbo	oxylation	4) reduction with H_2				
3.	Berylium carbide + heavy water \longrightarrow ?						
	The product of the ab	pove reaction is					
	1) C ₂ H ₂	2) BeD ₂	3) CD ₄	4) CH ₄			
4	$CH_2 - OH$ $CH - OH + CH_3MgB$	$r \rightarrow x CH_4$					
4.	(excess)						
	$CH_2 - SH$						
	What is the value of y	k in the above reaction	?				

3) H_2 and CO₂ gases are liberated at anode 4) NaOH is formed at anode

The product obtained in the reaction $C_6H_5CH_2CH_3 \xrightarrow{Cl_2/hv}{273K}$ is 12. 2) $C_6H_5CH_2 - CH_2Cl$ 3) $C_6H_5CCl_2 - CH_3$ 4) $C_6H_5CHCl - CH_2Cl$ 1) $C_6H_5CHCl - CH_3$

Which of the following will give Cis-diols? 13.

1)
$$\searrow C = C \begin{pmatrix} 1 \end{pmatrix} KMnO \\ 2 \end{pmatrix} H_2O \end{pmatrix}$$

2) $\searrow C = C \begin{pmatrix} 1 \end{pmatrix} OsO_4 \\ 2 \end{pmatrix} Na_2SO_3 \end{pmatrix}$
3) $\begin{pmatrix} 1 \end{pmatrix} OsO_4 25^0C \\ 2 \end{pmatrix} Na_2SO_3 \end{pmatrix}$
4) $\begin{pmatrix} 1 \end{pmatrix} 35\%H_2O_2 \\ 2 \end{pmatrix} HCO_2H,25^0C \end{pmatrix}$

14.

15.

 CH_3 CH₃ - CH = CH₂ which of the following reactant will yield the above compound more than 50% 算3

1)
$$H_{3}C - \stackrel{CH_{3}}{\underset{CH_{3}}{i}} \stackrel{OH}{\underset{CH_{3}}{i}} CH_{3} \stackrel{H_{3}S0_{4}}{\underset{A}{i}}$$

2) $H_{3}C - \stackrel{CH_{3}}{\underset{CH_{3}}{i}} \stackrel{Br}{\underset{A}{i}} CH_{3} \stackrel{H_{3}S0_{4}}{\underset{CH_{3}}{i}}$
3) $H_{3}C - \stackrel{CH_{3}}{\underset{CH_{3}}{i}} \stackrel{Br}{\underset{CH_{3}}{i}} \stackrel{H_{3}S0_{4}}{\underset{CH_{3}}{i}}$
4) $H_{3}C - \stackrel{CH_{3}}{\underset{CH_{3}}{i}} \stackrel{Br}{\underset{A}{i}} \stackrel{Br}{\underset{A}{i}} \stackrel{Br}{\underset{A}{i}} \stackrel{H_{2}C}{\underset{CH_{3}}{i}} \stackrel{CH_{3}}{\underset{A}{i}} \stackrel{Br}{\underset{A}{i}} \stackrel{H_{2}}{\underset{A}{i}} \stackrel{H_{2}C}{\underset{A}{i}} \stackrel{CH_{3}}{\underset{A}{i}} \stackrel{Br}{\underset{A}{i}} \stackrel{H_{2}}{\underset{A}{i}} \stackrel{H_{2}}{\underset{A}{i}} \stackrel{H_{2}}{\underset{A}{i}} \stackrel{H_{2}}{\underset{A}{i}} \stackrel{H_{2}}{\underset{A}{i}} \stackrel{CH_{3}}{\underset{A}{i}} \stackrel{Br}{\underset{A}{i}} \stackrel{H_{2}}{\underset{A}{i}} \stackrel{$

4) II is racemic mixture by anti addition

16.
$$CH = CH_2 \rightarrow CH_2 - CH_2 - CH_2 - OH$$

The conversion can be performed suitably by

1) I. Cl₂, H₂O II. LiAlH₄ 2) I.HBr II. OH-

3) I. $BH_{3^-}THF$ II. H_2O_2, OH^-

4) I. HBr-peroxide II. OH⁻

EXERCISE - I /ANSWERS

WORK SHEET - I

01) 4	02) 1	03) 4	04) 2	05) 2	06) 3	07) 1	08) 2	09) 1	10) 3
11) 2	12) 4	13) 4	14) 3	15) 2	16) 3	17) 4	18) 2	19) 1	20) 2
21) 3	22) 3	23) 4	24) 1	25) 2	26) 2	27) 4	28) 1	29) 1	30) 2
31) 2	32) 4	33) 1	34) 2	35) 1	36) 3	37) 1	38) 3	39) 4	40) 3
41) 1	42) 1	43) 1	44) 2	45) 3	46) 3	47) 2	48) 1	49) 2	50) 4
51) 4	52) 3	53) 1	54) 3	55) 1	56) 1	57) 2	58) 4	59) 4	60) 1
61) 2	62) 2	63) 3	64) 2	65) 1	66) 3	67) 1	68) 2	69) 4	70) 2
71) 2	72) 1	73) 3	74) 2	75) 2	76) 3	77) 3	78) 2	79) 1	80) 2
81) 4	82) 1	83) 3	84) 1	85) 1	86) 2	87) 2	88) 2	89) 4	90) 4
91) 2	92) 1	93) 3	94) 1	95) 3	96) 3	97) 1	98) 2	99) 3	100) 2
101) 1	102) 4	103) 3	104) 4	105) 2	106) 1	107) 3	108) 4		

WORK SHEET - II

01) 2	02) 2	03) 4	04) 1	05) 4	06) 1	07) 1

WORK SHEET - III

1) 4	2) 2	3) 2	4) 2	5) 4	6) 4	7) 2	8) 4	9) 1	10) 2
11) 12	12) 23	13) 134	14) 123	4 15) 12	34 16) 1	3			

WORK SHEET - IV

1) 3	2) 2	3) 2	4) 2	5) 2	6) 2	7) 4	8) 2	9) 1	10) 2
11) 3,4	12) 2,4	13) 1,3,	4	14) 1,2	15) 2,3,4	4 16) 1,3			

WORK SHEET - V

1) 1	2) 3	3) 3	4) 3	5) 3	6) 3	7) 3	8) 2	9) 3	10) 1
11) 123	3 12) 13	13) 123	5 14) 23	15) 12	16) 34				

ALKYNES, ARENES EXERCISE - I

ALKYNES

1.	When alkyl substituted acetylene undergoes catalyst, the alkene formed is	addition with hydroge	en in presence of Lindlar's			
	1) A mixture of cis and trans	2) Trans	3) Cis			
	4) In presence of Lindlar's catalyst, addition	-	loes not take place			
2.	The reagent used for getting trans alkene fro		etylene with hydrogen is			
	1) Na in liq. NH ₃	, 10	2) Li in liq. NH ₃			
2	3) Both (1) or (2)	4) H_2 in presence of N				
3.	The compounds used in plastic industry and					
	1) Vinyl acetate & Vinylcyanide 3) Acrylonitrile & Ethylidene diacetate	2) Vinyl cyanide & V4) Ethylidene dicyan				
4.	Oxidation product of acetylene with alkalin					
ч.	1) Acetic acid	2) Oxalic acid	inate 15			
	3) Acetone	4) Acetylene dicarbo	xylic acid			
5.	Oxidation product of acetylene with chrom	ic acid is				
	1) Acetic acid	2) Oxalic acid				
	3) Acetone	4) Acetylene dicarbo	oxylic acid			
6.	The acidic nature of hydrogens in acetylene					
	1) Sodium metal	2) Ammonical cupro	ous chloride solution			
	3) Ammonical silver nitrate solution	4) All the above				
7.	The colour of the precipitate formed when a chloride solution is	cetylene is passed thro	ough ammonical cuprous			
	1) White 2) Red	3) Blue	4) Green			
8.	Order of reactivity is	o) blue	i) oreen			
0.	1) Alkynes > Alkenes > Alkanes	2) Alkanes > Alkene	s > Alkynes			
	3) Alkenes > Alkynes > Alkanes	4) Alkenes = Alkyne	•			
9.	What are X and Y respectively in the follow	ing reaction ?				
	Z - product \xleftarrow{Y} 2 - Butyne \xrightarrow{X} E - p	roduct				
	1) Na/NH _{3(liq)} and Pd/BaSO ₄ + H ₂		$/BaSO_4 + H_2$			
	3) Ni/140 ^o C and Na/NH _{3(liq)}	4) Pd/BaSO ₄ + H_2 and				
10.	The compound which decolourises bromine Tollen's reagent.					
	1) C_2H_2 2) C_2H_4	3) C ₆ H ₆	4) CH ₄			
11.	$CH_3 - CH_2 - CH_2Cl \xrightarrow{alc.KOH} X$					
	$CH \equiv CH + H_2 \xrightarrow{Pd + BaSO_4} Y$					
	Here, in the above sequences, the final prod	ucts X' and Y'				
	1) are a pair of homologues	2) have the percenta	se composition			
	3) have the same empirical formula	4) All the above	-			
12.	(1): Disubstituted acetylene on partial hydr	rogenation may give tr	ans isomer			
	(R) : Lindlar's catalyst is used for Partial hy					
	The correct answer is	č				

		Hydrocar	bons (Alkynes, Arenes)			
	 Both (1) and (R) are true and (R) is the correct explanation of (A) Both (1) and (R) are true and (R) is not the correct explanation of (A) (1) is true but (R) is false (1) is false but (R) is true 					
13.	When $R - C \equiv CH$ is treated with cuprous it 1) $R - C \equiv C - Cu$ 2) $Cu - C \equiv CH$	on in ammonical medium, one of the product 3) $CuC \equiv CCu$ 4) $R - C \equiv C - R$				
BENZ	ENE					
14.	 When coal is subjected to destructive distill 1) Light; Middle; Heavy and Anthracene of 2) Coal gas; Coal tar; Ammonical liquor and 3) Benzene; Toluene; Xylene; Naphthalene a 4) Carbocyclic aromatic and heterocyclic aromatic 	ls I Solid residue and Anthracene	oducts obtained are			
15.	 Coal tar is 1) Yellow, light liquid with pleasant odour 2) Yellow, light liquid with unpleasant odo 3) Black viscous oily liquid with unpleasan 4) Black viscous oily liquid with very pleasa 	t odour				
16.	To get benzene, coal tar is subjected to 1) Fractional distillation 3) Vacuum distillation	2) Destructive distilla 4) Steam distillation	ition			
17.	The two structures of benzene proposed by 1) The position of carbon nuclei 3) The position of the single bonds	Kekule differ in 2) The position of hyo 4) The position of the	•			
18.	Resonance energy of benzene is 1) 150 Kcals Mol ⁻¹ 2) 36 Kcals Mol ⁻¹	3) 36 KJ Mol ⁻¹	4) 200 Kcals Mol ⁻¹			
19.	In Benzene there is 1) Delocalization of p electrons 3) Delocalization of both s and p electrons		alization of s electrons localization of electrons			
20.	The C – C bond lengths in benzene are 1) 1.54A° & 1.34A° 2) 1.34A° & 1.20A°	3) 1.39A° only	4) 1.20A° only			
21.	Due to delocalization, the energy 1) Increases 3) May increase or decrease	2) Decreases 4) There is neither in	crease nor decrease			
22.	The increase in stability and decrease in energy 1) Localization of p electrons 3) Localization of s electrons	ergy of aromatic compo 2) Delocalization of s 4) Delocalization of p	electrons			
23.	The number of p electrons in benzene is 1) 3 2) 6	3) 9	4) 12			
24.	The C – C bond length in benzene is 1) < C - C in ethane 2) > C = C in ethene	3) > C \equiv C in ethyne	4) All the above			
25.	Due to delocalization 1) Reactivity increases 2) Stability increases increases	3) Stability decreases	4) Solubility in water			

Hydrocarbons (Alkynes, Arenes) 26. respectively are 1) Hexachlorocyclohexane & C₆H₅Cl 2) Chlorobenzene & Hexachlorocyclohexane 3) o-and p-Dichlorobenzene & chlorobenzene 4) Chlorobenzene & C₆H₆Cl₆ 27. During ozonolysis of 1mole of benzene, number of molecules of ozone consumed is 1)1 3) 3 4)42) 2 28. Under pressure, (with hydrogen) in presence of nickel catalyst, benzene forms 2) 1) 3) 29. Which of the following statements is False 1) Benzene contains three pi bonds 2) Ethylene is more reactive than ethyne 3) Kolbe's method is useful for preparation of methane 4) Aldehydes & Ketones are a pair of functional isomers $C_2H_4Br_2 \xrightarrow{\text{alc KOH}} A \xrightarrow{HCN} B$. The type of reaction involed in the conversion $A \rightarrow B$ 30. 1) Nucleophilic addition $^{\rm Cu^+}$ 2) Electrophillic addition 3) Radical addition 4) Electrophillic substitution 31. The function of anhydrous $AlCl_3$ in the Friedel-crafts reaction is 1) absorb water 2) absorb HCl 3) Produce electrophile Produce nucleophile 32. Which of the following is not aromatic 1) Cyclotetraene 2) Benzene 3) Naphthalene 4) Anthracene Nitrobenzene can be prepared from Benzene by using a mixture of conc. HNO₃ and conc. 33. H_2SO_4 . In this, active species is 2) NO⁺ 1) NO_{3}^{-} 3) NO_2^+ 4) NO_{2}^{-} 34. According to the molecular formula Benzene appears to be highly unsaturated. But Benzene mainly participates in substitution reactions. It is because Benzene is 1) unsaturated 2) Saturated 3) aromatic 4) cyclic compound 35. In Huckel's (4n+2) rule for aromaticity, 'n' represents 1) Number of carbon atoms 2) Number of rings 4) Fractional number (or) integer (or) zero 3) Whole number **PROPERTIES:** 36. LIST - 1 LIST - 2 1) Methane 1) Hawker's lamp 2) Ethylene 2) Paraldehyde 3) Acetylene 3) Printer's ink 4) Benzene 4) Mustard gas 5) Motor fuel The correct match is 1) A - 1; B - 2; C - 3; D - 4 2) A - 3; B - 5; C - 1; D - 4 3) A - 3; B - 4; C - 1; D - 5 4) A - 4; B - 2; C - 3; D - 1

			Hydroce	arbons (Alkynes, Arenes)
37.	LIST - 1		LIST - 2	aroons (r inkynes, r itenes)
	1) $C_6H_6Cl_6$		1) Glyoxal	
	2) RMg X		2) Grignard reagent	
	3) OH C – CHO		3) Acetophenone	
	4) C ₆ H ₅ COCH ₃		4) Hexachlorocy clo	hexane
			5) Hexachlorobenze	
	1) A - 5; B - 2; C - 3; I		2) A - 4; B - 2; C - 1	
	3) A - 5 ; B - 2 ; C - 1 ; I)-3	4) A -3; B - 1; C - 4;	D-2
38.	$H_2 \xrightarrow{\mathbb{R}}$; Δ H= -x k.cal/mole		
	+3H ₂ - Pt	; Δ H= -y k.cal/mo	le	
	The carrect relation a	mong the following is		
	1) x = y	2) $y = 3x$	3) 3x -y=36k.cal	4) x-3y = 36k.cal
39.	Match the following			
	List - I		List - II	
	1) O-,P - directing and		1) - NO ₂	
	2) O-,P-directing and	0 0	2) -Cl	
	3) m - directing and ri	0	3) - OH	
	The carrect match am 1) 1 - a ; 2 - b ; 3 - c	0 0	$(3) 1 - b \cdot 2 - c \cdot 3 - a$	4) 1 - a ; 2 - c ; 3 - b
40.	,	,	,	their reactivity towards
40.	electrophilic substitut		descending order or	then reactivity towards
	1) Chlorobenzene	2) Nitrobenzene		
	3) Benzene	4) Phenol	e) Toluene	
	1) $d > e > c > a > b$	2) b > a > c > e > d	3) d > e > c > b > a	4) $e > d > c > a > b$
41.	Which one of the follo	wing is benzene ring ac	tivating group toward	s electrophilic substitution
	1) -CN	2) -CHO	3) -SO ₃ H	4) -OCH ₃
42.	Which one of the for substitution.	llowing is benzene ri	ng deactivating gro	up towards electrophilic
	1) -NHCOOH ₃	2) -N(NH ₃) ₂	3) -OH	4) - Br
43.	The correct order of a substitution.	ctivating abiltity of fth	e groups at benzene r	ing, towards electrophilic
	1) -NH ₂ > -NHR > - N	$R_2 > -OH > -OR$	2) -OH > -OR > -NH	$I_2 > -NHR > -NR_2$
	3) -OR > -OH > -NR ₂ >	>-NHR > -NH ₂	4) -NR ₂ > -NHR > -N	NH ₂ > -OR> - OH
44.	(1) : NO is benzene ri	ing deactivating group	and m - directing gro	up.
	· · · <u>-</u>			e ortho and para positions
	· · · <u>+</u>	nt than mata position.	ing and hak	
45.		ring activating group a	nd O. P. directing an	מוונ
ч.	_			
	(K) : NH ₂ increases	the electron density i	n benzene ring throu	ugh resonance and make

O-, P-positions more electron efficient than m-position

46. Deactivating nature and O - , P- directing nature of halogens can be explained by the effects respectively

1) - I, - M 2) - I, +M 3) +I, +M 4) +I, - M

WORK SHEET - II

ALKYNES

1. A gaseous mixture containing two hydro carbons X & Y of volume 44.8 lit (STP) when passed through ammonical Cu₂Cl₂ has suffered reduction in volume of about 11.2 lit. If remaining volume is due to Y, X is 1) Butyne -2 2) Ethene 3) Ethane 4) Propyne 2. A hydrocarbon of molecular formula C₅H₁₂ has three chain isomers. If one of those isomers (X) gives only one mono chloro derivative, IUPAC name of X is 1) 2,2 - diethyl pentane 2) 2 - methyl pentane 3) 2,2 - diethyl propane 4) 2,2 - dimethyl propane $X \xrightarrow{Pd+BaSO_4} Y,$ 3. $Q \xrightarrow{450^{\circ}C} Y$ where X,Y & Q are gaseous hydro carbons, then X, Y & Q respectively are Υ Х Q C_2H_4 C_2H_6 C_2H_4 1) C_2H_2 C_2H_6 C_2H_4 2) $\begin{array}{cccc} C_{2}H_{2} & C_{2}H_{4} & C_{2}H_{6} \\ C_{2}H_{6} & C_{2}H_{4} & C_{2}H_{2} \end{array}$ 3) 4) Propyne $\xrightarrow{Na(1)} X + 1/2H_2$ 4. $X \xrightarrow{CH_3I} Y$ Now , which of the following reagents can be used to distinguish Y from propyne? 1) $NH_4OH + AgNO_3$ (or) cold alk $KMnO_4$ 3) Cold alk. $KMnO_4$ (or) Br_2 / CCl_4 2) $NH_4OH + Cu_2Cl$ (or) Br_2 / CCL_4 4) $NH_4OH + AgNO_3$ (or) $NH_4OH + Cu_2Cl_2$ 3) Cold alk. $KMnO_4$ (or) Br_2 / CCl_4 The common method used to prepare ethane & ethyne is X while ethene & ethyne is Y. Now, 5. X & Y respectively are 1) decarboxylation; wurtz reaction 2) Kolbe's electrolysis ; Sabatier reaction 3) Kolbe's electrolysis; dehydrohalogenation 4) Kolbe's electrolysis; decarboxylation Ethene on ozonolysis yields X. To prepare successive homologue of X, which of the following 6. should be subjected to ozonolysis? 1) Butene - 1 2) Hexene - 3 3) Butyne - 2 4) Butene - 2 $X \xrightarrow{Ag/\Delta} Y$ (g) where if Y is ethyne, X is prepared from CH_4 by 7. 1) Chlorination 2) Combustion 3) Pyrolysis 4) Nitration Lindlar's catalyst cannot be used to carryout the following process 8. 2) $CH_3 - C \equiv C - CH_3 \xrightarrow{H_2} Butane$ 1) CH₂-C \equiv C-CH₂ $\xrightarrow{H_2}$ trans Butene -2 3) $C_2H_2 \xrightarrow{H_2} C_2H_6$ 4) CH₃-C \equiv C-CH₃ $\xrightarrow{H_2}$ cis Butene -2 1) A only 2) A, B & D only 3) A, B & C only 4) A, C & D only

9. $X \xrightarrow{\text{Electrolysis}} Y(g)$ [anode] $O \xrightarrow{Electrolysis} R(g)$ [anode] where Y and R are gaseous hydrocarbons. If Y on hydrogenation yields R, X and Q are the potassium salts of 1) Fumaric acid; Oxalic acid 2) Succinic acid ; Oxalic acid 3) Fumaric acid ; Acetic acid 4) Acetic acid ; Propionic acid $X \xrightarrow{ConH_2SO_4} Y \xrightarrow{Br_2} Q \xrightarrow{alcKOH} R \text{ If } X \text{ is ethyl alcohol correct statement (s) about}$ 10. R is/ are I. It decolourizes Bayer's reagent II. It gives benzene when subjected to polymerization III. It gives red precipitate with ammonical Cu₂Cl₂ IV. It gives ethylene on hydrogenation in the presence of Lindlar's catalyst. 1) A, B & C 2) B, C & D 3) A, B, C & D 4) A, B & D BENZENE $X \xrightarrow[boil]{dil.H_2SO_4} Y \xleftarrow{\text{Zn dust}} Q \text{ where if 1 mole Y on ozonolysis gields there moles of ethane}$ 11. -1, 2- dial, X and Q respectively are 1) Napthalene ; Phenol 2) Benzone sulphonic acid, Nitrobenzene 4) Phenol; Toluene 3) Benzene sulphonic acid ; Phenol Active species involved in the process $C_6H_6 \longrightarrow C_6H_5SO_3H$ is 12. 3) SO_{2}^{+} 2) HSO_4^- 1) SO₃ 4) SO₂ 13. In which of the following reactions, aromatic character is retained ? 2) $C_6H_6 \xrightarrow{O_3} Y$ 1) $C_6H_6 \xrightarrow{H_2/N_i} X$ 4) $C_6H_6 \xrightarrow{Cl_2}{light} R$ 3) $C_6H_6 \xrightarrow{CH_3COCl}{AlCl_3} Q$ Number of $\sigma sp^2 - sp^2$ bonds present in a molecular of X in the process $C_6H_6 \xrightarrow{H_2/N_i} X$ 14. is 1)6 2) 3 3) 12 4) Zero 2) Both A & R are true but R does not explain 1) Both A & R are true & R explains A А 3) A is true but R is false 4) R is true but A is false 15. (1): Ethyne gives white precipitate with Tollen's reagent (R): Ethyne is the first member of alkynes 16. (1): Benzene does not decolourize Bayer's reagent (R): Benzene molecule obeys Huckel's rule. 17. (1): Both Benzene & Ethyne give same product on ozonolysis. (R): Ethyne & Benzene possess same empirical formula. WORK SHEET - III

1. Which of the following reacts with ammonical cuprous chloride ?

Hydro	carbons (Alkynes, Ar 1) CH ₄	enes) 2) C ₂ H ₂	3) C ₂ H ₆	4) C ₆ H ₆				
2.	In the following reac	tion, what is $X C_2 H_2$	$H_2 \xrightarrow{H_2O,60^{\circ}C}{H_gSo_4,H_2SO_4} X \iff CH_3CHO$					
	1) CH ₃ CH ₂ OH	2) CH ₃ -O-CH ₃	3) CH ₃ CH ₂ CHO					
3.	The reagent used for 1) HgSO ₄ /aqueous H 3) KMnO ₄ /KOH, 25°		ylene to oxalic acid is 2) HgSO ₄ /CH ₃ COOH 4) CrO ₃ /H ₂ SO ₄					
4.	Propyne and propen	e can be distinguished	by					
	1) Conc. H_2SO_4	2) Br_{2} in CCl_{4}	3) Dil KMnO ₄	4) AgNO ₃ in ammonia				
5.	Which of these will n 1) NaOH 3) Na	ot react with acetylene	lene? 2) Ammonical AgNO ₃ 4) HC <i>l</i>					
6.	Benzene is obtaned b	y fractional distillatior	n of					
	1) Light oil	2) Middle oil	3) Anthracene oil	4) Heavy oil				
7.	Benzene is used in th 1) polythene 3) chloroform	e preparation of	2) gammaxene 4) vinegar					
8.	Which of the followin 1) CH ₃ CHO	ng is used in the prepar 2) P_2O_5	ration of styrene 3) CH ₄	4) C ₆ H ₆				
9.	Which one of the following compounds is prepared in the laboratory from benzene by substitution reaction?							
	1) Glyoxal 3) Toluene		2) Cyclohexane 4) Hexabromo cyclol	hexane				
10.	The reagent used for 1) C_2H_5Cl , anhydrou 3) C_2H_5OH , anhydro	0	to ethyl benzene is : 2) C ₂ H ₅ Cl, aqueous AlCl ₃ 4) C ₂ H ₅ Cl, SOCl ₂					
11.	 1) It has six hydroger 2) It has a cyclic struct 3) Double bonds press 		ong					
12.	Ratio of π to σ bon	ds in benzene is						
	1) 1 : 4	2) 1 : 2	3) 3 : 1	4) 1:6				
13.	Aromatic compound 1) Electrophilic subst 3) Nucleophilic addi	titution	2) Electrophilic addi 4) None of these	tion				
14.	Coal tar is main sour	ce of						
	1) Cycloalkanes 3) Aromatic compour	nds	2) Heterocyclic comp 4) Aliphatic compou					
15.	In which of the follow	wing the bond length b	etween carbon and car	bon atom is equal				

		Hydrocarbons (Alkynes, Arenes)
	1) 2 – butene	2) Benzene
	3) 1 – butene	4) 1 – propyene
16.	Benzene on treating with a mi	xture of conc. $\mathrm{HNO_3}$ and $\mathrm{H_2SO_4}$ at 100°C gives
	1) Nitrobenzene	2) m-dinitrobenzene

EXERCISE - I / ANSWERS

4) p-dinitrobenzene

3) o-dinitrobenzene

WORK SHEET - I

1) 3	2) 3	3) 3	4) 2	5) 1	6) 4	7) 2	8) 3	9) 1	10) 2
11) 4	12) 3	13) 1	14) 2	15) 3	16) 1	17) 4	18) 2	19) 1	20) 3
21) 2	22) 4	23) 2	24) 4	25) 2	26) 1	27) 3	28) 1	29) 3	30) 1
31) 3	32) 1	33) 3	34) 3	35) 3	36) 3	37) 2	38) 3	39) 2	40) 1
41) 4	42) 4	43) 1	44) 1	45) 1	46) 2				

WORK SHEET - II

1) 4	2) 4	3) 3	4) 4	5) 3	6) 4	7) 1	8) 3	9) 3	10) 3
11) 3	12) 1	13) 3	14) 4	15) 2	16) 2	17) 2			

WORK SHEET - III

1) 2	2) 4	3) 3	4) 4	5) 1	6) 1	7) 2	8) 4	9) 3	10) 1
11) 4	12) 1	13) 1	14) 3	15) 2	16) 2				

WORK SHEET - I

Topic : ARENES-INTRODUCTION -AROMATICITY, PREPARATORY METHODS OF BEN-ZENE

SECTION - A

 O_2N

 NO_2

8.
$$CaC_{2} \xrightarrow{2H_{2}O} X + Ca(OH)_{2}$$

$$3X \xrightarrow{\text{Red HotTube}} Y$$

$$X \& Y \text{ of the above reactions are}$$

$$1) C_{2}H_{2} \& C_{6}H_{6}$$

$$3) C_{2}H_{2} \& meta - xylene$$

$$9. CaC_{2} \xrightarrow{2H_{2}O} X + Ca(OH)_{2}$$

$$2X + propyne \rightarrow Y$$

$$X, Y \text{ are}$$

$$1) C_{2}H_{2} \& C_{6}H_{6}$$

$$2) C_{2}H_{2} \& Mesitylene$$

$$3) C_{2}H_{2} \& meta - xylene$$

$$4) C_{2}H_{2} \& Mesitylene$$

$$10. CaC_{2} \xrightarrow{2H_{2}O} X$$

$$X + 2CH_{3} - C \equiv CH \rightarrow Y X \text{ and } Y \text{ are}$$

$$1) C_{2}H_{2} \& C_{6}H_{6}$$

$$2) C_{2}H_{2} \& Toluene$$

$$4) C_{2}H_{2} \& Mesitylene$$

WORK SHEET - II

Topic : PROPERTIES OF ARENES

SECTION - A

Single correct answer Type Questions

1. Rank the following in terms of increasing reactivity toward nitration with $HNO_{3'}H_2SO_{4'}$ (least to most).

3. For the reaction

1) C₆H₅Cl + C₆H₅COCl, AlCl₃ 2) C₆H₅CO C₆H_{5'} + Cl_{2'} Fe Cl₃

3) C₆H₅CH₂C₆H₅+Cl₂, FeCl₃, followed by oxidation with chromic acid.
4) None of these yields the deisred product.

4. The reaction

gives as the major product:

5. Which one of the following compounds undergoes bromination of its aromatic ring (electrophilic aromatic substitution) at the fastest rate?

(3) An equal mixture of compound (1) and (2) would form

(4) None of these; substitution would not occur.

7. What is the product of the following reaction?

6.

9. Which reactants combine to give the species shown as a reactive intermediate?

8.

1) Benzene, isopropyl bromide, and HBr 2) Bromobenzene, isopropyl chloride, and AlCl₃

3) Isopropylbenzene, Br₂, and FeBr₃ 4) Isopropylbenzene, Br₂, light, and heat e) Isopropylbenzene, N-bromosuccinimide, Benzoyl peroxide, and heat

10. Which sequence of steps describes the best synthesis of the compound shown?

WORK SHEET - I

1) 1 5) 2 6) 2 10) 3 2) 1 3) 2 4) 3 7) 3 8)1 9) 2

WORK SHEET - II

1) 2 2) 1 3) 2	2 4) 2	5) 2	6) 1	7) 4	8) 3	9) 3	10) 3
----------------	--------	------	------	------	------	------	-------

EXERCISE - I

WORK SHEET - I

1	If air i	s taken a	is a bina	ary solut	ion, the	solvent	is					
	1) N ₂			2) O ₂			3) CO ₂		4)]	H ₂		
2.			systen	n among	the follo	-	-					
	1) mil						2) sand i					
	·	a in wate					4) benzene in water					
3.	-	•	-	among th	ne follov	-	-					
	·	ning of c					2) burning of sulphur					
				ose in wa			-	ıg of whi				
4		• -		olution h				d physic	al prope	erties		
			-	s a homo	-							
	·	. ,	. ,	e true and	. ,		-		. ,			
	2) Bot	h (1) and	l (R) are	e true and	l (R) is r	not the c	correct ex	planatio	on of (A)			
		is true bu					4) (1) is fa	alse but (R) is tru	e		
5.				perty of s								
	-			on is phy		•						
				in the sol		-		•				
				in the sol					tation			
			be rep	resented	with a c			a				
	1) a, b			2) a			3) b,d		4) (c, d		
6.		•	ion con	stitute	. numbe	-						
	1) one			2) two			3) three		4) f	our		
7.			altand	water ca	-		•					
	1) filtı			2) decar				llisation	4)]	kept long st	anding	
8.			ollowin	g differ								
	1) rub	•		2) elekt			3) bell m		,	amalgam		
9.				en on Pal	ladium		-		e solutio	n		
		in solid					2) solid i					
		in liquic	1			4	4) liquid	in gas				
10.		LIST - 1			T - 2							
	'			1) Germ	an silve	er						
		uid solu		2) Milk								
	,	id soluti		3) Sand			1					
	D) Co	lloidal se	olution	4) Aque	eous Alc	coholic s	olution					
			P	5) Air	Ð			P	6	P		
	1)	A	В	C	D	•	A	B	C	D		
	1)	5	4	1	2	2)	1	3	2	5		
	3)	4	2	5	1	4)	2	3	1	4		
11.		nits of M	olarity						a			
	1) gm			2) mole			· -	lents. lit	,	moles. kg ⁻¹		
12.			•	of a solu		tollowi	ng shoul	d be ado	pted			
	1) wei	ght of th	e solute	e to be do	ubled							

				SOLUTIONS
	2) weight of the solve	ent to be doubled		
	3) volume of the solv	rent to be doubled		
	4) volume of the solu	ition to be doubled		
13.	(1): Molarity of a sol	ution decreases with a	n increase of temperatu	ıre
	(R) : As temperature	increases volumes of t	he solution increases.	
	The correct answer i			
	1) Both (1) and (R) and	e true and (R) is the co	rrect explanation of (A)
		re true and (R) is not the		
	3) (1) is true but (R) i		4) (1) is false but (R)	
14.	, , , , , , , , , , , , , , , , , , , ,		, , , , , , , , , , , , , , , , , , , ,	ty of the same solution at
		ses with an increase of	temperature	
	The correct answer i		1	
		e true and (R) is the co	rrect explanation of (A)
	, , , , , ,	re true and (R) is not the	-	
	3) (1) is true but (R) i		4) (1) is false but (R)	
15.	The units of Normal		-) (-) ()	
	1) moles. lit ⁻¹	2) moles. Kg ⁻¹	3) equivalents. lit ⁻¹	4) equivalents. Kg ⁻¹
16.	The following is not	, 0	•)•1	-) -1
	1) atomic weight of a		2) equivalent wei	ght of an element (or)
	compound		_) - 1	B ()
	3) molecular weight	of a compound	4) formula weight of	a substance
17	In the reaction 2NaC	$H+H_3PO_4 \rightarrow Na_2HPO_4$	$_1$ + 2H ₂ O, the Equivalen	t weight of the acid is
	1) 49	2) 98	3) 32.6	4) 36.5
18	The equivalent weig	ht of CuSO ₄ when it is o	converted to Cu,I, [M=	mol.wt]
	1) M/1	2) M / 2	3) M / 3	4) 2 M
19.	Which of the followi	ng acid has the same n	nolecular weight and e	quivalent weight
	1) H_3PO_2	2) H_3PO_3	3) H ₃ PO ₄	4) H ₂ SO ₄
20	. 5 2	. 5 5	he equivalent weight o	of $KMnO_4$ when it reacts
				$2MnSO_4 + 8H_2O + 10CO_2$
	1) M / 2	2) M /3	3) M	4)M/5
21.			reaction $KMnO_4$ is re-	educed to K_2MnO_4 . The
	equivalent weight of	-	\sim	
22	1) M The equivalent even	2) M / 2 \sim	3) M/3	4) M/5
22.	is [M=mol. wt]	ght of Hypoin the reac	$mon Na_2 S_2 O_3 + Cl_2 + H_2$	$_{2}O \rightarrow Na_{2}SO_{4} + 2HCl + S$
	1) M	2) M / 2	3) M/3	4) 2M
23.	·	, ,	, ,	n it is oxidised by $KMnO_4$
20.	in acidic medium is	1010111 0 0011 10 0 9 2. 110 C	quivalent weight whe	
	1) 392	2) 196	3) 130.6	4) 78.5
24.		ght of CH_4 in the reaction	,	,
	1)M / 4	2) M / 8	3)M / 12	4)M / 16
25.	, · ·	olution $M = m$, then at	, ,	, ,
_0.	1) M = m	2) M > m	3) M < m	4) M = 2M
	-,	-,		-)

SOLUTIONS 26 To change the molal co

SOL 26	U TIONS To change the molal conc. to one half, or	ne of the following should be adopted
	1) weight of the solute should be double	
	3) volume of the solvent should be doub	
27.	A one molal solution is one that contain	ns
	1) 1 g. of the solute in 1000 g. of solvent	2) 1 g. mole of solute in 1000 ml of solution
	3) 1 g. mole of solute in 22.4 lits of soluti	
28.	The units of molality are	, 0 0
	1) moles. lit ⁻¹ 2) moles. ml ⁻¹	3) moles. Kg ⁻¹ 4) g. equivalents Kg ⁻¹
29.	M = molarity of the solution	m = molality of the solution
	d = density of the solution (in g. ml^{-1})	M^1 = gram molecular weight of solute
	Which of the following relations is corre	
	М	M×1000
	$1) m = \frac{M}{1000d - MM^{l}}$	$2) m = \frac{M \times 1000}{d + MM^{1}}$
	1000d-MM [*]	$d + MM^{T}$
	M×1000	4) M = $\frac{m \times 1000}{(1000 \times d) - MM^{1}}$
	3) m= $\frac{M \times 1000}{(1000 \times d) - MM^{1}}$	4) $M = (1000 \times d) - MM^{1}$
30.	(1) : Molality is independent of tempera	iture
	(R) : There is no volume factor in the exp	pression of molality
	The correct answer is	
	1) Both (1) and (R) are true and (R) is the	correct explanation of (A)
	2) Both (1) and (R) are true and (R) is not	t the correct explanation of (A)
	3) (1) is true but (R) is false	4) (1) is false but (R) is true
31.	(1) : One molar aqueous solution is alwa solution.	ays more concentrated than one molal aqueous
	(R) : The amount of solvent in 1M solution	on is less than in 1m solution. The correct answer i
	1) Both (1) and (R) are true and (R) is the	correct explanation of (A)
	2) Both (1) and (R) are true and (R) is not	t the correct explanation of (A)
	3) (1) is true but (R) is false	4) (1) is false but (R) is true
32.	Regarding molarity, which of the follow	
	a) units of molarity gm-moles kg ⁻¹	
	b) molarity of dibasic acid is half of its r	ormality
	c) $\frac{\text{Normality} \times \text{GEW}}{\text{GNW}}$	
	d) Molarity always equals to its molality	7
	1) a, b 2) a, b	3) b, c 4) a, c
33.	(A) : Mole fraction has no units	
		f moles of solute to number of moles of solvent
	1) Both (A) and (R) are true and (R) is the	
	2) Both (A) and (R) are true and (R) is no	
	3) (A) is true but (R) is false	4) (A) is false but (R) is true
34.	LIST - 1 LIST - 2	
	1) Mole fraction 1) No.of g equiva	lents in 1000ml of solution
	2) Molarity 2) Always less th	an one
000		

	3) Normality3) Greater than or equal to molarity4) Molality4) No.of g moles present in 1000ml solution									
			5) No.c	of g mole	s of solu	ite 1kg o	of solvan	t		
	The corre	ct match is								
	A		С	D		А	В	С	D	1)
	1 2 4 2		4 4)	2) 2	2 4	3 3	1 5	5	3)	1
35.			,			-	5			
35.	-	rature incr es linearly	-	our pre		-	ises linea			
	,	es exponei				,		onentiall	V	
36.	-	aporation	•	un on	-	i) uccica	ises expe	Jicilian	y	
50.	1) Nature	-	uepenus	upon	5) Surfac	e area of	f the liqu	id	
	3) Temper	-				,		-	r the surf	ace
	· -	ect answer	is		-	.) 1 10 11 0	i un cui		i tile suii	acc
	1) a, b onl		2) b, c c	only	3	8) a, b, ar	nd c only	z 4)	a, b, c an	d d
37.	,	n temperatı	,	<u></u>		,,,			, -,	
	e	r pressure c		on contain	ning non	volatile	solute is	proporti	onal to n	nole fraction
		ng of vapo tion of solu		re of solu	ation cor	ntaining	nonvola	tile solut	e is prop	ortaional to
	c)Relative	elowering	of vapou	pressur	e is equa	al to mol	e fractio	n of solu	te	
	<i>,</i>	ct combina	-	1	1					
	1) a only		2) a, b a	only	3	8) a, b an	ld c only	4)	b, c only	
38.	(1) : Incre	ase in temp	perature in	ncreases	vapour	pressure	e of a liqu	uid		
	(R) : Volu	ime of a sol	lution inc	reases by	vincreasi	ng the te	emperat	ure.		
	1) Both (A	A) and (R) a	re true ar	ıd (R) is t	the corre	ect expla	nation o	f (A)		
	2) Both (A	A) and (R) a	ire true ar	nd (R) is i	not the c	orrect e>	xplanatio	on of (A)		
	3) (A) is ti	rue but (R)	is false		4	l) (A) is f	false but	(R) is tru	ıe	
39.	(A): Rate	of evapora	tion incre	ases wit	h an inci	ease in f	the surfa	ice area o	of the ves	ssel
	., 1	oration is a	-	ohenome	enon					
		ct answer i		· ·	_					
		(R) and (R) a				-				
		(R) and (R) a		1d (R) 1s 1			-			
40.	, , ,	rue but (R) the followi		onto oro		E) (A) 1S I	alse but	(R) is tru	ie	
40.		iling point	-			n n11r0 s	alvent			
	,	01		0		1		s to atm	ospheric	pressure is
	called its	boiling poi	int	-	-	-	-		-	-
	non volat	ile solute.	-							n containing
	d) the tem the evapa	-	f liquid re	emained	in the co	ntainera	after eva	poratior	ı is more	than before
	1) a, b		2) b, c			8) c, d		,	a, d	
<i>1</i> 1	The gran	h obtained	bytaking	vanour	nrocentre	(P) of a	liquid o	n wavie	and tom	poraturo (T)

41. The graph obtained by taking vapour pressure (P) of a liquid on y-axis and temperature (T)

on x-axis will be

42. Which graph of the following represents the graph between log p (on $Y \rightarrow T$ axis) and 1/T (on X - axis)?

1)
$$P_s = P_B^0 \cdot X_A$$
 2) $P_B^0 = P_s X_B$ 3) $P_s = P_B^0 \cdot X_B$ 4) $P_B^0 = P_s X_A$
A solution that obeys Raolult's law is called (1993)

1) normal solution 2) non-ideal solution 3) ideal solution 4) saturated solution

51.

										501		
52.	LIST - 1					LIS	T - 2					
	1) Lowering o	of vapour	pressure	9		1) -	$\frac{P^{o} - P}{P^{o}}$					
	2) Relative lo	wering of	vapour	pressure	!	2) -	$\frac{P^{o} - P}{P^{o}} =$	$=\frac{W}{m}x\frac{N}{W}$	$\frac{1}{\sqrt{2}}$			
	3) Raoult's la	w				3) P° – P						
	4) Ideal solut	ion				4) Obeying Raoults law						
						5)	Boiling	point				
	The correct m											
	A 3 2	B 1	C 4	D 2)	4		A 1	B 2	C 2	D 3)	1) 3	
	1 2	B 1 4	4)	2) 1	3		4	2	5	3)	5	
53.	(1) : Vapour p											
	(R) :Lowering of vapour pressure is directly proportional to the number of particle in the solution									cles present		
	1) Both (1) and (R) are true and (R) is the correct explanation of (A)											
	2) Both (1) and (R) are true and (R) is not the correct explanation of (A)											
	3) (1) is true b	out (R) is f	alse			4) (1) is fals	se but (I	R) is tru	e		
54.	(1) : For two solutions, 0.1m aquous solution of glucose and 0.1 m urea in benzene, lowering of vapour pressure is same.									enzene, the		
	(R) : Vapour j	pressure i	s alway	s lowered	d whe	en no	on – vola	atile sol	ute is a	dded to	water.	
	1) Both (1) an	d (R) are	true and	(R) is the	e corr	ect e	explanat	tion of ((A)			
	2) Both (1) an	. ,		(R) is no	ot the o		-		• • •			
	3) (1) is true b	. ,				4) (1) is fals	se but (I	R) is tru	e		
55.	When KCl di	ssolved ir	n water									
	1) $\Delta H = +Ve$, 1				$\Delta G = -V$		
	3) $\Delta H = +Ve$	$\Delta S = +V$	e = -Ve	ġ		4)	ΔH = -\	Ve ∆S⁼	= -Ve ∆	G = +Ve	2	
56.	• • •				0	ght to boil. The cooker is then removed from the esuure cooker, the water starts boiling again						
	(R) : The imp	urties in v	vater br	ing dowr	n its b	oilir	ng point					
	1) Both (1) an	d (R) are	true and	(R) is the	e corr	ect e	explanat	tion of ((A)			
	2) Both (1) an	d (R) are	true and	(R) is no	ot the o	corr	ect expl	anatior	of (A)			
	3) (1) is true b	out (R) is f	alse			4) (1) is fals	e but (I	R) is tru	e		
57.	For an ideal solution of two components A and B, If x_A and y_A are mole fractions of component 'A' in solution and vapour phase respectively, then the slope of linear line in the graph drawn between $1/x_A$ and $1/y_A$ is											
	1) $P^{0}_{A} + P^{0}_{B}$		2) P ⁰ _A /	$P^0_{\ B}$		3) I	$P_B^0 + P_A^0$	L	4)	$P_A^0 - P_B^0$		
58.	A liquid is in in the two ph			its vapor	ur at i	ts b	oiling po	oint, on	the ave	erage, th	e molecules	
	1) Inter molec					2) I	Potential	energy	7			
	3) Temperatu	re				4) ŀ	Kinetic e	nergy				
59	(A). If one co		obevs l	Raoult's I	law o	ver	a cortai	n rango	e of cor	nnositio	n the other	

59. (A): If one component obeys Raoult's law over a certain range of composition, the other

SOLU	JTIONS	at ala and I I an und'a la suite	th a t way a a	
	-	ot obey Henry's law in	, and a second s	
		special case of Henry		
	, , , , ,	e true and (R) is the cor		
	, , , , , ,	e true and (R) is not the	1	
	3) (1) is true but (R) is		4) (1) is false but (R)	
60.		utions which depend o solute) but independer		particles of solute (or the olute are called
	1) extensive propertie	es	2) intensive properti	es
	3) colloidal propertie	25	4) colligative proper	ties
61.	Which of the following	ng is a colligative prop	erty	
	1) vapour pressure o	f a liquid	2) boiling point	
	3) freezing point	4) relative lowering of	of vapour pressure of a	solution
62.	The solublity of I_2 in	KI solution is more tha	n its solubllity in pure	water because
	1) I_2 dissociates in wa	ater	2) I_2 does not react w	ith water
	3) I_2 forms soluble con	mplex KI ₃ with KI	4) None of these	
63.	The freezing point of	equimolal aqueous so	lution will be highest f	or
	1) $C_6H_5NH_3Cl$	$2) \operatorname{Ca(NO_3)}_2$	3) La(NO ₃) ₃	0 12 0
64.		glucose and 0.1 M s brane to equal heights,	1	laced on two sides of a to say that
	1) Glucose will flow	towards urea solution		
	2) There will be no ne	et movement across me	mbrane	
	3) Urea will flow tow	vards glucose solution		
	4) Water will flow fro	om urea solution to glu	cose	
65.	The relationship bet	ween the value of Osr	motic pressue (π) of t	the solution obtained by
	dissolving 6 g.L ⁻¹ of a	acetic acid (π_1) and 7.4	5 g.L ⁻¹ of KCl (π_2) is	
				ππ
	1) $\pi_1 < \pi_2$	2) $\pi_1 > \pi_2$.	3) $\pi_1 = \pi_2$	4) $\frac{\pi_1}{\pi_1 + \pi_2} = \frac{\pi_2}{\pi_1 + \pi_2}$
66.	Solution A B C and	Dara respectively 0.1	M Chucoso 0.05M No(Cl, 0.05M BaCl, and 0.1M
00.		ne following pairs is iso		$21, 0.00$ with $DaCl_2$ and 0.11 with
	1) A&C	2) B&C	3) A&B	4) A&D
67.	Solution S_1 contains C_1 , the osmotic press		solution S ₂ contains 9 ₈	g glucose per litre. At 298
	1) S_1 is greater than t	hat S ₂	2) S_1 is less than that	of S ₂
	3) Both the solution i	s same	4) Both the solution	is 1 atm.
68.	Set - I		Set - II	
	i) RBC in 0.5% NaCl	solution	A) Swells	
	ii) RBC in 1% NaCl s	olution	B) Shrinks	
	iii) egg (outer shell re	move4) in water		
	iv) egg (outer shell re incorrect match is	emove4) in NaCl solutio	on	
	1) i - A		2) ii - B	
	3) iii - A		4) iv - A	
	/		/	

69. FeCl₃ on reaction with $K_4[Fe(CN)_6]$ in aq solution gives blue colour of these are separated by a semi permeable membrane AB as shown, Due to osmosis there is

1) blue colour formation in side X

2) blue colour formation in side Y

- 3) blue colour formation in both sides X & Y 4) no blue colour formation
- 70. The phase diagrams for the pure solvent (solid lines) and the solution (non-volatile solute, dashed line) are recorded below. The quantity indicated by 'L' in the figure is

1)
$$\Delta p$$
 2) ΔT_{f} P
3) K_{b} .m 4) K_{f} .m T

71. The degree of dissociation (α) of a weak electrolyte $A_x B_y$ is related to Van't Hoff factor (i) by the expression

1)
$$\alpha = \frac{i-1}{(x+y-1)}$$
 2) $\alpha = \frac{i-1}{x+y+1}$ 3) $\alpha = \frac{x+y-1}{i-1}$ 4) $\alpha = \frac{x+y+1}{i-1}$

72. When mercuric iodide is added to the aqueous solution of potassium iodide, the 1) freezing point is raised 2) freezing point doesnot change 3) freezing point is lowered 4) boiling point does not change 73. In the depression of freezing point experiment, it is found that a) The vapour pressure of the solution is less than that of pure solvent b) The vapour pressure of the solution is more than that of pure solvent c) Only solute molecules solidify at the freezing point d) Only solvent molecules solidify at the freezing point 1) a, b 2) b, c 3) a, d 4) a, b, c 74. During depression of freezing point in a solution the following are in equilibrium 1) Liquid solvent, Solid solvent 2) Liquid solvent, Solid solute 3) Liquid solute, Solid Solute 4) Liquid solute, Solid solvent 75. The molal elevation constant is the ratio of the elevation in boliing point to 1) Molarity 2) Molality 3) Mole fraction of solute 4) Mole fraction of solvent. The relationship between osmotic pressure at 273 K when 10 g glucose (P_1) , 10 g urea (P_2) and 76. 10 g sucorse (P_3) are dissoved in 250 ml of water is. 3) $P_2 > P_1 > P_3$ 1) $P_1 > P_2 > P_3$ 2) $P_3 > P_1 > P_2$ 4) $P_2 > P_3 > P_1$ 77. Which of the following statement is false?

1) Raoult's law states that vapour pressure of a component over a solution is proportional to its mole fraciton.

2) Osmotic pressure is given by the expression π = MRT where, M is molarity.

3) The correct order of osmotic pressures of 0.01 M aqueous solution of each compound is $BaCl_2 > KCl > CH_3COOH > Sucrose$.

4) Two sucrose solutions of same molarity prepared in different solvents will have same freezing point depressions.

78. Equimolar solutions of electrolytes in the same solvent have

1) Same boiling point but different freezing point

501	2) Same freezing point but different boiling point						
	3) Same boiling and same freezing points						
	4) Different boiling and different freezing point						
79.	If α is the degree of dissociation of Na ₂ SO ₄ , the Vant Hoff factor (i) used for calculating the molecular mass is						
	1) 1+α	2) 1-α	3) 1+2 α	4) 1-2 α			
80.	. Solution A contains 7g/L MgCl ₂ and solution B contains 7g/L of NaCl. At room temperatu the osmotic pressure of						
	1) solution A is grea	iter than B	2) both have same osmotic pressure				
	3) solution B is grea	ter than A	4) Can't determine.				
81.	Which of the following aqueous solutions containing 10g of solute in each case, has highe melting point?						
	1) NaCl solution	2) KCl solution	3) Sugar solution	4) Glucose solution			
82.	2. Which of the following salt will have same value of Van't Hoff's factor [i] as that of K_4 [Fe(CN						
	1) $Al_2(SO_4)_3$	2) NaCl	3) Al(NO ₃) ₃	4) Na_2SO_4			
83.	Blood is isotonic wi	th					
	1) 0.16 M NaCl	2) Conc.NaCl	3) 50% NaCl	4) 30% NaCl			

	WORK SHEET - II							
1.	The number of Gluce	ose molecules present in	n 10 ml of decimolar so	lution is				
	1) 6.0 \times 10 ²⁰	2) 6.0×10^{19}	3) 6.0 \times 10 ²¹	4) 6.0×10^{22}				
2.	The number of ion s	The number of ion s present in 1 ml of $0.1 M CaCl_2$ solution is						
	1) 1.8 \times 10 ²⁰	2) 6.0 \times 10 ²⁰	3) 1.8 \times 10 ¹⁹	4) 1.8 \times 10 ²¹				
3.	1	as solution contains 6. Sumber of solute molec		lecules. The solution is the dilute solution is				
	1) 6.0 \times 10 ²⁰	2) 6.0 \times 10 ¹⁹	3) 6.0 × 10 ¹⁸	4) 6.0 \times 10 ¹⁷				
4.	11.1 g. of $CaCl_2$ is preis	sent in 100 ml of the aq		loride ion concentration				
	1) 1M	2) 2M	3) 0.5M	4) 0.2M				
5.	100 ml each of 1M A resulting solution is	gNO_3 and 1M NaCl ar	M NaCl are mixed. The nitrate ion concentration in the					
	1) 1M	2) 0.5M	3) 0.75M	4) 0.25 M				
6.		.8% by weight. Specific re 1000 ml of 0.18M solu		3. The volume of the acid				
	1) 10ml	2) 100ml	3) 740 ml	4) 360 ml				
7.	HCl is labelled as 3.65% (w/v) 10ml of the solution is diluted to 1 lit. The proton concentration in the resulting solution is							
	1) 10 ⁻³ M	2) 2.5 \times 10 ⁻² M	3) 7.5 \times 10 ⁻² M	4) 10 ⁻² M				
8.	100 ml of 1M HCl, 2 resulting solution is	00 ml 2M HCl and 30	0 ml 3M HCl are mixe	ed. The Molarity of the				
	1) 1M	2) 2.66M	3) 2.33 M	4) 4.25 M				
9.	The volumes of 1M H	ICl and 5M HCl to be r	nixed to get 2 lit of 2M	HCl are				
	1) 1 lit and 1 lit	2) 1.5 lit and 0.5 lit	.5 lit and 0.5 lit 3) 1.25 lit and 0.75 lit 4) 1.33 lit and 0.66 l					

	SOLUTION	0				
10.	A 20% (W/W) solution of NaOH is 5 M. The density of the solution is					
	1) 1 g.ml ⁻¹ 2) 2 g.ml ⁻¹ 3) 0.5 g.ml ⁻¹ 4) 0.25 g.ml ⁻¹					
11.	Zinc reacts with $CuSO_4$ according to the equation $Zn + CuSO_4 \rightarrow ZnSO_4 + Cu$. If excess c zinc is added to 100ml of 0.05M $CuSO_4$, the amount of copper formed					
	1) 0.6354 g. 2) 0.3177 g. 3) 3.177 g. 4) 6.354 g.					
12.	10.6 g of a substance of molecular weight 106 was dissolved in 100 ml. 10 ml of this solution was pipetted out into a 1000 ml flask and made up to the mark with distilled water. The molarity of the resulting solution is					
	1) 1 M 2) 10^{-2} M 3) 10^{-3} 4) 10^{-4} M					
13.	The volume of decamolar aquous solutions of hydrochloric Acid is required to prepare 2dr of 5M HCl solution is	n ³				
	1) 0.5L 2) 1L 3) 2L 4) 3L					
14.	The concentration of a 100 ml solution containing 'x' grams of Na_2CO_3 is yM. The values of and y are	fx				
	1) 2.12, 0.05 2) 1.06, 0.2 3) 1.06, 0.1 4) 2.12, 0.1					
15.	The number of millimoles of H_2SO_4 present in 5 litres of 0.2N H_2SO_4 solution is					
	1) 5002) 10003) 2504) 0.5×10^{-3}					
16.	200 ml of $1 \text{M} \text{H}_2\text{SO}_4$, $300 \text{ ml} 3 \text{M}$ HCl and 100 ml of 2M HCl are mixed and made up to 1 lite. The proton concentration in the resulting solution is	re.				
	1) 1.25M 2) 1.5M 3) 2.5M 4) 0.75M					
17.	The volume of 0.025M Ca(OH) ₂ solution which can neutralise 100 ml of 10^{-4} M H ₃ PO ₄ is					
10	1) 10 ml 2) 60 ml 3) 0.6 ml 4) 2.8 ml	0				
18.	The Molarity of 200 ml of HCl solution which can neutralise 10.6 g. of anhydrous Na_2Cl is	O_3				
	1) 0.1M 2) 1M 3) 0.6M 4) 0.75M					
19.	10 millimoles of a diacidic base exactly neutralises 100 ml of an acid. Then the Normali of that acid is	ty				
	1) 0.2 N 2) 0.1 N 3) 0.4 N 4) 0.5N					
20.	100 ml of 0.1N FeSO ₄ solution will be completely oxidised by 'x' gms of $K_2Cr_2O_7$ in acid medium (Mol.wt = 294). The value of 'x' is	lic				
	1) 4.92) 2.943) 0.494) 1.47					
21.	100 ml of 2M <i>HCl</i> solution completely neutralises 10 g. of a metal carbonate. Then the equivalent weight of the metal is	he				
	1) 50 2) 20 3) 12 4) 100					
22.	What is the volume (in ml) of 0.1 M potasium permanganate solution required to complete oxidise 100 ml of 0.5 M ferrous sulphate solution in acidic medium?	ly				
	1) 202) 2003) 504) 100					
23.	The Normality of 0.98% (w/v) H_2SO_4 solution is					
	1) 0.1N 2) 0.2N 3) 0.4N 4) 1N					
24.	Molarity of $3N H_3PO_4$ solution is					
05	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
25.	0.1 gram mole of urea is dissolved in 100g. of water. The molality of the solution is					
26.	1) 1 m 2) 0.01 M 3) 0.01 m 4) 1.0 M The molality of 2% (W/W) NaCl solution nearly					
20.	The motancy of 270 (VV / VV) that i solution meanly					

SOLU	JTIONS		a) a a -			
	1) 0.02m	2) 0.35 m	3) 0.25 m	4) 0.45 m		
27.	lit solution. The Molarity and molality of the resulting solution are					
	1) 2M and 2m	2) 2M and 2.22m	3) 2.2M and 1.1 m	4) 2M and 1m		
28.	Which of the following solution as 1g/ml]	ng aqueous solutions is	s more concentrated [A	ssume the density of the		
	1) 1M Glucose	2) 1m Glucose	3) 0.5m Glucose	4) 0.5M Glucose		
29.	Which of the following	ng solution is more con	centrated			
	1) 0.3% H ₃ PO ₄	2) 0.3M H ₃ PO ₄	3) 0.3m H ₃ PO ₄	4) 0.3N H ₃ PO ₄		
30.	Molarity of 1m aqueo	ous NaOH solution [de	ensity of the solution is	1.02 g/ml]		
	1) 1M	2) 1.02 M	3) 1.2 M	4) 0.98 M		
31.	6 g. of Urea is dissolv	ed in 90 g. of water. T	he mole fraction of solu	ite is		
	1) 1/5	2) 1/50	3) 1/51	4) 1/501		
32.	A gaseous mixture co fraction of "A" is	ntain four gases A, B, C	C and D. The mole fracti	on of "B" is 0.5. The mole		
	1) 0.525	2) 0.375	3) 0.625	4) 0.732		
33.	Aqueous NaOH solu	tion is labelled as 10%	by weight mole fract	ion of the solute in it is		
	1) 0.05	2) 0.0476	3) 0.052	4) 0.52		
34.	The mole percentage	e of oxygen in a mixtu	are of 7 gm of Nitrogen	and 8 gm of oxygen is		
	1) 8	2) 16	3) 21	4) 50		
35.	The mole fraction of s	solvent in 0.1 molal aq	ueous solution is			
	1) 0.9982	2) 0.0017	3) 0.017	4) 0.17		
36.		tion is labelled as 109 on of the solute in the s		e solution is 1.02 g/ml.		
	1) 0.05	2) 0.0466	3) 0.53	4) 0.053		
37.	The maximum allowater dm ³ , the level in p		drinking water as set by	y U.S. is 45 mg NO ₃ ions		
	1) 15	2) 30	3) 45	4) 60		
38.	6 g. of urea is dissolv	ed in 90 g. of boiling v	water. The vapour pres	ssure of the solution is		
	1) 744.8 mm	2) 758 mm	3) 761 mm	4) 760 mm		
39.		5		g. of a non-volatile solute he Molecular weight of		
	1) 150	2) 130.832	3) 160	4) 180		
40.	The vapour pressure glucose solution at 25	-	is 30 mm. The vapour	pressure of 10% (W/W)		
	1) 31.5 mm	2) 30.6 mm	3) 29.67 mm	4) 26.56 mm		
41.	The weight of urea water by 5% is	to be dissolved in 100	g. of water to decreas	e the vapour pressure of		
	1) 20 g.	2) 14.66 g	3) 15.24 g	4) 16.66 g.		
42.	139.18 g of glucose is a solution at 100°C is	added to 178.2 g of wat	er the vapour pressure	of water for this aqueous		
	1) 704 torr	2) 759 torr	3) 7.6 torr	4) 76 torr		
43.	The relative lowering is	of vapour pressure of 0).2 molal solution in whi	ich the solvent is Benzene		

	1) 15.6 \times 10 ⁻⁴	2) 15.6 × 10 ⁻³	3) 15.6 × 10 ⁻¹	4) 0.05			
44.	Vapour pressure of the solution is	f an aqueous solution i	s 2% less than that of t	he solvent. The molality of			
	1) 2m	2) 1.5 m	3) 1.13 m	4) 0.2 m			
45.	The amount of Glucose to be dissolved in 500 g. of water so as to produce the same lowering in vapour pressure as that of 0.2 molal aqueous urea solution						
	1) 9 g.	2) 18 g.	3) 36 g.	4) 1.8 g.			
46.	A Current of dry air was first passed through the bulb containing solution of 'A' in water and then through the bulb containing pure water. The loss in mass of a solution bulb is 1.92g gm Where as that in pure water bulb is 0.08g, then mole fraction of 'A' is						
	1) 0.86	2) 0.2	3) 0.96	4) 0.04			
47.		on containing one grar glucose in the same vo		25°C. The aqueous solution			
	1) 100°C	2)100.25°C	3) 100.5°C	4) 100.75°C			
48.	elevation of 0.4°C.		n solute in same amou	g of CCl ₄ has a boiling point nt of CCl ₄ produced boiling is			
	1) 25g	2) 50g	3) 75g	4) 128g			
49.		ous solution that produced ater = 0.512 K. kg. mol ⁻¹		iling point of 1.00 K at 1 atm			
	1) 0.512 M	2) 0.195 m	3) 1.95 m	4) 5.12 M			
50.	A current of dry air was bubbled through a bulb containing 30 g of an organic compound in 200 g of water, then through a bulb at the same temparature, containing water and finally through a tube containing anhydrous CaCl ₂ , the loss in mass of bulb containing water was 0.03 g and gain in mass of CaCl ₂ tube was 2 g, then molecular mass of organic compound is						
	(Hint: $\frac{P^{o} - P}{P^{o}} = \frac{\text{Loss in mass of solvent bulb}}{\text{Gain in mass of CaCl}_{2} \text{ tube}}$)						
	(Hint: $\frac{\mathbf{I} - \mathbf{I}}{\mathbf{P}^0} = \frac{\mathbf{I}}{\mathbf{G}}$	ain in mass of CaCl ₂ t	tube ⁾				
	(Hint: $\frac{1}{P^{0}} = \frac{1}{G}$ 1) 180	ain in mass of CaCl ₂ (2) 530.7	(1000) (1	4) 140.7			
51.	1) 180 The solution conta	2) 530.7	3) 280.7 c solute in 100g of wa	4) 140.7 ter was found to freeze at -			
51.	1) 180 The solution conta	2) 530.7 ining 6.8g of non-ionio	3) 280.7 c solute in 100g of wa lass of solute is	/			
51. 52.	1) 180 The solution conta 0.93°C. If K _f for wa 1) 13.6	2) 530.7 ining 6.8g of non-ionic ter is 1.86, the molar M 2) 68	3) 280.7 c solute in 100g of wa lass of solute is 3) 34	ter was found to freeze at -			
	1) 180 The solution conta 0.93°C. If K _f for wa 1) 13.6 The molal freezing	2) 530.7 ining 6.8g of non-ionic ter is 1.86, the molar M 2) 68	3) 280.7 c solute in 100g of wa lass of solute is 3) 34	ter was found to freeze at - 4) 136			
	 1) 180 The solution conta 0.93°C. If K_f for wa 1) 13.6 The molal freezing NaCl solution is 1) -1.86°C Molal depression contact 	2) 530.7 ining 6.8g of non-ionio ter is 1.86, the molar M 2) 68 g point constant for wa 2) -0.372°C	3) 280.7 c solute in 100g of wa lass of solute is 3) 34 ter is 1.86 K.kg mole ⁻¹ . 3) -0.186°C	ter was found to freeze at - 4) 136 The freezing point of 0.1m			
52.	 1) 180 The solution conta 0.93°C. If K_f for wa 1) 13.6 The molal freezing NaCl solution is 1) -1.86°C Molal depression contact 	2) 530.7 ining 6.8g of non-ionio ter is 1.86, the molar M 2) 68 point constant for wa 2) -0.372°C constant for water is 1.8	3) 280.7 c solute in 100g of wa lass of solute is 3) 34 ter is 1.86 K.kg mole ⁻¹ . 3) -0.186°C	ter was found to freeze at - 4) 136 The freezing point of 0.1m 4) 0.372°C			
52.	1) 180 The solution conta 0.93°C. If K _f for wa 1) 13.6 The molal freezing NaCl solution is 1) -1.86°C Molal depression of solution of a non el 1) -1.86°C	2) 530.7 ining 6.8g of non-ionio ter is 1.86, the molar M 2) 68 point constant for wa 2) -0.372°C constant for water is 1.8 ectrolyte in water is 2) -0.93°C freezing point of 0.01 m	3) 280.7 c solute in 100g of war lass of solute is 3) 34 ter is 1.86 K.kg mole ⁻¹ . 3) -0.186°C 86 K.Kg.mole ⁻¹ . The fre 3) -0.093°C	ter was found to freeze at - 4) 136 The freezing point of 0.1m 4) 0.372°C eezing point of a 0.05 molal			
52. 53.	 1) 180 The solution conta 0.93°C. If K_f for wa 1) 13.6 The molal freezing NaCl solution is 1) -1.86°C Molal depression of solution of a non ele 1) -1.86°C The depression in the 	2) 530.7 ining 6.8g of non-ionio ter is 1.86, the molar M 2) 68 point constant for wa 2) -0.372°C constant for water is 1.8 ectrolyte in water is 2) -0.93°C freezing point of 0.01 m	3) 280.7 c solute in 100g of war lass of solute is 3) 34 ter is 1.86 K.kg mole ⁻¹ . 3) -0.186°C 86 K.Kg.mole ⁻¹ . The fre 3) -0.093°C	ter was found to freeze at - 4) 136 The freezing point of 0.1m 4) 0.372°C eezing point of a 0.05 molal 4) 0.93°C			
52. 53.	 1) 180 The solution conta 0.93°C. If K_f for wa 1) 13.6 The molal freezing NaCl solution is 1) -1.86°C Molal depression of solution of a non ele 1) -1.86°C The depression in a sodium sulphate is 1) 1:1:1 	2) 530.7 ining 6.8g of non-ionio ter is 1.86, the molar M 2) 68 point constant for wa 2) -0.372°C constant for water is 1.8 ectrolyte in water is 2) -0.93°C freezing point of 0.01 m in the ratio 2) 1:2:3 ure of solution containi	3) 280.7 c solute in 100g of war lass of solute is 3) 34 ter is 1.86 K.kg mole ⁻¹ . 3) -0.186°C 86 K.Kg.mole ⁻¹ . The fro 3) -0.093°C m aqueous solution of 3) 1:2:4	ter was found to freeze at - 4) 136 The freezing point of 0.1m 4) 0.372°C eezing point of a 0.05 molal 4) 0.93°C urea, sodium chloride and			
52. 53. 54.	1) 180 The solution conta 0.93° C. If K _f for wa 1) 13.6 The molal freezing NaCl solution is 1) -1.86^{\circ}C Molal depression of solution of a non el 1) -1.86^{\circ}C The depression in a sodium sulphate is 1) 1:1:1 The Osmotic pressat is (R = 0.082L atm 1) 1) 0.1 atm	2) 530.7 ining 6.8g of non-ionio ter is 1.86, the molar M 2) 68 point constant for wa 2) -0.372°C constant for water is 1.8 ectrolyte in water is 2) -0.93°C freezing point of 0.01 m in the ratio 2) 1:2:3 ure of solution containi s ⁻¹ mol ⁻¹) : 2) 0.2 atm	3) 280.7 c solute in 100g of war lass of solute is 3) 34 ter is 1.86 K.kg mole ⁻¹ . 3) -0.186°C 86 K.Kg.mole ⁻¹ . The fro 3) -0.093°C m aqueous solution of 3) 1:2:4 ng 4.0g of solute (mola 3) 0.4 atm	ter was found to freeze at - 4) 136 The freezing point of 0.1m 4) 0.372°C eezing point of a 0.05 molal 4) 0.93°C urea, sodium chloride and 4) 2:2:3			

2020	various solutes is				
	1) 0.1 molL ⁻¹	2) 0.2 molL ⁻¹	3) 0.3 molL ⁻¹	4) 0.4 molL ⁻¹	
57.	57. At 10°C, the osmotic pressure of urea solution diluted 'x' times and the temperature raised be 105.3mm, then 'x' is				
	1) 3	2) 4	3) 5	4) 12	
58.	The osmotic pressure	e of 5% aqueous solutio	on of sugar (mol. Mass	342) at 15°C is	
	1) 4 atm.	2) 3.45 atm	3) 3.75 atm	4) 2.45 atm.	
59.	A 5% solution of cane	e suger is isotonic with	0.5% of X. The molecul	ar weight of substance X	
	1) 34.2	2) 119.96	3) 95.58	4) 126.98	
60. At 273K, 100Cm ³ of a solution containing 3gm of an ur pressure of 2.24atm, then molar mass of the solute is				olute exhibits an osmotic	
	1) 88gmol ⁻¹	2) 188gmol ⁻¹	3) 300gmol ⁻¹	4) 388gmol ⁻¹	
61.	61. The osmotic pressure of the solution obtained by mixing 200cm of urea with 200cm ³ of 3.42% solution of sucrose at 20°C is			% (mass-volume) solution	
	1) 4 bar	2) 1.2 bar	3) 5.2 bar	4) 15.4 bar	
62.	62. Correct order of osmotic pressure of the fo		lowing solution is		
	1) 34.2 gmL ⁻¹ of gluce	ose	2) 60 gm L ⁻¹ of urea		
	3) 90 gm L ⁻¹ of glucos	se	4) 58.5 gm L ⁻¹ of NaC	21	
	1) A < B < C < D	2) A < C < B < D	3) A < D < B < C	4) A < C < D < B	
63.	A decimolar solution solution is	of K_4 [Fe(CN) ₆] at 300K	is 50% dissociated, the	n, osmotic pressure of the	
	1) 3.61 atm	2) 7.38 atm	3) 12.32 atm	4) 21.34 atm	

EXERCISE- I / ANSWERS WORK SHEET - I

			-						
1) 1	2) 3	3) 3	4)1	5) 2	6) 1	7) 3	8) 1	9)1	10) 1
11) 2	12) 4	13) 1	14) 3	15) 3	16) 2	17) 1	18) 1	19) 1	20) 4
21) 1	22) 2	23) 1	24) 2	25) 3	26) 2	27) 4	28) 3	29) 3	30) 1
31) 1	32) 3	33) 3	34) 4	35) 3	36) 4	37) 3	38) 2	39) 1	40) 1
41) 3	42) 2	43) 1	44) 1	45) 4	46) 4	47) 4	48) 4	49) 1	50) 3
51) 3	52) 3	53) 1	54) 4	55) 3	56) 3	57) 3	58) 4	59) 4	60) 4
61) 4	62) 3	63) 4	64) 2	65) 1	66) 3	67) 3	68) 4	69) 4	70) 3
71) 1	72) 1	73) 3	74) 1	75) 2	76) 3	77) 4	78) 4	79) 3	80) 3
81) 3	82) 1	83) 1							
			W	VORK	SHEET	Г - II			
1) 1	2) 1	3) 2	4) 2	5) 2	6) 2	7) 4	8) 3	9) 2	10) 1
11) 2	12) 2	13) 2	14) 3	15) 1	16) 2	17) 3	18) 2	19) 1	20) 3
21) 2	22) 4	23) 2	24) 4	25) 1	26) 2	27) 2	28) 1	29) 2	30) 4
31) 3	32) 2	33) 2	34) 4	35) 1	36) 2	37) 3	38) 1	39) 2	40) 3
41) 4	42) 1	43) 2	44) 3	45) 2	46) 4	47) 2	48) 4	49) 3	50) 1
51) 4	52) 2	53) 3	54) 2	55) 3	56) 3	57) 3	58) 2	59) 1	60) 3
61) 3	62) 2	63) 2							

ELECTRO CHEMISTRY

EXERCISE - I

WORK SHEET - I

	WORK 5	ПЕСІ - І			
1.	Which one of the following materials conducts electricity ?				
	1) diamond 2) barium sulphate	3) crystalline sodium	n chloride		
	4) fused potassium chloride	5) molten sulphur			
2.	An electronic conductor is				
	1) NaCl 2) Diamond	3) Ag	4) KCl		
3.	Which of the following is conductor of ele	ctricity			
	1) diamond 2) graphite	3) carborundum	4) silica		
4.	In metallic conductor the current is condu	cted by flow of	,		
	1) ions 2) atoms	3) electrons	4) molecules		
5.					
	1) liquid HCl	2) HCl aq. solution			
	3) HCl solution in benzene	4) gaseous HCl			
6.	Solid NaCl is a bad conductor of electricit	y because			
	1) solid NaCl is a covalent compound	2) solid NaCl has no	free ions		
	3) solid NaCl has no free electrons	4) solid NaCl there is	no migration of ions		
7.	The decrease in electrical conductivity of m	etals with increase in tem	perature is due to increase		
	in				
	1) the velocity of electrons	2) the resistance of th	e metal		
	3) the number of electrons	4) the number of met	al atoms		
8.	The reason for increase in electrical condu	ction of electrolyte with	increase in temperature is		
	1) increase in the number of ions	2) increase in the spe	ed of ions		
	3) increase in the degree of dissociation of	electrolyte			
	1) A, B only 2) B, C only	3) A, C only	4) A, B, C		
9.	Sodium metal in liquid ammonia is				
	1) an ionic conductor	2) an electronic cond	uctor		
	3) a mixed conductor	4) non - conductor			
10.	A solution of Sodium metal in liquid amm	onia is strongly reducing	g agent due to		
	1) Sodium atoms 2) Sodium hydride	3) Sodamide	4) Solvated electrons		
11.	Choose the wrong statement				
	1) electrical conductance of an electrolytic	conductor increases with	h increase in temperature		
	2) electrical conductance of a metallic con-	luctor increases with inc	rease in temperature		
	3) electrical conductance of a metallic cond	luctor decreases with inc	crease in temperature		
	4) degree of dissociation of an electrolyte	ncreases with dilution			
12.	LIST - 1	LIST - 2			
	1) Electronic conductor	1) Aqueous urea solut	ion		
	2) Non-electrolyte	2) Solid sodium			
	3) Electrolytic dissociation	3) Electrolytic condu			
	4) Arrhenius	4) Radioactivity incr			
	The convector the is	5) Conductivity raise	es with temperature		
	The correct match is				

ELEC	A	B	С	D		А	В	С	D	
	1) 5	1	2	3	2)	5	2	1	4	
	1) 5 3) 2	1	5	3	2) 4)	2	5	1	4	
13.	Which of the				,			1	Ŧ	
10.	1) CH ₃ COOF		2) HCN			3) NaCl	•	4) N	JH₄OH	
14.	Which of the		'			/			4011	
17.	1) sulphuric		$\frac{1}{2}$ borid			3) nitric a		4) r	hosphoro	us acid
15.	The degree o		,			/		, 1	-	us acia
10.	1) Temperatu		111011 01 0	merceur		2) Concer				
	3) Nature of t		alvto		4		manorit	n uie eiee	lioiyic	
	1) Only A		2) Only	AB	c	3) Only B,	C	4) A	а, В, С	
16.	What happer	ıs at infir	, ,			, ,	Ċ	-1) 1	I, D, C	
	1) The degree				0		es			
	2) The electro			-		-		ttraction	s disappea	ar
	4) All the three									
17.	At infinite di	lution th	-	of disso			e in aqu			
	1) 0		2) 0.5			3) 0.99		4) 1		
18.	Choose the co				-	•				
	1) It is a devi				gy is cor	nverted ir	nto electi	rical ener	gy	
	2) Anode is s		-	-						
	3) Oxidation		-							
	4) Electrons f									
19.	The following					•				
	1) in this, che						gу			
	2) in this, cell									
	3) in this, cell			-	cathode					
	4) in this, catl			trode						
	The correct co	ombinati		-			5		1	
•	1) only B		2) only			3) only C,	D	4) o	nly B, C	
20.	The reaction	_					. 1	0.1.1.1		
	1) Oxidation					,				
01	3) Oxidation	•	•	1 1 .		4) Reduct				
21.	The electrode	e through	1 which i	the electr			ctrolytic	solution	15	
	1) cathode	1	.1 1			2) anode	1	.1	1	
	3) may be and			C .1 .1		1) neither		or catho	de	
22.	As electrolys	-	•		-			. 1		
	1) the movem					2) the ions				
	3) all ions mo					, ,	ions mo	ve towar	ds the and	ode
23.	In the electro						_	_		
	1) cathode to							be throug	gh external	circuit
	3) anode to ca		-							
24.	In electrolysi	s of dilut		, what is			e in pres			ode?
	1) H ₂		2) SO ₂			3) SO ₃		4) C	4	
25.	Which proce	ss occur	s in the	electroly	sis of a	queous s	olution	ot nickel	chloride	at nickel
234										

	anode?			
		2) $2H^+ + 2e \rightarrow H_2$	$(2) 2C^{1-} + C^{1} + 2c^{1-}$	(1) NI; $NI;^{2+} + 2c$
26.		olysed using platinum el	. 2	
20.	1) $2Cl^{-} \rightarrow Cl_2(g) + 2e$		2) $Cl_2(g) + 2e^- \rightarrow 2C$	
	3) $\operatorname{Cu}^{2+} + 2e^{-} \rightarrow \operatorname{Cu}(s)$		4) Cu (s) \rightarrow Cu ²⁺ + 2c	
27.	, , , , , , , , , , , , , , , , , , , ,	[,] ic reduction of alumina	, , ,	
21.	1) $2H_2O \rightarrow O_2 + 4H^2$		2) $3F^- \rightarrow 3F + 3e^-$	de 15
	3) $Al^{3+} + 3e^- \rightarrow Al$		4) $2H^+ + 2e^- \rightarrow H_2$	
28.	,	olution of conner sulpl	, <u> </u>	ing copper electrodes the
_0.	reaction at the anode			ing copper electrones are
	1) $\mathrm{H}^+ + \mathrm{e}^- \rightarrow \mathrm{H}$		2) $Cu^{2+} + 2e^{-} \rightarrow Cu$	L
	3) $SO_4^{2-}(aq) \rightarrow SO_4$	+ 2e-	4) $Cu(s) \rightarrow Cu^{2+}(ac)$	l) + 2e⁻
29.	Which of the followi	ng reaction is possible	at anode ?	
	1) $2Cr^{3+} + 7H_2O \rightarrow C$	$2r_2O_7^{2-} + 14H^+$	2) $F_2 \rightarrow 2F^-$	
	1			
	3) $\frac{1}{2}O_2 + 2H^+ \rightarrow H_2$	0	4) None of these	
30.	Aqueous solution of	CuSO₄ is electrolysed us	sing inert electrodes till	the blue coloured solution
		The colourless solution		
	1) Cu(OH) ₂	2) H ₂ SO ₄	3) CuSO ₄	4) H ₂ O
31.		-		les, the pH of the solution
	1) increases	2) decreases	3) remains constant	·
32.		is of aqueous solution o e chemical compositior		ty of the solution increases
	1) NaCl	2) HCl	3) CuSO ₄	4) H_2SO_4
33.	Aqueous NaCl soluti at cathode?	on is electrolyzed using	platinum electrodes. V	Vhat is the product formed
	1) Na	2) H ₂	3) O ₂	4) Cl ₂
34.		rolysis of fused sodium		
	1) Na ⁺ is oxidised	2) Cl^- is oxidised	3) C <i>l</i> is reduced	4) Na is reduced
35.	•	Cl when Pt electode is t sodium amalgam. This	4	ted at cathode while with
	1) Hg is more inert th			
	, 0	quired to reduce H ⁺ at I	0	
		Hg while it does not d		
26	,	s larger when Pt electro		
36.		ways evolved only at c reduction by gaining e		y515
	The correct answer is			
		e true and (R) is the cor	rect explanation of (A))
		e true and (R) is not the		
	3) (1) is true but (R) is	. ,	-	
	4) (1) is false but (R)	s true		
37.	Which of the following	ng ions is discharged at	the cathode when an ac	queous solution of sodium

ELEC		L		
	hydroxide is electrol	ysed ?		
	1) Hydrogen	2) Hydroxyl	3) Oxygen	4) Sodium
38.	During electrolysis o	f fused NaOH		
	1) H_2 is liberated at c	athode	2) O_2 is liberated at ca	athode
	3) H_2 is liberated at a	node	4) O_2 is liberated at a	node
39.	Aqueous solution of	AgNO ₃ is electrolysed u	using inert electrodes.	At the end of electrolysis
	1) pH of the solution	increases	2) pH of the solution	decreases
	3) pH of the solution	n remains unchanged	4) pH of the solution	becomes 14
40.	At cathode, the electr	olysis of aqueous Na ₂ S	O ₄ gives	
	1) Na	2) H ₂	3) SO ₃	4) SO ₂
41.		lectrolysed using inert		$O_3)_{2'}$ AgNO ₃ . Hg(NO ₃) _{2'} es of standard electrode
	$Ag / Ag^{+} = +0.80V$	$Hg / Hg^{2+} = +0.79V$	$Cu / Cu^{2+} = +0.34V$	$Mg / Mg^{2+} = -2.37V$
	With increasing volta	age, the sequence of dep	position of metals on ca	thode will be
	1) Ag, Hg, Cu, Mg	2) Mg, Cu, Hg, Ag	3) Ag, Hg, Cu	4) Cu, Hg, Ag
	5) Cu, Hg, Ag, Mg			
42.	The electrolysis of an	aqueous solution of KN	NO ₃ between platinum	electrode gives
	1) K at the cathode N	IO ₂ at the anode	· <u> </u>	-
	3) H_2 at cathode and	NO ₂ at anode	4) K at cathode and C	D ₂ at anode
43.	According to Farada	y's first Law of electroly	vsis mass of substance	liberated is equal to
	1) eC	2) eQ	3) et	4) eCt/nF
44.				different electrolytes electrodes are in the
	1) atomic numbers		2) atomic weights	
	3) specific gravities		4) equivalent weight	8
45	, 1 0	v of Faraday's electroly	, 1	
	i) $\frac{\text{wt. of H}_2 \text{ liberate}}{\text{wt. of Cl}_2 \text{ liberate}}$	$\frac{d}{d} = \frac{\text{eq. wt. of H}_2}{\text{eq. wt. of Cl}_2}$	ii) $\frac{m_{Ag}}{m_{Cu}} = \frac{E_{Ag}}{E_{Cu}}$	
	iii) $\frac{m_{Ag}}{m_{Cu}} = \frac{E_{Cu}}{E_{Ag}}$		iv) $\frac{m_{H_2}}{m_{Cu}} = \frac{E_{H_2}}{E_{Cu}}$	
	The correct combinat	tion is		
	1) only ii, iv	2) only i	3) only i, ii , iv	4) only ii, iii
46.	One Faraday is e	qual to		
	1) 96.5 c mol ⁻¹	-	3) 6.023 ×10 ²³ mol ⁻¹	4) 96.5 × 10 ²³ c mol ⁻¹
47.	,	,	,	metal from the solution
	1) CuCl ₂	2) CuSO ₄	3) AgNO ₃	4) AuCl ₃
48	For the discharge of maximum in the case	equal masses of the foll	owing ions, the numbe	er of electrons required is

								F	LECTI	RO CHEMISTRY
	1) H+			2) Cu ²⁺		3	3) Ag+		4) 4	A1 ³⁺
49.		LIST - 1]	LIST - 2			
	A) Fa	iraday's	first law	7		-	l) e × 965	500		
	B) Cł	nemical e	equivale	nt			2) $\frac{m_1}{E_1} =$	$\frac{m_2}{E_2}$		
	C) Fa	raday's	second	aw		3	3) S.H.E.			
	D) Pt	, H ₂ (atm	n)/H+(11	М)		4	4) m = eQ	2		
						5	5) Salt bri	idge		
	The c	orrect m	natch is							
		А	В	С	D		А	В	С	D
	1)	4	1	3	2	2)	4	5	2	3
	3)	1	1	2	3	4)	4	1	2	3
50.			-	ted from d for a d			sulphat	e and all	kaline cu	prous cyanide. If the
	1) Th	e amour	nt of cop	per depo	sited fro	om acidio	c copper	sulphate	e will be l	higher
	2) Th	e amour	nt of cop	per depo	sited fro	om alkali	ine cupro	ous cyan	ide will l	be higher
	3) Th	e same a	mouont	of coppe	er will be	e deposit	ted			
	4) No	one of the	e above							
51.	L	IST - 1		LIST	- 2					
	A) Or	ne farad	ay	1) Redu	uction					
	B) Ar	node		2) 9650	0 coulor	nb				
	C) Ca	thode		3) 6.24	× 10 ¹⁸ el	ectrons				
	D) 1 c	coulomb		4) Oxid 5) Z × 9						
	The c	orrect m	natch is	0)2	,0,000					
		А	В	С	D		А	В	С	D
	1)	5	4	2	3	2)	2	4	1	3
	3)	2	4	1	5	4)	5	2	1	3
52.	Duri	ng the el	ectrolys	is of cryo	lite, Alu	minium	and Fluo	orine are	formed	in the molar ratio of
	1) 3 :			2) 1 : 3			3) 2 : 3		4) (3:2
53.			n condu	ctance ir			•			
	1) Mg	-	1.	2) CaC	4		3) BaCl ₂		,	SrCl ₂
54.				e of follo	wing ca		0			er
	,	$^{+} < Na^{+} <$					2) Li ⁺ > N			
55.	,				y of HCl		$\begin{array}{l} \text{Li}^+ = \mathbb{N} \\ \text{er than th} \end{array}$			rticular temperature
			mass of 1	HCl is gre	eater that	n that of	NaCl			
				is more t						
		~l is stro					-			

3) HCl is strongly acidic

4) Ionisation of HCl is larger than that of NaCl

	4) Ionisation of HCI i	s larger than that of Na	iCI				
56.	(1) : The conductivity of an aqueous solution of NaCl is greater than that of pure solvent.						
	(R) : Conductivity is independent upon the number of ions in solution.						
57.	The unit of specific con	nductivity is					
	1) ohms cm ⁻¹	2) ohms cm^{-2}	3) ohms ⁻¹ cm	4) ohm ⁻¹ cm ⁻²			
	5) ohms ⁻¹ cm ⁻¹		,				
58.	The unit of equivaler	nt conductivity is					
	1) ohm cm	5	2) ohm ⁻¹ cm ² (g equiv	valent) ⁻¹			
	3) ohm cm ² (g equiva	lent)	4) S cm ⁻²				
59.	The equivalent cond	uctance of 1N solution	of an electrolyte is near	rly			
	1) Same as its specifi	c conductance	2) 10 ⁻³ times its speci	fic conductance			
	3) 10^2 times more th	an its specific conducta	ance				
	4) 10^3 times more that	n its specific conducta	nce				
60.				npared to that of strong			
	electrolytes at moder		2				
		5	centrations dissociate t	o a much greater extent			
	when compared to st	• •					
61.	The highest electrica	l conductivity of the fol	lowing aqueous solution	ons is of			
	1) 0.1 M acetic acid		2) 0.1 M chloroacetic	acid			
	3) 0.1 M fluoroacetic	acid	4) 0.1 M difluoroacet	ic acid			
62.				oncentration of solution			
		proportional to the leng	th of the vessel, then th	e unit of the constant of			
	proportionality is	$2 \times C^{2}$ 1-1	$0 -2^{2} -2^{2} = 1$	4) 62 2 1-2			
(2)	1) S.m mol ⁻¹	2) S.m ² mol ⁻¹	3) $S^{-2}.m^2$ mol	4) $S^2.m^2 mol^{-2}$			
63.		ctance and conductance	e of a solution is same,	then its cell constant is			
	equal to 1) 1	2) 0	3) 10	4) 100			
64.		2) 0 activity of 0.1M solution	,	,			
04.		ivity depends on the si	•	tes is same.			
65.	Specific conductivity	<i>i i</i>	ize of the lons.				
05.	1) increases with dilu		2) dograda with dil	ution			
	,		 2) decreases with dilution 4) depends on mass of electrolyte. 				
66	3) remains unchange			•			
66.	-	ictivity of an electrolyte					
	1) Tap water	2) Distilled water	3) Conductivity wate	, ,			
67.				an electrolyte. Which of			
	the following electro	lyte will correspond to	the graph given ?				
	1) KCl	2) BaCl ₂					
	1)1101	_) <i>b</i> u <i>c</i> u <u>b</u>		\uparrow			
	3) H ₂ SO ₄	4) CH ₃ COOH		λeq			
	1	0					
68.	For which case λ'	values v/s \sqrt{c} shows a	straight line	$Conc \rightarrow$			
	1) KCl	2) HCOOH	3) CH ₃ NH ₂	4) CH ₃ COOH			
69.	According to Kohlran	usch law, the limiting va	alue of molar conductiv	rity of an electrolyte A ₂ B			
	is						

1)
$$\lambda_{A^{+}}^{\infty} + \lambda_{B^{-2}}^{\infty}$$
 2) $\frac{1}{2}\lambda_{A^{+}}^{\infty} + \lambda_{B^{-2}}^{\infty}$ 3) $2\lambda_{A^{+}}^{\infty} + \frac{1}{2}\lambda_{B^{-2}}^{\infty}$ 4) $2\lambda_{A^{+}}^{\infty} + \lambda_{B^{-2}}^{\infty}$

70. The equation representing Kohlrausch law from the following is

1)
$$\lambda_{\rm m} = \frac{100K}{C_m}$$
 2) $\lambda_m^0 = v^+ \lambda_+^0 + v^- \lambda_-^0$ 3) $\lambda_{\rm eq} = \frac{1000K}{C_{eq}}$ 4) $\lambda_m^0 = \lambda_{\rm c} + \lambda_{\rm c}$

71. The expression showing the relationship between equivalent conductivity and molar conductivity is

1)
$$\lambda_{m} = Z \times \lambda_{eq}$$
 2) $\lambda_{eq} = Z \times \lambda_{m}$ 3) $\lambda_{m} = \frac{\lambda_{eq}}{Z}$ 4) $\lambda_{m} = \lambda_{eq}^{2}$

72. The molar conductivities Λ^0_{NaOAc} and Λ^0_{HC1} at infinite dilution in water at 25°C and 91.0 and 426.2

 $S\,cm^2$ / mol respectively. To caculate $\Lambda^0_{HOAc}\,$ the additional value required is

1)
$$\Lambda^{0}_{\text{NaCl}}$$
 2) $\Lambda^{0}_{\text{H}_{2}\text{O}}$ 3) Λ^{0}_{KCl} 4) $\Lambda^{0}_{\text{NaOH}}$

73. The equivalent conductances of two strong electrolyetes at infinite dilution in H₂O (where ions move freely through a solution) at 25^oC are given below $\Lambda^{o}_{CH_{3}COONa} = 91.0 \text{ S cm}^{2} / \text{ equiv}; \Lambda^{0}_{HCl} = 426.2 \text{ S cm}^{2} / \text{ equiv}$

What additional information / quantity one needs to calculate Λ^0 of an aqueous solution of acetic acid?

1) Λ^0 of CH₃COOK 2) Λ^0 of H⁺ 3) Λ^0 of ClC

3)
$$\Lambda^0$$
 of ClCH₂COOH 4) Λ^0 of NaCl

- 74. In a Galvanic cell, the electrons flow from
 - 1) anode to cathode through the solution
 - 2) cathode to anode through the solution
 - 3) anode to cathode through the external circuit
 - 4) cathode ot anode thorugh the external circuit.
- 75. Which of the following statements is wrong about galvanic cells

1) cathode is the positive electrode 2) cathode is the negative electrode

- 3) electrons flow from anode to cathode in the external circuit
- 4) reduction occurs at cathode

76. The following statements is correct w.r.t. both electrolytic cell and Galvanic cell

- 1) in both cells, anode is shown by +ve sign
- 2) in both cells, cathode is shown by -ve sign
- 3) in both cells, reduction reaction takes place at the cathode
- 4) in both cells, oxidation reaction takes place at the cathode
- 77. Saturated solution of KNO₃ is used to make salt bridge because

1) velocity of K^+ is greater than that of NO_3^- 2) velocity of NO_3^- is greater than that of K^+

- 3) velocities of both K^+ and NO_3^- are nearly the same
- 4) KNO₃ is highly soluble in water.
- 78. Assertion : A salt bridge allows the flow of current by completing the electrical circuit Reason : A salt bridge maintains the electrical neutrality of the two half cells
- 79. The function of a salt bridge is

ELEC	CTRO CHEMISTRY						
	1) to provide a link between two half cells	2) to allow ions to go from one cell to another					
	3) to keep the emf of the cell positive						
	4) to maintain electrical neutrality of the solution in two half cells						
80.	Which of the following is correct?						
	1) Zinc acts as cathode in Daniel cell	2) In a Li–Zn couple, zinc acts as anode					
	3) Copper displaces iron from its salt soluti	on					
01	4) Zinc dsplaces tin from its salt solution	u the electrochemical Daniell cell ?					
81.	Which of the following statements is true for1) Electrons flow from copper electrode to zi						
	2) Current flows from zinc electrode to copp						
	3) Cations move towards copper electrode						
82.	The cell reaction of the galvanic cell, $Cu(s) / $						
	1) Hg + Cu ²⁺ \rightarrow Hg ²⁺ + Cu	$2) \operatorname{Hg} + \operatorname{Cu}^{2+} \to \operatorname{Hg}^{+} + \operatorname{Cu}^{+}$					
	$3) \operatorname{Hg} + \operatorname{Cu}^{+} \rightarrow \operatorname{CuHg}$	4) Cu + Hg ²⁺ \rightarrow Cu ²⁺ + Hg					
83.	Assertion : The Daniel cell becomes dead af	ter some time					
	Reason : Oxidation potential of zinc anode	increases and that of copper cathode decreases					
	The correct answer is						
84.	The cell for which the cell reaction is $H_2 + C$	$^{2}u^{2+} \rightarrow 2H^{+}+Cu$ is represented as					
	1) Cu/Cu ²⁺ //H ⁺ /H ₂	2) $H_2(g)/H^+//Cu^{2+}/Cu$					
	3) Pt, H ₂ (1 atm), H ⁺ //Cu ²⁺ /Cu	4) Pt, $H_2/H^+(aq) (1atm)//Cu^{2+}/Cu$					
85.	Which metal will dissolve if the cell works	$\operatorname{Cu}\left \operatorname{Cu}^{2+}\right \left \operatorname{Ag}^{+}\right $ Ag					
	1) Cu 2) Ag	3) Both (1) and (2) 4) None of these					
0.6	, , , ,						
86.	The chemical reaction $2 \text{AgCl}_{(s)} + \text{H}_{2(g)} \rightarrow 1$ is represented by the notation.	$2HCl_{(aq)} + 2Ag_{(s)}$ taking place in a galvanic cell					
	1) $Pt(s) H_2(g),1bar 1M KCl(aq) AgCl(s) A$	g(s) 2)					
	$Pt(s) H_2(g),1bar 1M HCl(aq) 1M Ag^+(aq) A$.g(s)					
	3) $Pt(s) H_2(g),1bar 1M HCl(aq) AgCl(s) A$	g(s)					
	4) $Pt(s) H_2(g), 1bar 1M HCl(aq) Ag(s) AgC$	l(s)					
87.	Which is correct for cell reaction ?						
	1) $Zn + 2Ag^+ \rightarrow Zn^{2+} + 2Ag$	2) $2Ag + Zn^+ \rightarrow 2Ag^+ + Zn$					
	3) Both	4) None					
88.	Stronger the oxidising agent greater is the						
	1) Oxidation potential	2) Reduction potential					
	3) Redox potential	4) Hydration potential					
89.	The reaction, $1/2H_{2(g)} + AgCl_{(s)} \rightarrow H^+_{(aq)} + Cl^2$						
	2(g) - 0 - (s) - (aq)	(aq) O(s)					

	1) $Ag AgCl_{(s)} KCl_{(Soln)} AgNO_{3(soln)} Ag$	2) $Pt, H_{2(s)} HCl_{(Soln)} $	$ AgNO_{3(soln)} Ag$
	3) $Pt, H_{2(g)} \ HCl_{(Soln)} \ AgCl_{(s)} Ag$	4) Pt, $H_{2(g)} \ KCl_{(Solution)} \ KCl_{(Solution)} \ $	$ AgCl_{(s)} Ag$
90.	For spontanity of a cell, which is correct?		
	1) $\Delta G = 0, \Delta E = 0$ 2) $\Delta G = -Ve, \Delta E = 0$	3) $\Delta G = +Ve, \Delta E =$	0 4) $\Delta G = -Ve$
91.	If the cell reaction is spontaneous		
	1) E^0 is -ve 2) ΔG is positive	3) E ⁰ is +ve	4) (Δ G + E ⁰) is positive
92.	Assertion : If E^0 of $Cu^{2+}/Cu = +0.34V$ and constructed from these is $Ag/Ag^+//Cu^{2+}$	ad E^0 of $Ag^+/Ag = +$	0.80V then galvanic cell
	Reason : In any galvanic cell the reaction th	at takes place is a redo	ox reaction
93.	The metal that cannot displace hydrogen from	om dilute hydrochloric	cacid is
	1) aluminium 2) iron	3) copper	4) zinc
94.	A standard hydrogen electrode has zero ele	ctrode potential becau	Ise
	1) Hydrogen is easiest to oxidise		
	2) This electrode potential is assumed to be	zero	
	3) Hydrogen atom has only one electron	4) Hydrogen is the li	ghtest element
95.	The following statements about electro chem		
	i) the metals occupying top positions in the s	•	0
	ii) the substances which are stronger redu placed below & top respectively	cing agents and stron	iger oxidising agents are
	iii) a metal higher in the series will displace	the metal from its solu	tion which is lower in the
	series		
	iv) various electrodes are arranged in a serie	es in the descending or	der of their potentials
	The correct statements are		
	1) iv 2) iii	3) all	4) iii & iv
96.	The following are some statements about no	rmal hydrogen electro	de (NHE)
	1) when a 'Zn' electrode is in combination o	f NHE, Zn electrode a	cts as cathode
	2) when a 'Cu' electrode is in combination w	vith NHE, Cu electrod	e is the anode
	3) when a 'Ag' electrode is in combination w	e	
	4) when a chlorine electrode is in combination	on with NHE, chlorine	electrode is the anode
	1) only (1) is correct 2) all are correct	3) all are incorrect	4) both (2) & (3) correct
97.	Which defines the standard reduction elect	-	
	1) $Zn^{2+}_{(aq)} + 2e \rightarrow Zn_{(s)}; [Zn^{2+}] = 1M$	2) $Zn_{(g)} \rightarrow Zn^{(2+)} + Z$	2e; $[Zn^{2+}] = 1M$
	3) $Zn^{2+}_{(aq)} \rightarrow Zn_{(s)} + 2e; [Zn^{2+}] = 1M$	4) $Zn^{2+}_{(g)} \rightarrow Zn_{(s)} - Zn_{(s)}$	2e; $[Zn^{2+}] = 1M$
98.	Assertion : Lithium has less electrode poter	ntial than caesium	
	Reason : Hydration energy of lithium ion is	high.	
99.	The reference electrode is made by using		
	1) ZnCl ₂ 2) CuSO ₄	3) HgCl ₂	4) Hg_2Cl_2
100.	The more electro positive element has		
	1) positive reduction potential	2) negative reduction	n potential
	3) tendency to gain electrons	4) negative oxidation	n potential
101.	LIST - 1	LIST - 2	
	A) Very dilute H_2SO_4 by inert electrodes	1) Hg/Hg ₂ Cl ₂ (S), KC	Cl(salt)

ELEC	ΙΝΟ		191 11							
	B) Potential is zero Volts						2) $H_2S_2O_8$ at anode			
	C) 50% H_2SO_4 by inert electrodes					3	6) Daniel c	ell		
	D) $Zn/Zn^{+2}(aq)//Cu^{+2}(aq)/Cu$) O ₂ at an			
						5	5) Pt, H ₂ (1a	ntm)/H ⁻	⁺ (1M)	
	The co	rrect ma	atch is							
	1)	A	В	С	D	•	А	В	C	D
	1)	4	5	2	3	2)	2	1	4	3
100	3)	2	5	4	3	4)	5	3	1	. 2
102.				arry gold	a by depo	-	ng iron on the gold surface since			
	,	d is den					2) Iron rus	ts		
			gher redu	-						
	,		wer redu	-					-	
103.			V. The rec	lucing p	owers of					spectively +0.05 V,
	1) B > (2) A > B			(C > B > C		,	> C > B
104.			e of poten	tial of tw	vo electro		a galvani			S
	1) EMI						2) Potential difference			
	3) Elec	trode di	fference			4	4) Ionic difference			
105.				-			ents A, B, exhibited		are -2.6	55, -1.66, - 0.80 and
	1) A		2	2) B		3	5) C		4) D	
106.	Zn giv	es H ₂ g	as with H	I ₂ SO ₄ ar	nd HCI b	ut not	with HN	Ο ₃ becaι	ise	
	1) Zn a	cts as o	xidizing a	igent wh	en reacts	with I	HNO3			
	2) HN	O_3 is w	eaker acio	d than H	$_2SO_4$ and	HCI				
	3) In el	ectroch	emical se	ries Zn is	s above h	ydrog	en			
	4) NO ₃	⁻is redu	iced in pro	eference	to hydror	nium i	on			
107.	At 298	K the st	tandard r	eductior	n potentia	als for	the follow	ving half	reactior	ns are given as
	Zn ²⁺ (a	nq) + 2e ⁻	$^{-} \rightarrow Zn$	(s); −0).762 V	(Cr ³⁺ (aq) +	$3e^{-} \rightarrow$	Cr(s);	-0.740 V
	$2\mathrm{H^{+}}(\mathrm{aq}) + 2\mathrm{e^{-}} \rightarrow \mathrm{H_{2}(g)}$; -0.00 V					I	$Fe^{3+}(aq) + e^- \rightarrow Fe^{2+}(aq); + 0.770 V$			
	The st	ongest	reducing	agent is						
	1) Zn (s)		2) H ₂ (g)		3	3) Cr(s)		4) Fe	e ²⁺ (aq)
108.	When	Zn piec	e is kept i	in CuSO	4 solutior	ı, copj	oer gets p	recipitat	ed beca	use :
					-		than cop			
			-				than copp			
			ber of zir							
			ber of zir	-						
109.	,						1 =+0.54 v	volt. For	2Br⁻→	Br ₂ +2e ⁻ , standard
	oxidat	ion pote	ential = -2	1.09 volt	. For Fe	\rightarrow Fe ²		andard o		n potential = $+0.44$
			$\sim 2Br^- + I_2$	-		-	2) Fe + Br ₂		+ 2Br-	
	-		$e^{2+} + 2I^{-}$) I ₂ + 2Br ⁻			
	, -	2 , 1				-	, 2	,	2	

110.	Beryllium is placed above magnesium in t MgCl ₂ solution, will	he IIgroup. When beryllium dust is added to					
	1) Has no effect	2) Precipitate Mg metal					
	3) Precipitate MgO	4) Lead to dissolution of Be metal					
111.	Which reaction is not feasible?						
	1) 2KI + Br ₂ \rightarrow 2KBr + I ₂	2) $2KBr + I_2 \rightarrow 2KI + Br_2$					
	3) 2KBr + $Cl_2 \rightarrow 2KCl + Br_2$	4) $2H_2O + 2F_2 \rightarrow 4HF + O_2$					
112.	E° for $Fe^{2+} + 2e \rightarrow Fe$ is -0.44 V ; E° for Zn^2	⁺ + 2e \rightarrow Zn is -0.76 V. Then					
	1) Zn is more electropositive than Fe	2) Fe is more electropositive than Zn					
	3) Zn is more electronegative	4) None of the above					
113.	Based on the data given below, the correct of	rder of reducing power is :					
	$\operatorname{Fe}^{3+}_{(aq)} + e \rightarrow \operatorname{Fe}^{2+}_{(aq)}$; $E^{\circ} = 0.77V$	$\mathrm{Al^{3+}}_{(\mathrm{aq})}$ + 3e \rightarrow $\mathrm{Al}_{(\mathrm{s})}$; E° = -1.66V					
	$Br_{2(aq)} + 2e \rightarrow 2Br_{(aq)}; E^{\circ} = +1.08V$						
	1) $Br^- < Fe^{2+} < Al$ 2) $Fe^{2+} < Al < Br^-$	3) Al \leq Br ⁻ \leq Fe ²⁺ 4) Al \leq Fe ²⁺ \leq Br ⁻					
114.	For the cell prepared from electrode A : Cr. (D_7^{2-} Cr ³⁺ , E° _{red} = +1.33V and electrode B : Fe ³⁺					
	Fe^{2+} , $E^{\circ}_{red} = 0.77V$. Which of the following s						
	1) The electrons will flow from B to A when						
	2) The e.m.f. of the cell will be 0.56V						
	3) A will be positive electrode	4) All of the above					
115	The C P Pa of C_{12}^{2+}/C_{12} U_{12}^{2+}/U_{2} and Z_{22}^{2+}/U_{2}	Zn are respectively 0.34V, 0.85 V and -0.76 V. The					
115.	wrong statement is	Zn are respectively 0.34 v, 0.85 v and -0.76 v. The					
	1) Cu reduces Hg^{2+}	2) Zn reduces Cu ²⁺					
	3) Hg reduces Zn ²⁺	4) Zn reduces both Cu^{2+} and Hg^{2+}					
116.	The $E^{\circ}_{M^{3+} M^{2+}}$ values for Cr, Mn, Fe and Co a	are -0.41, +1.57V, +0.77 and +1.97V respectively.					
	For wihch one of these metals the change in oxidation sate from $+2$ to $+3$ is easiest?						
	1) Co 2) Mn	3) Fe 4) Cr					
117.	Assertion :	A blue colour is obtained when a copper wire					
	is immersed in AgNO ₃ solution						
	Reason :	Silver reduces Cu ²⁺ to copper					
118.	Standard electrode potentials are						
	$Fe^{2+} / Fe (E^0 = -0.44); Fe^{3+} / Fe^{2+} (E^0 = 0.77)$						
	Fe ²⁺ , Fe ³⁺ and Fe blocks are kept together, the						
	1) Fe ³⁺ increases	2) Fe ³⁺ decreases					
	3) Fe ²⁺ /Fe ³⁺ remains unchanged	4) Fe^{2+} decreases.					
119.	The half cell reaction, with its standard redu	-					
	I) $Pb^{2+} + 2e^- \rightarrow Pb (E^0 = -0.13 \text{ V})$	II) $Ag^+ + e^- \rightarrow Ag (E^0 = + 0.80 \text{ V})$					
	Which of the following reactions will occur?						
	1) $Pb^{2+} + 2Ag \rightarrow 2Ag^{+} + Pb$	2) $Pb^+ + H_2 \rightarrow 2H^+ + Pb$					
	$1)10 + 2Ag \rightarrow 2Ag + 10$	$2/10^{+11} \rightarrow 211^{+10}$					

ELE									
	3) $2H^+ + 2Ag \rightarrow 2Ag^+ + H_2$	4) $2Ag^+ + Pb \rightarrow Pb^{2+} + 2Ag$							
120.	-	nd Ag in water at 298 K are, $Zn^{2+} + 2e^{-} \rightarrow Zn$; V Which of the following reactions take place?							
	1) $Zn^{2+}_{(aq)} + Ag^{+}_{(aq)} \rightarrow Zn_{(s)} + Ag_{(s)}$	2) $Zn_{(s)} + Ag_{(s)} \rightarrow Zn^{2+}_{(aq)} + Ag^{+}_{(aq)}$							
	3) $Zn^{2+}_{(aq)} + 2Ag_{(s)} \rightarrow 2Ag^{+}_{(aq)} + Zn_{(s)}$	4) $Zn_{(s)} + 2Ag^+_{(aq)} \rightarrow Zn^{2+}_{(aq)} + 2Ag_{(s)}$							
121.	A student made the following observation								
	1) Clean copper metal did not react with 1	1) Clean copper metal did not react with 1 molar $Pb(NO_3)_2$ solution							
	B)Clean lead metal dissolved in a 1 molar A appeared	AgNO ₃ solution and crystals of Ag metal							
	C)Clean silver metal did not react with 1 m	* -							
	The order of decreasing reducing character								
	1) Cu, Pb, Ag 2) Cu, Ag, Pb								
122.	For the electrochemical cell, $M M^+ X^- X$, this data, one can deduce that :	$E^{\circ}_{M^+/M} = -0.44V$ and $E^{\circ}_{X/X^-} = 0.33V$. From							
	1) M+X \rightarrow M ⁺ +X ⁻ is the spontaneous react	ion							
	, -								
	2) M ⁺ +X ⁻ \rightarrow M+X is the spontaneous react 3) E _{cell} = 0.11V	4) $E_{cell} = -0.77V$							
123.		$E_{cell} = -0.77 v$ separate test tubes and a strip of copper is placed							
120.	in each. Which solution finally turns blue?	2							
104	1) $Pb(NO_3)_2$ 2) $Zn(NO_3)_2$								
124.	Reason : Lithium has the highest negative?	cell, lithium electrode can not be used as cathode							
125.	The potential of single electrode depends u								
120.	1) the nature of the electrode	2) temperature							
	3) concentration of the ion with respect to v								
	4)all the above								
126	•	electrode potential on concentration is							
126.	The Nernst equation giving dependence of	electrode potential on concentration is							
	1) $E = E^0 + \frac{2.303 \text{ RT}}{\text{nF}} \log \frac{[M]}{[M^{n+}]}$	2) $E = E^0 + \frac{2.303 \text{ RT}}{\text{nF}} \log \frac{[\text{M}^{n^+}]}{[\text{M}]}$							
	3) $E = E^0 - \frac{2.303 \text{ RT}}{\text{nF}} \log \frac{[M^{n+}]}{[M]}$	4) $E = E^0 - \frac{2.303 \text{ RT}}{nF} \log [M^{n+}]$							
127.	Consider the following four electrodes:								
	$A = Cu^{2+} (0.0001 \text{ M}) / Cu (s)$	$B = Cu^{2+} (0.1 \text{ M}) / Cu (s)$							
	$C = Cu^{2+} (0.01 \text{ M}) / Cu (s)$	$D = Cu^{2+} (0.001 \text{ M}) / Cu (s)$							
	If the standard reduction potential of /Cu is above electrodes follow the order	s +0.34V, the reduction potentials (in volts) of the							
	1) $A > D > C > B$ 2) $B > C > D > A$	3) $C > D > B > A$ 4) $A > B > C > D$							
128.	The Nernst equation for the reduction pote	ntial of a non metal A when $[A^{n-}] = C$ is given by							
	1) = 0.059	0.059							
	1) $E^0 + \frac{0.059}{n} \log C$	2) $E^0 - \frac{0.059}{n} \log C$							
044									

$$3) F^{0} + \frac{0.059}{n} \log C^{n} \qquad 4) F^{0} - \frac{0.059}{n} \log \frac{1}{C}$$

$$129. Which of the following is not correct?
$$1) Aqueous solution of NaCl is an electrolyte
$$2) The units of electrochemical equivalent are g.coulomb.$$

$$3) In the Nerrst equation, 'n' represents the number of electrons transferred in the electrode reaction.
$$4) Standard reduction potential of hydrogen electrode is zero volts.$$

$$130. The e.m.f. of the following Daniell cell at 298 K is E, Zn /ZnSO4(0.01M) //CuSO4(1.0M) //Cu When the concentration of ZnSO4 is 1.0 M and that of CuSO4 is 0.01 M, the e.m.f. changed to E2. What is the relationship between E1 and E2?
$$1) F_1 > F_2 \qquad 2) F_1 < F_2 \qquad 3) F_1 = F_2 \qquad 4) F_2 = 0 \neq F_1$$

$$131. Zn (s) + Cl_2(latm) \rightarrow Zn^{2*} + 2Cl^*, The E0 of the cell is 2.12 V. To increase E
$$1) 2n^{2*} concentration should be increased \qquad 4) partial preassure of Cl_2should be decreased a) Cl^- concentration should be increased
$$4) partial preasure of Cl_2should be decreased.$$

$$132. For the cell Zn $/Zn^{2*} //Cu^{2*} / Cu, if the concentration of Zn^{2*} and Cu^{2*} ions is doubled, the emf of the cell is 2) reduces to half a preasing same 4) remains zero in a cell that utilises the reaction $Zn_{0}^{0} + 2H_{(ug)}^{0} \rightarrow Zn^{2*} (ug) + H_{2(g)}^{0}$ addition of H_2SO_4 to cathode compartment, will
$$1) lower the E and shift equilibrium to the left
$$2) increase the E and shift equilibrium to the right
4) lower the E and shift equilibrium to the right
4) lower the E and shift equilibrium to the right
4) lower the E and shift equilibrium to the right
4) lower the E and shift equilibrium to the right
4) lower the E and shift equilibrium to the right
1) ln C_1 (2) $\frac{0.0591}{2} \log \frac{C_1}{2}$ (3) ln C_2 (4) ln(C_1 + C_2)
135. The relationship between standard reduction potential of a cell and equilibrium constant is shown by (M.P.C.E.T.2002)
1) E⁰₀ cult = $\frac{10}{0.059} \log K_c 2$ (2) $E^0_{cult} = \frac{0.059}{n} \log K_c 3$ (4) $E^0_{cult} = \frac{\log K_c}{n}$
136. For a spontaneous reaction the AG , equilibrium constant (K$$$$$$$$$$$$$$$$$$$

		nFE	ΛН
	1) $\Delta G = -nFE$ 2) $\Delta G = nFE$	3) $\Delta G = \frac{M L}{R}$	4) $\Delta G = \frac{\Delta H}{nFE}$
139.	The correct relationship between free ener equilibrium constant K_C is	gy change in a reaction	n and the corresponding
	1) $\Delta G^0 = RT \ln K_c$ 2) $\Delta G^0 = -RT \ln K_C$	3) $\Delta G = RT \ln K_C$	4) $\Delta G = RT \ln K_C$
140.	When an electric cell is charged, then		
	1) voltage of cell increases	2) electrolyte of cell c	lilutes
	3) resistance of cell increases	4) None of these.	
141.	When lead storage battery is discharged		
	1) SO ₂ is evolved	2) Lead sulphate is c	consumed
	3) lead is formed	4) H_2SO_4 is consume	ed
142.	When lead storage battery is charged		
	1) PbO ₂ dissolves		
	2) The lead electrode becomes coated in the	lead sulphate	
	3) H_2SO_4 is regenerated	4) The amount of ac	id decreases
143.	During the charging of lead storage battery, by	the reaction occuring a	at cathode is represented
	$1) \operatorname{Pb} \longrightarrow \operatorname{Pb}^{2+} + 2e^{-}$	2) $Pb^{2+} + 2e^- \rightarrow Pb$	
	3) $Pb^{2+} + SO_4^{2-} \rightarrow PbSO_4$	4) PbSO ₄ + 2H ₂ O \rightarrow	PbO ₂ + 4H ⁺ +SO ₄ ²⁻ + 2e ⁻
144.	With respect of fuel cell prepared from H_2 a	and O_2 gases, the falses	statement is
	1) It is free from pollution		
	2) This is more efficient than conventional r	nethod of generating el	lectricity
	3) The reaction occuring at anode is $O_{2(g)}$ +	$2H_2O + 4e^- \rightarrow 4OH^-$	
	4) These take little time to go into operation.		
	WORK SH	EET - II	
1.	During the electorlysis of cryolite, aluminium	and fluorine are forme	d in molar ratio
	1) 1: 2 2) 2: 3	3) 1 : 1	4) 1 : 3
2.	Weight of copper (atomic mass 63.5) depo- through cupric salt solution is	sited when 2 Faraday	vs of electricity is passed
	1) 63.5g. 2) 31.15g.	3) 127g.	4) 2g.
3.	By passing 0.1 Faraday of electricity through liberated is	n fused sodium chlorid	e, the amount of chlorine
	1) 35.45 g 2) 70.9 g	3) 3.545 g	4) 17.77 g
4.	The number of coulombs required to deposi	-	when the given electrode
	reaction is represented as $Al^{3+} + 3e^{-} \longrightarrow$		
_	1) 1.83 × 10 ⁵ C 2) 57900 C	3) 5.86 × 10^5 C	4) 3F
5.	The number of electrons involved in the electrons $CuSO_4$ is	1 0	
	1) 6.0×10^{23} 2) 3.011×10^{23}	/	/
6.	The electrochemical equivalent of a metal metal is	is "x" g. coulomb ⁻¹ . T	The equivalent weight of

			ELI	ECTROCHEMISTRY
	1) x	2) x × 96500	3) x/96500	4) $1.6 \times 10^{-19} \times x$
7.	The electro chemica	al equivalent of an eleme	ent is 0.0006735 g/C. If	ts equiva-lent weight is
	1) 65	2) 67.35	3) 130	4) 32.5
8.	The current strengt	h required to displace 0.	1 g. of H_2 in 10 sec is	
	1) 9.65 amp	2) 1.988 amp	3) 198 amp	4) 965 amp
9.	On electrolysing a s of oxygen in ml obt	-	, 22.4 ml of hydrogen v	vas obtained. The volume
	1) 22.4	2) 44.8	3) 11.2	4) 2.24
10.				the average current of 1_2 at STP is approximately
	1) 500 sec	2) 800 sec	3) 1930 sec	4) 965 sec
11.		arge passes through sol nd copper deposited on		$CuSO_4$. The ratio of the sed for electrolysis is
	1) 108 : 63.5	2) 54 : 31.75	3) 108:31.75	4) 215.8 : 31.75
12.	When electricity is Faradays must be	passed through molten	$AlCl_3$, 13.5 g. of Al is c	leposited. The number of
	1) 0.5	2) 1.0	3) 1.5	4) 2.0
13.		li ²⁺ and Cr ³⁺ . Then Ag, I		aced in series containing will be (Atomic masses ;
		Ag	Ni	Cr
	1)	108 g	29.5 g	17.3 g
	2)	108 g	59 g	52 g
	3)	108 g	108 g	108 g
	4)	108 g	116 g	156 g
14.		ns of O_2 formed at Pt an of one coulomb of electric		blys of aq. K_2SO_4 solution
	16	8	32	64
	1) $\frac{16}{96800}$	2) $\frac{8}{96500}$	$3)\frac{32}{96500}$	$4)\frac{64}{96500}$
15.			h a Cu wire for 10 sec.	, the number of electrons
	1) 1.6 \times 10 ¹⁹	2) 1 × 10^{35}	3) 1 × 10 ¹⁶	4) 6.24×10^{19}
16.	How many coulom?	bs of electricity are requi	redfor the reduction o	f 1 mol of MnO_4^- to Mn^{2+}
	1) 96500 C 5) 5.62 × 10 ⁵ C	2) 1.93 × 10 ⁵ C	3) $4.83 \times 10^5 \mathrm{C}$	4) 9.65 × 10 ⁶ C
17.	Electric charge on 1	gm ion of N ³⁻ is		
	1) 4.8 × 10 ⁻¹⁹ C	0	3) 1.6 × 10 ⁻¹⁹ C	4) 2.89 × 10 ⁵ C
18.	,	,		O_4^{2-} in alkaline medium is
	1) 10	2) 5	3) 3.34	4) 2
19.	Time required to de	,	uminium metal by the	e passage of 9.65 amperes
	1) 30 s	2) 10 s	3) 30,000 s	4) 10,000 s
20.	Two electrolytic cel	ls, one containing acidifi	ed ferrous sulphate ar	nd another acidified ferric 247

LLLC	chloride, are in series will be	. The ratio of masses o	f Iron deposited at the	cathode in the two cells				
	1) 3 : 1	2) 2 : 1	3) 1 : 1	4) 3 : 2				
21.	On passing current through molten KCl, 19.5 g of K is deposited. The amount of Al deposited by the same quantity of electricity when passed through molten $AlCl_3$ is							
	1) 4.5 g	2) 9 g	3) 13.5 g	4) 2.7 g				
22.	When an electric current is passed through acidulated water, 112 ml of hydrogen gas at NTP is collected at the cathode in 965 seconds. The current passed in amperes is							
	1) 1.0	2) 0.5	3) 0.1	4) 2.0				
23.	The amount of chlori aqueous solution of N		peres of current is pass	sed for 30 minutes in an				
	1) 66 g	2) 1.32 g	3) 33 g	4) 99 g				
24.		.001 M acetic acid is 5 × issociation constant of		90.5 S cm ² mol ⁻¹ then the				
	1) 81.78 × 10 ⁻⁴	2) 81.78 × 10 ⁻⁵	3) 18.78 × 10 ⁻⁶	4) 18.78 × 10 ⁻⁵				
25.	The distance between cell constant (in cm ⁻¹		l is 2.5 cm and area of ea	ach electrode is 5 cm ² the				
	1) 2	2) 12.5	3) 7.5	4) 0.5				
26.	The limiting molar co mol ⁻¹ respectively. T		NaCl, KBr an KCl are	126, 152 and 150 S. cm ²				
	1) 128 S cm ² mol ⁻¹	2) 302 S cm ² mol ⁻¹	3) 278 S cm ² mol ⁻¹	4) 176 S cm ² mol ⁻¹				
27.	Which of the following	ng solutions of NaCl ha	as the higher specific c	onductance ?				
	1) 0.001N	2) 0.01N	3) 0.1 N	4) 1 N				
28.	Molar conductivity of conductivity will be	a solution is 1.26×10^2 s	Ω^{-1} cm ² mol ⁻¹ . Its molar	rity is 0.01M. Its specific				
	1) 1.26 × 10^{-5}	2) 1.26 × 10 ⁻³	3) 1.26 × 10 ⁻⁴	4) 0.0063				
29.	The values of equival	lent conductivity at inf	inte dilutions for NH_4	Cl , NaOH and NaCl are				
	respectively 149.74, 2	248.1 and 126.4 ohm ⁻¹ c	rm ² equi ⁻¹ . The value of	f λ^{∞}_{eq} of NH ₄ OH is				
	1) 371.44		2) 271.44					
	3) 71.44		4) It cannot be calcula	ated from the data given				
30.	Specific conductance of the solution is	of 0.1 M Nitric acid is	$6.3 \times 10^{-2} \text{ ohm}^{-1} \text{ cm}^{-1}$.	Гhe molar conduc-tance				
	1) 630 ohm ⁻¹ cm ² 5) 63.0 ohm ⁻¹ cm ²	2) 315 ohm ⁻¹ cm ²	3) 100 ohm ⁻¹ cm ²	4) 6300 ohm ⁻¹ cm ²				
31.	For an electrolytic sol	ution of 0.05 mole litre ductivity (in Scm ² mole		been found to be 0.0110				
	1) 0.055	2) 550	3) 0.22	4) 220				
32.	,	,	,	ne molar conductivity of				
	1) 130 S cm ² mol ⁻¹	2) 65 S cm ² mol ⁻¹	3) 260 S cm ² mol ⁻¹	4) 187 S cm ² mol ⁻¹				
33.	,	,	of its left and right ele					
	1) $E = E_{left} - E_{right}$	2) $E = E_{left} + E_{right}$	3) $E = E_{right} - E_{left}$	4) $E = -(E_{right} + E_{left})$				

ELECTRO CHEMISTRY E^0 for the half cell Zn^{2+}/Zn is -0.76V. emf of the cell $Zn/Zn^{2+}(1M)//H^+(1M)/H_2$ at 1 atm is 34. 1) -0.76 V 2) + 0.76 V 3) -0.38 V 4) + 0.38 VIf the standard electrode protential of Cu^{2+}/Cu electrode is 0.34 V, what is the electrode 35. potential at 0.01 M concentration of Cu^{2+} ? (T = 298⁰K) 1) 0.399 V 2) 0.281 V 3) 0.222 V 4) 0.176 V The potential of hydrogen electrode is -118 mV. The H⁺ concentration of the solution is 36. 1) 0.01M 2) 2M 3) 10⁻⁴ M 4) 1M The standard potentials (E⁰) for the half reactions are as Zn \otimes Zn²⁺ + 2e⁻, E⁰ = + 0.76 V 37. Fe $\mbox{ } {\rm Fe}^{2+}$ + 2e⁻, E⁰ = + 0.41 V the emf for the cell reaction Fe²⁺ + Zn $\mbox{ } {\rm Zn}^{2+}$ + Fe is 3) + 1.17 V 1) - 0.35 V 2) + 0.35 V 4) - 1.17 V 38. E^{0} for F_{2} + 2e⁻ \otimes 2F⁻ is 2.8 V; E^{0} for 1/2 F_{2} + e⁻ \otimes F⁻ is 1) 2.8 V 2) 1.4 V 3) -2.8 V 4) -1.4 V Consider the following E⁰ values 39. $E^{0}Fe^{3+}$ / Fe^{2+} = + 0.77 V; $E^{0}Sn^{2+}$ / Sn = - 0.14 V Under standard conditions the potential for the reaction Sn (s) + 2Fe³⁺ (aq) \rightarrow 2Fe²⁺ (aq) + Sn²⁺ (aq) is 1) 1.68 V 2) 0.63 V 3) 0.91 V 4) 1.40 V E^0 for the reaction Fe + Zn²⁺® Zn + Fe²⁺ is -0.35 V. The given cell reaction is 40. 3) explosive 1) feasible 2) not feasible 4) slow E.M.F of the cell reaction, $2Ag^+ + Cu \rightarrow 2Ag + Cu^{2+}$ is 0.46 V. If $E^0_{Cu^{2+}/Cu}$ is + 0.34 V, 41. $E^0_{Ag^+/Ag}$ is 1) 0.80 V 3) 0.40 V 2) 0.12 V 4) 1.60 V The EMF of the cell Ni/Ni²⁺ (0.01M)//Cl⁻(0.01M)/Cl₂, pt is ---- V if the SRP of nickel and 42. chlorine electrodes are -0.25V and +1.36V respectively 1) + 1.612) -1.61 3) + 1.794) - 1.79The standard electrode potential of the two half cells are given below 43. $Ni^{+2} + 2e^{-} \rightarrow Ni$; $E^{\circ} = -0.25$ Volt $Zn^{+2} + 2e^{-} \rightarrow Zn$; $E^{\circ} = -0.77$ volt The voltage of cell formed by combining the two half cells would be 1) -1.02 2) +0.52 volt 3) +1.02 volt 4) -0.52 volt

EXERCISE- I / ANSWERS

WORK SHEET - I

1) 4	2) 3	3) 2	4) 3	5) 2	6) 2	7) 2	8) 4	9) 3	10) 4
11) 2	12) 3	13) 3	14) 1	15) 4	16) 4	17) 1	18) 3	19) 2	20) 1
21) 1	22) 2	23) 3	24) 4	25) 4	26) 1	27) 3	28) 4	29) 1	30) 2
31) 1	32) 4	33) 2	34) 2	35) 2	36) 4	37) 1	38) 4	39) 2	40) 2
41) 3	42) 2	43) 2	44) 4	45) 3	46) 2	47) 3	48) 1	49) 4	50) 2
51) 2	52) 3	53) 3	54) 1	55) 2	56) 3	57) 5	58) 2	59) 4	60) 3
61) 4	62) 2	63) 1	64) 4	65) 2	66) 2	67) 4	68) 1	69) 4	70) 2
71) 1	72) 1	73) 4	74) 3	75) 2	76) 3	77) 3	78) 1	79) 4	80) 4
81) 3	82) 4	83) 3	84) 3	85) 1	86) 3	87) 1	88) 2	89) 3	90) 4
91) 3	92) 4	93) 3	94) 2	95) 2	96) 3	97) 1	98) 1	99) 4	100) 2
101) 1	102) 3	103) 1	104) 1	105) 1	106) 4	107) 1	108) 2	109) 4	110) 1
111) 2	112) 1	113) 1	114) 4	115) 3	116) 4	117) 3	118) 2	119) 4	120) 4
121) 3	122) 1	123) 3	124) 1	125) 4	126) 2	127) 2	128) 2	129) 2	130) 1
131) 2	132) 3	133) 3	134) 2	135) 2	136) 1	137) 2	138) 1	139) 2	140) 1
141) 4	142) 3	143) 4	144) 3						

WORK SHEET - II

1) 2	2) 1	3) 3	4) 2	5) 3	6) 2	7) 1	8) 4	9) 3	10) 4
11) 3	12) 3	13) 1	14) 2	15) 4	16) 3	17) 4	18) 1	19) 1	20) 4
21) 1	22) 1	23) 2	24) 3	25) 4	26) 1	27) 4	28) 2	29) 2	30) 1
31) 4	32) 1	33) 3	34) 2	35) 2	36) 1	37) 2	38) 1	39) 3	40) 2
41) 1	42) 3	43) 2							

250

EXERCISE - I

WORK SHEET - I

Which of the following reactions occurs at measurable rate ?

 reaction between H⁺ and OH⁻ ions in aqueous solution
 reaction between AgNO₃ and NaCl aqueous solutions
 hydrolysis of methyl acetate
 reaction between hydrogen and oxygen gases at room temperature

 Which of the following reaction is spontaneous at room temperature

1)
$$I_2 + H_2O \rightarrow$$

2) $2H_2 + O_2 \xrightarrow{Pt} 2H_2O$
3) $N_2 + O_2 \rightarrow 2NO$
4) $2HCl \rightarrow H_2 + Cl_2$

3. Among the following slowest reaction under identical conditions is

1)
$$H^{+} + OH^{-} \rightarrow H_2O$$

2) $2KMnO_4 + 5H_2C_2O_4 + 3H_2SO_4 \rightarrow K_2SO_4 + 10CO_2 + 2MnSO_4 + 8H_2O$
3) $2KMnO_4 + 10FeSO_4 + 8H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 5Fe_2(SO_4)_3 + 8H_2O$
4) $AgNO_3(aq) + NaCl(aq) \rightarrow AgCl(s) + NaNO_3(aq)$

4. The rate of reaction for
$$N_2 + 3H_2 \rightarrow 2NH_3$$
 may be represented as

1)
$$r = -\frac{d[N_2]}{dt} = -\frac{1}{3}\frac{d[H_2]}{dt} = +\frac{1}{2}\frac{d[NH_3]}{dt}$$

2) $r = -\frac{d[N_2]}{dt} = \frac{1}{3}\frac{d[H_2]}{dt} = +\frac{1}{2}\frac{d[NH_3]}{dt}$
3) $r = -\frac{d[N_2]}{dt} = 3\frac{d[H_2]}{dt} = +\frac{1}{2}\frac{d[NH_3]}{dt}$
4) $r = -\frac{d[N_2]}{dt} = -\frac{1}{3}\frac{d[H_2]}{dt} = +2\frac{d[NH_3]}{dt}$

252

X = 10 min;

Now, correct relationship is

At 298 K, 1 atm, among

17.

1)
$$\frac{C_0 - C_1}{X} = \frac{C_1 - C_2}{Y} = \frac{C_2 - C_3}{Q}$$

2) $\frac{C_2 - C_3}{Q} > \frac{C_1 - C_2}{Y} > \frac{C_0 - C_1}{X}$
3) $\frac{C_0 - C_1}{X} > \frac{C_1 - C_2}{Y - X} > \frac{C_3 - C_2}{Q - Y}$
4) $\frac{C_1 - C_3}{Q - X} = \frac{C_0 - C_2}{Y}$

1)
$$2H_2 + O_2 \rightarrow 2H_2O$$
 2) $H_2 + Cl_2 \rightarrow 2HCl$
3) $N_2 + O_2 \rightarrow 2NO$ 4) $H_2SO_4 + KOH \rightarrow$ products, correct order of reaction rates is
1) $D > A > C > B$ 2) $D < A < B < C$ 3) $D > B > A > C$ 4) $D > B = C > A$

18. In which of the following cases, rate of disappearance of any reactant at a given instant equals to rate of appearance of any product

1)
$$H_2 + F_2 \rightarrow 2HF$$
 2) $N_2 + 3H_2 \rightarrow 2NH_3$ 3) $PCl_5 \rightarrow PCl_3 + Cl_2$
4) $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$

19. For $\frac{1}{2}X_2 + Y_2 \to XY_2$, relative rates of species given as 1) Rate $= \frac{-d[x_2]}{dt} = \frac{-d[y_2]}{dt} = + \frac{d[xy_2]}{dt}$ 2) Rate $= -2\frac{d[x_2]}{dt} = \frac{-d[y_2]}{dt} = + \frac{d[xy_2]}{dt}$ 3) Rate $= \frac{-1}{2}\frac{d[x_2]}{dt} = \frac{-d[y_2]}{dt} = + \frac{d[xy_2]}{dt}$ 4) Rate $= -\frac{1}{2}\frac{d[x_2]}{dt} = \frac{+d[y_2]}{dt} = + \frac{d[xy_2]}{dt}$

20. For $N_2 + 3H_2 \rightarrow 2NH_3$, rates of dis-appearance of N_2 and H_2 and rate of appearance of NH_3 respectively are a, b and c, then

1)
$$a > b > c$$
 2) $a < c < b$ 3) $a = b > c$ 4) $a = b = c$

21. The reaction $CH_3COOC_2H_5 + H_2O \xrightarrow{H^+} products is a/an _process$

1) Instantaneous	2) Spontaneous	3) Moderately slow	
Then correct statemen	nt(s) is/are		
1) A & C	2) B & C	3) A only	4) C only

22.	From the graph the v	value $\frac{\Delta c}{\Delta t}$ and the value	e of rate of reaction at	X respectively are called
	1) Average rate and	instantaneous rate	ţ	
	2) Instantaneous rate	e and average rate	. 🛆	
	3) Average rate only	U	$\begin{bmatrix} \Delta c \\ [C] \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ t_1 \\ t_2 \end{bmatrix}$	
	4) Instantaneous rate	only	Λt time	
23.		which does not involve	gases, does not depen	nd upon
20.	1) temperature	2) concentration	3) pressure	4) catalyst
24.	, 1	stant of a reaction depe	, <u>-</u>	i) cutalyst
	1) concentration of th	-	2) time	
	3) temperature		4) concentration of t	he product
25.	, -	es the reaction, becaus		F
	1) it brings the reacta		2) it lowers the activ	ation energy
	3) it changes the hea		4) it increases the ac	
26.	The unit of rate cons		,	0,
	1) number of reactan	-	2) concentration ter	ms
	3) order of reaction		4) molecularity of re	action
27.	The temperature coe	fficient of a reaction is		
	1) the rate constant a	t a fixed temperature	2) the ratio of rate cor	nstants at two temperatures
	3) the ratio of rate co	nstants at two different	temperatures differin	g by 10°C
	4) the ratio of rate co	nstants at two pressure	es	
28.	If concentration of re	eactants is made 'x' time	es, the rate constant k b	pecomes
	1) $e^{k/x}$	2) k/x	3) unchanged	4) x/k
29.	The temperature coe	fficient of most of the re	eactions lies between	
	1) 1 & 3	2) 2 & 3	3) 1 & 4	4) 2 & 4
30.	For a rection $\frac{Kt+1}{Kt+1}$	$\frac{0}{-} = x$ When tomporatu	rois increased from 1	0^{0} C to 100^{0} C, rate constant
50.	(K) increased by a fa	ctor of 512. Then, value	o of v is	
	1) 1.5	2) 2.5	3) 3	4) 2
31.	,	ure will increase the rea	,	[Minipal 2002]
01.	-	r of effective collisions		•
	3) increase of number		4) increase of number	-
32.		a reaction at 300K & 28	,	
01	1) $K_1 = 20K_2$	2) K ₂ =4K ₁	3) $K_1 = 4K_2$	4) $K_1 = 0.5 K_2$
33.	· 1 2		· 1 2	ate constant K_2 of another
		nship between correspo		gies of the two reactions E_1
	1) $E_1 > E_2$	2) E ₁ < E ₂	3) $E_1 = E_2$	4) $E_1 = 2E_2$
34.	The Arhenius equat	ion expressing the effec	t of temperature on the	e rate constant of reaction is
	1) V - E ₂ /DT	2) $V - \Lambda \sim -Fa/RT$	3) K = $\log_{e} \frac{Ea}{RT}$	4) K = $e^{-Ea/RT}$
	1) $K = Ea/RT$	2) K = A $e^{-Ea/RT}$	$\frac{10g_e}{RT}$	$4 K = e^{-2}$
35	Activation energy de	mandean		

35. Activation energy depends on

CIIII			
	3) Temperature	4) Molecularity	
	1) A,B 2) B,C,D	3) C,D	4) A, B,C
46.	For an exothermic chemical process occurri	ng in two steps as	
	i) $A + B \rightarrow X$ (slow)	ii) X \rightarrow AB (fast)	
	The progress of the reaction can be best desc	ribed by	
	1) $\left \begin{array}{c} X \\ A+B \\ A+B \end{array} \right _{AB}$ 2) $\left \begin{array}{c} X \\ A+B \\ A+B \\ AB \end{array} \right _{A+B}$	3) $\bigvee_{A+B} X X_{AB}$	4) All are correct
47.	Which of the following does not affect the ra	te of reaction ?	
	1) Amount of the reactants taken	2) Physical state of the	reactants
	3) Δ H of reaction	4) Size of the vessel	
48.	The rate expression gives the relation betwe	en rate of reaction and	
	1) conc. of reactants	2) conc. of products	
	3) rate constant	4) rate law	
49.	 Rate of a reaction can be expressed by Arrhe E_a represents 1) The energy above which not all the collid 2) The energy below which colliding molect 3) The total energy of the reacting molecules 4) The fraction of molecules which energy grade 	ing molecules will react Iles will not reacts at temperature T	
50.	The minimum energy required for molecu		
F 1	1) Kinetic energy 2) Potential energy	3) Threshold energy	4) Activation energy
51.	 In a reaction, threshold energy is equal to 1) activation energy 3) activation energy + energy of reactants 4) activation energy - energy of reactants 	2) normal energy of the	ereactants
52.	The value of activation energy for a chemica	l reaction is primarily de	epends on
	1) temperature	2) nature of the reactin	g species
	3) the collision frequency		
	4) concentration of the reacting species		
53.	For a reversible reaction, $A \rightleftharpoons B$, which one given energy profile diagram ?	e of the following statem	ents is wrong from the

1) Activation energy of forward reaction is greater than that of backward reacton.

		l l	<i>ILVIICAL KINE I IC</i>				
	2) The threshold energy is less than that of a	ctivation energy					
	3) The forward reaction is endothermic						
	4) Activation energy of forward reaction i activation energy of backward reaction.	s equal to the sum of	heat of reaction and the				
54.	Wrong statement among the following is						
	1) effective collisions are more if activation energy is less						
	2) zero order reaction proceeds at a constant	rate independent of c	concentration or time				
	3) reactions with highest rate constant va	lues have lowest activ	ation energies				
	4) if initial concentration increases half life	decreases in zero orde	er				
55.	For the reaction $A + B \Leftrightarrow C + D$, the forw energy of formation of $A + B$ is that for						
	1) equal to 2) less than	3) greater than	4) double				
56.	Collision theory satisfactorily explains						
	1) First order reaction	2) Zero order reactio	n				
	3) Bimolecular reaction		4) Any order reaction				
57.	According to collision theory of reaction rate	es, the activation ener	gy is				
	1) the energy gained by the molecule on coll	iding with other mole	cules.				
	2) the energy that molecule should possess i	n order to undergo re	action				
	3) the energy it should possess so that it can	enter into an effective	e collision				
	4) the energy it has to acquire so that it can e	enter into an effective of	collision.				
58.	Increase in the concentration of the reactant	s leads to the change i	n				
	1) Heat of reaction	2) Activation energy					
	3) Collision frequency	4) Threshold energy					
59.	The population of activated molecules can be	e increased by					
	1) increase in temperature	2) using a catalyst					
	3) increase of concentration of reactants	4) All					
60.	Consider an endothermic reaction $X \rightarrow Y$ backward and forward reactions, respective		nergies E_b and E_f for the				
	1) $E_b < E_f$ 2) $E_b > E_f$	3) $E_{b} = E_{f}$					
	4) no definite relation						
61.	An endothermic reaction $A \rightarrow B$ has an activ of the reaction is yKJ, the activation energy of	ation energy as xKJ.m of the reverse reaction	ol ⁻¹ of A. If energy change is				
	1) - x 2) x - y	3) x + y	4) y - x				
62.	Which of the following explains the increase	e of reaction rate by a	catalyst ?				
	1) Catalyst provides the necessary energy to	the colliding molecul	es to cross the barrier				
	2) Catalyst decreases the rate of backward read	ction so that the rate of	forward reaction increases				
	3) Catalyst decreases the enthalpy change of	f the reaction					
	4) Catalyst provides an alternative path of lo	ower activation energy	7.				
63.	The plot of log k vs $\frac{1}{T}$ helps to calculate						
	1) Energy of activation 2) Rate constant of th	e reaction					
	3) Order of the reaction						

	4) Energy of activation as well as t	he frequency factor						
64.	The activation energy of a reaction can be determined by							
	1) changing the concentration of reactants							
	2) evaluating rate constant at standard temperature							
	3) evaluating rate constants at two	different temperatures						
	4) by doubling conc. of reactants							
65.	Which of the following is correct?)						
	1) Molecularity of a reaction is alw	vays same as the order of re	eaction					
	2) In some cases molecularity of th	ne reaction is same as the or	rder of reaction					
	3) Molecularity of the reaction is a	3) Molecularity of the reaction is always more than order of reaction						
	4) Molecularity never be equal to c	order						
66.	The rate equation for the reaction 2/ in relation to this reaction is	$A+B \rightarrow C$ is found to be : rate	=K[A][B]. The correct statement					
	1) unit of k must be sec ⁻¹							
	2) value of k is independent of the	2) value of k is independent of the initial concentrations of A and B						
	3) rate of formation of C is twice the rate of disappearance of A							
	4) $t_{1/2}$ is a constant							
67.	If the rate for the chemical reaction	n is expressed as Rate = K [$[A] [B]^n$, then					
	1) order of reaction is one	2) order of reac	tion is n					
	3) order of reaction is $1 + n$	4) order of reac	tion is 1 - n					
68.	Which of the following statements	s is correct regarding order	of reaction					
	1) first order reaction should be bi	molecular 2) order of react	tion must be positive					
	3) order depends upon stoichiom	etry 4) order is deter	rmined by experimental results					
69.	If the rate of gaseous reaction is in	dependent of pressure, the	order of reaction is					
	1) 0 2) 1	3) 2	4) 3					
70.	For the reaction $H_2 + Br_2 \rightarrow 2H$ statement is true about this reaction	Br , the rate expression is	s, rate = K $[H_2] [Br_2]^{1/2}$ which					
	1) The reaction is of second order	2) Order of the	reaction is 3/2					
	3) The unit of K is sec ⁻¹	4) Molecularity	y of the reaction is 2					
71.	For the following elementary step	$(CH_3)_3CBr_{(aq)} \rightarrow (CH_3)C_{(aq)}^{\dagger}$	$_{q}$ + $Br_{(aq)}$ the molecularity is					
	1) Zero 2) 1	3) 2	4) fractional					
72.	The units of rate constant for the r	eaction obeying rate expres	ssion, $\mathbf{r} = \mathbf{k}[\mathbf{A}][\mathbf{B}]^{2/3}$ is					
	1) mole- $^{2/3}$ lit ^{2/3} time-1	2) mole ^{2/3} lit ^{-2/3}	time-1					
	3) mole ^{-5/3} lit ^{5/3} time ⁻¹	4) mole ^{2/3} lit ^{2/3} ti	ime-1					
73.	Two gases 'A' and 'B' are in a conta them has been found to be rate = k the partial pressure of each reacta	x[A] ² [B]. Predict the effect o						
	1) the rate is doubled	2) rate becomes	four times					
	3) the rate becomes six times	4) the rate becom	mes eight times					
74.	In the following sequence of react	tions $M \xrightarrow{K_1} N \xrightarrow{K_2} C$	$ \xrightarrow{K_3} P: K_1 < K_2 < K_3, \text{ then the} $					

rate determining step is

$$1) M \rightarrow N \qquad 2) N \rightarrow O \qquad 3) O \rightarrow P \qquad 4) M \rightarrow P$$

75. Taking the reaction $x+2y \rightarrow products$ to be of second order, which of the following is / are the rate law expression/s for the reaction

	the fute law expre	ession s for the reactio	11	
	I) $\frac{dx}{dt} = K[x][y]$	II) $\frac{dx}{dt} = K[x][y]$	$\left[\right]^{2}$	
	III) $\frac{dx}{dt} = K[x]^2$	IV) $\frac{dx}{dt} = K[x] +$	$K[y]^2$	
	Then the correct a	nswers can be		
	1) I only		2) I and III only	
	3) I and II only		4) I and IV only	
76.	, 5	cannot be determined	, ,	
	1) order		2) rate	
	3) rate constant		4) molecularity	
				2 1/2
77.				$^{2}_{A}C^{1/2}_{B}$ What changes in the
	initial concentration eight?	ons of A and B will ca	use the rate of reaction	to increase by a factor of
	1) $C_A \times 2; C_B \times 2$	2) $C_A \times 2; C_B \times 4$	3) $C_A \times 1; C_B \times 4$	4) $C_A \times 4; C_B \times 1$
78.	For a reaction pA+	$-qB \rightarrow \text{products}$, the ra	te law expression is r =	$k[A]^{1}[B]^{m}$ then
	1) $(p+q) = (l+m)$		2) $(p+q) > (1+m)$	
		nav not be equal to (1 +	m) 4) $(p+q) \neq (1+m)$)
70				/
79.	For $H_2 + Cl_2 \xrightarrow{\Lambda}$	• 2 HCI, rate law is giv	en by R=K. Then, X is	
	1) Pt	2) Ni	3) h u	4) Water
80.	If both $\frac{dc}{dt}$ & speci	fic rate have same unit	s, then rate law is	
	1) $R = K[A]^2$	2) R=K[A] ^{1/2}	3) R=K [a] ⁻²	4) R=K
81.		vhen [A] alone is double ts tripled. Then, order		, when [B] alone is increased
	1) 3/4	2) 3/2	3) 4/9	4) 2
82.	Rate law for 2A+B	\rightarrow C+D from followin	g data:	
	S.No	[A] (M)	s[B] (M)	Rate (M/s)
	1	0.01	0.01	2.5
	2	0.01	0.02	5
	3	0.03	0.02	45
	1) $r=K[A]^{1/3}[B]$	2) $r = K[A]^{2}[B]$	3) $r=K[A][B]^{1/3}$	4) $r=K[a]^{2/3}[B]^{1/3}$

1) $k = r \times c^2$ 2) $k = r \times c$ 3) $k = \frac{c}{r}$ 4) $k = \frac{r}{c}$

at1) time2) concentration3) Temperature4) All85.Which of the following is correct for a first order reaction ? (K= rate constant $t_{1/2} = half-l$ 1) $t_{1/2} = 0.693 \times K$ 2) k. $t_{1/2} = \frac{1}{0.693}$ 3) k. $t_{1/2} = 0.693$ 4) 6.93 × k × $t_{1/2} = 1$ 86.The half life for a given reaction was doubled as the initial concentration of the reactant v doubled. The order of the reaction is 1) Zero2) 1st3) 2nd4) 3rd87.The inversion of cane sugar into glucose and fructose is 1) 1st order2) 2nd order3) 3rd order4) zero order88.The half-life of a first order reaction is 1) independent of the initial concentration of the reactant 2) directly proportional to the initial concentration of the reactant 3) inversely proportional to the square of the initial concentration of the reactant. 4) directly proportional to the square of alkali solution is a order reaction 1) 12) 23) 04) 390. $CH_4 + Cl_2 \xrightarrow{hv} CH_3Cl + HCl;$ the order of this reaction is 1) 02) 13) 24) 391.RCOOR+H ₂ O <u>HCl</u> RCOOH + ROH follows reaction kinectics [karnataka 2001 1) 2 nd order2) unimolecular 3) pseudo unimolecular	84.	$\frac{dc}{dt}$ of a first order real	action depends on		
85.Which of the following is correct for a first order reaction ? (K= rate constant $t_{1/2} = half-l$ 1) $t_{1/2} = 0.693 \times K$ 2) k. $t_{1/2} = \frac{1}{0.693}$ 3) k. $t_{1/2} = 0.693$ 4) $6.93 \times k \times t_{1/2} = 1$ 86.The half life for a given reaction was doubled as the initial concentration of the reactant v doubled. The order of the reaction is 1) Zero2) 1st3) 2nd4) 3rd87.The inversion of cane sugar into glucose and fructose is 1) 1st order2) 2nd order3) 3rd order4) zero order88.The half-life of a first order reaction is 1) independent of the initial concentration of the reactant 2) directly proportional to the initial concentration of the reactant 3) inversely proportional to the square of the initial concentration of the reactant. 4) directly proportional to the square of alkali solution is a order reaction 1) 12) 289.The hydrolysis of ester in the presence of alkali solution is a order reaction 1) 12) 23) 04) 390. $CH_4 + Cl_2 \xrightarrow{hv} CH_3Cl + HCl$; the order of this reaction is 1) 02) 13) 24) 391.RCOOR+H_2O HCI RCOOH + ROH follows reaction kinectics [karnataka 2001 1) 2 nd order2) unimolecular				2) Tomporatura	A) A 11
1) $t_{1/2} = 0.693 \times K$ 2) $k.t_{1/2} = \frac{1}{0.693}$ 3) $k.t_{1/2} = 0.693$ 4) $6.93 \times k \times t_{1/2} = 1$ 86.The half life for a given reaction was doubled as the initial concentration of the reactant we doubled. The order of the reaction is 1) Zero2) 1st3) 2nd4) 3rd87.The inversion of cane sugar into glucose and fructose is 1) 1st order2) 2nd order3) 3rd order4) zero order88.The half-life of a first order reaction is 1) independent of the initial concentration of the reactant 2) directly proportional to the initial concentration of the reactant 3) inversely proportional to the square of the initial concentration of the reactant 4) directly proportional to the square of the initial concentration of the reactant 4) directly proportional to the square of the initial concentration of the reactant 1) 12) 23) 04) 390. $CH_4 + Cl_2 \xrightarrow{hv} CH_3Cl + HCl$; the order of this reaction is 1) 02) 13) 24) 391.RCOOR+H_2O HCL 1) 2 nd orderRCOOH + ROH follows reaction kinectics [karnataka 2001 1) 2 nd order	85	,	,	, 1	/
86.The half life for a given reaction was doubled as the initial concentration of the reactant we doubled. The order of the reaction is1) Zero2) 1st3) 2nd4) 3rd87.The inversion of cane sugar into glucose and fructose is1) 1st order2) 2nd order88.The half-life of a first order reaction is1) independent of the initial concentration of the reactant2) directly proportional to the initial concentration of the reactant3) inversely proportional to the initial concentration of the reactant3) inversely proportional to the square of the initial concentration of the reactant4) 389.The hydrolysis of ester in the presence of alkali solution is a order reaction1) 12) 23) 04) 390. $CH_4 + Cl_2 \xrightarrow{hv} CH_3Cl + HCl$; the order of this reaction is1) 02) 13) 24) 391. $RCOOR+H_2O \xrightarrow{HCl} RCOOH + ROH follows reaction kinectics [karnataka 20011) 2 nd order2) unimolecular$	85.				1
doubled. The order of the reaction is3) 2nd4) 3rd1) Zero2) 1st3) 2nd4) 3rd87.The inversion of cane sugar into glucose and fructose is 1) 1st order2) 2nd order3) 3rd order4) zero order88.The half-life of a first order reaction is 1) independent of the initial concentration of the reactant 2) directly proportional to the initial concentration of the reactant 3) inversely proportional to the initial concentration of the reactant. 4) directly proportional to the square of the initial concentration of the reactant.89.The hydrolysis of ester in the presence of alkali solution is a order reaction 1) 12) 23) 04) 390. $CH_4 + Cl_2 \xrightarrow{hv} CH_3Cl + HCl$; the order of this reaction is 1) 02) 13) 24) 391.RCOOR+H2O HCI CI + RCOOH + ROH follows reaction kinectics [karnataka 2001 1) 2 nd order2) unimolecular		1) $t_{1/2} = 0.693 \times K$	2) k.t _{1/2} = $\frac{1}{0.693}$	3) k.t _{1/2} = 0.693	4) $6.93 \times k \times t_{1/2} = 1$
87.The inversion of cane sugar into glucose and fructose is 1) 1st order2) 2nd order3) 3rd order4) zero order88.The half-life of a first order reaction is 1) independent of the initial concentration of the reactant 2) directly proportional to the initial concentration of the reactant 3) inversely proportional to the square of the initial concentration of the reactant 4) directly proportional to the square of the initial concentration of the reactant.89.The hydrolysis of ester in the presence of alkali solution is a order reaction 1) 12) 23) 04) 390. $CH_4 + Cl_2 \xrightarrow{hv} CH_3Cl + HCl$; the order of this reaction is 1) 02) 13) 24) 391.RCOOR+H_2O HCI RCOOH + ROH follows reaction kinectics [karnataka 2001 1) 2 nd order2) unimolecular	86.			d as the initial concentr	ation of the reactant was
1) 1st order2) 2nd order3) 3rd order4) zero order88.The half-life of a first order reaction is 1) independent of the initial concentration of the reactant 2) directly proportional to the initial concentration of the reactant 3) inversely proportional to the initial concentration of the reactant 4) directly proportional to the square of the initial concentration of the reactant.89.The hydrolysis of ester in the presence of alkali solution is a order reaction 1) 12) 23) 04) 390. $CH_4 + Cl_2 \xrightarrow{hv} CH_3Cl + HCl$; the order of this reaction is 1) 02) 13) 24) 391. $RCOOR+H_2O \xrightarrow{HCl} RCOOH + ROH follows reaction kinectics [karnataka 20012) unimolecular$		1) Zero	2) 1st	3) 2nd	4) 3rd
88.The half-life of a first order reaction is 1) independent of the initial concentration of the reactant 2) directly proportional to the initial concentration of the reactant 3) inversely proportional to the initial concentration of the reactant 4) directly proportional to the square of the initial concentration of the reactant.89.The hydrolysis of ester in the presence of alkali solution is a order reaction 1) 12) 23) 04) 390. $CH_4 + Cl_2 \xrightarrow{hv} CH_3Cl + HCl$; the order of this reaction is 1) 02) 13) 24) 391.RCOOR+H2O HCI RCOOH + ROH follows reaction kinectics [karnataka 2001 1) 2 nd order2) unimolecular	87.	The inversion of cane	e sugar into glucose an	d fructose is	
1) independent of the initial concentration of the reactant2) directly proportional to the initial concentration of the reactant3) inversely proportional to the initial concentration of the reactant.4) directly proportional to the square of the initial concentration of the reactant.89.The hydrolysis of ester in the presence of alkali solution is a order reaction1) 12) 23) 04) 390. $CH_4 + Cl_2 \xrightarrow{hv} CH_3Cl + HCl$; the order of this reaction is1) 02) 13) 24) 391.RCOOR+H2O \xrightarrow{HCl} RCOOH + ROH follows reaction kinectics [karnataka 20011) 2 nd order2) unimolecular		1) 1st order	2) 2nd order	3) 3rd order	4) zero order
2) directly proportional to the initial concentration of the reactant 3) inversely proportional to the initial concentration of the reactant 4) directly proportional to the square of the initial concentration of the reactant. 89. The hydrolysis of ester in the presence of alkali solution is a order reaction 1) 1 2) 2 3) 0 4) 3 90. $CH_4 + Cl_2 \xrightarrow{hv} CH_3Cl + HCl$; the order of this reaction is 1) 0 2) 1 3) 2 4) 3 91. RCOOR+H ₂ O <u>HCI</u> RCOOH + ROH follows reaction kinectics [karnataka 2001 1) 2 nd order 2) unimolecular	88.	The half-life of a first	order reaction is		
3) inversely proportional to the initial concentration of the reactant 4) directly proportional to the square of the initial concentration of the reactant. 89. The hydrolysis of ester in the presence of alkali solution is a order reaction 1) 1 2) 2 3) 0 4) 3 90. $CH_4 + Cl_2 \xrightarrow{hv} CH_3Cl + HCl$; the order of this reaction is 1) 0 2) 1 3) 2 4) 3 91. $RCOOR+H_2O \xrightarrow{HCl} RCOOH + ROH follows reaction kinectics [karnataka 2001 1) 2 nd order 2) unimolecular$		1) independent of the	initial concentration of	of the reactant	
4) directly proportional to the square of the initial concentration of the reactant. 89. The hydrolysis of ester in the presence of alkali solution is a order reaction 1) 1 2) 2 3) 0 4) 3 90. $CH_4 + Cl_2 \xrightarrow{h_0} CH_3Cl + HCl$; the order of this reaction is 1) 0 2) 1 3) 2 4) 3 91. $RCOOR+H_2O \xrightarrow{HCI} RCOOH + ROH follows reaction kinectics [karnataka 2001 1) 2 nd order 2) unimolecular$		2) directly proportion	nal to the initial concer	ntration of the reactant	
89.The hydrolysis of ester in the presence of alkali solution is a order reaction1) 12) 23) 04) 390. $CH_4 + Cl_2 \xrightarrow{hv} CH_3Cl + HCl$; the order of this reaction is1) 02) 13) 24) 391.RCOOR+H_2O <u>HCl</u> RCOOH + ROH follows reaction kinectics [karnataka 20011) 2 nd order2) unimolecular		3) inversely proportion	onal to the initial conce	entration of the reactar	nt
1) 1 2) 2 3) 0 4) 3 90. $CH_4 + Cl_2 \xrightarrow{hv} CH_3Cl + HCl$; the order of this reaction is 1) 0 2) 1 3) 2 4) 3 91. $RCOOR+H_2O \xrightarrow{HCI} RCOOH + ROH follows reaction kinectics [karnataka 2001] 1) 2 nd order 2) unimolecular$		4) directly proportion	nal to the square of the	initial concentration of	the reactant.
90. $CH_4 + Cl_2 \xrightarrow{hv} CH_3Cl + HCl$; the order of this reaction is 1) 0 2) 1 3) 2 4) 3 91. $RCOOR+H_2O \xrightarrow{HCl} RCOOH + ROH follows reaction kinectics [karnataka 2001 1) 2 nd order 2) unimolecular$	89.	The hydrolysis of este	er in the presence of all	kali solution is a or	der reaction
1) 02) 13) 24) 391.RCOOR+H2O \xrightarrow{HCI} RCOOH + ROH follows reaction kinectics [karnataka 20011) 2 nd order2) unimolecular		1) 1	2) 2	3) 0	4) 3
1) 02) 13) 24) 391.RCOOR+H2O \xrightarrow{HCI} RCOOH + ROH follows reaction kinectics [karnataka 20011) 2 nd order2) unimolecular	90.	$CH_4 + Cl_2 \xrightarrow{h\upsilon} CI$	$H_{2}Cl + HCl$; the order	of this reaction is	
91. RCOOR+H ₂ O <u>HCI</u> RCOOH + ROH follows reaction kinectics [karnataka 2001 1) 2 nd order 2) unimolecular					4) 3
1) 2 nd order2) unimolecular	91	,		,	,
	/ 11	_			
3) pseudo unimolecular 4) Zero order		,	1		
92. Order of a reaction is decided by	92	, 1		4) Zero order	
1) molecularity 2) law of mass action)2.		decided by	2) law of mass action	
		,	nont	,	
3) performing experiment 4) Lechatlier principle	02	, 1 0 1		, 1 1	e
93. $2A \rightarrow B+C$ would be a zero order reaction when rate of reaction	93.				
1) is directly proportional [A]2) is directly proportional [A] ²		, , , , , ,		, , , , ,	
3) is independent of change of [A] 4) is independent of [B] & [C]		, -	0	, 1 -	B] & [C]
94. Which of the following is a first order reaction	94.	Which of the follow	ing is a first order rea		
1) $2N_2O_5 \rightarrow 4NO_2 + O_2$ 2) $2H_2O_2 \rightarrow 2H_2O + O_2$		$1) 2N_2O_5 \rightarrow 4NO_2 + C$	2	$2) 2H_2O_2 \rightarrow 2H_2O+O$	2
3) $CH_3COOC_2H_5 + H_2O \xrightarrow{H^+} products 4$ All the above		3) CH ₃ COOC ₂ H ₅ +	$H_2O \xrightarrow{H^+} products$	4) All the above	
95. If a reaction obeys the following equation $k = \frac{2.303}{t} \log \frac{a}{a - x}$ the order of the reaction will	95.	If a reaction obeys the	following equation k =	$\frac{2.303}{t}\log\frac{a}{a-x}$ the ord	der of the reaction will be
1) zero 2) one 3) two 4) three					
96. The rate constant for a reaction is 2.05×10^{-5} mole lit ⁻¹ .sec ⁻¹ . The reaction obeys order	96.	The rate constant for	a reaction is 2.05×10^{-5}	⁵ mole lit ⁻¹ .sec ⁻¹ . The rea	action obeys order
1) First 2) Second 3) Zero 4) Half					2
97. A reaction involves two reactants. The rate of reaction is directly proportional to concentration of one of them and inversely proportional to the concentration of the other and inversely proportional to the othe	97.	A reaction involves	two reactants. The ra	ate of reaction is direc	ctly proportional to the

	The overall order of n	eaction will be						
	1) One	2) Two	3) Zero	4) fractional				
98.	In the reaction of $aA + bB + cC \rightarrow$ Products,							
	i) If concentration of A is doubled, keeping conc. of B and C constant the rate of reaction becomes double.							
	ii) If concentration of B is halved keeping conc. of A and C constant, the rate of reaction remains unaffected							
	iii) If concentration of reaction is	C is made 1.5 times, the	e rate o reaction becom	es 2.25 times. The order of				
	1) 1	2) 2.5	3) 3	4) 3.5				
99.	In the reaction $2A+B \rightarrow$ Products, the order w.r.t A is found to be one and w.r.t B equal t Concentration of A is doubled and that of B is halved, the rate of reaction will be							
	1) Doubled	2) Halved	3) Remain unaffected	d 4) Four times				
100.	00. While studying the decomposition of gaseous N ₂ O ₅ , it is observed that a plot of lo its partial pressure versus time is linear. The kinetic parameter obtained from this o is							
	1) Specific rate		2) Reaction rate	2) Reaction rate				
	3) Energy of activation	n	4) Molecularity					
101.	The correct expression for the rate constant for reactions of zero order is							
	1) k - [A _•]/2t		2) $k = \frac{1}{t} \{ [A_0] - [A] \}$					
	3) $k = \frac{1}{t} \{ [A] - [A_0] \}$		4) $k = \frac{2.303}{t} \log \{ [A_0] \}$	-[A]}				
102.	If 'a' is the initial conc if it is of zero order, v		nt, the time taken for co	ompletion of the reaction,				
	1) a/k	2) a/2k	3) 2a/k	4) k/a				
103.	For the first order realog (a-x) versus time		hich one of the followi	ng is the correct plot of				
	1) $\log(a-x)$	2) log(a-x)	$3) \log(a-x)$	$4) \log(a-x)$				
104.	The slowest step of a	2) log(a-x) particular reaction is f	found to be $\frac{1}{2}X_2+Y_2$	→XY ₂				
	The order of the reac		2	2				
	1) 2	2) 3	3) 3.5	4) 1.5				
105.		,	,	,				
105.	For the reaction $A \rightarrow B$, the rate law expression is : rate = K[A]. Which of the following statements is incorrect ?							
	1) The reaction follow							
	,	depends on initial conce						
		3) K is constant for the reaction at a constant temperature						
	any time after the sta	rt of the reaction	-	eactants and products at				
106.		of the rate constant of ncentration of reactant		e half life is doubled by				
	1) M-s ⁻¹	2) M ⁻¹ s ⁻¹	3) sec ⁻¹	4) $M^{-2}s^{-1}$				
				061				

107. Which of the following represents the expression for 3/4 th life of 1st order reaction

1)
$$\frac{2.303}{k}\log 3/4$$
 2) $\frac{2.303}{k}\log 3$ 3) $\frac{2.303}{k}\log 4$ 4) $\frac{K}{2.303}\log 4$

- 108.The formation of gas at the surface of tungsten due to adsorption is ------ order reaction1) 02) 13) 24) Insufficient data
- 109. The rate law for a reaction between the substances A and B is given by Rate = $k[A]^{m}[B]^{n}$ On doubling the concentration of A and halving the concentration of B, the ratio of the new rate to the earlier rate of the reaction will be as
 - 1) (m+n) 2) (n-m) 3) $2^{(m-n)}$ 4) $\frac{1}{2^{(m+n)}}$
- 110. For the reaction system : $2NO(g) + O_2(g) \rightarrow 2NO_{2(g)}$ volume is suddenly reduced to half its value by increasing the pressure on it. If the reaction is of first order with respect to O_2 and second order with respect to NO, the rate of reaction will

1) diminish to one-eighth of its initial value 2) increase to eight times of its initial value

- 3) increase to four times of its initial value 4) diminish to one-fourth of its initial value
- 111. In a first order reaction, the concentration of the reactant, decreases from 0.8M to 0.4M in 15 minutes. Then, 0.1M becomes 0.025M in
 - 1) 7.5 minutes 2) 15 minutes 3) 30 minutes 4) 60 minutes
 - 1) Both (1) and (R) are true and (R) is the correct explanation of (1)
 - 2) Both (1) and (R) are true and (R) is not the correct explanation of A
 - 3) (1) is true but (R) is false 4) (1) is false but (R) is true
- 112. Assertion : Spontaneous reaction may be slow or fast.Reason : Spontaneous nature deals with feasibility of the reaction but not rate.
- 113. Assertion : Rate of reaction increases with increase in concentration of reactants.Reason : Number of effective collisions increases with increase in concentration of reactants.
- 114. Assertion : Rate constant of a reaction at a particular temperature is constant Reason : The value of rate constant 'K' is independent of initial concentration.
- 115. Assertion : Hydrolysis of an ester is a slow reactionReason : Reactions between covalent species involve breaking and making of bonds.
- 116. Assertion : As time passes the rate of non zero order reaction w.r.t reactants (or) products decreases

Reason : Rate of a reaction is directly proportional to (Concentration)^{order}

- 117. Assertion : All collisions lead to chemical reaction (R)Reason : Activated molecules bring about effective collisions
- 118. Assertion : Lesser the activation energy, greater is the rate of reactionReason : Activation energy of a reaction is independent of temperature
- 119. Assertion :Order of reaction is evaluated from the mechanism of a reactionReason : Order of reaction can be zero
- 120. Assertion : A catalyst increases the rate of a reaction.

262

Reason : In presence of a catalyst, the activation energy of the reaction increases.

		1		5			0,			
121.	Se	et -I					Set - II (t	$\left(\frac{1}{2}\right)$		
	1) H ₂ +	$I_2 \rightarrow 2I$	HI				1) Indeper	ndent of	C _o	
	2) $2H_2O_2 \rightarrow 2H_2O + O_2$ 3) $2NO + Cl_2 \rightarrow 2NOCl$						2) Proport	ional to	[C ₀]-1	
						3) Proport	ional to	$[C_0]^1$		
	4) CH	$_{4}+ Cl_{2}$	№→СН	₃ Cl + HC	21		4) Proportional to $[C_0]^{-2}$			
	Correct match is A B C D 1) 2 1 5 3 2) 3) 2 1 4 3 4)					5) Inversely proportional to $[C_0]^{-2}$				
							А	В	С	D
	1)	2	1	5	3	2)	2 1	1	4	5
	3)	2	1	4	3	4)	1	2	3	5
122.		t - I (pro				,	Set - II (un			
	1) 2HI \xrightarrow{Au} products						1) Sec ⁻¹			
	2) $SO_2Cl_2 \rightarrow products$					2) mol - ltr ⁻¹ - sec ⁻¹				
	3) $R_1 COOR_2 + H_2O \xrightarrow{OH^-} products$					3) lit ² - mol ⁻² - sec ⁻¹				
	4) 2NO + $Cl_2 \rightarrow products$						4) lit - mol	⁻¹ - sec ⁻¹		
	Correc	t match	is							
		А	В	С	D		А		С	D
	1)	1	2	3 4	4	2)	4	2	3	1
	3)	2	1	4	3	4)	2		3	1

WORK SHEET - II

01.	For the reaction $N_2 + 3H_2 \rightarrow 2NH_3$, the rat $-\frac{d[N_2]}{dt}$ is given as :	ate $\frac{d[NH_3]}{dt} = 2 \times 10^{-4} M s^{-1}$. Therefore the rate 3) $10^{-2} M \sec^{-1}$ 4) $10^{-4} \sec^{-1} M^{-1}$		
	1) $10^{-4} \mathrm{Msec^{-1}}$ 2) $10^4 \mathrm{Msec^{-1}}$	3) $10^{-2} \mathrm{Msec^{-1}}$ 4) $10^{-4} \mathrm{sec^{-1}} \mathrm{M^{-1}}$		
02.	The rate of a heterogeneous reaction such as in	on (soli4) and any gas (oxygen) does not depend		
	on :			
	1) Concentration of reactants	2) Surface area of reactants		
	3) Pressure of reactant gases	4) Potential energy of reactant		
03.	For the reaction : $[Cu(NH_3)_4]^{2+} + H_2O \rightleftharpoons [0]$ reaction at any time is given by : rate = $2.0 \times 10^{-4} [[Cu(NH_3)_4]^{2+}] [H_2O] - 3.0 \times 10$ statment is/are			
	1) Rate constant for forward reaction = $2x 10$	-4		
	2) Rate constant for backward reaction = $3 x$	10 ⁵		
	3) Equilibrium constant for the reaction = 6.6	x 10 ⁻¹⁰		

4) All of these

04. Consider the reaction : $N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$. The equally relationship between

$$-\frac{d[NH_{3}]}{dt}and - \frac{d[H_{2}]}{dt} is:$$
1) $\frac{d[NH_{3}]}{dt} = -\frac{3}{2}\frac{d[H_{2}]}{dt}$
2) $\frac{d[NH_{3}]}{dt} = -\frac{d[H_{2}]}{dt}$
3) $\frac{d[NH_{3}]}{dt} = \frac{1}{3}\frac{d[H_{2}]}{dt}$
4) $\frac{d[NH_{3}]}{dt} = -\frac{2}{3}\frac{d[H_{2}]}{dt}$

05. The accompanying figure depicts the change in concentration of species X and Y for the reaction

 $X \rightarrow Y$, as a function of time. The point of intersection of the two curves represents

1)
$$t_{1/2}$$
 2) $t_{3/4}$ 3) $t_{2/3}$ 4) $t_{1/4}$

06. Benzene diazonium chloride (1) decomposes into chlorobenzene (2) and N₂(g) in first-order reaction. Volumes of N₂ collected after 5 min and at the complete decomposition of A are 10 mL. and 50 mL. The rate constant for the reaction is .
1) 0.446 min⁻¹
2) 0.0446 min⁻¹
3) 0.223 min⁻¹
4) 0.112 min⁻¹

1) 0.446 min⁻¹ 2) 0.0446 min⁻¹ 3) 0.223 min⁻¹ 4) 0.112 min⁻¹
07. For the reaction
$$N_2O_5 \rightarrow 2NO_2 + O_2$$
; Given $\frac{-d[N_2O_5]}{dr} = K_1[N_2O_5]$

$$\frac{d[NO_2]}{dt} = K_2[N_2O_5] \text{ and } \frac{d[O_2]}{dt} = K_3[N_2O_5]. \text{ The relation in between } K_1, K_2 \text{ and } K_3 \text{ is :}$$

1) $2K_1 = K_2 = 4K_3$ 2) $K_1 = K_2 = K_3$ 3) $2K_1 = 4K_2 = K_3$ 4) None of these 08. For the reaction, $2A + B \rightarrow 3C + D$; which of the following does not express the reaction rate

1)
$$\frac{d[D]}{dt}$$
 2) $-\frac{d[A]}{2dt}$ 3) $-\frac{d[C]}{3dt}$ 4) $-\frac{d[B]}{dt}$

09. Hydrogenation of vegetable ghee at 25^{0} C reduces pressure of H₂ from 2 atm to 1.2 atm in 50 minute. The rate of reaction in terms of molarity per second is :

1)
$$1.09 \times 10^{-6}$$
 2) 1.09×10^{-5} 3) 1.09×10^{-7} 4) 1.09×10^{-9}

10. In reversible reaction : $2NO_2 \xleftarrow{k_1}{k_2} N_2O_4$ the rate of disappearance of NO_2 is equal to

1)
$$\frac{2k_1}{k_2}[NO_2]^2$$
 2) $2k_1[NO_2]^2 - 2k_2[N_2O_4]$

:

4) 50

3)
$$2k_1[NO_2]^2 - k_2[N_2O_4]$$

4)
$$(2k_1 - k_2)[NO_2]$$

WORK SHEET - III

- 01. The rate constant (K) for the reaction. $2A+B \rightarrow Product$ was found to be 2.5×10^{-5} litremol⁻¹ sec⁻¹ after 15 sec, 2.60×10^{-5} litremol⁻¹ sec⁻¹ after 30 sec and 2.55×10^{-5} litremol⁻¹ sec⁻¹ after 50 sec. The order of reaction is: 1) 2 2) 3 3) Zero 4) 1
- 02. A first order reaction is carried out with an initial concentration of 10 mol per litre and 80% of the reactant changes into the product in 10 sec. Now if the same reaction is carried out with an initial concentration of 5 mol per litre. The percentage of the reactant changing to the product in 10 sec is :

03. For a first order reaction $A \xrightarrow{K_1} B \\ K_2 \xrightarrow{C} C$ which of the following relation is not correcet:

1)
$$K = K_1 + K_2$$

2) $\frac{1}{\tau} = \frac{1}{\tau_1} + \frac{1}{\tau_2}$
3) $\frac{1}{t_{1/2}} = \left(\frac{1}{t_{1/2}}\right)_1 + \left(\frac{1}{t_{1/2}}\right)_2$
4) $\frac{1}{K} = \frac{1}{K_1} + \frac{1}{K_2}$

04. A substance undergoes first order decomposition. The decomposition follows two parallel first order reactions as :

A
$$K_1$$
 K_2 K_1 $K_2 = 3.80 \times 10^{-5} \text{ sec}^{-1}$

The percentage distribution of B and C are :

- 1) 80% B and 20%C
 2) 76.83% B and 23.17% C

 3) 90% B and 10% C
 4) 60% B and 40% C
- 05. Half life (t_1) of the first order reaction and half life (t_2) of the second order reaction are equal. Hence ratio of the rate at the start of the reaction:

06. For a first order reaction, the half-life is 50 sec. Identify the correct statement from the following.

1) the reaction is almost gets complete in 500 sec

- 2) the same quantity of reactant is consumed for every 50 sec of the reaction
- 3) quantity of reactant remaining after 100 sec is half of what remains after 50 sec
- 4) All the above three

07.	For a first order reaction, if the time taken for completion of 50% of the reaction is 't' second, the time required for completion of 99.9% of the reaction is:					
	1) 10t	2) 5t	3) 100t	4) 2t		
08.	In a first order reaction, the concentration of the reactant, decreases from 0.8 M to 0.4 M in 15 minutes. The time taken for the concentration to change from 0.1 M to 0.025 M is					
	1) 30 minutes	2) 60 minutes	3) 7.5 minutes	4) 15 minutes		
09.	The following data a pressure, atm	are obtained from the o	decomposition of a gas 1.6 0.8 0.4	seous compound Initial		
	Time for 50% reac., m	un	80 113 160			
	The order of the reaction is					
	1) 0.5	2) 1.0	3) 1.5	4) 2.0		
10.	In a zero order reaction of reactant consumed		ant remains at the end o	f 2.5 hours. The amount		

1) 10.5 %	2) 32.0 %	3) 52.6 %	4) 21.0 %

EXERCISE - I / ANSWERS

WORK SHEET - I

1) 3	2) 2	3) 2	4) 1	5) 2	6) 4	7) 4	8) 3	9) 3	10) 3
11) 4	12) 2	13) 2	14) 3	15) 1	16) 3	17) 3	18) 3	19) 2	20) 2
21) 2	22) 1	23) 3	24) 3	25) 2	26) 3	27) 3	28) 3	29) 2	30) 2
31) 1	32) 3	33) 2	34) 2	35) 4	36) 4	37) 3	38) 3	39) 2	40) 2
41) 2	42) 3	43) 3	44) 4	45) 4	46) 2	47) 3	48) 1	49) 2	50) 4
51) 3	52) 2	53) 2	54) 4	55) 3	56) 3	57) 4	58) 3	59) 4	60) 1
61) 2	62) 4	63) 4	64) 3	65) 2	66) 2	67) 3	68) 4	69) 1	70) 2
71) 2	72) 1	73) 4	74) 1	75) 2	76) 4	77) 2	78) 3	79) 3	80) 4
81) 2	82) 2	83) 4	84) 4	85) 3	86) 1	87) 1	88) 1	89) 2	90) 1
91) 3	92) 3	93) 3	94) 4	95) 2	96) 3	97) 3	98) 3	99) 2	100) 1
101) 2	102) 1	103) 2	104) 4	105) 2	106) 2	107) 3	108) 1	109) 3	110) 2
111) 3	112) 1	113) 1	114) 2	115) 1	116) 1	117) 4	118) 2	119) 4	120) 3

WORK SHEET - II

1) 1	2) 4	3) 4	4) 4	5) 1	6) 2	7) 1	8) 3	9) 2	10) 2
WORK SHEET - III									

1`)1 2) 2	3) 4	4) 2	5) 3	6) 4	7) 1	8) 1	9) 3	10) 4
- - ,	/ I) -	5, 1	-1/-	5,5	0,1	<i>')</i> ¹	0,1))	10/1

EXERCISE- II

63.	Column - I 1) Decomposition of H	H ₂ O ₂	Column - II p) 10t _{1/2}
	2) $\frac{k_{308K}}{k_{298K}}$		q) 1 st order
	3) Arrhenius equatior	1	r) Temperature coefficient
	4) t _{99.9%}		s) $\log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left(\frac{T_2 - T_1}{T_1 T_2} \right)$
			t) 2 to 3
64.	Column - I		Column - II
	1) Decomposition of H	H ₂ O ₂	p) First order reaction
	2) Decomposition of o	zone	q) Order of reaction with respect to oxygen is -
	1		
	3) Decomposiiton of N	N ₂ O ₅	r) Half life is independent of initial conc
	4) RCOOR + H_2O —	$\xrightarrow{H^+} RCOOH + ROH$	s) Pseudo unimolecular reaction
			t) Units of rate of reaction are M.time ⁻¹
65.	Match the Order of Re	eaction (in Column-I) w	ith its Property (in Column-II) :
	Column-I (Order)	Column - II (Property)
	1) Zero	p) Half Life $\propto \frac{1}{a^2}$	

3) Second r) Half Life is doubled on doubling the initial concentration

4) Third s) 50% reaction takes same time even if concentration is halved (or) doubled

EXERCISE- II / ANSWERS

63) 1-q; 2-r,t; 3-s; 4-p	64) 1-p,r,t; 2-p,q,r,t; 3-p,r,t; 4-p,r,s,t
65) 1-r; 2-s; 3-q; 4-p	

q) Half Life $\propto \frac{1}{a}$

2) First

EXERCISE - I

WORK SHEET - I

1.	Which of the followir	ng is transition elemen	t		
	1) Pb	2) Sn	3) Cr	4) Zn	
2.	Liquid metal among	1-block elements is			
	1) Hg	2) Zn	3) Nb	4) Cd	
3.	Outer electronic conf	guration of the elemen	t Palladium is		
	1) $4d^{5}5s^{1}$	2) $4d^9 5s^2$	3) $4d^{10}5s^{1}$	4) $4d^{10}5s^{0}$	
4.	In 3d series which ele	ement has highest M.P	and B.P		
	1) V	2) Zn	3) Cu	4) Cr	
5.	Which of the followir	ng orbitals are filled pro	ogressively in the transi	tion elements	
	1) s	2) p	3) d	4) f	
6.	Which set of element	s among the following	are called non-transitio	nal elements	
	1) Cu, Ag and Au	2) Fe, Co and Ni	3) Zn, Cd and Hg	4) Re, Os and Ir	
7.	The catalyst used in t	he manufacture of HN	O ₃ by Ostwald's proces	is is	
	1) Pt	2) Ni	3) Fe	4) Mo	
8.	Iron catalyst is used i	n			
	1) Contact process		2) Ostwald's process		
	3) Birkland-Eyde pro	cess	4) Haber's process		
9.	The changed name of	Khurchatovium (Z=10	04) is		
	1) Joliotium	2) Dubnum	3) Rutherfordium	4) Hatrium	
10.	The number of elect	rons in 4d-subshell o	f 'Pd' is		
	1) 7	2) 8	3) 9	4) 10	
11.	Electron configuratio	n of Ferrous ion is			
	1) $1s^22s^22p^63s^23p^63d$	$^{6}4s^{0}$	2) $1s^22s^22p^63s^23p^63d$	$^{6}4s^{2}$	
	3) 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d	$54s^{1}$	4) $1s^22s^22p^63s^23p^63d$	$54s^{0}$	
12.	The following pair of	ions have the same ele	ctronic configuration		
	1) Cr^{3+} and Fe^{3+}	2) Fe^{3+} and Mn^{2+}	3) Fe^{3+} and Co^{3+}	4) Sc^{3+} and Cr^{3+}	
13.	How many 'd' electro	ns are present in Cr ²⁺ i	on?		
	1) 4	2) 5	3) 6	4) 3	
14.	What kind of electro metal ions	onic transition take pla	ce in the exhibition of	colour by transition	
	1) d to s	2) s to p	3) d to d	4) f to s	
15.	Outermost EC	Element			
	1) $5s^1 4d^5$	A) Cu			
	1) $5s^1 4d^5$ 2) $6s^1 5d^{10}$				
	,	A) Cu			
	2) $6s^1 5d^{10}$	A) Cu B) Pd			
	 2) 6s¹ 5d¹⁰ 3) 4s¹ 3d¹⁰ 4) 5S° 4d¹⁰ 	A) Cu B) Pd C) Mo			
	 2) 6s¹ 5d¹⁰ 3) 4s¹ 3d¹⁰ 4) 5S° 4d¹⁰ The correct match is	A) Cu B) Pd C) Mo D) Cr			
	 2) 6s¹ 5d¹⁰ 3) 4s¹ 3d¹⁰ 4) 5S° 4d¹⁰ 	A) Cu B) Pd C) Mo D) Cr	2) 1-C, 2-E, 3-B, 4-A 4) 1-E, 2-C, 3-A, 4-B		

		w wind	
16.	(A) : Fe^{+3} is more stable than that of Fe^{+2} .		, ,
	(R) : Fe^{+3} ion has half filled 3d orbital wherea	as Fe ⁺² does not.	
	1) Both A & R are correct and R is correct exp	planation for A	
	2) Both A & R are correct and R is not correct	t explanation for A	
	3) A is true but R is false	4) A is false but R true	2
17.	Number of 'd' electrons present in M shell of	of Ag+ ion?	
	1) 10 2) 20	3) 18	4) 16
18	The atomic numbers of vanadium chromium 24, 25 and 26. Which one of these may be ex enthalpy		
	1) V 2) Cr	3) Mn	4) Fe
19.	Of the following outer electronic configurati achieved by which one of them?	ions of atoms, the highe	est oxidation state is
	1) $(n-1)d^8ns^2$ 2) $(n-1)d^5ns^2$	3) $(n-1)d^3ns^1$	4) $(n-1)d^{5}ns^{1}$
20.	The common oxidation state of transition ele	ements is	
	1) + II 2) + IV	3) + VI	4) + VII
21.	Which of the following transition elements e	exhibit +8 oxidation sta	te
	1) Cu and Zn 2) Ru and Os	3) W and Pb	4) Ag and Au
22.	Manganese exhibits oxidation states from	,	, 0
	1) + II to + VII 2) + I to + VI	3) + I to + V	4) + III to + V
23.	The most stable oxidation state of Iron is	,	,
	1) + II 2) + III	3) + I	4) + VI
24.	The maximum oxidation state in 3d series el	,)
	1) Cu 2) V	3) Mn	4) Fe
25.	The transition element that has stable config	,	,
20.	1) Cu 2) Zn	3) Sc	4) Mn
26.	Divalent Manganese is more stable due to	0)00	1) 10111
20.	1) 3d ⁴ configuration 2) 3d ² configuration	3) 3d ^₅ configuration	4)3d ³ configuraton
27.	The oxidation state of "Ni" in Ni(CO), is	5) 50 configuration	4)50 configuration
27.	1) + II 2) zero	3) + III	4) + VIII
28.	The element which has half-filled d-orbitals	,	,
20.	1) Mn 2) Cr	3) Zn	4) Fe
29.	Coloured complexes absorb radiation in the	5) ZII	4)10
29.	1) visible region2) infrared region	3) U.V. region	4) far IR region
		5) U.V. legion	4) far in fegion
30.	Coloured ion among the following is		
	1) Zn^{2+} 2) Mn^{2+}	3) Cu ¹⁺	4) Ti ⁴⁺
31.	In aqueous solution which of the following o	colour is exhibited by N	liCl ₂
	1) pink 2) green	3) blue	4) yellow
32.	The ion which exhibits orange red colour in	aqueous solution is	
	1) $Cr_2O_7^{2-}$ 2) MnO_4^{2-}	3) MnO ₄	4) Cr ³⁺
33.	The following ion is colourless in aqueous s	olution ?	
	1) Ti^{2+} 2) Cu^{2+}	3) Ni ²⁺	4) Zn ²⁺
34.	Which of the following pairs of ions are colo	ourless?	
	1) Ti ⁺³ , Cu ⁺² 2) Sc ⁺³ , Zn ⁺²	3) Co ⁺² , Fe ⁺³	4) Ni ⁺² , V ⁺³
35.	The following ion exhibits colour in aqueous	s solution ?	
			269

d and	f - Block Elements						
	1) Sc^{3+} 2) Cu^+	3) Ni ²⁺	4) Zn ²⁺				
36.	A : Sc^{+3} ion in aqueous solutions is colorless						
	R : Ions with d ⁰ configuration are colorless						
	The correct answer is						
	1) Both (A) and (R) are true and (R) is the correct explanation of (A)						
	2) Both (A) and (R) are true and (R) is not the	correct explanation of	(A)				
	3) (A) is true but (R) is false	4) (A) is false but (R) i	s true				
37.	The atomic number of an element 'M' is 26. He of the element in its M ³⁺ state ?	ow many electrons are p	present in the M-shell				
	1) 5 2) 14	3) 12	4) 13				
38.	Paramagnetism is the property of						
	1) completely filled electronic subshells	2) unpaired electrons					
	3) non-tranistion elements	4) vacant orbitals					
39.	The formula to calculate paramagnetic mom	ent of a substance is					
	1) $\mu_s = \sqrt{4S(S+2)} B.M$	2) $\mu_{s} = \sqrt{n(n+2)}$ B.M	Л				
	3) $\mu_{s} = \sqrt{n(n+4)}$ B.M	4) $\mu_{\rm s} = \sqrt{L(L+2)}$ B.	М				
40.	The units of Magnetic moment are						
	1) Newton - ohm 2) Torrs	3) Bohr Magneton	4) Pascals				
41.	The value of B.M in SI units is						
	1) 9.273 \times 10 ⁻²³ J.T ⁻¹	2) 9.273 \times 10 ²⁴ J.T ⁻¹					
	3) 9.273 \times 10 ⁻²⁴ J.T ⁻¹	4) 9.273 \times 10 ²³ J.T ⁻¹					
42.	Which atom would be attracted towards mag	gnetic field					
	1) Zn 2) Mn	3) Mg	4) Cd				
43.	Magnetic moment of diamagnetic substance	in Bohr magnetons is					
	1) 1.73 2) 2.83	3) 5.0	4) 0				
44.	Which of the following set of elements are Fe						
	1) Zn, Cd and Hg 2) Cu, Ag and Au	,	4) Sc, Ti and U				
45.	Substances which are repelled by the externa		lled				
	1) diamagnetic	2) paramagnetic					
4.6	3) ferromagnetic	4) antiferromagnetic					
46.	The following is paramagnetic						
47	1) CaCl ₂ 2) CuCl ₂ The following increase which its high set are specified	3) $ZnCl_2$	4) NaCl				
47.	The following ion exhibits highest magnetic 1) Cu^{2+} 2) Ti^{3+}	3) Ni ²⁺	4) Mar ²⁺				
48.	, , ,	,	4) Mn ²⁺				
40.	The calculated magnetic moment of Cu^{2+} ior 1) 1.73 B.M. 2) zero	3) 2.6 B.M.	4) 3.4 B.M.				
49.	Ferrous ion changes to 'X' ion, on reacting w	,	,				
49.	number of d-electrons present in 'X' and its magnetic m		peroxide. The				
	1) 6 and 6.93 B.M. 2) 5 and 5.92 B.M.	3) 5 and 4.9 B.M.	4) 4 and 5.92 B.M.				
50.	A : The spin only magnetic moment of Sc ⁺³ is	Г					
	R : The spin only magnetic moment (in BM)	•	n(n+2)				
	1) Both (A) and (R) are true and (R) is the cor	rect explanation of (A)					

			d and f	- Block Elements
	2) Both (A) and (R) are t	true and (R) is not the	correct explanation of ((A)
	3) (A) is true but (R) is factors $(A) = (A + A)^2 + $	alse	4) (A) is false but (R) is	s true
51.	A : Cu ⁺ is diamagnetic			
	R : Ions with d ¹⁰ configu	ration are diamagnet	ic	
	1) Both (A) and (R) are t	Ũ		
	2) Both (A) and (R) are t			(Λ)
	, , , , , ,		-	. ,
50	3) (A) is true but (R) is factor (R)		4) (A) is false but (R) is	
52.	Which of the following		al ions, have the same o	calculated values of
	spin only magnetic mor			
	1) $Ti^{+2} \& V^{+2}$	2) Fe ⁺² & Ci ⁺²	3) Cr ⁺² & Fe ⁺²	4) Co ⁺² & Ti ⁺²
53.	Which one of the follow	ving has diamagnetis	m?	
	1) Co ²⁺	2) Cu ²⁺	3) Mn ²⁺	4) Sc ³⁺
54	Which of the following	ions has the maximur	n magnetic moment	
	8	2) Fe ⁺²	3) Ti ⁺²	4) Cr ⁺³
55.	, The spin only magnetic	,	,	,
00.	1 1 0	2) 2.84BM	3) 4.9 BM	4) 0
56.	Metals constitute brass	,	5) 4.9 DIVI	4)0
50.		2) Cu and Sn	3) Sn and Zn	4) Cu, Zn and Sn
57.		2) Cu anu Sh	5) Sh and Zh	4) Cu, Zh anu Sh
57.	Bronze is an alloy of	\mathbf{D}	2) $Dh + Cr + Zr$	(1) D1 + 7
- 0	,	2) $Cu + Zn$	3) Pb + Sn + Zn	4) Pb + Zn
58.	The metal not present in		0) NT:	4) 7
-	, 0	2) Cu	3) Ni	4) Zn
59.	Steels are generally prep	•		
	1) Compressed method	2) Oxidation	3) Quenching	4) Electrylytic
60	deposition	the steels is nearly		
60.	Percentage of carbon in	•	2) 0 2%	4) 10%
(1		2) 2%	3) 0.2%	4) 10%
61.	The alloy used to reduc		o) 147 17 1 1	
	, , <u>, , ,</u>	2) Devarda's metal	3) Wood's metal	4) Solder metal
62.	Which among the follow	• -	-	
	,	2) Type metal	3) Invar	4) Solder metal
63.	Which of the following	•		
	· ·	2) Aluminium bronze	3) German silver	4) Magnalium
64.	Gunmetal is an alloy of			
	,	2) Cu, Sn and Zn	3) Ni, Fe and Cr	4) Al and Mg
65.	Which of the following	is ferrous alloy ?		
	1) German Silver	2) Gunmetal	3) Nichrome	4) Devarda's alloy
		WORK SHEE	T - II	
1.	The following represen	ts the electronic config	guration of a transition	element
	1) $ns^2 np^3$		2) $ns^2 np^6 nd^3 (n+1)s^2$	
	3) $ns^2 np^6 nd^{10} (n-1)s^2 (n-1)s^$	$n+1)p^4$	4) $ns^2 np^5$	
2.	Which of the following	/ 1	, 1	
,	•	2) Zn	3) Cu	4) Co
3	,	,	,	,
3.	Which of the following	statements concernin	-	
	1) They are all metals		2) They easily form con	mplexes
	1) They are an motals		/ 5 5	1

a and	J - Block Elements							
	3) Compounds containing their ions are coloured							
	4) They show multiple oxidation states always differing by two units.							
4.	The atomic number of	f element having pseud	o inert gas configuration	n in it's atomic state is				
	1) 46	2) 45	3) 47	4) 48				
5.	The highly stable pai	r of ions are						
	1) Fe^{2+} and Fe^{3+}	2) Fe^{2+} and Mn^{3+}	3) Fe^{3+} and Mn^{2+}	4) Fe^{3+} and Fe^{4+}				
6.	Which ion has three	unpaired d-electrons						
	1) Ti ²⁺	2) V ³⁺	3) Cr ³⁺	4) Mn ²⁺				
7.	A transition metal ion number is	has configuration [Ar]3	3d ⁴ in its tripositive oxid	ation state. Its atomic				
	1) 25	2) 26	3) 32	4) 19				
8.	The number of 'd' ele	ctrons in Fe ²⁺ is not equ	ual to that of					
	1) s-electrons in Mg	2) p-electrons in Ne	3) p-electrons in Cl	4) d-electrons in Fe				
9.	The pair of ions whic	h do not have same nu	mber of unpaired elect	rons is				
	1) Mn^{2+} and Fe^{3+}	2) Ti ²⁺ and Ni ²⁺	3) Cu^{2+} and Ti^{3+}	4) Fe^{2+} and Ni^{2+}				
10.	(A) : Outermost electr	ronic configuration of F	Pt is 5d ⁹ 6s ¹					
	(R): Pt in its ion attai	ins pseudo inert gas co	nfiguration					
	The correct answer is	i i i i i i i i i i i i i i i i i i i						
	1) Both (A) and (R) ar	e true and (R) is the cor	rect explanation of (A)					
			e correct explanation of	(A)				
	3) (A) is true but (R) is $(A) = (A) = (A$							
11	4) (A) is false but (R) i							
11.			n series have nearly sam ne elements from atomi					
			rect explanation of (A)					
			correct explanation of					
	3) (A) is true but (R) is		1					
	4) (A) is false but (R) i							
12.	Identify the correct st	atements among the fol	llowing					
	I) The transition elem	ents have partially fille	ed (n-1)d orbitals.					
	'	uctor of electricity than	0					
		nagnetic whereas Ti ⁺⁴ is						
	,	1	sitive than alkalimetals					
13.	1) I, II only Gold can exhibit the	2) I, II, III only	3) I, IV only	4) I, III only				
13.	1) + I and + II	2) + II and + III	3) + I and + III	4) + II and + IV				
14.	,	,	lement is $[Ar]4s^23d^3$. The second	,				
	1) +1, +2 and +3	2) +2 and +3	3) +2, +3, +4 and +5	4) +2 and +5				
15.	The highest oxidati configuration	on state is exhibited	by the transition me	etal with electronic				
	1) $(n-1)d^5ns^1$	2) $(n-1)d^5ns^2$	3) $(n-1)d^8ns^2$	4) $(n-1)d^6ns^2$				
16.	The transition element		tion state belongs to wi	hich group?				
	1) VIII	2) VII _B	3) V _B	4) IV _B				
272								

			u all	u <i>j</i> - Diock Elements
17.	The formation of co	loured ions by transitio	n metals is due to	
	1) incompletely fille	d 'd' orbitals	2) completely filled	'd' orbitals
	3) completely filled	's' and 'd' orbitals	4) formation of inter	stitial compounds
18.	Element furnishing	coloured ions in the aq	ueous medium is	
	1) Zn	2) Hg	3) Cu	4) Al
19.	Hydrated Cu ²⁺ ions	absorb light of colo	ur and transmit light of	f colour
	1) red and blue	2) green and purple	3) purple and red	4) blue and red
20.	CrO_4^{2-} and MnO_4^{-} ior	ns exhibit colour due to		
	1) presence of unpat	ired electrons in 'd' orb	tials of Cr and Mn	
	2) charge transfer pl	nenomenon	3) d-d electron trans	sition
	4) close packing cry	stal structure		
21.	The colour of $[Ti(H_2$	O_{6}^{3+} is due to		
	1) transfer of electro	n from Titanium to and	ther atom of Titanium	
	2) presence of water	molecules	3) d-d transition	
	4) intra molecular vi	ibration		
22.	Transition metal wh compounds in its +e		ounds in its +3 oxidation	n state and orange red
	1) Cobalt	2) Chromium	3) Iron	4) Nickel
23.	Complementary col	our of green light of wa	velength 5000 A ^o is	
	1) purple	2) blue	3) red	4) grey
24	Ti ³⁺ is purple but Ti	⁴⁺ is colourless. This is	because	
	1) d ¹ configuration of	of Ti ³⁺	2) d ^o configuration	of Ti ³⁺
	3) d ³ configuration of	of Ti ³⁺	4) d ¹⁰ configuration	of Ti ³⁺
25.	A transitional metal is expected as	ion X ⁺² ion in its hydrat	ed state has six 3d electr	rons. The colour of ion
	1) Green	2) Pink	3) Blue	4) Yellow
26.	(A) : Transition meta	als form colored ions		
	(R) : They have com	pletely filled d-orbitals	in the n th shell.	
	The correct answer	is		
	1) Both (A) and (R) a	are true and (R) is the co	prrect explanation of (A	.)
	2) Both (A) and (R) a	are true and (R) is not th	ne correct explanation o	of (A)
27.	3) (A) is true but (R) The magnetic mome	is false ent of Cr ³⁺ is similar to th	4) (A) is false but (R) nat of) is true
	1) Fe ²⁺	2) Fe ³⁺	3) Co ³⁺	4) Co ²⁺
28.	The magnetic mom unpaired d-electron		oxidation state is 3.85	6 BM. The number of
	1) 2	2) 3	3) 4	4) 5
29.	The atomic number oxidation state is	of an element is 26. The	magnetic moment exhi	bited by its ion in its +2
	1) 5.92 BM	2) 2.84 BM	3) 3.87 BM	4) 4.9 BM
30.	The ion with highes	t magnetic moment is		
	1) V ³⁺	2) Cr ³⁺	3) Fe ³⁺	4) Co ³⁺
31.	The pair of ions whi	ich do not have diamag	netic nature	
	1) Cu^{1+} and Zn^{2+}	2) Sc ³⁺ and Ti ⁴⁺	3) Ca^{2+} and Zn^{2+}	4) V^{2+} and Fe^{2+}
				273

d and	f - Block Elements		
32.	The magnetic moment of an ion is	$\sqrt{24}$ B.M. Then that ion may	be
	1) Mn^{2+} 2) Fe^{2+}	3) Fe ³⁺	4) Cu ²⁺
33.	The highest degree of paramagnetis	n is shown by	
	1) CoCl_2 . H_2O 2) MnSO_4 . 4H	I_2O 3) FeCl ₂ . 4H ₂ O	4) NiCl ₂ . 6H ₂ O
34.	M^{3+} ion of the first transition series me number of the metal 'M' is	etal 'M' has a magnetic mome	nt 1.73 BM. The atomic
	1) 21 2) 24	3) 29	4) 22
35.	M ^{x+} ion has magnetic moment 2.84 B	M. Then 'x' is (Z of $M = 23$)	
	1) 3 2) 2	3) 4	4) 1
36.	The value of paramagnetic moment	of Ti ⁺³ ion in Joule/Tesla is	
	1) 273 x 10 ⁻²⁴ 2) 16.042 x 10	⁻²⁴ 3) 26.34 x 10 ⁻²⁴	4) 16.042 x 10 ⁻²⁷
37.	What is the correct order of spin only	v magnetic moment (in BM) o	of Mn^{+2} , Cr^{+2} and V^{+2} ?
	1) $Mn^{+2} > V^{+2} > Cr^{+2}$ 2) $V^{+2} > Cr^{+2} > Cr^{+2}$	• Mn^{+2} 3) $Mn^{+2} > Cr^{+2} > V^{+2}$	4) $Cr^{+2} > V^{+2} > Mn^{+2}$
38.	(A): Magnetic moment of Mn ⁺² is 5.8	B.M	
	(R): Mn ⁺² has five unpaired electrons	;	
	The correct answer is		
	1) Both (A) and (R) are true and (R) is	s the correct explanation of (A	A)
	2) Both (A) and (R) are true and (R) is	s not the correct explanation	of (A)
	3) (A) is true but (R) is false		
	4)(A) is false but (R) is true		
39.	Spin only magnatic moment can	be calculated by using u	$-\sqrt{n(n+2)}$ where $ n $
39.		be calculated by using μ -	$-\sqrt{n(n+2)}$ where in
	represents 1) Principal Quantum No.	2) Magnetic Quant	um No
	 Number of unpaired electrons 	4) Spin Quantum N	
40	, -	, 1	NO.
40.	In which of the following 'd' subshell C_{2}^{2+}	-	. a ¹⁺
	1) $Cu_{(aq)}^{2+}$ 2) $Fe_{(aq)}^{2+}$	3) $Fe_{(aq)}^{3+}$	4) $Cu^{1+}_{(aq)}$
41.	Transition elements form alloys easil		
	1) same number of shells	2) same electronic c	0
	3) nearly same atomic size	4) same atomic wei	ght
42.	The common metal present in Germa	an Silver, Bell metal and Bras	as is
	1) Fe 2) Cu	3) Zn	4) Sn
43.	The correct statement among the fo	ollowing is	
	1) The colour of $Cr_2O_7^2$ ion is due to d	-d transition of unpaired elec	ctrons
	2) Transition elements form a large r	number of alloys, because of s	similar boiling points
	3) Bronze is an alloy of Copper and 2	Zinc	
	4) Salt of Fe ²⁺ ion has greenish colour	r	
44.	Alloy formation ability of transition	elements is due to	
	1) same crystalline structures	2) same atomic rad	ii
	3) similar chemical properties	4) any one of these	properties
45.	The alloy containing highest percent	age composition of copper is	3
	1) German silver 2) Aluminium	n Bronze 3) Bell metal	4) Brass
46.	Which of the following is used for sh	narply defined castings	
274			

274

			d ai	nd <i>f</i> - Block Elements			
	1) Soldermetal	2) Wood's metal	3) Type metal	4) Devarda's alloy			
47.	Identify the correct	y the correct statements among the following					
	I) Both Cr and Cu s	how +1 oxidation state					
	II) The complementary colour of absorbed green colour of visible radiation is purple.						
	III) Ni ⁺² ion in its hydrated state exhibits green colour						
	IV) Devarda's alloy	v contains least percenta	age of 'Zn				
	1) All	2) I, II, III only	3) I, IV only	4) I, III only			
48.	The percentage of c	copper, tin and zinc met	tales present in 'Gun m	netal' respectively are			
	1) 88, 2, 10	2) 88, 10, 2	3) 80, 20, Zero	4) 80, Zero, 20			

EXERCISE- I / ANSWERS WORK SHEET -I

1) 3	2) 1	3) 4	4) 1	5) 3	6) 3	7) 1	8) 4	9) 2	10) 4
11) 1	12) 2	13) 1	14) 3	15) 3	16) 1	17) 1	18) 2	19) 2	20) 1
21) 2	22) 1	23) 2	24) 3	25) 1	26) 3	27) 2	28) 2	29) 1	30) 2
31) 2	32) 1	33) 4	34) 2	35) 3	36) 1	37) 4	38) 2	39) 2	40) 3
41) 3	42) 2	43) 4	44) 3	45) 1	46) 2	47) 4	48) 1	49) 2	50) 4
51) 1	52) 3	53) 4	54) 1	55) 2	56) 1	57) 1	58) 1	59) 3	60) 2
61) 2	62) 3	63) 4	64) 2	65) 3					

WORK SHEET - II

1) 2	2) 3	3) 4	4) 1	5) 3	6) 3	7) 1	8) 3	9) 4	10) 3
11) 1	12) 3	13) 3	14) 3	15) 4	16) 1	17) 1	18) 3	19) 1	20) 2
21) 3	22) 2	23) 1	24) 1	25) 1	26) 3	27) 4	28) 2	29) 4	30) 3
31) 4	32) 2	33) 2	34) 4	35) 1	36) 2	37) 3	38) 1	39) 3	40) 4
41) 3	42) 2	43) 4	44) 2	45) 2	46) 3	47) 1	48) 2		

EXERCISE - II

1.	Column- I(Property)	Column - II (Transition elements)
	1) Highest oxidation state	p) Cr
	2) Highest density	q) Os
	3) Element with maximum unpaired ele	ectrons r) Tc
	4) 1 st synthetic transition element	s) Ru
2.	Column- I	Column - II
	1) Tc	p) Transition element
	2) Hg	q) Not found in nature
	3) Zn	r) Last element of third transition series
	4) Es	s) Used in galvanization of iron
3.	Column- I	Column - II
	1) Zn, Cd, Hg	p) Ferromagnetic metals
	2) Fe, Co, Ni	q) Coin metal
	3) Cu, Ag, Au	r) Noble metals
	4) Au, Pt, Hg	s) Non transition metals
4.	Column- I (Compounds)	Column - II (Oxidation state of Cr)
7.	1) $\left[Cr(H_2O)_6\right]C\ell_3$	p) 5
	2) CrO_5	q) 4
	3) $K_3 CrO_8$	r) 6
	4) $\left(NH_4\right)_2 CrO_4$	s) 3
5.	Column- I	Column - II
	1) Ni ²⁺	p) Alloy
	2) Ti	q) Diamagnetic character
	3) Misch metal	r) 3d ²
	4) Hg	s) $\sqrt{8}$ B.M. (Magnetic moment)
6.	Column- I	Column - II
	1) German silver	p) Cu
	2) Gun metal	q) Zn
	3) Brass	r) Ni
	4) Solder	s) Sn

7.	Column-I (Alloys)	Column - II (Composition)
	1) Fe, Cr, V	p) Chrome steel
	2) Cu, Zn & Ni	q) German silver
	3) Cu, Sn & Zn	r) Gun metal
	4) Fe, Cr & Ni	s) Stainless steel
8.	Column-I	Column - II
	1) $K_2 MnO_4$	p) Transition element in +6 state
	2) KMnO ₄	q) Oxidising agent in acid medium
	3) $K_2 Cr_2 O_7$.	r) manufactured from pyrolusite ore
	4) $K_2 CrO_4$	s) manufactured from chromite ore
9.	Column- I	Column - II
	1) Ag $^+$ (Isoelectroni3) with, and	p) Diamagnetic
	2) Zn ²⁺	q) Cd ²⁺
	3) Element with lowest density	r) Sc
	4) Cr	s) Paramagnetic

EXERCISE - II / ANSWERS

01) 1 - Q,S ; 2 - Q ; 3 - P ; 4 - R
03) 1 - S; 2 - P ; 3 - Q ; 4 - R
05) 1 - S ; 2 - R ; 3 - P ; 4 - Q
07) 1 - P; 2 - Q; 3 - R; 4 - S
09) 1 - P,Q ; 2 - P ,R; 3 - R ; 4 - S

02) 1 - P,Q ; 2 - P,R ; 3 - S ; 4 - Q
04) 1 - S ; 2 - R ; 3 - P ; 4 -Q
06) 1 - P,Q,R ; 2 - P,Q,S ; 3 - P,Q ; 4 - S
08) 1 - P,R ; 2 - Q,R ; 3 - P,Q,S ; 4 - P,S

EXERCISE - I

WORK SHEET - I

1.	Ligand in a metal car	• -		
	1) CO ₂	2) CO	3) CoCl_2	4) $C_2 O_4^{2-}$
2.		ds the metal atom acts		() D (11
	1) Lewis acid	2) Lewis base	3) Bronsted acid	4) Bronsted base
3.	A ligand should con	tain		
	1) odd electrons		2) even number of ele	
	3) lone pair of electro		4) vacant orbital to ac	ccept the lone pair
4.	The oxidation state o	f Iron in [Fe(CN) ₆] ⁻³ ion		
	1) + 1	2) + 2	3) + 3	4) zero
5.	The primary valency	of 'Fe' in the complex K	$[Fe(CN)_6]$ is	
	1) 2	2) 3	3) 6	4) 4
6.	In which of the follow	wing compounds Iron h	nas zero oxidation state	
	1) Fe(CO) ₅	2) Fe_2O_3	3) FeO	4) $Fe_{3}O_{4}$
7.	The hybridisation of	metal ion in square pla	nar complexes is	
	1) dsp ²	2) sp ³ d	3) $d^{3}sp^{3}$	4) sp ³
8.	The charge on Cobal	t in [Co(CN) ₆] ³⁻ is		
	1) -3	2) +3	3) -6	4) +6
9.	The hybridisation of	Iron in K ₄ [Fe(CN) ₆] is	3	
	1) dsp^2	2) sp ³	3) d^2sp^3	4) d^2sp^2
10.	A bidentate ligand is			
	1) pyridine	2) thiocyanate	3) ethylene diammine	e 4) water
11.			•	e 4) water
11.	Which of the followi	2) thiocyanate ng is a polynuclear com	•	e 4) water
11.	Which of the following 1) $[Co(NH_3)_4 Cl_2] Cl_2$	2) thiocyanate ng is a polynuclear com	pound 2) NaFe[Fe(CN) ₆]	
11. 12.	Which of the following 1) $[Co(NH_3)_4 Cl_2] Cl_3$ 3) $[Cr(H_2O)_5 Cl] Cl_2$	2) thiocyanate ng is a polynuclear com	npound 2) NaFe[Fe(CN) ₆] 4) [Co ₂ (NH ₃) ₆ (OH) ₃]	Cl ₃
	Which of the following 1) $[Co(NH_3)_4 Cl_2] Cl_3$ 3) $[Cr(H_2O)_5 Cl] Cl_2$ One mole of the com	2) thiocyanate ng is a polynuclear com plex compound Co(N	pound 2) NaFe[Fe(CN) ₆] 4) [Co ₂ (NH ₃) ₆ (OH) ₃] H ₃) ₅ Cl ₃ gives 3 moles of	
	Which of the following 1) $[Co(NH_3)_4 Cl_2] Cl_3$ 3) $[Cr(H_2O)_5 Cl] Cl_2$ One mole of the commuter. One mole of the commuter.	2) thiocyanate ng is a polynuclear com plex compound Co(N	pound 2) NaFe[Fe(CN) ₆] 4) [Co ₂ (NH ₃) ₆ (OH) ₃] H ₃) ₅ Cl ₃ gives 3 moles of with two moles of AgN	Cl ₃ of ions on dissolution in
	Which of the following 1) $[Co(NH_3)_4 Cl_2] Cl_3$ 3) $[Cr(H_2O)_5 Cl] Cl_2$ One mole of the commuter. One mole of the commuter.	2) thiocyanate ng is a polynuclear com plex compound Co(N he same complex reacts	pound 2) NaFe[Fe(CN) ₆] 4) [Co ₂ (NH ₃) ₆ (OH) ₃] H ₃) ₅ Cl ₃ gives 3 moles of with two moles of AgN	Cl_3 of ions on dissolution in IO_3 solution to yield two
	Which of the following 1) $[Co(NH_3)_4 Cl_2] Cl_3$ 3) $[Cr(H_2O)_5 Cl] Cl_2$ One mole of the consistence of the consistence of AgCl(s). The	2) thiocyanate ng is a polynuclear com plex compound Co(N he same complex reacts e structure of the comp	apound 2) NaFe[Fe(CN) ₆] 4) [Co ₂ (NH ₃) ₆ (OH) ₃] H ₃) ₅ C l_3 gives 3 moles of with two moles of AgN lex is	Cl_3 of ions on dissolution in IO_3 solution to yield two
	Which of the following 1) $[Co(NH_3)_4 Cl_2] Cl_3$ 3) $[Cr(H_2O)_5 Cl] Cl_2$ One mole of the commutation water. One mole of the commutation of	2) thiocyanate ng is a polynuclear com plex compound Co(N he same complex reacts e structure of the comp	pound 2) NaFe[Fe(CN) ₆] 4) [Co ₂ (NH ₃) ₆ (OH) ₃] H ₃) ₅ Cl ₃ gives 3 moles of with two moles of AgN lex is 2) [Co(NH ₃) ₃ Cl ₃].2N 4) [Co(NH ₃) ₆]Cl ₃	Cl_3 of ions on dissolution in JO_3 solution to yield two H_3
12.	Which of the following 1) $[Co(NH_3)_4 Cl_2] Cl_3$ 3) $[Cr(H_2O)_5 Cl] Cl_2$ One mole of the consistence of the consistence of AgCl(s). The 1) $[Co(NH_3)_5 Cl] Cl_2$ 3) $[Co(NH_3)_4 Cl_2] .Cl_3$ The coordination numbers	2) thiocyanate ng is a polynuclear com plex compound Co(N he same complex reacts e structure of the comp NH ₃	appound 2) NaFe[Fe(CN) ₆] 4) [Co ₂ (NH ₃) ₆ (OH) ₃] H ₃) ₅ Cl ₃ gives 3 moles of with two moles of AgN lex is 2) [Co(NH ₃) ₃ Cl ₃].2N 4) [Co(NH ₃) ₆]Cl ₃ atom in a complex is de	Cl ₃ of ions on dissolution in NO ₃ solution to yield two H ₃ termined by
12.	Which of the following 1) $[Co(NH_3)_4 Cl_2] Cl_3$ 3) $[Cr(H_2O)_5 Cl] Cl_2$ One mole of the commutation water. One mole of the commutation mole of the commutation of AgCl(s). The 1) $[Co(NH_3)_5 Cl] Cl_2$ 3) $[Co(NH_3)_4 Cl_2] . Cl. Mathematical Constraints of the coordination mutation mu$	2) thiocyanate ng is a polynuclear com plex compound Co(N he same complex reacts e structure of the comp NH ₃ mber of a central metal	apound 2) NaFe[Fe(CN) ₆] 4) [Co ₂ (NH ₃) ₆ (OH) ₃] H ₃) ₅ Cl ₃ gives 3 moles of with two moles of AgN lex is 2) [Co(NH ₃) ₃ Cl ₃].2N 4) [Co(NH ₃) ₆]Cl ₃ atom in a complex is den bonded by sigma bon	Cl ₃ of ions on dissolution in NO ₃ solution to yield two H ₃ termined by
12.	Which of the following 1) $[Co(NH_3)_4 Cl_2] Cl_3$ 3) $[Cr(H_2O)_5 Cl] Cl_2$ One mole of the consistence of the consistence of AgCl(s). The 1) $[Co(NH_3)_5 Cl] Cl_2$ 3) $[Co(NH_3)_4 Cl_2].Cl_3$ The coordination number of light 2) the number of only	2) thiocyanate ng is a polynuclear com polex compound Co(N he same complex reacts e structure of the comp NH ₃ mber of a central metal ands around a metal ior	appound 2) NaFe[Fe(CN) ₆] 4) [Co ₂ (NH ₃) ₆ (OH) ₃]4 H ₃) ₅ Cl ₃ gives 3 moles of with two moles of AgN lex is 2) [Co(NH ₃) ₃ Cl ₃].2N 4) [Co(NH ₃) ₆]Cl ₃ atom in a complex is den bonded by sigma bonded by sigma bonde	Cl ₃ of ions on dissolution in NO ₃ solution to yield two H ₃ termined by ds
12.	Which of the followin 1) $[Co(NH_3)_4 Cl_2] Cl_3$ 3) $[Cr(H_2O)_5 Cl] Cl_2$ One mole of the con- water. One mole of the moles of AgCl(s). The 1) $[Co(NH_3)_5 Cl] Cl_2$ 3) $[Co(NH_3)_4 Cl_2] .Cl_3$ The coordination num- 1) The number of ligar 2) the number of ligar	2) thiocyanate ng is a polynuclear com polex compound Co(N he same complex reacts e structure of the comp NH ₃ mber of a central metal ands around a metal ion y anionic ligands bonde	appound 2) NaFe[Fe(CN) ₆] 4) [Co ₂ (NH ₃) ₆ (OH) ₃] H ₃) ₅ Cl ₃ gives 3 moles of with two moles of AgN lex is 2) [Co(NH ₃) ₃ Cl ₃].2N 4) [Co(NH ₃) ₆]Cl ₃ atom in a complex is den bonded by sigma bonded to the metal ion	Cl ₃ of ions on dissolution in NO ₃ solution to yield two H ₃ termined by ds
12.	Which of the followin 1) $[Co(NH_3)_4 Cl_2] Cl_3$ 3) $[Cr(H_2O)_5 Cl] Cl_2$ One mole of the comwater. One mole of the comwater. One mole of the comwater. One mole of the commander of the co	2) thiocyanate ng is a polynuclear com polex compound Co(N he same complex reacts e structure of the comp NH ₃ mber of a central metal ands around a metal ion y anionic ligands bonde nds around a metal ion	appound 2) NaFe[Fe(CN) ₆] 4) [Co ₂ (NH ₃) ₆ (OH) ₃] ⁴ H ₃) ₅ Cl ₃ gives 3 moles of with two moles of AgN lex is 2) [Co(NH ₃) ₃ Cl ₃].2N 4) [Co(NH ₃) ₆]Cl ₃ atom in a complex is den bonded by sigma bon ed to the metal ion bonded by sigma and bonded by pi-bonds	Cl ₃ of ions on dissolution in NO ₃ solution to yield two H ₃ termined by ds
12.	Which of the followin 1) $[Co(NH_3)_4 Cl_2] Cl_3$ 3) $[Cr(H_2O)_5 Cl] Cl_2$ One mole of the comwater. One mole of the comwater. One mole of the comwater. One mole of the commander of the co	2) thiocyanate ng is a polynuclear com polex compound Co(N he same complex reacts e structure of the comp NH ₃ mber of a central metal ands around a metal ion y anionic ligands bonde nds around a metal ion nds around a metal ion	appound 2) NaFe[Fe(CN) ₆] 4) [Co ₂ (NH ₃) ₆ (OH) ₃] ⁴ H ₃) ₅ Cl ₃ gives 3 moles of with two moles of AgN lex is 2) [Co(NH ₃) ₃ Cl ₃].2N 4) [Co(NH ₃) ₆]Cl ₃ atom in a complex is den bonded by sigma bon ed to the metal ion bonded by sigma and bonded by pi-bonds	Cl ₃ of ions on dissolution in NO ₃ solution to yield two H ₃ termined by ds
12.	Which of the followin 1) $[Co(NH_3)_4 Cl_2] Cl_3$ 3) $[Cr(H_2O)_5 Cl] Cl_2$ One mole of the comwater. One mole of the comwater. One mole of the comwater. One mole of the command of AgCl(s). The 1) $[Co(NH_3)_5 Cl] Cl_2$ 3) $[Co(NH_3)_4 Cl_2] Cl_3$ The coordination number of ligation of the number of the number of ligation	2) thiocyanate ng is a polynuclear com polex compound Co(N he same complex reacts e structure of the comp NH ₃ mber of a central metal ands around a metal ion y anionic ligands bonde nds around a metal ion nds around a metal ion n, the ligand OH ⁻ is nan 2) hydroxyl syl' group	appound 2) NaFe[Fe(CN) ₆] 4) [Co ₂ (NH ₃) ₆ (OH) ₃]4 H ₃) ₅ Cl ₃ gives 3 moles of with two moles of AgN lex is 2) [Co(NH ₃) ₃ Cl ₃].2N 4) [Co(NH ₃) ₆]Cl ₃ atom in a complex is den bonded by sigma bonded by sigma and bonded by sigma and bonded by pi-bonds ned as 3) hydroxo	Cl ₃ of ions on dissolution in IO ₃ solution to yield two H ₃ termined by ds pi-bonds both 4) ol
12. 13. 14. 15.	Which of the followin 1) $[Co(NH_3)_4 Cl_2] Cl_3$ 3) $[Cr(H_2O)_5 Cl] Cl_2$ One mole of the comwater. One mole of the moles of AgCl(s). The 1) $[Co(NH_3)_5 Cl]Cl_2$ 3) $[Co(NH_3)_4 Cl_2].Cl.1$ The coordination number of ligation of the number of	2) thiocyanate ng is a polynuclear com polex compound Co(N he same complex reacts e structure of the comp NH ₃ mber of a central metal ands around a metal ion y anionic ligands bonde nds around a metal ion nds around a metal ion n, the ligand OH ⁻ is nan 2) hydroxyl syl' group 2) NO ⁺	appound 2) NaFe[Fe(CN) ₆] 4) [Co ₂ (NH ₃) ₆ (OH) ₃]4 H ₃) ₅ Cl ₃ gives 3 moles of AgN lex is 2) [Co(NH ₃) ₃ Cl ₃].2N 4) [Co(NH ₃) ₆]Cl ₃ atom in a complex is denoted by sigma bonned by sigma bonned by sigma and bonded by sigma and bonded by pi-bonds ned as 3) hydroxo 3) NO ⁻	Cl ₃ of ions on dissolution in NO ₃ solution to yield two H ₃ termined by ds pi-bonds both
12. 13. 14.	Which of the followin 1) $[Co(NH_3)_4 Cl_2] Cl_3$ 3) $[Cr(H_2O)_5 Cl] Cl_2$ One mole of the comwater. One mole of the moles of AgCl(s). The 1) $[Co(NH_3)_5 Cl]Cl_2$ 3) $[Co(NH_3)_4 Cl_2].Cl.1$ The coordination number of ligation of the number of	2) thiocyanate ng is a polynuclear com polex compound Co(N he same complex reacts e structure of the comp NH ₃ mber of a central metal ands around a metal ion y anionic ligands bonde nds around a metal ion nds around a metal ion n, the ligand OH ⁻ is nan 2) hydroxyl syl' group	appound 2) NaFe[Fe(CN) ₆] 4) [Co ₂ (NH ₃) ₆ (OH) ₃]4 H ₃) ₅ Cl ₃ gives 3 moles of AgN lex is 2) [Co(NH ₃) ₃ Cl ₃].2N 4) [Co(NH ₃) ₆]Cl ₃ atom in a complex is denoted by sigma bonned by sigma bonned by sigma and bonded by sigma and bonded by pi-bonds ned as 3) hydroxo 3) NO ⁻	Cl ₃ of ions on dissolution in IO ₃ solution to yield two H ₃ termined by ds pi-bonds both 4) ol

								L L	2001 um		pound
17.			e of [Co(
	. ,		dination								
	-						rect explan				
	-				ıd (R) is r	not the	correct exp	planatio	n of (A)		
			but (R) is				4) (A) is fa		(R) is tru	e	
18.	'Meta	al-Isothi	ocyanato	' is indi	cated by	its che	mical sym	bol as			
	,	-NCS		2) M–S			3) M-CN	S	4) I	M-CSN	
19.	[Pt Bı	r Cl(NO	(NH_3)	I on ioni	sation gi	ves the	e ion				
	1) Cl-			2) Br-			3) I-		4)]	NO_2^-	
20.	A rac	emic mi	xture ha	s a net ro	otation						
	1) to 1	right of o	original p	olane			2) to left o	of origin	al plane		
	3) to 1	right or l	left of ori	ginal pl	ane		4) zero				
21.	Optic	cal isome	ers differ	in							
	1) che	emical p	roperties	3			2) molecu	ılar form	nulae		
	3) ph	ysical p	roperties				4) optical	propert	ies		
22.	IUPA	C Nam	e Fo	rmulae	of ligand	l					
	i) Bro	mo		A) CO							
	ii) Ca	rbonyl		B) C ₆ H	5COO-						
	iii) B€	enzoato		$C)H_2C$)						
	iv) Ao	quo		D) Br⁻							
	The c	orrect n	natch is								
		i	ii	iii	iv		i	ii	iii	iv	
	1)	D	А	В	С	2)	D	В	А	С	
	3)	D	А	С	В	4)	D	С	А	В	
23.	Fac a	nd mer i	isomeris			vith the	e general fo	ormula			
	1) MA	$A_{3}X_{3}$		2) M(A	A) ₃		3) MABC	D	4) 1	$M(AA')_3$	
24.	Whic	h of the	followin	g is an e	xample o	of amb	identate li	gand			
	1) CC)		2) CN-			3) H ₂ O		4) 9	50 ₄ ²⁻	
25.	LIST	- I					LIST - II				
	A) Ha	aber's p	rocess				1) Cu				
	B) Co	ntact pr	ocess				2) $V_2 O_5$				
	C) Hy	ydrogen	ation of o	oils					3) 1	Pt	
	D) Os	stwald's	process				4) Fe				
							5) Ni				
	The c	orrect n	natch is								
		А	В	С	D		А	В	С	D	
	1)	4	3	5	1	2)	4	2	3	5	
	3)	4	2	5	3	4)	3	1	5	2	
26.	'	dinatior	isomeri	sm is exl	hibited b						
		(H,O),]				5	2) [Cr(NH	I.).] [Co	(CN).]		
		$(en)_{2}$ [N(0				4) [Ni(NF	00	0		
27.	-	· · <u>~</u>	amphote	ric (CPN	/ T)		1) [1 1 (1 1	-3/6J [D1 4	1 2		
27.	1) Al		umphote	2) Cr^{+3}	(11)		3) Fe ⁺³		4)	Zn^{+2}	
20	,		6 - 11	/			,				
28.			ionowin	-	aximum	numbe	er of unpair	rea a-ele		-	
00	1) Zn			2) Fe ⁺²			3) Ni+3		4) (Cu^{+1}	
29.		-	n is made	-	4		0) (1	•	1.4	1 1 1	
	1) 4 h	aeme ui	nits and o	one glob	ular pro	tein	2) 4 haem	e units a	and four	globular pr	otein

CUUIU	mation Compounds					
	3) 2 haeme units and one globular protein 4) 4 haeme units and two globular protein					
30.	-	naemoglobin is made u				
	1) two polypeptide c		2) four polypeptide			
	3) one polypeptide c	hain	4) eight polypeptide	chains		
31.	Geometry of orbitals around the transition metal ion in haem of haemoglobin is					
	1) square planar arra	ingement	2) tetrahedral arrang	gement		
	3) plane trigonal arra	ngement	4) octahedral arrang	ement		
32.	The number of moles	s of KI required to prep	are one mole of K ₂ [Hg	I ₄] is		
	1) 4	2) 3	3) 2	4) 1		
33.	The protein part of the Haemoglobin and non protein part of Haemoglobin are coordinated					
	through 1) N of the pyrrole		2) N-of the Histidine	3		
	3) N of 2,3-dimethyl	Bonzimidazolo	2) 10-01 the 1 listicilie	<u>,</u>		
	4) N of the 5,6-dimet					
24		•	tor from its suppo com	nlovia		
34.		etal used to displace silv	• •			
25 M/L	1) Zn	2) Au	3) F_2	4) Cl_2		
55. WI	-	leases metal slowly wh	•			
26	1) Metal salts	2) Double salts	3) Complex salts	4) Alums		
36.	The metal present in		2) C -	4) Z		
27	1) Fe	2) Mg	3) Co	4) Zn		
37.		around Mg^{2+} ion in				
•	1) 2	2) 3	3) 4	4)6		
38.		ng the lanthanides has		lius		
	1) Cerium		2) Lutetium			
20	3) Europium	1 . 1 1 .	4) Gadolinium			
39.		ng elements belongs to				
10	1) La	2) Gd	3) Lu	4) Th		
40.		guration of gadolinium				
	1) $[Xe] 4 f^8 5 d^9 6 s^2$		2) $[Xe]4f^75d^16s^2$			
	3) $[Xe] 4f^3 5d^5 6s^2$		4) $[Xe] 4f^6 5d^2 6s^2$	2		
41.	Across the lanthanid	le series, the basic stren	gth of the lanthanide h	nydroxides		
	1) Increases		2) Decreases			
	3) First increases and	l then decreases	4) First decreases an	d then increases		
42.	Which of the followi	ng statement is not corr	ect			
	1) $La(OH)_3$ is less bas	sic than Lu(OH) ₃				
	2) In lanthanide serie	es, ionic radius of Ln^{3+}	ions decreases			
		lement of transition ser		nide series		
	,	r and Hf are same beca				
43.	,	of the transition metal				
ч.,			-			
	,	mical reactivity 2) Their magnetic beaviour				
	3) Their unfilled d - d					
	•	opt multiple valencies				
44.		tion states shown by ce		· · ·		
	1) +2, +4	2) +3, +4	3) +3, +5	4) +2, +3		

			e			
45.	Arrange Ce^{3+} , La^{3+} , Pm^{3+} and Yb^{3+} in increasing order of their ionic radii					
	1) $Yb^{3+} < Pm^{3+} <$	$Ce^{3+} < La^{3+}$	2) $Ce^{3+} < Yb^{3+} <$	$Pm^{3+} < La^{3+}$		
	3) $Yb^{3+} < Pm^{3+} < L$	$a^{3+} < Ce^{3+}$	4) $Pm^{3+} < La^{3+} <$	$Ce^{3+} < Yb^{3+}$		
46.	The basic character	of the transition metal	monoxides follows the	e order		
	1) VO > CrO > TiO >		2) CrO > VO > FeC			
	3) TiO > FeO > VO >		4) TiO > VO > CrO			
47.	7. Cerium (Z = 58) is an important member of lanthanoids. Which of the following statem about cerium is incorrect					
	1) The common oxid	lation states of cerium	is +3 and +4			
	2) The +3 oxidation state of cerium is more stable than the +4 oxidation state					
	3) The +4 oxidation) The +4 oxidation state of cerium is not known in solutions				
	4)Cerium (iv) acts a	s an oxidising agent				
48.	Which of the follow	ing is a lanthanide ?				
	1) Ta	2) Rh	3) Th	4) Lu		
49.	Which of the follow	ing belongs to the acti	nide series of elements	?		
	1) Y	2) Ta	3) U	4) Lu		
50.	Which of the following	ng is a lanthanide eleme	nt?			
	1) Ac	2) Als	3) Nd	4) Pd		
51.	Cerium shows oxid	ation state of +4 becau	se			
	1) It resembles alkal	i metals	2) It has very low I	.E		
	3) It has tendency to	attain noble gas confi	guration			
	4) It has tendency to	attain f ⁰ configuration	ı			
52.	Which of the two ha	ive almost similar size				
53.	1) ₂₂ Ti and ₄₀ Zr In aqueous solutior	2) $_{41}$ Nb and $_{73}$ Ta is Eu ²⁺ acts as	3) $_{39}$ Y and $_{57}$ La	4) $_{20}$ Ca and $_{31}$ Ir		
	1) an oxidising ager	nt	2) a reducing agent			
	3) can act either of t	nese	4) can act as redox agent			
54.	The radius of La^{3+} (Z the radius of Lu^{3+}	Z=57) is 1.06A ⁰ . Which	one of the following gi	ven values will be closest to		
	1) 1.60A°	2) 1.40A°	3) 1.06A°	4) 0.85A°		
55.	Cerium (Z=58) is an about cerium is inco	-	he lanthanoids. Which	of the following statements		
	1) The common oxid	lation states of cerium	are +3 and +4			
	2) Cerium(IV) acts a	s an oxidizing agent				
	3) The +4 oxidation	state of cerium is more	e stable in solutions			
	4) The +3 oxidation	state of cerium is more	e stable than the +4 oxi	dation state		
	,	WORK S				
1.	The primary vale [Cr(NH ₃) ₄ Cl ₂]Cl			in a complex compound		
	1) 3	2) 2	3) 1	4) 0		
2.		,] in aqueous solution	,		
<u> </u>			in manual out and the second of the second o			

2. The number of ions given by $[Co(NH_3)_3Cl_3]$ in aqueous solution is

coord	1) 1	2) 2	3) 3	4) zero
3.	,	,	,	$complex [Co(NH_3)_6]Cl_3$
	1) 6 and 3	2) 6 and 6	3) 3 and 3	4) 3 and 6
4.	The complex compo	and which does not giv	e precipitate with AgN	NO ₃ solution is
	1) [Co(NH ₃) ₅ Cl]Cl ₂	2) [Co(NH ₃) ₆]Cl ₃	3) [Co(NH ₃) ₄ Cl ₂]Cl	4) [Co(NH ₃) ₃ Cl ₃]
5.	The configuration of 'X' is	an element 'X' is 4s¹3d¹	⁰ . The wrong statemen	t regarding the element
	1) it forms complexes		2) it exhibits variable	valency
	3) it forms paramagn	etic ions only	4) It can form coloure	ed salts
6.	The oxidation state of	f Cr in [Cr(NH ₃) ₄ Cl ₂]Cl		
	1) +3	2) +2	3) +1	4) 0
7.	When 1 mole of [Co precipitated is	$(NH_3)_3Cl_3$] is added to	excess of AgNO ₃ solut	tion the weight of AgCl
	1) 143.5g	2) 108 g	3) zero	4) 54 g
8.	The primary valency	of Iron in K_4 [Fe(CN) ₆] i	s satisfied by	
	1) Six CN ⁻ ions	2) Two CN ⁻ ions	3) Four K ⁺ ions	4) Two K ⁺ ions
9.	The secondary valen	cy of Chromium in [Cr($(en)_3$]Cl ₃ is	
	1) 6	2) 3	3) 2	4) 4
10.	Which of the following	ng is wrong with respec	ct to [Co(NH ₃) ₅ Cl]Cl ₂	
	1) central metal ion is	s Co and the ligands ar	e NH ₃ and C l^{-} ion	
	2) oxidation number	of Co is +2	3) co-ordination num	nber of Co is 6
	4) the number of ions	formed when 1 mole of	of the compound disso	lves in water is 3 moles
11.	The deep blue compl	ex produced by adding	g excess of Ammonia to	$OCuSO_4$ solution is
	1) [Cu(NH ₃) ₂] ²⁺	2) $[Cu(NH_3)_4]^{2+}$	3) [Cu(NH ₃) ₆] ²⁺	4) Cu ²⁺
12.	A complex in which	central atom carries ze:	ro oxidation state is	
	1) [Co (NH ₃) ₃ Cl ₃]	2) PtCl ₄ .2NH ₃	3) Ni(CO) ₄	$4) \operatorname{Na}_{2}[(\operatorname{Ni}(\operatorname{CN})_{4})]$
13.	K ₂ SO ₄ .Al ₂ (SO ₄) ₃ .24H	₂ O is		
	1) a complex salt		2) a double salt	
	3) a complex salt & d	ouble salt	4) a basic salt	
14.	Number of dative bo	nds in the complex Co	Cl ₃ .5NH ₃ is	
	1) 5	2) 6	3) 3	4) 4
15.	Coordination number	r and oxidation number	respectively for the con	nplex [Co(NH ₃) ₄ Cl ₂]ClO ₄
	1) 6, +3	2) +6, +2	3) 6, +1	4) 4, +3
16.	The number of ions f	ormed when cupra am	monium sulphate is di	ssolved in water
	1) 1	2) 2	3) 4	4) zero
17.	-	-	5 5	lissolved in water three and secondary valencies

is 1) 3 2) 1 3) 4 4) zero 18. LIST - I LIST - II A)Ti+3 1) Charge transfer phenomenon B)MnO₄-2) Impurities C)F, 3) s-s transition D)Gems 4) d-d transition 5) Excitation of electron The correct match which is responsible for colour В С D А А В С D 1 2 5 5 2 1) 4 4 1 2) 5 1 2 5 2 3 3) 4 4) 4 19. LIST - I (complex) LIST - II (Charge on co-ord. sphere) A) CoCl₃.6NH₃ 1) +1 B) $CoCl_3.5NH_3$ 2) +2 C) $CoCl_3.4NH_3$ 3) +3 D) CoCl₃.3NH₃ 4) +4 5) 0 The correct match in terms of the charge on the complex В С D А В С D А 2 5 1) 3 1 3 1 2 5 2) 3) 3 2 1 5 4) 4 3 2 1 Prop. of transition element 20. Reason 1) Colour of ion A) unpaired e⁻ in (n-1)d orbital 2) Variable oxdn. states B) Same crystal structure 3) formation of alloys C) d-d- transition 4) paramagnetic D) high magnitude of + ve charge E) slight energy difference between ns & (n-1)d shells 1) 1-C, 2-E, 3-A, 4-B 2) 1-C, 2-E, 3-B, 4-A 3) 1-C, 2-B, 3-E, 4-A 4) 1-B, 2-A, 3-E, 4-B

21. Give the correct increasing order of electrical conductivity of aqueous solutions of following complex entities

I)
$$\left[Pt(NH_3)_6 \right] Cl_4$$
 II) $\left[Cr(NH_3)_6 \right] Cl_3$ III) $\left[Co(NH_3)_4 Cl_2 \right] Cl$ IV) $K_2 \left[Pt Cl_6 \right]$
1) III < IV < II < I 2) IV < II < III < I 3) II < I < IV < III 4) I < II < IV < III
Coordination number of Crick (A complex on titrarity COOrdination number of Crick (A complex on the coordination number of Crick (A complex on the coordination number of Crick (A complex on the coordination number of Crick (Coordination number of Crick (A complex on the coordination number of Crick (A complex on the co

22. Co-ordination number of Cr is 6. A complex entity with $C_2O_4^{-2}$, en, superoxide as ligands is

Coord	Coorumation Compounds					
	$[Cr(C_2O_4)_x(en)_y(O_2)_z]^+$	The ratio of $x : y : z$ is				
	1) 1 : 1: 2	2) 1 : 1 : 1	3) 1 : 2 : 2	4) 2:1:1		
23.	Pick up true statemer	nt about the complex co	ompound with formula	[Co(NH ₃) ₃ Cl ₃]		
	1) The EAN of cobalt isomerism	t is 39	2) The complex ca	n exhibit fac and mer		
	3) The complex can s	how optical isomerism	1 4) The hybrid state o	f cobalt is dsp ³		
24.	In Aqueous solution meta aluminate ion exists as					
	1) Neutral complex	2) Cationic complex	3) Cationic double sa	llt4) Anionic complex		
25.	molecule of hydratio		0.1M AgNO ₃ solution	al M is six and there is no needed to precipitate the		
	1) 80 ml	2) 40 ml	3) 20 ml	4) 120 ml		
26.		complex ion [Cu(NH $_3$) $_4$ What is the reason for it		alkaline solutions but not		
		hydration protects cop	-			
	2) In acidic solutions NH_3 molecules are no	-	ith ammonia molecule	s forming NH_4^+ ions and		
	3) In alkaline solutio alkali	ns insoluble $Cu(OH)_2$ i	s precipitated which is	s soluble in excess of any		
	4) Copper hydroxide	is an amphoteric subs	tance.			
27.		of unpaired electron/s		a paramagnetic complex netry of this complex ion 3) two, tetrahedral		
	4) one, square planar					
28.	How many EDTA me	olecules are required to	o make an octahedral c	omplex with a Ca ⁺² ion?		
	1) Two	2) Six	3) Three	4) one		
29.	Which of the following	ng is neutral molecular	-			
30.	1) CoCl ₃ .3NH ₃ Neutral complex am		3) $Pt.Cl_4.2NH_3$	4) All		
	1) $CuSO_4.4NH_3$	2) $[Co(NH_3)_6]Cl_3$	3) Ni(CO),	4) $[Pt(NH_3)_2]Cl_2$		
31.	Cationic complex is		, , ,4			
	1) Potassium ferrocy	anide	2) Cryolite			
	3) Cuprammonium (4) Sodium argentoth	iosulphate		
32.		ex representation viola		-		
	1)[Cu(NH ₃) ₄]SO ₄	2) $K_4[Fe(CN)_6]$	3)[Co(NH ₃) ₃]Cl ₃	4) TiCl ₃ .6H ₂ O		
33.	Effective atomic num	ber of Cobalt in the cor	nplex ion $[Co(en)_2Cl_2]^+$	is		
	1) 27	2) 36	3) 33	4) 35		
34.		ber of $[Co(NH_3)_6]Cl_3$ is				
	1) 24	2) 27	3) 35	4) 36		
35.		-		e basis of EAN concept		
	1) 4	2) 5	3) 6	4) 10		
36.	Complex in which ef	fective atomic number	is not equal to atomic r	number of the noble gas		
284						

				ordination Compounds	
. -	1) $[Ni(CN)_4]^{2-1}$	2) $[Fe(CN)_6]^{4-}$	3) [Ni(CO) ₄]	4) $[Co(NH_3)_6]^{3+}$	
37.	Complex	EAN value			
	A) $\operatorname{Fe}(\operatorname{CO})_5$	i) 34			
	B) $Fe(CN)_{6}^{3-}$	ii) 35			
	C) $\operatorname{Fe}(CN)_{6}^{4-}$	iii) 36			
	TT1 () 1 *	iv) 37			
	The correct match is				
20		2) A – i, B–ii, C–iii	3) A-iii, B-ii, C-i	4) A-iii, B-ii, C-iii	
38.	Stable complex based				
	i) $K_4[Fe(CN)_6]$	ii) $[Co(NH_3)_5Cl]Cl_2$	4	iv) $K_2[Ni(CN)_4]$	
20	1) i only	2) i & ii only	3) i, ii & iii only	4) all	
39.	IUPAC name of Ni(C	-	2) (
	1) tetra carbonyl Nicl		2) tetra carbonyl Nic		
40	3) tetra carbonyl Nich	. ,	4) tetra carbonyl Nicl	kelate (O)	
40.	Potassium hexa chlo	- · ·	2) V $\left[D_{t} (C_{t}) \right]$	$A \neq [\mathbf{D}_{\mathbf{h}}(C)]$	
44	1) $\operatorname{Pt}_2[K(Cl)_6]$	$2) \operatorname{K}[\operatorname{Pt}(\operatorname{Cl})_{6}]$	3) $K_2[Pt(Cl)_6]$	4) $K_4[Pt(Cl)_6]$	
41.	IUPAC name of K ₃ [A	2 10			
	1) potassium alumin	o oxalte	2) potassium trioxala	ito aluminate (III)	
	3) potassium alumin		4) potassium trioxalato aluminate (VI)		
42.	IUPAC name of Li[A	lH ₄] is			
	1) Lithium Aluminiu		2) Lithium Tetra hyd		
	3) Tetrahydride Alur		4) Aluminium Lithiu	2	
43.	-	, diammine dibromo di	,	-	
	1) [Pt (NH ₃) ₂ Br ₂ Cl ₂]	2) [Pt $Cl_2 Br_2 (NH_3)_2$]	3) [Pt Br ₂ Cl ₂ (NH ₃) ₂]	4) [Pt (NH ₃) ₂ Cl ₂ Br ₂]	
44.	IUPAC name of [Fe(C	CN) ₆] ⁴⁻ is			
	1) ferrocyanide		2) hexacyanoferrate	(II)	
	3) ferricyanide		4) hexacyanoferrate	(III)	
45.	When $AgNO_3$ solution formed. What is the		11 it. of $CoCl_3 \times NH_3$ solu	ition, one mole of AgCl is	
	1) 1	2) 2	3) 3	4) 4	
46.	Complex	Type			
	A) $CoCl_3$. $3NH_3$	i) Anionic complex			
	B) Na ₂ ZnC l_4	ii) Cationic complex			
	C) $PtCl_4$. 5NH ₃	iii) Neutral complex			
	The correct match is	, <u>r</u>			
	1) A – ii, B–iii, C–i	2) A-iii, B-i, C-ii	3) A-ii, B-i, C-iii	4) A-iii, B-ii, C-i	
47.	,	[Co(H ₂ O) ₄ Cl ₂]Cl. 2H ₂ O	,	,	
		lisation is represented by $\frac{1}{2}$			
	· · ·	-	-		

Coord	inauon Compounds					
	1) Both (A) and (R) are true and (R) is the correct explanation of (A)					
	2) Both (A) and (R) are true and (R) is not the	-				
	3) (A) is true but (R) is false	4) (A) is false but (R)				
48.	(A) : IUPAC name of $[Pt Br_2(en)_2]Cl_2$ is dibromo					
	(R) : (en) represents ethylenediamine and it is	a ligand where prefix	di- is already included in			
	its designation.					
	1) Both (A) and (R) are true and (R) is the corr 2) But (A) and (B) are true and (B) is set the	- , ,				
	2) Both (A) and (R) are true and (R) is not the (A) is true but (R) is follow	-				
49.	3) (A) is true but (R) is false (A) : $[Co_2(OH)_3(NH_3)_6]Cl_3$ is an example of po	4) (A) is false but (R) i				
17.						
	(R) : Compound in which the number of ce polynuclear compound.	entral metal atoms is	more than one is called			
	1) Both (A) and (R) are true and (R) is the correct explanation of (A)					
	2) Both (A) and (R) are true and (R) is not the	correct explanation of	f (A)			
	3) (A) is true but (R) is false	4) (A) is false but (R) is (R)	is true			
50.	The IUPAC name of the coordination compou	5 0				
	1) Potassium hexacyanoferrate(II)	2) potassium hexacya	noferrate (III)			
	3) potassium hexacyanoiron (II)	4) tropotassium hexa	cyano iron (II)			
51.	The IUPAC name of the complex $[Co(NO_2)(N)]$	$[H_3]_5]Cl_2$ is				
	1) pentaammine nitrito-N-cobalt(III) chloride	2) nitrito-N-pentaami	minecobalt(III) chloride			
	3) nitrito-N-pentaamminecobalt(II) chloride					
	4) pentaamminenitrito-N-cobalt(II) chloride					
52.	Example showing ionisation isomerism					
	1) $[Co(NO_3)(NH_3)_5]SO_4 \& [Co(SO_4)(NH_3)_5]NO_3$	2) $[Co(NH_3)_4Cl_2]Cl \&$	[CO(NH ₃) ₅ Cl]Cl ₂			
	3) $[Cr(H_2O)_5Cl]Cl_2H_2O \& [Cr(H_2O)_4Cl_2]Cl.2H_2O$	C				
	4) $[Pt(NH_3)_4] [Pt Cl_4] \& [Pt(NH_3)_3Cl]_2 [Pt Cl_4]$					
53.	When two ligands of the same type occupy op polyhydron, the isomer is called	pposite positions to eac	h other in a coordination			
	1) trans- 2) cis-	3) fac-	4) mer-			
54.	Geometrical isomerism in square planar com	plexes is given by				
	1) Ma ₄ type complex	2) Mabcd type comple	ex			
	3) Ma_2b_2 type complex	4) Mb_4 type complex				
55.	Both geometrical and optical isomerism was					
E(1) $[Pt(NH_3)_2Cl_2]$ 2) $[Pt(NH_3)_4Cl_2]$	3) Pt [(en) ₂ Cl ₂]	4) [Pt (en) ₃]			
56.	(A):A cis-isomer has a net dipole moment zer(R) : A cis- isomers has two ligands of the same		acont positions			
	1) Both (A) and (R) are true and (R) is the corr		-			
	2) Both (A) and (R) are true and (R) is not the	- · ·				
	3) (A) is true but (R) is false	4) (A) is false but (R)				
57.	Optical isomerism is exhibited by a complex	, , , , , , , , , , , , , , , , , , , ,				
	1) coordination number 4, with a bidentate li					

			Coo	ordination Compounds		
	2) coordination num	ber 4, with two bidenta				
	3) coordination number 6, with a bidentate ligand					
	4) coordination number 6, with three tridentate ligands					
58.	Ligands with which linkage isomerism is possible					
	A) NO ₂	B) CN⁻	C) SCN-			
	1) A only	2) A & B	3) B & C	4) A,B & C		
59.	Optical isomers have	2				
	A) property of chiral	ity	B) almost identical cl	hemical properties		
	C) almost identical p	hysical properties	D) similar rotation of	f plane polarised light		
	1) A,B,C are correct	2) B,C,D are correct	3) A,C,D are correct	4) A,B,D are correct		
60.	Identify the correct s	tatements among the fo	ollowing			
	I) Cr in first series of	d-block has highest ox	idation state.			
	II) Colour of MnO_4^{-} i	s due to charge transfe	r phenomenon.			
	III) Zn can show var	iable oxidation state.				
	IV) Ferromagnetism	disappears in the solut	tion of Fe			
	1) All	2) I & II only	3) II & IV only	4) II & III only		
61.	What is wrong abou Cl ₂ .H ₂ O	it the following pair o	f compounds? [Cr(H ₂ C	$D)_{6}$]C l_{3} and [Cr(H ₂ O) ₅ C l]		
	1) They are hydratio	n isomers	2) They have differer	nt colours		
	3) Their 0.1M aqueor	us solutions have same	molar conductivity			
	4) They have differen					
62.	Geometrical Isomeri	sm is observed in				
	1) Tetrahedral comp	lex	2) Square planar com	nplex		
	3) Tined complexes		4) planar triangle co	mplexes		
63.	Which of the followi	ng compound shows c	ptical isomerism?			
			3) $[Cr(C_2O_4)_3]^{2-}$	4) $[Co(CN)_6]^{3-}$		
64.		ng has least magnetic r				
	1) Cu ⁺²	2) Ni ⁺²	3) Co ⁺²	4) Fe ⁺²		
65.		ng compound is expec				
	1) Ag_2SO_4	2) CuF_2	3) MgF ₂	4) CuCl		
66.		0	umber of unpaired elec			
	1) Mg ⁺²	2) Ti ⁺³	3) V ⁺³	4) Fe ⁺²		
67.	Which has the large					
	1) Cr ⁺³	2) Mn ⁺³	3) Fe ⁺³	4) Co ⁺³		
68.			with copper to form br			
	1) Pb	2) Bi	3) Zn	4) Sb		
69.	The oxidation state o	f Fe in brown ring com	plex [Fe(H ₂ O) ₅ NO]SO ₄	is		
	1) +1	2) +2	3) +3	4) +4		
70.	IUPAC name of K ₃ [F	$e(CN)_6$] is				
	1) potassium hexacy	anoferrate (II)	2) Potassium hexacy	anoferrate		
	3) hexacyanoferrate	(III)	4) potassium ferricya	anide		
71.	K_4 [Fe(CN) ₆] is a		_ /			
	4L (- 76J					

Cooral	nation Compounds				
	1) double salt		2) complex compound		
	3) neutral molecule		4) none of these		
72.	The oxidation number	er of Pt in the complex	$[Pt(C_2H_4)Cl_3]^-$ is		
	1) +1	2) +2	3) +3	4) +4	
73.	The effective atomic	number of Cr (at. no. 24	l) in [Cr(NH ₃) ₆]Cl ₃ is		
	1) 35	2) 27	3) 33	4) 36	
		WORK SHI	EET - III		
1.	The pair in which bo	th species have iron is :	:		
	1) nitrogenase, cytocl	-	2) carboxypeptidase,	haemoglobin	
	3) haemoglobin, nitr		4) haemoglobin, cyto		
2.		an anticancer agent is			
	1) mer – $[Co(NH_3)_3Cl$]	2) Cis – [PtCl ₂ (NH ₃) ₂]		
	3) Cis – $K_2[PtCl_2Br_2]$	~	4) Na ₂ [CoCl ₄]		
3.		es which are expected to	o be coloured.		
	1) [Ti(NO ₃) ₄]		2) [Cu(NCCH ₃) ₄] ⁺ BF	4	
3) [Cr(1	NH ₃) ₆] ³⁺ 3C <i>l</i> ⁻		4) K ₃ [VF ₆]		
4.	The complex, $[Co(NH_3)_4Cl_2]^+$ is known to exist in two different coloured forms. This is due to :				
	1) ionisation isomeris	sm	2) optical isomerism		
	3) geometrical isome	rism	4) linkage isomerism		
5.	Theoretically, the num [Mabcdef] is;	mber of geometrical iso	omers expected for octhedral complex,		
	1) 0	2) 15	3) 12	4) 30	
6.	The following compl	exes which can form sa	me no.of geometrical is	omers are	
	1) $[CoCl_2Br_2]^{2-}$	2) $[Rh(en)_3]^{3+}$	3) $[Cr(en)_2Br_2]^+$	4) [Pt(en) Cl_2]	
7.	The ligands in antica	ncer drug 'cis – platin'	are :		
	1) NH ₃ ,Cl	2) NH ₃ , H ₂ O	3) <i>Cl</i> , H ₂ O	4) NO, Cl	
8.	In Fe(CO) _{5'} the Fe-C b	oond possesses :			
	1) π character only		2) σ character only		
	3) ionic character on	ly	4) both π and σ characters		
9.	The coordination num $[x(NH_3)_5(SO_4)]Cl$ will	mber and oxidation nu 1 be :	mber of X in the followi	ng compound	
	1) 10 and 3	2) 2 and 6	3) 6 and 3	4) 6 and 4	
10.	The ligand called π	-acid is :			
	1) Co	2) NH ₃	3) $C_2 O_4^{2-}$	4) ethylene diamine	
11.	the donor sites of ED	TA lgand are :			
	1) O atoms only		2) N atoms only		
	3) Two N atoms and	four O atoms	4) Three N atoms of 1	EDTA ion is :	
12.	which of the following	ng is a chelate ?			

1) Cis-platin - a drug used in the treatment of cancer

2) Haemglobin - a protein present in blood

3) chlorophyll - a green plant pigment which acts as a photosensitiser in the synthesis of carbohydrates

4) vitamin B_{12} - It is a cobalt (I) complex.

- 13. Which of the following statements are correct about stability of chelates ?

 As the number of rings in complex increases, stability of chelate also increases
 A chelate having five membered ring is more stable if it contains double bonds.
 A chelate having six membered ring is more stable if it does not contain double bonds.
 chelating ligands are atleast bidentate ligands.
- 14. According to valence bond theory, the following complexes will have same geometry.
- 1) $[Ni(CN)_4]^{2-}$ 2) $[Fe(CN)_{64}]^{3-}$ 3) $[FeF_6]^{3-}$ 4) $[Cr(NH_3)_6]^{3+}$ 15. the tetrahedral crystal field spliting is only_____ of the octahedral splitting.
- 1) 1/92) 2/93) 4/94) 5/9
- 16. Which of the following metal ions cannot form both high spin & low spin octahydral complexes ?

1) Ti^{+3} 2) CO^{2+} 3) Fe^{+2} 4) Cu^{2+}

EXERCISE - I / ANSWER

WORK SHEET - I

1) 2	2) 1	3) 3	4) 3	5) 1	6) 1	7) 1	8) 2	9) 3	10) 3
11) 4	12) 1	13) 1	14) 3	15) 1	16) 2	17) 1	18) 1	19) 3	20) 4
21) 4	22) 1	23) 1	24) 2	25) 3	26) 2	27) 3	28) 2	29) 1	30) 2
31) 4	32) 1	33) 2	34) 1	35) 3	36) 2	37) 1	38) 2	39) 4	40) 2
41) 2	42) 1	43) 4	44) 2	45) 1	46) 4	47) 3	48) 4	49) 3	50) 3
51) 4	52) 2	53) 2	54) 4	55) 3					

WORK SHEET - II

1) 1	2) 4	3) 4	4) 4	5) 3	6) 1	7) 3	8) 2	9) 1	10) 2
11) 2	12) 3	13) 2	14) 2	15) 1	16) 2	17) 2	18) 2	19) 3	20) 2
21) 1	22) 1	23) 2	24) 4	25) 2	26) 2	27) 3	28) 4	29) 4	30) 3
31) 3	32) 4	33) 2	34) 4	35) 2	36) 1	37) 4	38) 3	39) 2	40) 3
41) 2	42) 2	43) 1	44) 2	45) 4	46) 2	47) 4	48) 1	49) 1	50) 2
51) 1	52) 1	53) 1	54) 3	55) 3	56) 4	57) 3	58) 4	59) 1	60) 3
61) 3	62) 2	63) 3	64) 1	65) 2	66) 4	67) 1	68) 3	69) 1	70) 2
71) 2	72) 2	73) 3							

WORK SHEET - III

1) 4 2) 2 3) 34 4) 3 5) 2 6) 124 7) 1 8) 4 9) 3 10) 1 11) 3 12) 234 13) 14 14) 234 15) 3 16) 14

EXERCISE-II

1. Match Column-I (Compounds) with Column - II (Oxidation states of Co) and select the correct answer using the codes given below the Columns :

Column-I	Column - II
1) $[Co(NCS)(NH_3)_5](SO_3)$	p) -1
2) Na[Co(CO) ₄]	q) 0
3) $Na_4[Co(S_2O_3)_3]$	r) +3
4) $Co_2(CO)_8$	s) +2
Column - I	Column-II
1) EDTA	p) diamagnetic
2) Ni(CO) ₄	q) Bidentate
3) low spin complex	r) Hexa dentate
4) Glycine	s) K_{4} [Fe(CN) ₆]

3. Match Column-I (Complex ions) withColumn - II (Number of unpaired electrons) and select the correct answer using the codes given below the Columns :

Column - I	Column - II
(Complex ions)	(number of unpaired electrons)
1) $[CrF_{6}]^{4-}$	p) One
2) $[MnF_6]^{4-}$	q) Two
3) $[Cr(CN)_{6}]^{4-}$	r) Five
4) $[Mn(CN)_{6}]^{4-}$	s) Four

4. Match Column - I (Complexes) with Column- II (Hybridization) of central atom and select the correct answer using the codes given below the Columns :

Column - I	Column - II
1) $Ni(CO)_4$	p) sp ³
2) $[Ni(CN)_4]^{2-}$	q) dsp ²
3) [Fe(CN) ₆] ⁴⁻	r) sp ³ d ²
4) $[MnF_6]^{4-}$	s) d ² sp ³

5. Match Column I with Column II and select the correct answer using the codes given below the Columns.

Column-I (Complex)	Column- II (Geometry)
1) $[Ni(CN)_4]^{2-}$	p) Tetrahedral
2) $[ZnCl_4]^{2-}$	q) Tetragonal
3) $[Co(en)_3]^{3+}$	r) Square planar
4) $[Cu(NO_2)_6]^{4-}$	s) Octahedral

6. Column-I Column-II

2.

1) Octahedral	p) $[Cu(NH_3)_4]^{+2}$
2) Square plannar	q) $[As(NH_3)_2]^+$
3) Trigonal bi pyramidal	r) [Fe(CO) ₅]
4) Linear	s) $[Cr(dien)_2]^{3+}$

7. Match Column-I (Co-ordination compounds) with Column -II (Type of isomerism) and select the correct answer using the codes given below the Columns :

Column-I	Column - II
1) $[Co(NH_3)_4Cl_2]$	p) Optical isomerism
2) Cis-[Co(en) ₃ Cl ₂]	q) Ionization isomerism
3) $[Co(en)_2(NO_2)Cl]SCN$	r) Co-ordination isomerism
4) $[Co(NH_3)_6][Cr(CN)_6]$	s) Geometrical isomerism

8. Match the complexes in Column - I with their properties listed inColumn - II. Indicate your answer by darkening the appropriate bubbles of the 4 x 4 matrix given in the ORS.

Column-I	Column - II
1) $[Co(NH_3)_4(H_2O)_2]Cl_2$	p) Geometrical isomers
2) $[Pt(NH_3)_2Cl_2]$	q) Paramagnetic
3) [Co(H ₂ O) ₅ Cl]Cl	r) Diamagnetic
4) $[Ni(H_2O)_6]Cl_2$	s) Metal ion with +2 oxidation state

Column-I	Column-II
1) [Fe(CN) ₆] ⁴⁻	p) Paramagnetic
2) [Fe(H ₂ O) ₆] ²⁺	q) Diamagnetic
3) $[Cu(NH_3)_6]^{2+}$	r) Inner orbital complex
4) $[Ni(CN)_6]^{4-}$	s) Outer orbital complex

9.

10.	Column - I	Column-II
	1) $[Ni(H_2O)_6]Cl_2$	p) d ² sp ³ hybridisation
	2) $[Co(CN)_2(NH_3)_4]OC_2H_5$	q) Ionisation isomerism
	3) [IrCl ₆] ³⁻	r) μ = 2.83 bM
	4) $[PtCl_2(NH_3)_4]Br_2$	s) $\Delta_0 < P$

EXERCISE - II / ANSWERS

01)1-R;2-P;3-S;4-Q	02) 1 - R; 2 - P; 3 - S; 4 - Q
03) 1 - s; 2 - r ; 3 - q ; 4 - p	04) 1 - p ; 2 - q; 3 - s ; 4 - r
05) 1 - r ; 2 - p ; 3 - s ; 4 - q	06) 1 - s; 2 - p; 3 - r; 4 - q
07) 1 - s ; 2 - p ; 3 - q ; 4 - r	08) 1 - p,q,s ; 2 - p, r ; 3 - q,s ; 4 - q,s
09) 1 - q,R ; 2 - p,s ; 3 - p,s ; 4 - q,	s 10) 1 - r,s ; 2 - p,q ; 3 - p ; 4 - p,q

EXERCISE - I WORK SHEET - I

1.	The general formula of alkyl halides is 1) $C_nH_{2n}X$ 2) $C_nH_{2n+1}X$ 3) $C_nH_{2n}X_2$ 4) $C_nH_{2n-1}X$					
2.	, 11 211	arbon atoms in C_2H_5Cl		$n_{n}^{-1} 2n - 1^{-1}$		
	1) sp^3 and sp^2	2) sp ³ and sp	3) sp ³ and sp ³	4) sp ² and sp		
3.	Ethyl chloride is 1) 1º alkyl halide	2) 2º alkyl halide	3) 3º alkyl halide	4) gem halide		
4.		nyl chloride is formed b	by overlaping			
	1) sp ³ -s	2) sp ³ -p	3) sp ³ d-p	4) sp²-p		
5.	IUPAC name of (CH ₃ 1) 1-Bromo - 3 -methy 3) 1-Bromo pentane		2) 1-Bromo - 3 -methyl propane 4) 3-Bromo pentane			
6	IUPAC name of H_3C 1) Ethylidene bromid 3) 1,1 - dibromo ethar	e	2) Gem - dibromide 4) Any of the above			
7.	,	iso butyl chloride are	2) Functional group isomers4) Metamers			
8.	With increase in num compounds 1) Decrease	ber of halogen atoms of ha	& atomic mass of halo _§ 3) Remains same	gen atoms density of the 4) Can't say		
9.	,			4) Currt Suy		
9.		Density maximum for				
	1) CH ₃ Cl	2) CH_2Cl_2	3) CHCl ₃	4) CCl_4		
10.	For the same alkyl (o:	r) aryl group boiling po	bint is more for			
	1) RI	2) RBr	3) RC1	4) RF		
11.	The following cannot 1) PCl ₃	be used for the prepar 2) PCl ₅	ation of ethyl chloride 3) SO ₂ Cl ₂	from ethyl alcohol 4) SOCl ₂		
12.	_					
13.		$\xrightarrow{X} CH_3 - CH_2Cl, V$ 2) Anhy. AlCl ₃		4) MgCl ₂		
		-		4) MgCl ₂		
14.		$3C_2H_5Cl + X$ where 'X		() H D O		
	, 5 2	2) H_3PO_4	, 5 5	4) $H_4P_2O_7$		
15			this reaction X, Y, & Z			
	1) $C_2H_4Cl_2$, SO ₂ , He	C1	2) C_2H_5Cl, SO_2, HC	1		
	3) C_2H_5Cl , SOCl, HC	21	4) C_2H_4 , SO_2 , Cl_2			

			HALOKAN	NES & HALORENES
16.	What is 'X' in the follo $C_2H_5Cl + X \rightarrow C_2H$ 1) KHCO ₃	0	3) Aqueous KOH	4) K ₂ CO ₃
17.	Metal present in Grig		, 1	, <u>2</u> 5
17.	1) Na	2) Mg	3) Al	4) Zn
18.	example of reac	tion		e is formed. This is an
19.	 Addition Ethyl iodide when tree Ethanol 	 2) Substitution eated with dry silver ox 2) Diethyl ether 	kide gives	4) Rearrangement4) Ethane
20.	1) They are covalent of	ydrogen bonds with w	2) They have low pol	arity
21.	The major product fo 1) Ethyl Nitrite		AgNO ₂ reacts with ethy 3) Nitroethane	
22.	$C_2H_5Cl + KNO_2 - \frac{S}{2}$ solvent 'x' used in the	Solvent 'x' \rightarrow C ₂ H ₅ Ne e reaction is	O ₂ + KCl	
	1) Dimethyl formami	de 2) Dimethyl ester	3) Chloroform	4) Diethyl ether
23.	Chloroethane reacts	with "X" to form diethy	l ether. What is X.	
	1) NaOH	2) H ₂ SO ₄	3) C_2H_5ONa	4) $Na_2S_2O_3$
24.	The reaction			
	$C_6H_6 + CH_3Cl\frac{A}{(anh)}$	$\xrightarrow{\text{ICl}_3} + \text{HCl} + \text{C}_6\text{H}_5$	CH _{3 is}	
	1) Friedel - Craft's alk 3) Friedel - Craft's acy	•	 Addition reaction Friedel Craft's ben 	zoylation
25.	The solvent used in the	he preparation of Grig	nard's reagent is	
	1) dry ether	2) dry acetone	3) dry alcohol	4) dry chloroform
26.	Ethyl chloride does n 1) Sodium in dry ethe 3) Magnesium in dry	er	2) AgNO ₃ solution 4) KCN	
27.	Ethyl chloride reacts 1) Isobutane chloride	with sodium metal in p 2) n-butane	presence of dry ether an 3) Neopentane	nd forms 4) Tertiary butyl
28.	In the reaction sequer molecular formula o		$X \xrightarrow{H_3O^{\oplus}} X \xrightarrow{H_3O^{\oplus}} Y$	$Y + NH_3$ What is the
	1) C ₃ H ₆ O ₂	2) C ₃ H ₅ N	3) $C_2 H_4 O_2$	4) $C_{2}H_{6}O$
29.	Ethyl chloride is not	used in		
	1) preparation of T.E.	L.	2) local anaesthesia	
	3) general anaesthesi	a	4) Ethylating agent	

30.	30. The IUPAC name of CHCl, is										
50.		oroform		5	nloromet	hane	3) Chloro	methane	4) I	Dichloromethane	
31.	The h	ybridisa	tion of o	carbon iı	n CHCl ₃ i	is					
	1) sp ³			2) sp ²			3) sp		4) s	p ³ d	
32.	The sł	nape of c	hlorofo	rm mole	cule is						
	1) Tet	rahedral		2) Pyra	midal		3) Planar	trigonal	4) I	Distorted tetrahed	al
33.	Purec	hlorofor	m is pro	epared f	rom						
	1) CCI	4		2) CH ₃ 0	CHO		3) CCl ₃ CH	H(OH) ₂	4) ($CH_3 - CO - CH_3$	
34.	obtair	5		1) CH ₃ 0	in NaOH Cl, NaCl	I solu				re the compoun HCl ₃ ,HCOONa,H ₂	
35.		per of mo $_4$ with Z		-	/drogen a	atoms	required ir	n the redu	iction of	one mole of CHC	Cl ₃
	1) 2			2) 4			3) 6		4) 3	3	
36.	In stor	ring chlo	roform	, the sub	stance ac	dded					
	1)1%	ethyl alc	hohol	2) 50%	ethyl alc	hohol	3) 1% ace	taldehyd	e 4) 1	% acetone	
37.	Which of the following poisonous gass is formed when chloroform is exposed to sunlight and moist air						ht				
	1) Mu	stard ga	S	2) Phos	sgene		3) Chlorin	ne	4) (Carbon monoxide	
38.	The gas liberated when $CHCl_3$ reacts with A 1) CH_4 2) C_2H_4				vith A	g powder 3) C ₂ H ₂	is	4) I	HCl		
39.	Hydrolysis of tricholoromethane with aqueous KOH gives1) methanol2) chloral3) acetylene4) potassium formate						e				
40.	List - 1 1) CCl_4 2) $CHCl_3$ 3) Gemdihalide 4) Vicinaldihalide					List - 2 1) CH ₃ CHCl ₂ 2) Solvent 3) CH ₂ ClCH ₂ Cl 4) Anaesthetic 5) Toluene					
	The co	orrect ma	atch is				-)				
	1)	А	B	C	D	2)	A	B	C	D	
	1) 3)	5 5	3 3	1 2	2 1	2) 4)	1 2	4 4	3 1	2 3	
41.	List - 1 1) C ₂ H 2) C ₂ H 3) C ₂ H 4) Na		ner				List - 2 1) Willian 2) Wurtz 3) Local A 4) Antise 5) Grigna	reaction Anaesthe ptic	tic		
		А	В	С	D		А	В	С	D	

								IALUI	ALLO	a nal	1
	1)	3	5	1	2	2)	5	3	1	2	
	3)	3	4	1	2	4)	3	5	1	4	
42.	Mate	ch the fol	llowing								
	Reac	tants]	Products	i				
	1) C ₂	H₅Cl, M	oist Ag ₂ 0)	i	i) CH_3C	H ₂ ONO				
	2) C ₂	H₅Cl, aq	ueous								
	Et	hanolic .	AgCN			i	ii) C ₂ H ₄				
	3) C ₂	H₅Cl, aq	ueous								
	Ef	thanolic	AgNO ₂			i	iii) $C_2 H_5 C_2$	ЭH			
	4) C ₂	H₅Cl, aq	ueous								
	E	thanolic	КОН			i	iv) CH ₃ C	H ₂ NC			
						,	v) C_2H_6				
	The (Correct r	natch is								
		А	В	С	D		А	В	С	D	
	1)	v	iii	iv	i	2)	i	ii	iii	iv	
	3)	iii	iv	i	ii	4)	iv	i	ii	iv	
43.	List-	List-1						List-2			
	1) Cł	1) Chloroform, phenol & alkali						1) Carbylamine reaction			
	2) Eti	hyl alcol	hol, blea	ching po	wder	,	2) Reimer - Tiemann reaction				
	3) Cł	nloroform	n, anilin	e & alka	li		3) Iodofo	rm test			
	4) Ac	cetone, io	odine &	caustic s	oda	4	4) Chloroform				
						Į	5) Willia	mson sy	nthesis		
	The	correct n	natch is								
		А	В	С	D		А	В	С	D	
	1)	2	4	3	1	2)	2	4	1	3	
	3)	4	3	1	2	4)	1	4	2	3	
44.	List	-1]	List - 2				
	1) De	ehydroha	alogenat	tion		- -	1) Na + C ₂ H ₅ OH				
	2) De	ehaloger	nation			,	2) conc. H_2SO_4				
	3) De	ehydrati	on				3) aq. KOH				
	4) Hy	ydrolysi	s			4	4) alc. KOH				
								5) Ethanolic zinc.			
	The	correct n	natch is								
		А	В	С	D		А	В	С	D	
	1)	2	5	1	3	2)	4	5	2	3	
	3)	1	5	2	3	4)	3	5	4	2	
45.	Amo 1) C ₂	•	followi	ng the m 2) C ₂ H	•	l halide i 3) C ₂ H ₅ B		<i>A</i>) (C,H₅I		
16	-	0		-	0		. 20			2 ¹ 1 ₅ 1	
46.	SN ¹ reactions occur through the intermediate formation of										

46. SN^1 reactions occur through the intermediate formation of

IIAL	ORANES & HALO					
	1) Carbocations	2) Carbanions	3) Free radicals	4) None of these		
47.	The reaction (CH_3)	$_{3}C - Br \xrightarrow{H_{2}O} (CH_{3})$	$)_3 C - OH$ is rea	iction.		
	1) elimination	2) substitution	3) free radical	4) displacement		
48.	An optically active halide when allowed to react with CN ⁻ gives a racemic mixture. The halide is most likely to be					
	1) 1°	2) 2°	3) 3°	4) 4°		
49.	A dextrorotatory optically active alkyl halide undergoes hydrolysis by SN ² mechanism. The resulting alcohol is					
	1) Dextrorotatory		2) Laveorotatory			
	3) Optically inactive	due to racemisation	4) may be dextro (or)	laevorotatory		
50.	Aryl halides are less alkyl halides due to	s reactive towards nuc	leophilic substitution	reaction as compared to		
	1) The formation of l	ess stable carbanion	2) Resonance stabiliz	zation of aryl halides		
	3) Longer – carbon h	alogen bond	4) Inductive effect			
51.	Chlorobenzene is ?					
	1) More reactive than	•	2) More reactive than isopropyl chloride			
	3) As reactive as met	benzyl chloride				
52.	The conditions that a	are necessary in the pre	eparation of Aryl halid	es?		
	1) Low temperature		2) Absence of sunlig	ht		
	3) Presence of haloge	en carrier	4) all of the above			
53.	Aryl halides can be p	prepared by				
	1) Sand mayer's met	hod	2) Friedel - craft reac	tion		
	3) Gattermann's read	tion	4) 1 and 3			
54.	Flouro benzene can i	not be prepared by dire	ect flourination since.			
	1) F_2 is highly reactive		2) F_2 is inert			
	3) Reaction with $F_2 r$		4) F_2 reacts slowly			
55.		ion, a diazonium grouj	p is replaced by X using	g Y. X, Y are :		
	X Y	- (
	1) Cl Θ	Cu/HCl				
	2) Cl [⊕]	CuCl ₂ /HCl				
	3) Cl Θ	CuCl ₂ /HCl				
	4) Cl ₂	Cu ₂ O/HCl				
56.	$C_6H_5NH_2 - \frac{NaNO_2 + 1}{0 - 5^0C}$	$\xrightarrow{HCl} A \xrightarrow{KI} B + C \uparrow$	•			
	Here B and C are					
	1) C_6H_5I , N_2	2) C ₆ H ₅ I,O ₂	3) C ₆ H ₆ ,I ₂	4) $C_6H_5CH_2I,N_2$		
57.	Chlorobenzene on fu	using with solid NaOH	follwed by acidificatio	on gives		
	1) Benzene	2) Benzoic acid	3) Phenol	4) Benzene Chloride		

WORK SHEET - II

1.	Tertiary alkyl halide among the following is 1) 2 - chlorobutane 3) Isobutyl chloride		s 2) Secondary butyl chloride 4) 3 - chloro - 3 - methyl pentane			
2.		somers with the molec	- /			
	1) 3	2) 4	3) 5	4) 6		
3.	In chloro ethane, the alkyl halide	Carbon bearing haloge	en is bonded to hy	drogen(s). It is called (2002)		
	1) Two, primary	2) Three, primary	3) Two, secondary	4) One, Tertiary		
4.	, 1	ig is a primary alkyl hali	,			
	1) Isobutyl bromide	.8	2) Neo - Pentyl chlori	ide		
	3) Isopentyl bromide		4) All are primary ha			
5.	Incorrect statement among the following 1) n-propylchloride and isopropyl chloride are position isomers 2) n-butyl chloride and iso butyl chloride are chain isomers 3) sec butyl chloride and ter-butyl chloride are chain isomers 4) isobutyl chloride and ter-butyl chloride are chain isomers					
6.	Among the following	g perhaloalkane is				
	1) SCl ₄	2) CHCl ₃	3) $C_2 Cl_6$	4) CF ₃ CHClBr		
7.	Br	IUPAC name is				
	1) 4 - bromo pent - 3-	ene	2) 4 - bromo pent - 2-	- ene		
	3) 2 - bromo pent - 3	2	4) 3 - bromo bute - 2-			
8.	The halogen atom is ring, is called as -	on the sp ³ hybridesed	carbon which it self is	attached to an aromatic		
	1) Allylic halide	2) Benzyl hlaide	3) Perhalo alkane	4) Aryl halide		
9.	Which of the followi 1) 1 - Chloropentane 3) ter-pentyl chloride	ng has the highest boil	ing point ? 2) isopentyl chloride 4) All have equal boiling point			
10.	C - X bond is stronge	est in				
	1) CH ₃ Cl	2) CH ₃ Br	3) CH ₃ F	4) CH ₃ I		
11.	Which of the followi	ng alkyl halides has the	e maximum density ?			
	1) C ₃ H ₇ I	2) $C_2 H_5 I$	3) CH ₃ Br	4) CH ₃ I		
12.	$C_2H_5Cl + Na - \frac{dry e}{-Na}$	$\stackrel{\text{ther}}{\longrightarrow} A$				
		on give how many isor				
	1) 1	2) 2	3) 3	4) 4		
13.	$C_2H_5OH + HCI - \frac{7}{2}$	$C_1 C_1 \rightarrow C_2 H_5 C_1 + H_2$	0 in this reaction anh	ydrous ZnCl ₂ acts as		
	1) dehydrating agent		2) dehydrogenating a	agent		

ΠΑL	JRAINES & HALORENES				
	3) dehalogenating agent		4) dehydrohalogenating agent		
14.	Hydrogen chloride and SO_2 a chloride. Which of the following		product in this reaction	on?	
	1) $C_2H_5OC_2H_5$ 2) C_2H_6		3) CH ₃ Cl	4) $C_2 H_5 Cl$	
15.	The hybridization state of carbo with aqueous KOH is	n atoms in the	product formed by the	reaction of ethyl chloride	
	1) Sp 2) Sp^2		3) Sp ³	4) Sp ³ d	
16.	$C_2H_5C\ell \xrightarrow{alc.KOH} x \xrightarrow{C\ell_2/\ell}$	$\xrightarrow{\mathrm{CC}\ell_4} \mathbf{y}$. Abo	out 'y' the correct state	ment is	
	 1) It is an example of gem dihat 3) Hybridisation of carbon in ' 		2) It is an example of4) It is an unsaturated		
17.	Ethyl chloride on heating with of 'X' is 1) C_2H_5N 4) (CH ₃) ₃ N	•	e forms a compound '> 2) C ₂ H ₅ CN	 3) CH₃ - NH - CH₃ 	
18.	For the preparation of ethyl pro 1) Silver acetate 2) Propie 4) Silver propionate	opionate from onic anhydric	•	er reactant required is 3) Propanoyl chloride	
19.	$C_2H_6 \xrightarrow{450^\circ C} A \xrightarrow{+HCI/AICl_3}$ aqueous ethanolic KCN				
	B aqueous ethanolic AgCN				
	Covalence of 'Carbon' in the fu	inctional grou	-		
	1) 3, 3 2) 4, 4		3) 4, 3	4) 3, 4	
20.	$C_2H_5Cl + KNO_2 \xrightarrow{DMF} A_{(Maj)}$ The bond absent in 'A' is	jor)			
	1) C-N 2) C-O		3) C-H	4) C-C	
21.	$C_2H_5Cl_{excess} \longrightarrow A_{(final)}$		-) -)	
	Covalenc of 'N' in 'A' is				
~~	1) 4 2) 3		3) 2	4) 1	
22.	Which one of the following rea	-			
	1) $C_2H_5Cl + KF \rightarrow C_2H_5F + KC$		2) $C_2H_5Cl + NaBr \rightarrow C_2H_5Br + NaCl$		
	3) $C_2H_5Cl + KI \rightarrow C_2H_5I + KCl$		4) $C_2H_5Cl + KBr \rightarrow C$	$C_2H_5Br + KCl$	
23.	$C_6H_6 + C_2H_5Cl \xrightarrow{'X'}, 'Y'$				
	Wrong statement among the fo	ollowing is			
	 'X' is Lewis acid For 'Y' four aromatic isomers 	s are possible		ndergo Sp ² hybridization luene	
24.	$CH_3COOAg + C_2H_5Cl \rightarrow A(org$	g.)			
	Wrong statement about 'A' is			the state for the second	
	 A is an ester Functional group isomers of 	f 'A' is butyric	2) IUPAC name of 'A acid	'is ethylethanoate	
		5			

4) All carbons in 'A' are Sp^2 hybridised

	,			
25.	$C_2H_5Cl + Mg$ dryethe	$\xrightarrow{r} X \xrightarrow{D_2O} Y$		
	Here 'Y' is			
24	1) $C_2 H_6$	2) $C_2H_4D_2$ 3) CH_3D	. 2 0	
26.	1) Zn + HCl	converted into Ethane 2) LiAlH ₄	by reacting with $3) H_2/Ni$	4) All the above
27.	$C_2H_5C1 \longrightarrow C_2H_6$	$\mathrm{BCl}_3 + X \to \mathrm{B}_2\mathrm{H}_6$		
	IUPAC name of 'X' is 1) Lithiumaluminium 3) Lithium tetrahydrio	5	2) Lithium tetrahydri 4) Tetrahydridoalum	
28.	Butanenitrile is forme	ed by reaction of KCN w	with	
	1) Propyl alcohol	2) Butyl chloride	3) Butyl alcohol	4) Propyl chloride
29.	What are the reagent nitrite (as the major product	and reaction condition)	is used for converting o	ethyl chloride to ethyl
	1) KNO_2 , $\text{C}_2\text{H}_5\text{OH}$, H_2	0, <u>A</u>	2) NaNO _{2'} HCl, O ^o C	
	3) KCN, H_2O , Δ		4) $AgNO_{2'}C_{2}H_{5}OH, H$	$H_2^{0, \Delta}$
30.	Which of the followin 1) Aqueous KOH	g reagents when heate 2) Zn/HCl	ed with ethyl chloride, 3) Alcoholic KOH	form ethylene ? 4) HI
31.	11820	$\xrightarrow{Al_2O_3} B \xrightarrow{S_2Cl_2} B$	C In the above seque	nce of reactions, identify
	'C'			
	1) Chloretone	, <u>1</u>	, 0	, 0
32.		ed on large scale by the	1	
	1) Zn + HCl alc		2) Fe fillings and wat	ter
	3) LiAlH $_{4}$		4) HI + Red P	
33.	method, the reaction	taking place	2 0	ing powder. In the above
		2) Hydrolysis		4) All the above
34.		of bleaching powder re		of $CHCl_3$ from C_2H_5OH is
	1)1	2) 2	3) 3	4) 4
35.	$CH_3 - C - CCl_3 - Ca$	$(OH)_2 \rightarrow CHCl_3 + X.$	What is 'X' ?	
	- <u>-</u>	2) (HCOO) ₂ Ca	-	4) CaCl ₂
36.	$CCl_3 - C - H - Ca(C)$	^{DH)} 2→CHCl ₃ +X. W	Vhat is 'X' ?	
	1) (CH ₃ COO) ₂ Ca	2) (HCOO) ₂ Ca	3) CH ₃ COOH	4) CaCl ₂
37.	What is the product 1) CHCl ₃	obtained when chlo 2) CCl ₃ CHO	rine reacts with ethyl a 3) CH ₃ Cl	alcohol in KOH? 4) none
	, <u> </u>		· 3	

38.	Among the following which is stable					
			3) CH ₃ C(OH) ₂ CH ₃			
39.		is added to chlorofo	orm, the phosgene p	resent in chloroform is		
	converted into.	O				
	1) CH ₃ COOC ₂ H ₅	2) $CH_3 - C - CH_3$	3) (CH ₃ CH ₂ O) ₂ CO	4) CH ₃ COOH		
40.	$CHCl_{3} + \frac{1}{2}O_{2} - \frac{h\vartheta}{-HCl}$	$\rightarrow A \xrightarrow{C_2H_5OH} B$				
41.	The number of moles	of Ag metal to be reac	ted with CHCl ₃ to ge	t 1 mole of $C_2 H_2$ is		
	1) 1	2) 2	3) 4	4) 6		
42.	$CHCl_3 + C_6H_5OH - $ compound 'x' is	$\underbrace{\text{NaOH}}_{X} + \text{NaCl} + H$	H_2O the principal fu	nctional group in the		
		2) - CHO	3)-COOH	4) - Cl		
43.	$C_6H_5NH_2$ +CHCl ₃ +K	$OH \xrightarrow{\Delta} A$				
		J in the functional grou	ıp of 'A' is			
	1) 4, 3	2) 3, 4	3) 4, 4	4) 3, 3		
44.	base, 'X' is			e smell in the presence of		
	1) 1^0 amine	2) 2° amine	3) 3° amine	4) 4 [°] amine		
45.	Isocyanide test is use	d to identify				
	 Aromatic secondar Aromatic and aliph 	5	 Aromatic tertiary a Quaternary ammo 			
46.	Which of the following	ng does not participate	in the carbylamine rea	ction?		
	1) aniline	2) chlorofor	3) ethanal	4) KOH _(alc)		
47.	Reagent used for dete 1) aq. AgNO ₃	ecting CHCl ₃ is 2) 1°-amine	3) 1°-amine + KOH _{(al}	_{c.)} 4) 1%C ₂ H ₅ OH		
48.	Reagent used for test. 1) aq.AgNO ₃	ing the purity of CHCl 2) 1°-amine	₃ is 3)1°-amine+KOH(aq) 4) 1% C ₂ H ₅ OH		
49.	Iodoform test is not as	nswered by				
	1) CH ₃ CHO	2) 3-pentanone	3) CH ₃ COCH ₃	4) CH ₃ CHOHCH ₂ C ₆ H ₅		
50.	The following are some statements about ethyl chloride i) it is used as refrigerant ii) it is used to prepare diethyl ether iii) it is used to prepare Tetra Ethyl Lead(TEL) 1) all are correct 2) only i and ii are correct 3) only ii is correct 4) only ii and iii are correct 1) Both (1) and (R) are true and (R) is the correct explanation of (A)					
	2) Both (1) and (R) are true and (R) is not the correct explanation of (A)					

HALOKANES & HALORENES 3) (1) is true but (R) is false 4) (1) is false but (R) is true 51. (1): Ethyl chloride with aq.ethanolic AgCN gives ethyl cyanide as major product. (R) : In ethyl cyanide ethyl carbon is linked to \overline{CN} group. 52. (1): Chloroform vapours burn with green flame. (R) : chloroform is green coloured liquid. (1): Pure chloroform doesnot give precipitate with AgNO₃ solution. 53. (R) : $CHCl_3$ is covalent compound. Which of the following is formed when the product of oxidation of chloroform is treated with 54. ethyl alcohol? 1) Ethyl chloride 2) Ethyl carbonate 3) Chloral hydrate 4) Chloral In the chemical reaction, $CH_3CH_2NH_2 + CHCl_3 + 3KOH \rightarrow (A) + (B) + 3H_2O$ 55. (1) & (2) are respectively 1) C₂H₅NC & 3KCl 2) C₂ H₅CN & 3KCl 4) $C_{a}H_{E}NC \& K_{a}CO_{a}$ 3) CH₃ CH₂CO NH₂ & 3KCl 56. The characteristic reactions of alkyl halides are 1) electrophilic substitution reactions 2) electrophilic addition reactions 3) nucleophilic addition reactions 4) nucleophilic substitution reactions 57. Which of the following is an example of SN² rection ? 1) CH₂Br + OH⁻ \longrightarrow CH₂OH +Br⁻ 2) $CH_3 - CH - CH_3 + OH^- \longrightarrow CH_3 - CH - CH_3 + Br^-$ OH Br 3) CH₂CH₂OH $\xrightarrow{H_2O}$ CH₂=CH₂ 4) $(CH_2)_2C$ -Br+OH⁻ \longrightarrow $(CH_2)_2COH$ +Br⁻ Most reactive halide towards S_{N^1} reaction is 58. 1) n - Butyl chloride 2) sec - Butyl chloride 3) tert - Butyl chloride 4) Allyl Chloride 59. Which of the following alkyl halides is hydrolysed by SN¹ mechanism ? 2) CH₂CH₂-Br 1) CH₃-Br 3) CH₃CH₂CH₂-Br 4) $(CH_3)_3C-Br$ 60. Which of the following alkyl halides is hydrolysed by SN² mechanism ? 2) CH_aBr 3) $CH_2 = CHCH_2Br$ 1) $C_{z}H_{z}CH_{z}Br$ 4) $(CH_{2})_{2}CBr$ 61. In S_v1 reactions rate of reaction depends on a) concentration of alkyl halide b) concentration of nucleophile c) Nature of alkyl halide 1) All 2) 'a' and 'c' only 3) 'a', 'b' only 4) 'c' only The reaction described is 62.

HALOKANES & HALORENES

	CF	I ₃ (CH ₂) ₅	(CH ₂) ₅ CH	3
		$H_{3}(CH_{2})_{5}$ H $C - Br - OH$	$\rightarrow HO - C$	
		CH ₃	CH ₃	
	1) S _{E²}	2) S _{N1}	3) S _{N²}	4) S _{N⁰}
63.	In SN ¹ (substitution due to	, nucleophilic uni mole	cular) reaction, the race	emization takes place. It is
	1) inversion of conf	iguration	2) retention of confi	iguration
	3) conversion of con	nfiguration	4) both 1 and 2	
64.	The organic chloro S _N 2 reaction is	compound, wheih she	ows complete stereo cl	hemcial inversion during
		2) (CH ₃) ₂ CHCl	3) CH ₃ Cl	4) (C ₂ H ₅) ₂ CHCl
65.	$C_6H_5N_2Cl$ <u>CuCl/H</u>	$C_{6} \rightarrow C_{6} H_{5} Cl + N_{2} is call$	led	
	1) Etard reaction		2) Sandmeyer react	ion
	3) Wurtz-Fittig's read	tion	4) Perkin's reaction	l
66.	The reaction of an a	lkyl halide with RCOC	DAg produces	
	1) ester	2) ether	3) aldehyde	4) ketone
67.	Which of the follow	ring statements are not	correct?	
	1) Chlorobenzene is	more reactive than ber	nzene towards electropl	nilic substitution reactions
	2) C - Cl bond in ch	lorobenzene is less pol	lar than in CH Cl	
	3) Chlorobenzene i	s less reactive than CH	Cl towards nucleophi	lic substitution reactions
	4) In chlorobenzen	e further substitution ta	ake place at ortho and	para position

WORK SHEET - III

01. Which of the following statements is incorrect?

Alkyl halides are more reactive than aryl halides towards nucleophilic substitution reaction.
 Alkyl halides are less reactive than aryl halides towards nucleophilic substitution reactions.
 The presence of an electron-releasing substituent at ortho and/or para position decreases the reactivity of nucleophilic substitution of chlorine in the substituted chlorobenzene
 The replacement of chlorine in chlorobenzene by strong bases proceeds via elimination-addition reaction

Which of the following reagents shown below would accomplish the following

02.

transformation? $Br \qquad OH$ (1) X $(2)Y \qquad (2)Y$

H₃O⁺; BH₃ - THF, H₂O₂ / NaOH
 NaOH; BH₃ - THF, H₂O₂ / NaOH
 HBr / ether; Hg(OAC)₂ / H₂O, NaBH₄
 NaNH₂ Hg(OAC)₂ / H₂O, NaBH₄

HALOKANES & HALORENES

03. Which of the following undergoes dehydrobromination at a fastest rate ?

HALOKANES & HALORENES

11. Which of the following compounds undergoes replacement of -CI by -OH by merely warming the compound with aqueous NaOH?

S) Alkene

4) $H_3C \xrightarrow{OH} CH_3 \xrightarrow{H^+} \Delta$

305

HALOKANES & HALORENES EXERCISE - I / ANSWERS

WORK SHEET - I

1) 2	2) 3	3) 1	4) 2	5) 1	6) 3	7) 3	8) 2	9) 4	10) 1
11) 3	12) 3	13) 2	14) 3	15) 2	16) 3	17) 2	18) 3	19) 2	20) 3
21) 1	22) 1	23) 3	24) 1	25) 1	26) 2	27) 2	28) 1	29) 3	30) 2
31) 1	32) 4	33) 3	34) 3	35) 3	36) 1	37) 2	38) 3	39) 4	40) 4
41) 1	42) 3	43) 2	44) 2	45) 4	46) 1	47) 2	48) 3	49) 4	50) 2
51) 4	52) 4	53) 4	54) 1	55) 1	56) 1	57) 4			

WORK SHEET - II

1) 4	2) 3	3) 1	4) 4	5) 4	6) 3	7) 2	8) 2	9) 1	10) 3
11) 1	12) 2	13) 1	14) 4	15) 3	16) 2	17) 2	18) 4	19) 3	20) 2
21) 1	22) 1	23) 2	24) 4	25) 4	26) 4	27) 3	28) 4	29) 4	30) 3
31) 3	32) 2	33) 4	34) 4	35) 1	36) 2	37) 1	38) 2	39) 3	40) 4
41) 4	42) 2	43) 2	44) 1	45) 3	46) 3	47) 3	48) 1	49) 2	50) 1
51) 4	52) 3	53) 1	54) 2	55) 1	56) 4	57) 1	58) 4	59) 4	60) 2
61) 2	62) 3	63) 4	64) 3	65) 2	66) 1	67) 1			

WORK SHEET - III

1) 2	2) 4	3) 4	4) 1	5) 1	6) 1	7) 4	8) 4	9) 2	10) 2
11) 34	12) 34	13) 1	14) 12	15) 3	16) 123	5 17) 1 - (QR; 2 – Ç); 3 – RS;	4 - P
18) 1– I	R; 2 – P; 3	3 - Q; 4 -	S						

ALCOHOLS, PHENOLS AND ETHERS EXERCISE - I

WORK SHEET - I

2.	 2, 4 and 0 The common name of 2-methyl-2-propan Isobutyl alcohol An isomer of ethanol 	2) 1, 4 and 0 2-methyl-1-propanol ol	3) 2, 2 and 02) Sec.butyl alcohol	4) 2, 1 and 1
2.	1) 2-methyl-2-propan 3) Isobutyl alcohol		2) Soc butul alcohol	
	3) Isobutyl alcohol	ol	2) Soc butyl alcohol	
	, ,		2) Sec. buty1 alconor	
	An isomer of ethanol		4) Tertiary butyl alcol	hol
3.				
	1) Methanol	2) Dimethyl ether	3) Diethyl ether	4) Ethylene glycol
4.		owing is a secondary a		
	1) 2 - Methyl - 1 - proj 3) 2 - Butanol	panol	2) 2 - Methyl - 2 - proj 4) 1 - Butanol	panol
_	,		,	
5.	diethyl ether (molecu		eight = 46) is 78°C, wh	at is the boiling point of
	1) 100°C	2) 78°C	3) 86°C	4) 34°C
6.	Which of the following	ng alcohols has the low	est solubility in water ?)
	1) Methanol	2) Ethanol	3) 1-Propanol	4) 1-Butanol
7.	The enzyme that is no	ot associated in the prej	paration of C_2H_5OH from	om starch is
	1) maltase	2) diastase	3) invertase	4) zymase
8.	Glucose is converted	5		
	1) maltase	2) zymase	3) invertase	4) diastase
9.	The percentage of C_2	0		
	1) 95%	2) 10%	3) 50%	4) 75%
10.	Rectified spirit can t 1 Na ₂ CO ₂	e converted into Abso 2) Na	olute alcohol by distillir 3) conc. H ₂ SO ₄	e .
11.	, 2 5	formed by passing ste	, <u> </u>	4) CaO
	1) malt	2) mash	3) wash	4) absolute alcohol
12.	The enzyme produce			
10	1) maltase	2) diastase	3) invertase	4) zymase
13.	1) Glucose and Fruct	converts maltose into	2) Fructose only	
	3) Glucose only		4) Glucose and C_2H_5	ЭH
14.	Rectified spirit is mad	le unsuitable for drinki	ng by adding	
	1) CH ₃ OH	2) 1-propanol	3) Water	4) 2-propanol
15.			•	ol by the action of yeast.
	The correct answer is	volves the liberation of	CO_2 gas.	
		e true and (R) is the corr	ect explanation of (A)	
	, , , , , , ,	e true and (R) is not the	-	
	3) (1) is true but (R) is	false	4) (1) is false but (R) is	s true

	JHULS, PHENULS					
16.	Which of the following alkenes when passed through conc. H_2SO_4 followed by hydrolysis with boiling water would give tert-butyl alcohol ?					
	1) Ethylene	2) Isobutylene	3) Propylene	4) 1-Butene.		
17.		, ,	, 1,	n excess of sodium metal		
		rated is more in the case	•			
	1) C ₂ H ₅ OH	2) CH ₃ OH	3) Equal in both	4) H_2 do not liberated		
18.	The reaction of ethylr	nagnesium iodide with	acetaldehyde gives af	ter acidification		
	1) 2-Butanol	2) 1-Butanol	3) 2-Methyl-2-propanol	4) 2-Methylpropanol.		
19.	To prepare 2-propand	ol from methylmagnesi	um bromide, the other	chemical required is		
	1) HCHO	2) CH ₃ CHO	3) C ₂ H ₅ OH	4) CH ₃ COCH ₃		
20.	Slow decomposition of as	of complex organic com	pounds into simpler or	nes by enzymes is known		
	1) Condensation	2) Fermentation	3) Dehydration	4) Polymerization		
21.	In the conversion of s	tarch to ethyl alcohol,th	ne following enzymes a	are used		
	1) Invertase, Zymase,	Emulsin	2) Maltase, Zymase, I	Emulsin		
	3) Diastase, Maltase, 1	Zymase	4) Invertase, Diastase	e, Zymase.		
22.		llowing gases is libera	ted when ethyl alcoho	ol is heated with methyl		
	magnesium iodide?					
	1) Methane	2) Ethane	3) Carbondioxide	4) Propane		
23.	Identify A and B in th	e following reaction C	$_{2}H_{5}Cl \xrightarrow{A} C_{2}H_{5}OH$	\leftarrow^{B} C ₂ H ₅ Cl		
	1) A = aqueous KOH	'B=AgOH	2) A = alcoholic KOH	I / ; B = aqueous NaOH		
	3) A = aqueous NaOH	H ; $B = AgNO_2$	4) $A = AgNO_2$; $B = K$	NO ₂		
24.	The reaction 2ROH+2	$2 \text{ Na} \longrightarrow 2 \text{RONa} + \text{H}_2$	2			
	Suggests that alcohol	s are				
	1)Acidic	2) Basic	3)Amphoteric	4)Neutral in character		
25.	23 g of sodium will re	act with methanol to g	ive			
	1) One mole of oxyger	n	2) $1/2$ mole of hydrog	gen		
	3) One mole of hydrog	gen	4) 1/4 mole of oxyger	n.		
26.	Which of the following	ng alcohols is the strong	gest acid ?			
	1) CH ₃ OH	2) CH ₃ CH ₂ OH	3) $(CH_3)_2CHCH_2OH$	4) (CH ₃) ₃ COH.		
27.	The correct order of d	ecreasing basicity of the	e following species is : I	H ₂ O,OH ⁻ , CH ₃ OH,CH ₃ O-		
	1) $CH_3OH < H_2O < OH$	I⁻ <ch₃o-< td=""><td>2) CH₃O⁻ >OH⁻ > CH</td><td>$_{3}OH > H_{2}O$</td></ch₃o-<>	2) CH ₃ O ⁻ >OH ⁻ > CH	$_{3}OH > H_{2}O$		
	3) $H_2O < CH_3OH < $	I ₃ O- <oh-< td=""><td>4) OH- > CH_3O^- > CH</td><td>$H_3OH > H_2O$</td></oh-<>	4) OH- > CH_3O^- > CH	$H_3OH > H_2O$		
28.	Which of the followir	ng alcohols is expected	to have the lowest pK	value?		
	1) Ethanol	2) 2-fluoro ethanol	3) 2,2,2-Trifluoroethano			
29.	When 2-butanol is he	ated with an excess of c	oncentrated sulphuric a	acid, the main product is		
	1) 1-Butene	2) 2-Butene	3) 2-Methyl propene	4) 2-Methyl-2-butene.		
30.	The structural formu	la of alcohol that on de	hydration would give	2-methylpropene as the		

			1	ALCOHOLS, PHE	NOLSAND ETHERS
	major prod	uct is			
	1) $CH_3CH_2CH_2$	CH ₂ CH ₂ OI	Η	2) $(CH_3)_2 CH - CH_2 OH$	
	3) CH ₃ -CH	OH-CH ₂ C	CH ₃	4) CH ₃ CHOHCH ₃	
31.	CH ₃ COOH	+ C ₂ H ₅ OF	$H \xrightarrow{\text{conc.H}_2\text{SO}_4} \text{Cl}$ heat	$H_3COOC_2H_5 + H_2O.$	
	The above 1	reaction is	known as		
	1) Hydrolys	sis	2) Esterification	3) Sopanification	4) Dehydration
32.	C ₂ H ₅ OH ca	n be con	verted in to C ₂ H ₅ Cl by r	eacting with	
	1) PCl_3		2) PCl ₅		4) All the above
33.	A mixture o	of anhydro	ous ZnCl ₂ +conc.HCl is	known as	
	1) Fehling's	reagent	2) Lucas reagent	3) Tollen's reagent	4) Benedict's reagent
34.	When C ₂ H ₅	OH reacts	with Conc. HNO_3 the p	product formed is	
	1) Nitroetha	ane	2) Ethyl Nitrite	3) Ethyl Nitrate	4) Nitrosoethane
35.	Action of b	oleaching	powder on ethyl alcol	hol gives	
	1) Chlorofor	rm	2) Dichloro methane	3) Trichloro ethane	4) Ethylene chloride
36.	Which is for	rmed wh	en ethanol reacts with	acetic acid	
	1) CH ₃ COO	C_2H_5	2) $C_2 H_5 O C_2 H_5$	3) CH ₃ OCH ₃	4) CH ₃ CH ₂ CHO
Asserti	on (1) & Reas	son (R) typ	ve Questions :		
	1) Both (1) a	and (R) ar	e true and (R) is the cor	rect explanation of (A)	
	2) Both (1) a	and (R) are	e true and (R) is not the	correct explanation of	(A)
	3) (1) is true	e but (R) is	false		
	4) (1) is false	e but (R) is	strue		
37.	Assertion:	Ethanol i	s miscible in all propor	rtions with water.	
	Reason :	Hydroge	en bonds are formed bet	tween water and alcoho	ol molecules.
38.	Assertion:	2	n't be used for drying e		
	Reason :	Ethyl alc	ohol forms addition co	mpound with CaCl ₂	
39.	Assertion:	Ethyl alc	ohol is soluble in orgar	nic solvents	
	Reason :	Ethyl ald	cohol is having non pol	ar ethyl group.	
40.	Assertion:		ing point of C_2H_5OH i f C_2H_5OH is more than	=), though the molecular
	Reason :	C_2H_5OH water.	molecules are not high	ly associated through	hydrogen bonding as in
41.	Assertion:	Addition	of C ₂ H ₅ OH to CH ₃ MgI	gives methane.	
	Reason :	C ₂ H ₅ OH	is more acidic than CH	[₄ .	
42.	Assertion:	Dehydra HCl	tion of alcohols can be	carried out with Conc	H_2SO_4 but not with conc.
	Reason :		dibasic while HCl is m	onobasic.	

43.	Assertion : Alcohol		roduce ether as well as	alkene under different	
10.	conditions				
	Reason : Dehydra	ation of alcohol takes pl	ace with conc. H_2SO_4 or	Al_2O_3 .	
44.	In the reaction, C ₂ H ₅ OI (Vapour	$ \begin{array}{c} H \xrightarrow{Cu} \\ 300^{\circ} C \end{array} \xrightarrow{X} . The molecula \\ T \end{array} $	r formula of \underline{X} is (EAMO	CET-ENG-2005)	
	1) C ₄ H ₆ O	2) $C_4 H_{10} O$	3) $C_2 H_4 O$	4) C ₂ H ₆	
45.	$C_2H_5OH + SOCl_2 -$	$\xrightarrow{\text{pyridine}} X + Y + Z . Ir$	n this reaction X, Y and	Z respectively are	
	1) $C_2H_4Cl_2$, SO_2 , HCl	2) C_2H_5Cl, SO_2, HCl	3) C ₂ H ₄ Cl, SOCl ₂ , HC	1 4) $C_2 H_{4'} SO_{2'} Cl_2$	
46.	The compound that	reacts with CH ₃ MgBr to	o yield methane as one	of the products is	
	1) CH ₃ CHO	2) CH ₃ COCH ₃	3) CH ₃ COOCH ₃	4) CH ₃ CH ₂ OH	
47.	The correct order of	reactivity of hydrogen	halides with ethyl alcol	nol is	
	1) HF > HCl > HBr >	HI	2) HCl > HBr > HF >	HI	
	3) HBr > HCl > HI > $\frac{1}{2}$	HF	4) HI > HBr > HCl > I	HF	
48.	What is the hybridisa	ation state(s) of the atom	ns in X formed in the fo	llowing reaction?	
	$\begin{array}{c} C_2H_5OH \xrightarrow{Al_2O_3} \\ (Vapours) \xrightarrow{Al_2O_3} \end{array}$	X			
40	1) sp ³ only	2) sp ² and sp ³	3) sp ² only	4) sp only	
49.	Phenol can be prepar 1) Benzene diazoniur		2) Chlorobenzene		
	3) Sodium benzene s		4) All		
50.	Benzene diazonium	chloride on boiling wit	h dilute H ₂ SO ₄ gives		
	1) Cresol	2) Xylene	3) Phenol	4) Toulene	
51.	Sodium salt of benzer gives	ne sulphonic acid on fu	sion with caustic soda f	ollowed by acidification	
	1) Benzene	2) Phenol			
	3) Thiophenol	,	cid		
52.	On heating with sod	a-lime, salicylic acid gi	ves		
	1) Phenol	2) Benzoic acid	3) Sodium salicylate	4) Benzene.	
53.	The reaction, C_6H_5OI suggests that	$Na+CO_2+H_2O \rightarrow C_6H_5O$	H+NaHCO ₃		
	1) Phenol is a strong	er acid than carbonic ac	cid		
	2) Carbonic acid a str	ronger acid than pheno	1		
	3) Water is a stronge	r acid than phenol			
	4) None of the above				
54.	1 1	red by the reaction betw	veen		
	1) Aniline and HNO				
	0 0 -	₂ followed by hydrolysi	S		
	3) $C_6 H_5 Cl and NaOH$		und her addition tion		
	$4_1 C_6 \Pi_5 O_3 \text{ Na and N}$	aOH at 573–623K follo	wed by actumcation.		

55.	Phenol is prepared commercially from		
56.	1) Ethylbenzene2) IsopropylbenzenePhenol is commercially isolated from the fol1) Light oil2) Middle oil	 3) n- Propylbenzene lowing fraction of coal 3) Cresotic oil 	
57.	 The acidic character of phenol is due to Greater resonance stabilization of phenol Greater resonance stabilization of phenol Because of tautomerism occurring in phenol Because oxygen is more electronegative the 	ide ion over phenol over phenoxide ion nol	4) Annieracene on
58.	The correct order of relative acidic strength 1) Phenol > Water > Ethyl alcohol 3) Ethyl alcohol > Phenol > Water	of phenol, ethyl alcoho 2) Ethyl alcohol > W 4) Water > Phenol >	ater > Phenol
59.	Which of the following compounds will rea	ct with sodium hydrox	xide?
	1) CH_3OH 2) CH_3CH_2OH	3) C ₆ H ₅ OH	4) $C_6H_5CH_2OH$
60.	Which of the following compounds when d than seven?	issolved in water, give	es a solution with pH less
61.	1) CH_3COCH_3 2) C_6H_5OH The general formula of ethers is	3) $C_6 H_5 N H_2$	4) $C_{2}H_{5}OH$
	1) $C_n H_{2n} O$ 2) $C_n H_{2n+1} O$	3) $C_{n}H_{2n+2}O$	4) $C_n H_{2n} O C_n H_{2n}$
62.	The IUPAC name of an unsymmetrical ethe	r with the molecular fo	ormula $C_4 H_{10} O$
	1) Ethoxy propane	2) Methoxy ethane	
	3) Ethoxy ethane	4) Methoxy propane	
63.	Hybridisation of Oxygen in Diethylether is1) SP2) SP2	3) SP ³	4) SP ³ d
64.	The reaction , RX + R-ONa \rightarrow R-O-R + NaX	is called	
	1) Wurtz reaction	2)Williamson's synt	hesis
	3) Kolbe's reaction	4) Hofmann broman	nide reaction
65.	Williamson's synthesis in an example of :		
	1) Nucleophillic addition	2) Electrophillic add	ition
	3) Electrophillic substitution	4) Nucleophillic sub	stitution reaction
66.	When vapours of ethyl alcohol are passed of	2 5	
	1) 1,2-Ethanediol 2) Etene	3) Ethoxyethane	4) Ethanal.
67.	Ethyl chloride reacts with sodium ethoxide reactions also yields A ?	to form a compound A	A. Which of the following
	1) $C_2H_5Cl,KOH(alc),\Delta$	2) 2C ₂ H ₅ OH,conc.H	$H_2SO_4, 140^{0}C$
	3) C_2H_5Cl,Mg (dry ether)	4) C_2H_2 , dil. H_2SO_4 , H	IgSO ₄
68.	Consider the following reaction $C_2H_5I - \frac{\Lambda}{X}$	\rightarrow (Pleasant smelling)	liqluid), X is (
	1) Sodium 2) Dry silver oxide	3) Ethyl chloride	4) Dry silver powder
69.	The IUPAC name of $C_2H_5 - O - CH(CH_3)_2$ 1) Ethoxy propane	2 2) 1,1-dimethyl ether	

ALCO	3) 2-Ethoxy isopropa		4) 2-Ethoxy propane	
70.	, , , , , ,	ng is the strongest Lew	, , , , , ,	
	1) H ₂ O	2) CH ₃ OH	3) CH_3OCH_3	4) C ₆ H ₅ OH
71.	Grignard reagents ar 1) Benzene	e prepared in 2) Chloroform	3) Alcohols	4) Ethers
72.	,	nd gives temperatu	,	+) Lucis
12.	1) NaCl	2) Ice	$3) Solid CO_2$	4) C ₂ H ₅ OH
73.	Sometimes explosion 1) Oxides	occurs while distilling 2) Ketones	gethers. It is due to the 3) Aldehydes	presence of 4) Peroxides
74.	-	s heated with dil. H_2SO_2	4 under pressure , it for	ms
	1) Propanoic acid		2) Acetic acid	lahata
	3) Ethyl alcohol		4) Ethyl hydrogen su	-
75.	-		-	s not declourise bromine f molecules would behave
	1) Alkene	2) Alcohol	3) Ether	4) Phenol
Assert	ion (1) and Reason (R) t	type Questions :		
	1) Both (1) and (R) are	e true and (R) is the corr	rect explanation of (A)	
	2) Both (1) and (R) are	e true and (R) is not the	correct explanation of	(A)
	3) (1) is true but (R) is	false		
	4) (1) is false but (R) is	strue		
76.	(A):Diethyl ether who	en heated with dil.mine	eral acid gives C_2H_5OH	Ι.
	(R):Diethyl ether und	lergoes dehydration w	hen heated with minera	al acid.
77.	(A): Ethers behave as	bases in the presence	of mineral acids.	
	(R): Oxygen atom in e	ether is having lone pai	ir electrons.	
78.	(1) : Ethers are relativ	ely inert when compar	ed to C_2H_5OH .	
	(R) :In ethyl alcohol b	ooth carbon and oxyge	n undergo SP³ hybridis	sation.
79.	In the reaction C_2H_5	$_{5}OC_{2}H_{5} + CO \frac{BF_{3},500}{150^{0}}$	$\frac{atms}{C} X$	
	What is X? 1) Diethyl carbonate	2) Ethyl carbonate	3) Diethyl peroxide	4) Ethyl propionate
80.	Halothane is 1) CF_3 CHCl Br	2) CCl ₃ CHFCl	3) C ₂ H ₅ Cl	4) CHCl ₃
81.	C_2H_5 -O- C_2H_5 + HI - 1) C_2H_5I and C_2H_5OH	$\xrightarrow{\Delta} X+Y, here X and Y$ $(2) C_2H_5I and H_2O$	Y are (hot) 3) C ₂ H ₅ OH + H ₂ O	4) $C_2H_4 + H_2O$
82.	The gas liberated by t	treating diethyl ether w	vith PCl ₅ is	
	1) $C_2 H_4$	2) CH ₄	3) $C_2 H_5 Cl$	4) C ₂ H ₅ COCl
83.	$C_2H_5-O-C_2H_5+PCl_5$	$\rightarrow C_2 H_5 Cl + X$, here 'X'	'is	

312

	ALCOHOLS, PHENOLS AND ETHE				
	1) PCl ₃	2) H ₃ PO ₃	3) PO ₃ Cl	4) POCl ₃	
84.	Diethyl ether when tr	eated with acetyl chlor	ride in presence of AlCl	₃ , gives	
	1) C ₂ H ₅ Cl, CH ₃ COOC	H ₃	2) C ₂ H ₅ Cl, CH ₃ COOH	ł	
	3) CH ₃ CHO, CH ₃ COO	CH ₃	4) C_2H_5Cl , CH_3COOC	C_2H_5	
		WORK SHI	EET - II		
1.	 High concentration Low concentration Low concentration Low concentration None of the above 	of sugar solution, high of sugar solution, low to	temperature, plenty of temperature, plenty of emperature, absence of	air	
2.		ig sequence of reactions			
	$A \xrightarrow{C_2H_5Mgl} X \xrightarrow{H}$	\rightarrow tert – amylalco	ohol		
	The compound A in t 1) 2- Butanone	he above sequence of re 2) Acetaldehyde	eactions is: 3) Acetone	4) Propanal	
3.	reagent on an aldehy	de or a ketone followed	by acid hydrolysis?	n of a suitable Grignard	
4	1) Ethyl alcohol	, 10	3) Isopropyl alcohol	4) Methyl alcohol	
4.	Wood spirit is the con 1) Methly alcohol	nmon name of 2) Ethyl alcohol	3) Amyl alcohol	4) Benzyl alcohol	
5.	Basic hydrolysis of e 1) Ethyl alcohol	thyl acetate gives aceta 2) Ethoxide ion	ite ion and 3) Acetaldehyde	4) Acetone	
6.	$X \xrightarrow{HCl} Y \xrightarrow{KO}$	$\xrightarrow{\mathrm{H}(\mathrm{aq})} \mathrm{C}_{2}\mathrm{H}_{5}\mathrm{OH}.$			
	In the above reaction	'X' is			
	1) C_2H_5Cl	2) $C_2 H_2$	3) $C_2 H_4$	4) $C_2 H_5 Br$	
7.	$\mathrm{CH}_2 = \mathrm{CH}_2 + \mathrm{H}_2 \mathrm{SC}$	$P_4 \xrightarrow{75-80^{\circ}C} A \xrightarrow{H}_w$	arm B		
	A and B in the above 1) C_2H_5OH ; C_2H_5HSO 3) $C_2H_5HSO_4$; C_2H_5OP	\mathcal{D}_4		2) (C ₂ H ₅) ₂ SO ₄ ; C ₂ H ₅ OH 4) C ₂ H ₅ OH; (C ₂ H ₅) ₂ SO ₄	
8.	$A + CH_3MgI \rightarrow Add$	lition product <u>H-O</u>	$\xrightarrow{\mathrm{H}} \nleftrightarrow \mathrm{CH}_3\mathrm{CH}_2\mathrm{OH}.$	What is 'A' ?	
	1) CH ₃ - CHO	2) HCHO	3) CH ₃ -CH ₂ -CHO	4) CH ₃ -CO-CH ₃	
9.	A and B in the above 1) acetone and acetale	lehyde	2) acetaldehyde and a		
	3) acetic acid and ace	laidenyde	4) acetaldehyde and a	acetic actu	

10.	Glycerol does not co	ntain alcoholic grou	р	
	1) 1 ⁰	2) 2 ⁰	3) 3 ⁰	4) 1° and 3°
11.	Which of the following	ng is more volatile CH_OH		
	1) CH ₃ -CH ₂ -CH ₂ OH	$\begin{array}{c} \begin{array}{c} \begin{array}{c} CH_2 \\ \\ CH_2OH \end{array} \end{array}$	3) Glycerol	4) CH ₃ OH
12.	Which is a more vola 1) C_2H_5OH	ttile liquid 2) CH ₃ COOH	3) C ₂ H ₅ OC ₂ H ₅	4) C ₆ H ₆
13.	$C_2H_5Cl + AgOH \rightarrow A$	A+AgCl		
	A + CH ₃ COCl \rightarrow C · 1) Ethyl acetate	+ HCl. Here "C" is 2) Methyl acetate	3) Butanone	4) Propanone
14.	In which of the follo	wing reactions, chlorin	e acts as an oxidizing a	gent ?
	$I : CH_3CH_2OH + C$	$l_2 \rightarrow CH_3CHO + 2HCl$	II: $CH_3CHO + Cl_2 -$	\rightarrow CCl ₃ CHO + HCl
	III: $CH_4 + Cl_2$ hu The correct answer is	5:		
	1) only I	2) only II	3) I and II	4) I, II and III
15.	C ₂ H ₅ OH + HONO ₂ 1) Ester	\rightarrow A + H ₂ O. "A" is 2) Ether	3) Alcohol	4) Alkane
16.	C_2H_5OH reacts with	respective anhydrous	salts. Then	$CuSO_4$. ZC_2H_5OH when
		2) $X = 3, Y = 6, Z = 3$		
17.	$CH_{3}CHO + 2[H] - $ 1) SOCl ₂	$\xrightarrow{Ni : \Delta} B. A dibasic ac2) HCl$	cid is formed when "B" 3) PCl ₃	reacts with 4) PCl ₅
18.	$2C_{2}H_{5}OH \rightarrow B \rightarrow C$	$_{2}H_{4} + H_{2}O$ then X and	Y are respectively	
	1) $X = Al_2O_3$; 260 Y = Conc. H_2SO_4 ; 1	$^{0}C; Y = AlCl_{3}$ 440°C	2) X = Conc. H_2SO_4 ; 1	
		Y = Conc. H_2SO_4 ; 140%	C4) X = AI_2O_3 ; 260°C, ;	$Y = AI_2O_{3'} 360^{\circ}C$
19.	Haloform reaction is	not given by		
	1) CH ₃ COCH ₃	$2) CH_{3}COC_{2}H_{5}$	3) $C_6H_5COC_2H_5$	4) CH ₃ CHOHCH ₃
20.	What is the final pro 1) CHCl ₃	oduct obtained when 2) CCl ₃ CHO	chlorine reacts with et 3) CH ₃ Cl	hyl alcohol in KOH? 4) none
21.	Which of the follow	ving is a tertiary alcoh	ol	
	1) CH ₃ -CH(CH ₃)-CH	=	$2) CH_3 - CH_2 - CH_2 - CH_2$	-OH
	$3) \operatorname{CH}_{3}\operatorname{-CH}_{2}\operatorname{-CH}(\operatorname{CH}_{3})$	-OH	4) CH_3 -C(CH_3) ₂ -OH	
22.	3 moles of ethanol reacts with one mole of phosphorous tribromide to form 3 moles of bromo			

22. 3 moles of ethanol reacts with one mole of phosphorous tribromide to form 3 moles of bromo ethane and one mole of X. Which of the following is "X"

	1) H ₃ PO ₄	2) H ₃ PC	A D ₂	3) HP	·	PHEN	OLS AND ETH 4) H ₃ PO ₃	IERS
23.	What are X and Y r	espectively i	n the following	reactio	n X — ^{PI}	$\xrightarrow{\operatorname{Br}_3} C$	$_{2}H_{5}Br$ <u>AgOH(Ac</u>	$\xrightarrow{(1)}$ Y
	1) CH ₃ .OH; C ₂ H ₆ 3) CH ₃ COOH; CH	СНОН		. 2	H₅OH ; C₂ H₅OH ; C₂	_ 0		
	, ,	5 2		. 2	5 2			
24.	In the fo	llowing	reaction	Х	and	Y	respectively	are
	C ₂ H ₅ OH KMnO ₄ /H	$\xrightarrow{H^{\oplus}} X \xrightarrow{Y}_{H_2SO}$	→ CH ₃ COOC ₂	H ₅				
	1) CH ₃ OH; C ₂ H ₅ C	OH 2) CH ₃ 0	CHO;CH ₃ OH	3) CH ₂	$= CH_2; CH_2$	H ₃ COOI	H 4) CH ₃ COOH; C	H ₂ H ₅ OH
25.	Which of the follow 1) Heating with N 3) Distilling it with	a metal	suitable metho	2) Pa	ssing dry	HCl t	ces of water from e hrough it	ethanol
26.	Hydrolysis of an		acid "A" and a	,	acting with	U	a fabling's soluti	on and
20.	oxidation of B giv	ves A. The es	ster is				-	
	1) Methyl formate	, ,	lformate	<i>,</i>	ethyl acet		4) Ethyl acetate	
27.	$R-OH + HX \rightarrow R-$	$X + H_2O$ in	this reaction tl		-			
	1) Tertiary > Secor	•	•	,	5		ary < Primary	
	3) Tertiary > Prian	•	•	,	condary >	> Prima	ary > Tertiary	
28.	Which statement i 1) Ethyl alcohol is			1				
	2) Ethyl alcohol ev			n wate:	r			
	3) Alcohol with les					le in wa	ater	
	4) Alcohol produc							
29.	Which of the follo	• •			-			
20	1) Propan-2-ol	,		,		,	5	
30.	In CH ₃ CH ₂ OH, th 'Na' is	e bond that	undergoes he	terolyt	ic change	e most	readily in reactio	n with
	1) CC	2) OI	Η	3) C	-H		4) CO	
31.	Match the following	ng :						
	Set - I			Set - I	Ι			
	1) C_2H_5OH	$\xrightarrow{\text{ne.H}_2\text{SO}_4}{170^{\circ_{\text{C}}}} \rightarrow$		1) Me	ethane			
	2) CHI ₃ $-\frac{\Delta}{\text{Ag(power})}$,		2) Etł	nylene			
	3) CH ₃ COONa _{(aq}) electrolysis	\rightarrow	3) Be	nzene			
	4) CH ₃ COONa—	$\xrightarrow{\text{NaOH}}$		4) Ac	etylene			
				5) Etl	hane			

ALC		L S, PHI - 2 , B - 4		SAND E D - 1	ETHER	S	2) A - 2,	B-4, C-5	5. D-3		
	,	-4, B-2					,	B-2, C-5			
32. 0	/		. ,	CH ₃ CHO	3Cl ₂	→	4) A - 4,	D-2, C-0	, D-3		
	5 2	- si	ep-1		step-2						
	In th	e above :	reactior		5		1 & step - 2	2 respectiv	vely is :		
		xidation,			2	-		tion, Chlo			
	3) Ox	xidation,	additic	n			4) Reduc	tion, subs	titution	L	
33.	CaO	$Cl_2 + H$	$H_2O \rightarrow$	Ca(OH)	$_{2} + \underline{X}$						
	<u>X</u> +	CH ₃ CH	$0 \rightarrow \underline{Y}$								
	<u>Y</u> +	- Ca(OH	$I)_2 \rightarrow O$	CHCl ₃							
	Wha	t is 'Y' ?	-								
	1) C	H ₃ CH(O	H) ₂	2) CH	$_2Cl_2$		3) CCl ₃	СНО	4)	CCl ₃ COC	CH ₃
34.	Mate	ch the fol	lowing	lists							
	List	- I					List - II				
	1) Et	hylene					1) Natali	te			
	2) Ac	cety lene					2) Preser	vative			
	3) Et	hanol					3) Hawk	er's lamp			
	4) Di	ethyl eth	ner				4) Drug				
	5) Po	olyethyle	ne								
	Ansv	wer is :									
		А	В	С	D	- >	А	В	С	D	
	1) 3)	3 5	2 3	1 2	5 1	2) 4)	5 5	1 1	2 4	3 2	
35.	,			the react		±)	5	1	т	2	
	СН	Г. – Н. 9	$s_{0} = \frac{8}{3}$	$\xrightarrow{0^0 C} X$	Н ₂ О/ ∆	v					
	2	- 2	-				3) C ₂ H ₅	оро н с	НОН		сн сно
			5			5		050311,0	211501	$(-1) C_2 II_2$	21130110
36.	(CH ₃) ₂ CHOH	[mild of	oxidation	, x <u>(i)</u>	CH ₃ MgB H ₂ O	$\xrightarrow{r} y$				
		e 'Y' is									
	1) Isc	o butyl a	lcohol	2) Iso b	outylene		3) Secbut	tyl alcohol	4)	Ferbutyl a	lcohol
37.			K _a value	s of o,m a	-	esols is					
	,	< p < m		2) m <	1		3) m < o	1	<i>,</i> ,	p<0 <m< td=""><td></td></m<>	
38.	Whic solut		followi	ng comp	ounds w	vould 1	not evolve	CO ₂ when	n treate	ed with aq	. NaHCO ₃
		nenol		2) Ben	zoic acić	l	3) 2,4- Di	initropher	nol 4)2	2,4,6-Trini	trophenol
39.	Pher	nol is con	verted	into Salic	ylaldeh	yde by					
316						. ,					
-											

ALCOHOLS, PHENOLSAND ETHERS 1) Kolbe's reaction 2) Cannizaro reaction 3) Reimer - Tiemann reaction 4) Kolbe Schmidt reaction 40. Rate of electrophilic substitution reaction in phenol is 1) Equal to that to benzene 2) Faster than that of benzene 3) Slower than that of benzene 4) Very slower than that Nitrobenzene 41. m-Dihydroxybenzene is called as 1) Resorcinol 2) Catechol 3) Quinol 4) Cresol 42. 2 - Methyl phenol is 1) m - cresol 2) o - cresol 3) m – xylene 4) o - xylene 43. Identify the product Z in the following sequence of reactions phenol $\xrightarrow{\text{NaOH}}$ X $\xrightarrow{\text{CO}_2}$ Y $\xrightarrow{\text{H}_3\text{O}^+}$ Z 1) Aspirin 2) Salicylaldehyde 3) Benzoic acid 4) Salicilic acid Phenol on heating with aq. KOH and chloroform undergoes 44. 1) Kolbe reaction 2) Rosenmund reaction 3) Reimer Tiemann reaction 4) Cannizzaro reaction 45. Which of the following has the least value of pKa? ΟН 2) B 1) A 3) C 4) D 46. Electrophilic substitution in phenol takes place at 1) ortho and para-positions 2) meta-position 3) ortho-position 4) para-position 47. Regarding diethyl ether, the wrong statement is 1) It is slightly soluble in water 2) In cold condition, ether does not react with alkali and dilute acids 3) Ethers have active hydrogen 4) Ethers do not react with Na metal 48. (1) :Diethyl ether is used as general anaesthetia. (R): Diethyl ether produces unconsciousness The correct answer is 49. Alcohols can be distinguished from Ethers by 2) Ester formation 4) All the above 1) Sodium metal 3) Iodoform test 50. Which of the following can not form Oxonium salts with diethyl ether 2) HBr 1) HCl 3) H₂SO₄ 4) HCN 51. 'A' reacts with C,H₅l giving 'B' and Nal. Here 'A' and 'B' respectively are 1) CH₂COONa, CH₂OCH₂ 2) $C_2H_5OC_2H_5$, $C_2H_5COOC_2H_5$ 3) $C_2H_5ONa, C_2H_5OC_2H_5$ 4) C₂H₅OH,C₂H₅OC₂H₅

317

ALCOHOLS, PHENOLS AND ETHERS WORK SHEET - III

Following questions consists of an assertion (1) and reason (R). use the following the key to select the correct answer.

- 1) If both (1) and (R) are correct and (R) is correct explanation of (1)
- 2) If both (1) and (R) correct but (R) is not the correct explanation of (1)
- 3) If (1) is correct but (R) is incorrect 4) If (1) is incorrect but (R) is correct

Alcohols :

1.	Assertion	:	Alcoholic fermentation involves conversion of sugar into ethyl alcohol by yeast.
	Reason	:	Fermentation involves the slow decomposition of complex organic compounds into simpler substances through the agency of complex nitrogenous compounds called enzymes.
2.	Assertion	:	All ketones on reaction wtih Grignard reagent gives 3° alcohols
	Reason	:	R⁻is nucleophile in Grignard reagent.
3.	Assertion	:	The solubility of the alcohols in water follow the order t-butyl-alcohol > s-butyl alcohol > n-butyl alcohol.
	Reason	:	Alcohols are soluble in water due to hydrogen bonding.
4.	Assertion	:	The solubility of alcohols increase with increase in branching.
	Reason	:	Ethanol and methanol are immsicible in water
5.	Assertion	:	The boiling point of alcohols is higher than those of hydrocarbons of comparable molecular masses.
	Reason	:	Alcohols show intramolecular hydrogen bonding.
6.	Assertion	:	Secondary alcohol reacts faster with sodium than primary alcohol.
	Reason	:	Primary alcohol is more acidic than secondary alcohol.
7.	Assertion	:	$CH_2 = CH - OH$ is more acidic than $CH_3 - CH_2 - OH$
	Reason	:	Enolate ion is stabilised by resonance
8.	Assertion	:	Methyl alcohol is most reactive for acetylation reaction.
	Reason	:	The O-H bond is the weakest in methyl alcohol.
9.	Assertion	:	Tertiary alcohol is most reactive for nucleophilic substitution reactions.
	Reason	:	The C-O bond is the weakest in tertiary alcohol.
10.	Assertion	:	Acid catalysed dehydration of t- butanol is slower than n-butanol.
	Reason	:	Dehydration involves formation of the protonated alcohol, ROH_2^+
11.	Assertion	:	Phenol decomposes $NaHCO_3$ solution to evolve CO_2 gas
	Reason	:	picric acid is 2,4,6-trinitrophenol.
12.	Assertion	:	The order of acidic strength is $CH_3COOH > H_2CO_3 > Phenol>H_2O > C_2H_5OH$
	Reason	:	As acid strength increases, pK _a increases
13.	Assertion	:	Picric acid doesnot contain carboxylic group.

	Reason	:	Presence of three - NO ₂ groups makes the phenol more acidic.
14.	Assertion	:	Phenol is more reactive than benzene towards electrophilic substitution reaction
	Reason	:	OH group of phenol is elecron donating group due to resonance effect.
15.	Assertion	:	Ortho nitrophenol and para nitrophenol can be separated by steam distillation
	Reason	:	Intramolecular hydrogen bonding is present in ortho nitrophenol.
16.	Assertion	:	Dichloro carbene is active intermediate in Reimer-Tiemann reaction.
	Reason	:	Dichloro carbene is an electrophile because its octet is not complete
17.	Assertion	:	Sodium phenoxide exists in water whereas sodium ethoxide exists in gaseous state.
	Reason	:	Phenol is stonger acid than alcohol because phenoxide ion is stabilised by resonance.
18.	Assertion	:	Reaction between sodium-tert butoxide and ethyl iodide does not produce an ether.
	Reason	:	Sodium-tert butoxide is very strong base but it is not a nucleophile.
19.	Assertion	:	Di-tert-butyl ether cannot be prepared by Williamson method.
	Reason	:	t-Butyl bromide gives alkene with $R - O^-$.
20.	Assertion	:	Ethers are stronger bases than alcohols.
	Reason	:	Alcohols are soluble in water.

EXERCISE - I / ANSWER

WORK SHEET - I

01) 1	02) 3	03) 2	04) 3	05) 4	06) 4	07) 3	08) 2	09) 2	10) 4
11) 2	12) 2	13) 3	14) 1	15) 2	16) 2	17) 2	18) 1	19) 2	20) 2
21) 3	22) 1	23) 1	24) 1	25) 2	26) 1	27) 2	28) 3	29) 2	30) 2
31) 2	32) 4	33) 2	34) 3	35) 1	36) 1	37) 1	38) 1	39) 1	40) 1
41) 1	42) 2	43) 2	44) 3	45) 2	46) 4	47) 4	48) 1	49) 4	50) 3
51) 2	52) 1	53) 2	54) 4	55) 2	56) 2	57) 1	58) 1	59) 3	60) 2
61) 3	62) 4	63) 3	64) 2	65) 4	66) 3	67) 2	68) 2	69) 4	70) 3
71) 4	72) 3	73) 4	74) 3	75) 3	76) 3	77) 1	78) 2	79) 4	80) 1
81) 2	82) 3	83) 4	84) 4						

WORK SHEET - II

01) 3	02) 3	03) 4	04) 1	05) 1	06) 3	07) 3	08) 2	09) 4	10) 3
11) 4	12) 3	13) 1	14) 4	15) 1	16) 2	17) 3	18) 4	19) 3	20) 1
21) 4	22) 4	23) 4	24) 4	25) 3	26) 1	27) 1	28) 1	29) 3	30) 2

EXERCISE - I

WORK SHEET - I

Aldehydes and Ketones:

1.	General molecular formula of carbonyl compounds				
	1) $C_nH_{2n}O_2$	2) $C_n H_{2n+2} O_2$	3) C _n H _{2n} O	4) C _n H _{2n+2} O	
2.	The hybridisation o	f carbon in the carbo	onyl group is		
	1) sp ³	2) sp ²	3) sp	4) $sp^{3}d$	
3.	The IUPAC name of 1) 3-methyl-2-pentar 3) 2-pentanone	methyl isopropyl keta none	ne 2) 3-methyl butan-2-one 4) 2-methyl pentanone		
4.	Controlled oxidatior 1) aldehydes	of primary alcohols g 2) ketones	ive 3) carboxylic acids	4) ethers	
5.	On the dry distillation of 'X' is :	n of calcium acetate, a	compound 'X' is forme	ed, the functional isomer	
	1) Acetone	2) Acetaldehyde	3) Propionaldehyde	4) Butanone	
6.	Dehydrogenation of 1) Methanol	isopropyl alcohol give 2) Methanal	s 3) Ethanal	4) Propanone	
7.	$C_2H_5OH \xrightarrow{Cu}_{300^0C} OH$	CH ₃ CHO			
	The above process is 1) Reduction	2) Oxidation	3) Dehydrogenation	4) Both 2 and 3	
8.	Ketones cannot be p	repared in one step fro	m		
	1) Alcohols	2) Alkenes	3) Alkynes	4) Acid halides	
9.	The first oxidation pr 1) ethanal ketone	oduct of isopropyl alcol 2) propanone	nol is 3) ethanoic acid	4) methyl isopropyl	
10.			le on strong heating in 2) Only acetic acid 4) Calcium formate	presence of catalyst	
11.	Ketones can not be p	repared by			
	1) Rosenmund's read			terminal gem dihalides	
12.				dified aqueous solution	
	1) Wacker process	I IIIII	2) Pyrolysis		
	3) Williamson's synt	hesis	4) Clemmenson's rec	luction	
13.	Ethylidene chloride 1) CH ₃ COOH	when heated with aqu 2) CH ₃ CHO	eous KOH gives 3) CH_3COCH_3	4) C ₂ H ₅ OH	
14.	What are X and Y in	the following reaction	sequence :		
	$C_2H_5OH \xrightarrow{Cl_2} X$	$Cl_2 \rightarrow Y$			
	1) C ₂ H ₅ Cl,CH ₃ CHO	2) CH ₃ CHO,CH ₃ CO	₂ H	3) CH ₃ CHO,CCl ₃ CHO	
220					

4) C₂H₅Cl,CCl₃CHO

	4) $C_2 I_5 CI, CCI_3 CI IO$			
15.	Which of the followi 1) CH ₃ CH ₂ Cl	ng on heating with aqu 2) CH ₂ ClCH ₂ Cl	aeous KOH, produces a 3) CH ₃ CHCl ₂	acetaldehyde ? 4) CH ₃ COCl
16.	Ozonolysis of the f 1) 2-butene	ollowing gives only ac 2) 1-Butene	etaldehyde 3) Isobutylene	4) Ethylene
17.	Aldehydes and ketor 1) HCN	nes give addition react 2) NaHSO ₃	ions with 3) CH ₃ MgX	4) All of these
18. 19.	 nucleophilic addit electrophilic addit 		2) nucleophilic substi4) electrophilic substi	
	1) $CH_3 - C = N - OH$ H	I	2) $CH_3 - C = N - OH_4$	I
	3) $CH_3 - C = N - NH$	$H - CO - NH_2$	4) $CH_3 - C = N - NH$ $ CH_3$	$\mathbf{H} - \mathbf{C}_{6}\mathbf{H}_{3}(\mathbf{NO}_{2})_{2}$
20.	Acetone adds up the 1) NH_2 – OH	following without the 2) 2, 4 - DNP	elimination of water 3) H ₂ N – NH ₂	molecule 4) HCN
21.	Which of the followi 1) H ₂ NNH ₂	ng gives oximes with a 2) 2, 4 - DNP	cetaldehyde? 3) H ₂ NOH	4) H ₂ NNHCONH ₂
22.	The following is mo 1) CH_3COCH_3	re reactive towards nu 2) HCHO	cleophilic addition rea 3) CH ₃ CHO	ctions 4) C ₂ H ₅ CHO
23.	The following does r 1) CH ₃ CHO	not undergo aldol cond 2) CH ₃ COCH ₃	lensation in the present 3) CH ₃ CH ₂ CHO	
24.		5		
25.	(A) : Acetaldehyde p	participate in aldol cono	densation reaction	
	1) Both (A) and (R) a	re true and (R) is not this false	atom. orrect explanation of (A he correct explanation (
26.	Aldehydes can be ox 1) Benedicts solution		3) Fehling's solution	4) All of these
27.	An example of hydro	o carbon		

ALD.	ENIDES, KEION	20		
	1) Phorone	2) Mesitylene	3) Metaldehyde	4) Chloretone
28.	Acetaldehyde and ac	cetone cannot be distin	guished by	
	1) Tollen's test	2) Benedicts test	3) Iodoform test	4) Schiff's test
29.	IUPAC name of Isob	utyraldehyde is		
	1) Butanal	2) Methyl propanal	3) Ethyl ethanal	4) Methyl Butanal
30.	The medium in whic	h Ehtanol is oxidised t	Ũ	
	1) any alcohol	2) Nitrobenzene	3) Methylene dichlori	de 4) Ether
31.	PCC is			
	1) $C_6H_5N^+CrO_2Cl^-$	$2)[C_5H_5N \rightarrow H]^+CrO_3C$	21-	
	3) $C_6H_5NH^+Cl^-$	4) $C_6H_5N^+CrO_3Cl^-$		
32.	Ethanol and Ethanal	are isolated from their	mixture using the rea	igent
	1) HCN	2) NaHSO ₃	3) $C_6H_5NHNH_2$	4) All
33.	0	the wolf - kishner red		1 1101
	 Zn - Hg and conc Hydrazine, Glycer 		 2) Anhydrous ZnCl₂ 4) Zn and CH₃COOF 	
				1
34.	Isopropyl alcohol-	$\xrightarrow{H^+/K_2Cr_2O_7} \text{ final Pr oc}$	luct	
	1) Propene	2) Propanol	3) Ethanal	4) Ethanoic acid
35.		owing reagents reacts w		
		2) Grignard reagent		
36.	The interaction of ac	etone with methyl mag	gnesium chloride in the	e presence of water gives
	1) Isobutyl alcohol 4) Sec-butyl alcohol	2) Tertiary butyl alcol	nol	3) n-butyl alcohol
37.	Acetone and Acetal	lehyde can be distingu	ished using	
	1) Grignard reagent	2) NaHSO ₃	3) Ammonical AgNO	D ₃ 4) PCl ₅
38.	Haloform reaction is	not given by		
	1) CH ₃ COCH ₃	2) $CH_3COC_2H_5$	$3) C_6 H_5 COC_2 H_5$	4) CH ₃ CHOHCH ₃
39.		ng does not respond to		
	1) Ethanol	2) Methanol	3) Acetaldehyde	4) Acetone
40.		cetone can be identified	2	
	1) Schiff's test	2) Tollen's reagent	3) Lucas test	4) 2, 4 - DNP
41.		with chlorine gives no		
		ne 2) Dichloroacetone	3) Trichloroacetone	4) Hexachloro acetone
42.	Acetaldehyde canno	0		
15	1) Iodoform test	2) Lucas test	3) Benedict test	4) Tollens test
43.	$C_2H_5CHO and CH_3C$	COCH ₃ can be distingu	ished from one anothe	er by testing with
	1) phenyl hydrazine		2) 2, 4 dinitrophenyl	1 1

ALDEHYDES, KETONES 3) Fehling solution 4) sodium bisulphite An alkaline solution of and citrate ions is called 1) Silver nitrate ; Fehling's solution 2) Cupric sulphate ; Schiff's reagents 3) Silver chloride ; Tollen's reagent 4) Cupric sulphate ; Benedict's solution Ethylene is converted to X on passing through a mixture of an acidified aqueous solution of palladium chloride and cupric chloride. Which of the follwoing reagents readily take part in addition reaction with X? 1) Br₂ 2) HBr 3) HCl 4) HCN The product obtained when acetaldehyde is treated with dilute NaOH is 3) $CH_3 - CH - CH_2CHO$ 4) $CH_3 - CH_3$ OH 1) CH₃CH₂OH 2) CH₃COOH When acetaldehyde is heated with Fehling solution, a red precipitate is formed. Which of the following is that ? 1) Cu₂O 2) Cu 3) CuO 4) $CuSO_4$

48. What reagent is used in the Rosenmund reduction ?

44.

45.

46.

47.

1) $H_2 Pd - BaSO_4$	2) $LiA\ell H_4$
------------------------	------------------

- 3) NH_2NH_2 / KOH/Ethylene Glycol 4) Zn Hg | HCl
- 49. An organic compound 'X' on treatment with pyridium dichromate in dichloromethane gives compound 'Y'. Compound 'Y' reacts with I₂ and alkali to form Tri iodomethane the compound 'X' is
 - 1) C₂H₂OH 2) CH₃CHO 3) CH₃COCH₃ 4) CH₃COOH

WORK SHEET - II

1.	$CH_3CHO + NH_2OH \longrightarrow X \xrightarrow{-H_2O} Y$		
	The number of σ bonds, π bonds and lo respectively	one pairs of electrons i	n the compound 'Y' are
	1) 9, 1 and 4 2) 11, 1, 5	3) 9, 2, 2	4) 8, 1, 3
2.	2 - pentanone and 3 - pentanone are predo	minantly	
	1) Positional isomers 2) Functional isomer	rs 3) Metamers	4) Ring chain isomers
3.	IUPAC name of α, α' di chloro diethyl ket	one is	
	1) 2, 5 - dichloro - 3 - pentanone	2) 2, 4 - dichloro - 3 -	pentanone
	3) 1, 4 - dichloro - 2- pentanone	4) 2, 5 - dichloro - 3-	Hexanone
4.	The IUPAC name of β -methyl valeraldehy	yde is	
	1) 2-methyl pentanal 2) 3-methyl pentana	al 3) 2-methyl butanal	4) 2-methyl butanal

5. Iso propyl alcohol is obtained by the reaction of the following

	1) Acetone with Clemmenson's reducing presence of Ni		2) Acetone with H_2 in
	3) Acetaldehyde with H_2 in presence of N	i 4) Acetone with chlo	oroform
6.	Which one of the following undergoes ald1) Actaldehyde2) Ethyl alcohol	Ũ	ives iodoform test 4) formaldehyde
7.	$CH_{3}COCH_{3} + NaOH + Na_{2}$ [Fe(CN) ₅ NC yellow colour on standing. This test is call)] + H ₂ O gives a wine ed	colour. This changes to
8.	 Legal test Indigo test 2-dichloro propane treated with aq. KO 		,
	1) CH ₃ COCH ₃ 2) CH ₃ CH(OH)CH ₃	3) CH ₃ C(OH) ₂ CH ₃ 4	4) CH ₃ CH(OH)CH ₂ CHO
9.	An alkene on ozonolysis gives acetalde hy CH ₃	vde and acetone. The al	kene in question is
	1) $CH_3 - CH = CH_3$	2) CH ₃ - CH = CH -	$CH_2 - CH_3$
	3) $CH_2 = CH - CH_3$	4) $(CH_3)_2 C = C(CH_3)$	2
10.	The first oxidation product of the followin carbon atoms	g alcohol is a ketone	with the same number of
11.	1) CH ₃ CH ₂ CH ₂ OH 2) (CH ₃) ₂ CHCH ₂ OH HCHO; CH ₃ CHO; CCl ₃ CHO; CH ₃ COCH ₃ ; (I) (II) (III) (IV)	; CCl ₃ COCH ₃ ; C ₆ H ₅ CH (V) (VI)	
	Which of the above compounds undergo a 1) Only II, III, IV and VI	aldol condensation	2) Only II, IV and V
	3) Only II and III	4) All except I	
12.	Tollens reagent can be obtained by mixin	g aqueous $AgNO_3$ with	h aqueous NH_3 solution.
	The reagent mainly contains 1) $[Ag(NH_3)_2]^+$ 2) AgOH	3) Ag	4) CH ₃ CHO
13.	Acetaldehyde $\xrightarrow{\text{concH}_2SO_4}$ (A) 'A' is		
	1) Acetaldehyde 2) Metaldehyde	3) Mesitylene	4) Paraldehyde
14.	In aldehydes -CHO may be attached to 1) Alkyl group 2) H atom		4) Alkyl / aryl/ H atom
15.	(A) : Acetone gets oxidised by strong oxid	ising agents like Ag ⁺ , O	Cu ⁺² etc
	(R) : Oxidation of acetone involved carbo	n - carbon bond cleava	ge
	1) Both (A) and (R) are true and (R) is the	correct explanation of	(A)
	2) Both (A) and (R) are true and (R) is not	the correct explanation	n of (A)
	3) (A) is true but (R) is false		
	4) (A) is false but (R) is true		
16.	Alkaline sodium nitroprusside is used to α 1) Aldehyde2) Ketone having α 3) All Ketones4) Secondary and te	e - hydrogen atom	f
17.	Consider the following statements		
	A) On reaction with grignard reagent follow	wed by hydrolysis Acet	one gives tertiary alcohol

A) On reaction with grignard reagent followed by hydrolysis Acetone gives tertiary alcohol

								AL	DEHYI	DES, KE	IONES
	B) Mesitylene is a polymer of Acetone										
	C) Chloroform gives chloretone with acetone										
	D) Acetone ammonia is an addition product of acetone with NH_3										
	The correct stat	ements a	are								
	1) All are correc	ct 2)	A is co	orrect	3)	А, В	and C	are cor	rect 4) A	A and D ar	e correct
18.	The catalyst in	Wacker j	process	is							
	1) $CuCl_{2}$	2)	PdCl ₂			3) C	$u_2 Cl_2$		4) I	Pd	
19.	Statement - I : Aldehydes restore the megenta colour of schiff's reagStatement - II : Schiff's reagent is a colourless p - rosaniline hydroch1) I is true II is wrong2) I is wrong II is true3) Both statements are correct4) Both statements are					drochlor true	ride				
20.	 (A) :Acetaldehyde reduces Fehling's solution but Acetone does not (R): Acetaldehyde is stronger reducing agent than acetone. The correct answer is 1) Both (A) and (R) are true and (R) is the correct explanation of (A) 2) Both (A) and (R) are true and (R) is not the correct explanation of (A) 3) (A) is true but (R) is false 4) (A) is false but (R) is true 										
21.	(A):Acetaldehy	de unde	rgoes al	ldol con	dens	ation	with o	lil. NaC	DН		
	(R):Acetaldehy	de does 1	not con	tain a - l	hydro	ogen					
	1) Both (A) and	(R) are t	true and	d (R) is t	the co	orrect	expla	nation	of (A)		
	2) Both (A) and	(R) are t	rue and	d (R) is	not t	he co	rrect e	xplana	tion of (A	4)	
	3) (A) is true bu	ıt (R) is f	alse								
	4) (A) is false b	ut (R) is t	true								
22.	List-1					List	- 2				
	I) CH ₃ CHO —	→ Aldol				A) LiAlH ₄					
	II) CH ₃ COOH -		H.OH			B) Zn - Hg; Con. HCl					
	0	Ű	-			,					
	III) CH ₃ COCH ₃ ·					C) Con. H_2SO_4 ; Δ					
	IV)CH ₃ CHO —	→ (CΠ ₃ CΓ	10) ₃			,	NaOH	LI+			
	The correct mat	tch is				с) г	MnO ₄	, П			
	Ι	II	III	IV			Ι	II	III	IV	
	1) E 3) B	B E	A A	C D	2) 4)		D D	A B	B E	C D	
23.	/							D	L	D	
23.	Acetylene on reaction with hypochlorous ac 1) Acetone 3) Dichloro acetaldehyde				2) Chloro acetone 4) Dichloro methane						
24.	The reagent that	t gives ar	n orange	e coloure	ed pro	ecipit	ate wit	h acetal	dehyde	is	
	1) NH ₂ OH	2)) NaHS	O ₃		3) Io	odine		4) 2	2, 4 - DNP	
25.	The No.of p bon	nds in the	produc	et forme	d by j	passii	ng acet	ylene tł	rough d	il.H ₂ SO ₄ co	ntaining

	mercuric sulphate is						
	1) zero	2) one	3) two	4) three			
26.	Which of the following can be detected by silver mirror test						
	1) CH ₃ COCH ₃	2) CH ₃ COOH	3) $C_2 H_6$	4) CH ₃ CHO			
27.	What is X in the follo	owing reaction 2CH ₃	CHO <u>dil.NaOH</u>	X			
	1) CH ₃ -CH(OH)-CH		2) CH ₃ -CO-CH ₂ CH				
	3) CH ₃ -CH(OH)-CH ₂ -C	HO	4) CH ₃ -CH ₂ -CH(C	DH)-CHO			
28.	Which of the followin 1) H_2N - NH_2	ng converts acetone t 2) 2, 4 - DNP		4) NH ₂ OH			
29.	Para rosaniline hydro 1) Bendict's solution		· · ·				
30.	Acetone on distillation with bleaching powder and water gives chloroform and X. Ethyl alcohol on distillation with bleaching powder and water gives CHCl ₃ and Y. X and Y together on distillation gives						
	1) CH ₃ CHO	2) CH ₃ COCH ₃	3) CH ₂ = CHOH	4) CH ₃ COC ₂ H ₅			
31.	Match the following List - I		List - II				
	A) CH ₃ COCH ₃ — ZI	$\xrightarrow{\text{n-Hg}}$	1) Phorone				
	B) $CH_3CHO - \frac{H_2,Ni}{H_2,Ni}$		2) CH ₃ CHO				
	C) $CH_3 - CH = CH_2$		$\overset{\text{Cl}_2}{\xrightarrow{+}}$ 3) CH ₃ COCH	3			
	D) $CH_3COCH_3 - \frac{C}{H_2}$	11	4) CH ₃ CH ₃				
	2	7	5. CH ₃ CH ₂ CH ₃				
			6. CH ₃ CH ₂ OH	6. CH ₃ CH ₂ OH			
	The correct match is		7. C ₆ H ₃ (CH ₃) ₃				
	A B	C D	A B	C D			
	1) 5 6 3) 5 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$) 5 6) 5 6	3 7 4 2			
32.	3) 5 6 When Acetaldehyde) 5 6 L. What is the produ				
	1) CH ₃ COOH	2) CH ₃ -CH ₂ -OH		4) HCOOH			
33.	Ethanal is reacted wi	th acidified $K_2 Cr_2 O_7$.	What is the product	formed?			
	1) C ₂ H ₅ OH	2) CH ₃ COOH	3) C ₂ H ₆	4) CCl ₃ CHO			
34.	During reduction of aldehyde with $\frac{H_2N - NH_2}{OH^-/glycol}$, the first intermediate compound formed						
	as 1) RCN	2) RCONH,	3) R-CH=NH	4) R –CH = NNH_2			
35.		, 2	,	kel. What is the compound			
	1) Ethanol	2) n-propanol	3) Methanol	4) Isopropanol			
36.	What is the "X" in the	e following reaction					

$$2CH_{3}COCH_{3} \xrightarrow{\text{Ba(OH)}_{2}} X$$

$$(H_{3} \xrightarrow{\text{OH}} CH_{2} \xrightarrow{\text{OH}} CH_{3} \xrightarrow{\text{OH}} CH_{3} \xrightarrow{\text{OH}} CH_{3} \xrightarrow{\text{OH}} CH_{3} \xrightarrow{\text{OH}} CH_{3} \xrightarrow{\text{OH}} CH_{2} \xrightarrow{\text{OH}} CH_{3} \xrightarrow{\text{OH}} CH_{2} \xrightarrow{\text{OH}} CH_{3} \xrightarrow{\text{OH}} CH_{2} \xrightarrow{\text{OH}} CH_{3} \xrightarrow{\text{OH}} CH_{3} \xrightarrow{\text{OH}} CH_{2} \xrightarrow{\text{OH}} CH_{3} \xrightarrow{\text{OH}} CH_{3}$$

37. An organic compound X gives a red precipitate on heating with Fehling's solution. Which one of following reactions yields X as major product ?

1) HCHO
$$\xrightarrow{(i)CH_3MgI}_{(ii)H_2O}$$

2) $C_2H_5Br + AgOH \xrightarrow{\Delta}$
3) $2C_2H_5Br + Ag_2O \xrightarrow{\Delta}$
4) $C_2H_2 + H_2O \xrightarrow{40\% H_2SO_4}_{1\% HgSO_4;60^{\circ}C}$

38. Which one of the following compounds reacts with Saturated solution of Sodium bisulphite to give colourless crystalline products?
1) C₂H₅OH
2) C₂H₆
3) CH₃ CHO
4) CHCl₃

- 39. Identify acetaldoxime (EAMCET-ENG- 2004) 1) $CH_3CH = N - NH_2$ 2) $CH_3CH = N - OH3$) $(CH_3)_2C = N - OH$ 4) $CH_2 = N - OH$
- 40.Which of the following reagents can form a hydrazone with alkanone ?1) NH2OH2) PhNHNH23) NH2NHCONH24) HCN
- 3 Hydroxy butanal is formed when (X) reacts with (Y) in dilute (Z) solution. What are(X),(Y) 41. and(Z)? XΖ Υ 1) CH₂CHO (CH₂)₂CO NaOH 2) CH₃CHO CH₃CHO NaCl 3) (CH₃)₂CO $(CH_3)_2CO$ HC1 4) CH₃CHO CH₃CHO NaOH
- 42. Which of the following reagents converts both acetaldehyde and acetone to alkanes ?
 1) Ni / H₂
 2) LiAl H₄
 3) I₂ / NaOH
 4) Zn Hg / Conc. HCl

EXERCISE - I / ANSWER

WORK SHEET - I

01) 3	02) 2	03) 2	04) 1	05) 3	06) 4	07) 4	08) 4	09) 2	10) 3
11) 4	12) 1	13) 2	14) 3	15) 3	16) 1	17) 4	18) 1	19) 2	20) 4
21) 3	22) 2	23) 4	24) 1	25) 1	26) 4	27) 2	28) 3	29) 2	30) 3
31) 2	32) 2	33) 3	34) 4	35) 2	36) 2	37) 3	38) 3	39) 2	40) 4
41) 3	42) 2	43) 3	44) 4	45) 4	46) 3	47) 1	48) 1	49) 1	

WORK SHEET - II

1) 4	2) 3	3) 2	4) 2	5) 2	6) 1	7) 1	8) 3	9) 1	10) 3
11) 2	12) 1	13) 4	14) 4	15) 4	16) 3	17) 3	18) 1	19) 3	20) 1
21) 3	22) 2	23) 3	24) 4	25) 2	26) 4	27) 3	28) 4	29) 3	30) 1
31) 2	32) 2	33) 2	34) 4	35) 1	36) 1	37) 4	38) 3	39) 2	40) 2
41) 4	42) 4								

EXERCISE - I

WORK SHEET - I

Carbo	xylic Acids & Der	ivatives:					
1.	Saturated mono carboxylic acids are also called						
	1) Paraffins		2) Olefins				
	3) Fatty Acids		4) Mineral Acids				
2.	The general formula	of carboxylic acids is					
	$1) C_n H_{2n} O_2$	2) $C_n H_{2n+1} O_2$	3) $C_n H_{2n+2} O_2$	4) $C_n H_{2n-2} O_2$			
3.	The acid obtained by	y the distillation of ants	is called as				
	1) Formalin	2) Formic acid	3) ethanoic acid	4) Both 2 & 3			
4.	The chief constituent	t of vinegar is					
	1) Acetal	2) Acetic acid	3) Ethanoic acid	4) Both 2 and 3			
5.	Root of valerian plan	nt contains					
	1) C ₃ H ₇ COOH	2) C ₂ H ₅ COOH	3) C ₄ H ₉ COOH	4) HCOOH			
6.	IUPAC name of vale	ric acid					
	1) Propionic acid		2) Burtyic acid				
	3) Pentanoic acid		4) 2-methyl butanoic	acid			
7.	Propionic acid can a	lso be named as					
	1) Methyl methanoic	acid	2) Methyl acetic acid				
	3) Methyl ethanoic a	cid	4) ethyl acetic acid				
8.	Which of the followi	ng is a pair of functiona	ll isomers ?				
	1) CH ₃ COCH ₃ , CH ₃ C	THO	2) C ₂ H ₅ CO ₂ H, CH ₃ CC	D ₂ CH ₃			
	3) C ₂ H ₅ CO ₂ H, CH ₃ CO	$O_2 C_2 H_5$	4) CH ₃ CO ₂ H, CH ₃ CH	0			
9.	In the reaction seque	nce, $C_2H_5Cl + KCN - C_2$	$\xrightarrow{\text{H}_{5}\text{OH}} \times \xrightarrow{\text{H}_{3}\text{O}^{\oplus}} Y \cdot$				
	What is the molecula	r formuls of Y?					
	1) $C_{3}H_{6}O_{2}$	2) C ₃ H ₅ N	3) C ₂ H ₄ O ₂	4) C ₂ H ₆ O			
10.		y Alcohols finally gives					
	1) Aldehydes	2) Ketones	3) Carboxylic acids	4) Esters			
11.	Which one of the foll acid?	owing when reacts with	h CH ₃ MgBr followed b	y hydrolysis gives acetic			
	1) CO	2) CH ₃ CHO	3) C ₂ H ₅ OH	4) CO ₂			
12.	Acetonitrile when bo	oiled with alkali (or) acio	d gives				
	1) CH ₃ COOH only		2) CH ₃ COOH+C ₂ H ₅ OH				
	3) CH ₃ COOH + NH ₃	3	4) $CH_3COOH + H_2$				
13.	$CH_3OH + CO_{\Delta, p}$	\xrightarrow{X} CH ₃ COOH He	ere X is				

CARBO	XYLIC ACIDS					
	1) Cu	2) Co	3) Rb	4) Ni		
14.	Which one of the following functional group undergoes hydrolysis with alkali to yield an acid group					
	1) –CN	2) -CHO	3) -COCH ₃	4) –Br		
15.	Ethyl Benzene $\frac{(i)}{0}$ Predict X in above re					
	1) $C_6H_5CH_2COOL$		2) C ₆ H ₅ CH ₂ CHO			
	3) Benzoic acid	-	4) Benzaldehyde			
16.		$\stackrel{2}{} P$ In the above react				
	1) Phenol	2) Benzoic acid	3) Benzaldehyde	4) Benzophenone		
17.	Lower carboxylic aci	ds are soluble in water	due to			
	1) Low molecular we	e e	2) Hydrogen bonding	5		
	3) Dissociation into i	ons	4) Easy Hydrolysis			
18.		ring possess higher boi	• -			
	1) C ₂ H ₅ Cl	2) CH ₃ CHO	3) C ₂ H ₅ OH	4) CH ₃ COOH		
19.		g exists as dimer in benze				
	1) CH ₃ CHO	2) CH ₃ COCH ₃	3) CH ₃ CH ₂ OH	4) CH ₃ COOH		
20.	Acetic acid liberates	CO ₂ gas with				
	1) Na	2) Zn	3) NaHCO ₃	4) NaOH		
21.	Acetic acid can be us					
	1) For curing meat an		2) As vinegar in cook	ing		
	3) In the preparation	of perfumes	4) All			
22.	Which of the followi	• •				
22	1) Propionic acid	2) Oxalic acid	3) Valeric acid	4) Stearic acid		
23.	•	converting ethanoic ac 2) BH ₃		A V C = O		
0.4	-	-	-	4) $K_2 Cr_2 O_7$		
24.	•	tic anhydride when trea	$3) Cl_2/P$	4) Na		
	1) PCl ₅	2) P ₂ O ₅	γ <u>Σ</u>	,		
25.	which of the following presence of concent	-	ed when ethanol react	s with acetic acid in the		
	1) CH ₃ COOC ₂ H ₅		3) CH ₃ OCH ₃	4) CH ₃ CH ₂ CHO		
26.	Which one of the fo	llowing graphs represe	ents the correct order of	of boiling points (B.P) of		
	ethane (1), ethyl alco	hol (2) and acetic acid (3) {			
	\uparrow		\uparrow			
	1) B.P.		 2) B.P. 			
			•			
	1 2 3		1 2 3			

CARBOXYLIC ACIDS

CARBO	XYLIC ACIDS 3) C ₂ H ₅ OH & C ₂ H ₄ CI	2	4) C ₂ H ₅ OH & C ₂ H ₅ C	21		
11.	An organic compound solution to liberate CC 1) Alcohol		sodium to liberate hydrogen and with Na ₂ CO ₃ 3) Ether 4) An ester			
12.	Acetic acid is treated v Sodalime, Y and Sodiu 1) C_2H_6			4) CH_3CONH_2		
13.	What is the reagent us 1) PCl ₅	ed in the preparation o 2) Cl ₂ / Red P	of chloro-acetic acid fro 3) PCl ₃	om acetic acid 4) SOCl ₂		
14.	In the following reaction	n X and Y respectively a	re.			
	$X \xrightarrow{Aq.NaOH} CH_3C$	COOH — <u>Y</u> →(CH₃CO	O_{2}			
	1) CH ₃ .CHO; PCl ₅ 3) CH ₃ CH ₂ OH; NaOAC		2) CH ₃ CN ; P ₂ O ₅ 4) CH ₃ COCH ₃ ; H ₂ SC	D ₄		
15.	In the following reacti	on X and Y are respect	ively			
	$CH_3COOH + NH_3 \rightarrow$	$X \longrightarrow Y + H_2O$				
	1) CH ₃ CONH ₂ ; CH ₄ 3) CH ₃ CONH ₂ ; CH ₃ C	°ООН	2) CH ₃ COONH ₄ ; CH 4) CH ₃ NH ₂ ; CH ₃ CO	5 2		
16			, 3 2 3	1112		
16.	In the following reacti					
	C_2H_5OH <u>KMnO4/H</u>	$\xrightarrow{H} X \xrightarrow{H} CH_3CO_4$	OOC ₂ H ₅			
	1) CH_3OH ; C_2H_5OH		2) CH ₃ CHO ; CH ₃ OH	Н		
	3) $CH_2 = CH_2; CH_3CC$	ЮН	4) CH ₃ COOH; C ₂ H ₅	OH		
17.	Aqueous 10% NaHCC following compounds	0		ng 'X'. Which one of the		
	1) $CH_3CO_2C_2H_5$	2) $C_2H_5 - O - C_2H_5$	3) CH ₃ CHO	4) CH ₃ - CH ₂ - OH		
18.	Acid hydrolysis of X y X?	ields two different org	anic compounds. Which	ch one of the following is		
	1) CH ₃ COOH	2) CH ₃ CONH ₂	3) CH ₃ COOC ₂ H ₅	4) (CH ₃ CO) ₂ O		
19.	-		potassium dichromate, es X .X and Y respectiv	compound Y is formed. ely are :		
	1) C_2H_5OH , CH_3COOI	H	2) CH ₃ COCH ₃ , CH ₃ COOH			
	3) C_2H_5OH , CH_3COCH	H ₃	4) CH ₃ CHO, CH ₃ COO	OH ₃		
20.	CH ₃ COOH	$\rightarrow \underline{A}$, $\underline{A} + CH_3COOH$	$H \xrightarrow{H_3O^+} \underline{B} + H_2O$			
	In the above reactions					
332						

				CARBOXYLIC ACIDS	
	1) $CH_3COOC_2H_5$, C_2H_5	5	2) CH_3CHO, C_2H_5OH		
24	3) C_2H_5OH , CH_3CHO		4) C_2H_5OH , CH_3COO	C_2H_5	
21.		e following sequence o	t reactions.		
	$CH_3CHO \xrightarrow{HNO_3}$	$X \xrightarrow{P_4O_{10}} Y$			
	X	Y	X	Y	
	1) C ₂ H ₅ OH,		/ 3 2	° -	
	3) CH ₃ CO ₂ H,	CH ₃ CO ₂ CH ₃	4) C ₂ H ₅ OH,	CH ₃ CO ₂ H	
22.	In which of the follow	ing reactions hydroger	n gas is liberated ?		
	1) CH ₃ COOH + Na		2) $CH_{3}COOH + NaHO$	20 ₃	
	3) CH ₃ COOH + NaOH	I	4) $CH_3COOH + H_2O$		
23.	compound 'A' is formed, 'A' on heating with HI in the presence of red phosph 'B' is formed. Inentify 'B'				
	1) CH ₃ COOH	2) CH ₃ CHO	3) CH ₃ CH ₂ I	4) CH ₃ CH ₃	
24.	0	0	CH ₂ MgBr finally yields		
	1) an alkene	2) an ester	3) an alkane	4) a tertiary alcohol	
25.	$CH_3CH_2COOH - Re$	$x_{2} \rightarrow X \xrightarrow{NH_{3}} Y$	Y in the reaction is		
	1) Lactic acid	2) Ethylanine	3) Propylamine	4) Alanine	
26.	CH ₃ COOH <u>lmole C</u>	$l_2/\text{RedP} \rightarrow A \xrightarrow{\text{KCN}}$	$B \xrightarrow{H^+/H_2O} C \cdot H_0$	ence 'C' is	
	1) Oxalic acid 3) Fumaric acid		2) Maleic acid 4) Malonic acid		
27.	CH ₃ CH ₂ COOH	$2^{/\text{RedP}} A \xrightarrow{\text{aq.KOH}}$	\rightarrow B. Here 'B' is		
	1) Succinic acid	2) Lactic acid	3) Picric acid	4) Malonic acid	
28.	-	enzene on being heate re X and Y are respectiv		gives benzene on being	
	1) Sodalime and copp		2) Zincdust and sodiu		
	3) Zinc dust and Soda	lime	4) Sodalime and Zinc	dust	
29.	On vigorous oxidation	n by permanganate sol	ution $(CH_3)_2 C = CH - C$	H_2CH_3 gives	
	OH OH				
	1) CH. – C – CH – CH	CH ₃ (A.I.E.E.E. 2002)	CH ₃		
		(A.I.E.E.E. 2002)		CH ₃ CH ₂ COOH	
	CH ₃		CH ₃		

	CH ₃		CH ₃		
	\sim	CH ₃ CH ₂ CH ₂ OH	$(4) \qquad \qquad C = O + C$	Н.СН.СООН	
	CH ₃	5 2 2	CH ₃	3 2	
30.	Identify C in the follo	wing reaction :			
	$C_2H_2 \xrightarrow{\text{Chromic acid}} \rightarrow$	$A \xrightarrow{NH_3} B \xrightarrow{\Delta} B \xrightarrow{-H_2O} B$	»С	0	
	1) CH ₃ CH ₂ NH ₂	2) CH ₃ CN	3) CH ₃ CH ₂ NHCH ₃	4) $CH_3 - C - NH_2$	
31.	$CH_3CN + H_2O$	$\rightarrow A \xrightarrow{\text{Excess Cl}_2} B.$	n the above reaction A a	nd B are respectively	
	1) CH ₃ COOH, CCl ₃ CO	ЮН	2) CH ₃ CH ₂ OH, CH ₃ C	CH ₂ Cl	
	3) CH ₃ CHO, CCl ₃ CHO	C	4) CH ₃ COCH ₃ , CCl ₃ C	OCH ₃	
32.	Identify A and B in th	e following reaction, ($CH_3CH_3 \leftarrow B - CH_3CO$	$OH \xrightarrow{A} CH_3 CH_2 OH$	
	А	В	А	В	
	1) HI + Red P	$LiAlH_4$	2) Ni/ Δ	LiAlH ₄	
	3) LiAlH ₄	HI + Red P	4) Pd-BaSO ₄	Zn + HCl	
33.	for it 1) The anion HCC 2) The anion is obtain 3) Electronic orbitals o	OO⁻ has two equivalen	t resonating structures ton from the acid molec ridised	l length. What is the reason ule	
34.	Among the following	acids which has the lo	west pK _a value		
	1) CH ₃ COOH	2) HCOOH	3) (CH ₃) ₂ CH– COOH	4) CH ₃ CH ₂ COOH	
35.	Which of the followir	ng has highest tendency	y to ionise in aqueous s	olution.	
	1) HCOOH	2) CH ₃ COOH	3) FCH ₂ COOH	4) BrCH ₂ COOH	
36.	Which acid has lowest value of pKa?1) p - Methoxybenzoic acid3) p - Aminobenzoic acid4) p - Toluic acid				
37.	Which of following an 1) C ₆ H ₅ COO ⁻	ion is a strongest base? 2) HCOO ⁻	3) CH ₃ COO-	4) (CH ₃) ₂ CHCOO-	
38.	 1) C₆H₅COO 2) HCOO 3) CH₃COO 4) (CH₃)₂CHCOO Which of the following statements are correct ? 1) the two carbon-oxygen bond lengths in molecular formic acid are different 2) the two carbon-oxygen bond length in sodium formate are equal 3) very partial resonance is there in formic acid 4) all of the above 				

CARBOXYLIC ACIDS

- 39. Among acetic acid, phenol and n-hexanol, which of the compounds will react with NaHCO₃ solution to give sodium salt and CO₂ 1) acetic acid 2) phenol 3) n-hexanol 4) acetic acid and phenol 40. CH₃COOH is less acidic than HCOOH. It is due to which effect 1) + I of Methyl group 2) + M of Methyl group 3) - I of Methyl group 4) None 41. What is the main reason for the fact that carboxylic acids can undergo ionisation. 1) Absence of α – hydrogen 2) Resonance stabilisation of the carboxylate ion 3) High reactivity of α – Hydrogen 4) Hydrogen bonding 42. The reagent that can be used to distinguish between phenol and ethanoic acid is 1) Ammoniacal silver nitrate solution 2) Fehling solution
 - 3) Sodium carbonate solution 4) Phenolphthalein

WORK SHEET - III

01.	$(CH_3)_2C = CH-CH_2-CH_3$ on oxidation with	permanganate solution	ngives
	1) (CH ₃) ₂ CHOH+CH ₃ CH ₂ CH ₂ OH	2) (CH ₃) ₂ C=O+CH ₃	СН ₂ СООН
	3) (CH ₃) ₂ CHCO ₂ H+CH ₃ CH ₂ COOH	4) (CH ₃) ₂ C(OH)CH(OH)CH ₂ CH ₃
02.	The calcium salt of which of the following ac pentane - 3 - one ?	cids on dry distillation	produces 2,4 - dimethyl
	1) isobutyric acid 2) adipic acid	3) butyric acid	4) propionic acid
03.	Acetaldehyde $\xrightarrow{HCN} X \xrightarrow{H_2O/H^+} Y$	\xrightarrow{Heat} Z:	
	In the above sequence, the end $\operatorname{product} Z$ is		
	1) but-2-enoic acid	2) prop - 2 - en oic ac	id
	3) tartaric acid	4) lactic acid	
04.	The compound obtained by the reaction of C	CO + NaOH and H ₂ SO ₄	₁ will be
	1) HCOONa 2) C ₂ H ₂ O ₄	3) HCOOH	4) CH ₃ COOH
05.	Which of the following has highest solubility	y in water ?	
	1) acetic acid 2) isobutyric acid	3) n-butyric acid	4) propionic acid
06.	$CH_3 OH \xrightarrow{PCl_5} (A) \xrightarrow{KCN} (B) \xrightarrow{H_3O^+}$	\rightarrow (<i>C</i>) the end produce	ct (3) will be ?
	1) CH ₃ CONH ₂ 2) CH ₃ - CH ₂ OH	3) HCOOH	4) CH ₃ COOH
07.	The end product (3) in the following sequen	ce of reactions,	
	$CH_3 Cl \xrightarrow{KCN} (A) \xrightarrow{H^+/H_2O} (B) \xrightarrow{P_4C}$	$\stackrel{O_{10}}{\Delta} \to \mathbb{C}$. The compound	nd 'C' is
	1) (CH ₃ CO) ₂ O 2) CH ₃ COOCH ₂	3) CH ₃ COOH	4) CH ₃ COCH ₃
08.	Which of the following is optically active?	-	
	1) Lactic acid 2) Pyruvic acid	3) Glycolic acid	4) Both (2) & (c)
09.	In the series of reactions CH_3COOH — ^{NI}	$\xrightarrow{H_3} A \xrightarrow{\Delta} B \xrightarrow{P_2O_5}$	$\rightarrow C$ the product C is:
	1) ammonium acetate 2) methane		

CARBOXYLIC ACIDS

10.	Which of these can not show resonance stabilisation ?						
	1) $CH_2 = CH-CH_2\overline{O}$	2) $C_6 H_5 \overline{O}$	3) $C_6H_5CO\overline{O}$	4) All of these			
11.	Acetic anhydride is prepared industrially by heating sodium acetate with :						
	1) CH ₃ Cl	2) PCl ₃	3) POCl ₃	4) SO_2Cl_2			
12.	Which of the followin ?	g will be able to produc	ce acetyl chloride by its	reaction with acetic acid			
	1) PCl ₃	2) PCI ₅	3) Cl ₂	4) SOCl ₂ /Py			
13.	Acetyl chloride is rec	luced to acetaldehyde	by :				
	1) LiAIH ₄	2) H ₂ /Pd-BaSO ₄	3) H ₂ /Ni	4) Na-C ₂ H ₅ OH			
14.	Which of the following	ng compounds will give	e ethyl alcohol on redu	ction with LiAlH ₄ ?			
	1) (<i>CH</i> ₃ <i>CO</i>) ₂ <i>O</i>	2) CH ₃ COCl	3) CH ₃ CONH ₂	4) <i>CH</i> ₃ <i>COOC</i> ₂ <i>H</i> ₅			
15.	-OH group of acid ca	n be replaced with					
	1) SOCl ₂	2) COCl ₂	3) PCl ₅	4) PCl ₃			
16.		lised by peroxyacetic a (B). Identify the produ	•	talysed hydrolysis to give			
	1) (1) is benzoic acid		2) (2) is phenol				
	3) (1) is acetic acid		4) (2) is methanol				
17.	The intermediate(s) for	ormed during the reacti	on,				
	$C_6H_5CH_2COOAg$	$+Br_2 \xrightarrow{CCL_4} C_6H_4$	$_{3}CH_{2}Br + AgBr$ is / a	are			
	1) $C_6 H_5 - CH_2 - C$	– OBr	2) $C_6H_5 - CH_2 - C$	-0•			

3)
$$C_6H_5 - CH_2$$
 4) Br •

Passage - I

An orga nic compound (1) of molecular weight 135 on boiling with NaOH evolves a gas which gines white dense fumes on bringing a rod dipped in HCl near it. The alkaline solution thus, obtained on acidification gives the precipitate of a compound (2) having molecular weight 136. Treatment of (1) with HNO₂ also yeilds (B), whereas its treatment with Br_2/KOH gives (C). compound (3) reacts with cold HNO₂ to give(D), which gives red colour with ceric ammonium nitrate. On the other hand(E) an isomer of (1) on boiling with dil HCl gives an acid (F), having molecular weight 136. On oxidation followed by heating, (F) gives an anhydride (G) which condenses with benzene in presence of AlCl₃ to give anthraquinone.

18. Structural formula of compound (1) is

2) 2-phenylethanoic acid

19.

4) none of these

CARBOXYLIC ACIDS

20. Structural formula of compound (3) is

(1) 1,4 addition (2) Tautomerism (3) Allylic bromination (4) Preparation of Ketone from 2° alcohol Match list - I with list - II and select the correct answer using the codes give below the lists

Column - I

24.

Column - II

(1) $C_6H_5CHO + HCHO \xrightarrow{OH} C_6H_5CH_2OH + HCOO (P)$ Cannizzaro reaction (2) $C_6H_5 - H + CH_3COOI \xrightarrow{Anhy.AlCl_3} C_6H_5 - CO - CH_3$ (Q) Friedel Crafts reaction

(3)
$$C_6H_6 + CO + HCI \xrightarrow{Anhy.ZnC_2} C_6H_5 - CHO$$
 (R) Reimer-Tiemann reaction

(4)
$$(i)CHCl_3/Alc.KOH/\Delta$$
 $(ii)H^{\oplus}$ (S) Gattermann-Koch aldehyde synthesis

- 25. Number of compounds with the formula $C_4H_8O_2$ is ------
- 26. How many lone pair of eletrons are in oxalic acid ?

27. The number of acids which have greater K_a value than acetic acid is Formic acid, Benzoic acid, CH₂ = CHCOOH, CH₃OCH₂COOH, HOCH₂COOH, CH₂=CHCH₂COOH.

EXERCISE - I / ANSWERS

WORK SHEET - I

1) 3	2) 1	3) 2	4) 4	5) 3	6) 3	7) 2	8) 2	9) 1	10) 3
11) 4	12) 3	13) 2	14) 1	15) 3	16) 2	17) 2	18) 4	19) 4	20) 3
21) 4	22) 2	23) 1	24) 2	25) 1	26) 3	27) 1	28) 1		

WORK SHEET - II

1) 2	2) 1	3) 4	4) 4	5) 1	6) 4	7) 3	8) 3	9) 1	10) 4
11) 2	12) 2	13) 2	14) 2	15) 2	16) 4	17) 1	18) 3	19) 1	20) 4
21) 2	22) 1	23) 4	24) 3	25) 4	26) 4	27) 2	28) 4	29) 4	30) 4
31) 1	32) 3	33) 1	34) 2	35) 3	36) 2	37) 4	38) 4	39) 1	40) 1
41) 2	42) 3								

WORK SHEET - III

1) 2	2) 1	3) 2	4) 2	5) 1	6) 4	7) 1	8) 3	9) 1	10) 1	
11) 234	12) 124	13) 2	14) 124	15) 134	16) 34	17) 123	4	18) 3	19) 2	20) 4
	21) 1	22) 3	23) 1 – 1	PR; 2 – P	; 3 - S; 4	– QS		24) 1 –P	; 2 – Q; 3	- S; 4 - R
25) 6	26) 8	27) 6								

CARBOXYLIC ACIDS

EXERCISE - II

WORK SHEET - IA

25.	Column -I (Ester)	Column -II (Flavour)
	(1) ethyl butanoate	(P) orange
	(2) octyl ethanoate	(Q) jasmine
	(3) n-pentyl ethanoate (4)benzyl ethanoate	(R) pineapple (S) banana
26.	Column-I	Column -II
26.	Column -I (1) R-CONH ₂	Column -II (P) most reactive towards aryl substitution
26.		
26.	(1) R-CONH ₂	(P) most reactive towards aryl substitution

WORK SHEET - IIB

27. No of positional isomers possible for terephthalicacid are

8.

$$\begin{array}{c}
CH_{3} \\
H_{3}C - C - CH_{3} \\
\hline \bullet \\
\end{array} \xrightarrow{\text{acidified}} [A] \xrightarrow{SOCl_{2}} [B] \xrightarrow{CH_{2}N_{2}} [C] \xrightarrow{H_{2}O/Ag_{2}O} [D]
\end{array}$$

28.

number of carboxylic groups present in compound [D]

- 29. Fructose is oxidised by periodic acid $[HIO_4]$. The number of moles of HCOOH formed from each mole of fructose are
- 30. The number of isomeric carboxylic acids possible for the formula $C_4H_8O_2$ are respectively

31.
$$O \xrightarrow{N}_{H} O \xrightarrow{conc. HNO_3} conc. HNO_4$$

In the above reaction how many nitrated products are possible?

- 32. The number of hydroxyl groups present in tartaricacid are
- 33. During the reaction between formic acid & KMnO₄. The equivalent weight of KMnO₄ obtained by dividing it's molecular weight by a ______ factor

CARBOXYLIC ACIDS O 34. $C_6H_5CO_3H \rightarrow A \xrightarrow{H_3O^{\oplus}} B$

No. of sp² hybridised carbons in compound (B)

35. Benzoic acid $\frac{1)NH_3/\text{heat}}{2)KOH + Br_2/\text{heat}}$ product

No. of sp² hybridised atoms in product

36. Acid chlorides are converted in to 3⁰ alcohols with Gariguard reagent. During this convertion number of moles of Gariguard reagent are used

EXERCISE - II / ANSWERS

WORK SHEET - IA

25) 1 – R; 2 – P; 3 – S; 4 – Q	26) 1 – R; 2 – S; 3 – Q; 4 – P
<u></u>	-0,1 $1,2$ $0,0$ $2,1$ 1

WORK SHEET - IIB

27) 3	28) 1	29) 4	30) 2	31) 1	32) 2	33) 5	34) 1	35) 7
36) 2								

AMINIS

EXERCISE - I

WORK SHEET - I

1.	Oil of mirbane is 1) Nitrobenzene 3) Aniline	2) m-dinitrobenzene 4) Benzene sulphona	mide
2.	Nitroalkanes are the derivatives of 1) Nitric Acid 2) Nitrous acid	3) Hyponitrous acid	4) Pernitric acid
3.	Steam distillation method is useful for the p 1) Nitrobenzene 3) Aniline	urification of 2) Benzene 4) Both Nitrobenzene	e and Aniline
4.	NitroBenzene is reduced with LiAIH ₄ . The p 1) AzoBenzene 3) N-Phenyl hydroxylamine	oroduct is 2) HydrazoBenzene 4) Aniline	
5.	Nitrobenzene can act as 1) oxidant 2) reductant	3) bleaching agent	4) antichlor
6.	Among the following which is less reactive a 1) Benzene 2) NitroBenzene	towards electrophilic su 3) Aniline	ubstitution reactions 4) Toluene
7.	The following is used in the preparation of f 1) Nitrobenzene 3) Benzene diazonium chloride	loor polishes 2) Aniline 4) Phenyl hydroxyl a	mine
8.	NitroBenzene is used as a solvent in 1) Wurtz's reaction 3) Friedel - Craft's reaction	2) The Preparation of4) Diazotisation react	
9.	Which is used as a cheap perfume 1) Aniline 2) Ethyl alcohol	3) Acetone	4) NitroBenzene
10.	IUPAC name of $(CH_3)_3C.NH_2$ is 1) trimethyl amine 3) 2-methyl propanamine-2	2) 2-methyl butanami 4) 2-methyl propanar	
11.	Which of the following is not a tertiary amir 1) tri ethyl amine 3) 2-methyl propanamine-2		
12.	Which of the following shows optical activit 1) butanamine-1 2) butanamine-2	ty? 3) isopropyl amine	4) ethyl methyl amine
13.	IUPAC name of $(C_2H_5)_3C-NH_2$ is 1) 3-ethyl propanamine-1 3) 3-ethyl pentanamine-3	2) 3-ethyl pentanamii 4) 2-ethyl pentanamii	ne-2
14.	Number of saturated isomeric primary amir 1) zero 2) 3		
15.	Chemical formula of Hinsberg's reagent is 1) $C_6H_5SO_3H$ 2) $C_6H_5NHSO_2C_6H_5$	3) C ₆ H ₅ SO ₂ CI	4) C ₆ H ₅ NHCOC ₆ H ₅
16.	For carbyl amine reaction, we need alcoholic 1) any primary amine and chloroform	c KOH and	amine and chloroform 341

AMINES

AWIII					
	3) aliphatic primary amine and chloroform		4) any amine and chloroform		
17.	Aniline on acetylatio 1) phenol	n gives 2) acetamide	3) acetanilide	4) benzene	
18.		nia on excess of alkyl ha	5		
	1) triethyl amine		2) quaternary ammor	nium salt	
	3) diethyl amine		4) ethyl amine		
19.		vith con. $H_2 SO_4$ gives X.	If X is heated, the prod	uct is	
	1) sulphanilic acid		2) sulphonamide		
	3) benzene sulphony		4) m-amino benzene s	sulphonic acid	
20.	 methanamine is m boiling point of ethy 	among the following is ore basic than ammoni I amine is higher than pro less basic than aniline	a 2) ammonia forms H- opane	bonds	
21.	A primary amine on	reaction with alc.KOH	and chloroform yields		
	1) isocyanide	2) aldehyde	3) cyanide	4) alcohol	
22.	5	e lower boiling points th			
	1) corresponding alk		2) corresponding 2° a		
	3) corresponding este		4) corresponding alco		
23.			n N,N-dimethyl ethana	mine	
	1) A and R are true a	in former than the later nd R explains A	2) A and R are true bu	ut R does not explainA	
	3) A is true but R is fa		4) A is false but R is tr	-	
24.	Molecular associatio	n is highest in			
	1) n-propyl amine	2) trimethyl amine	3) ethyl methyl amine	e 4) equal in all	
25.	Among isomeric amin is given by	nes possible for molecul	ar formula C ₃ H ₉ N, corre	ect order of basic strength	
	I) propanamine-1		II) N-methyl ethanam	nine	
	III) N,N-dimethyl me		IV) N-methyl propana		
26.	1) III > I > II Aniline is less basic t	2) IV > III > I > II	3) > >	4) > > > V	
20.	1) NH_3	2) CH ₃ NH ₂	3) N - methyl Aniline	4) All the above	
27.	Which of the followi	5 2	o,	.),	
21.	1) Tert. butylamine aniline	2) dimethyl amine	3) N - methylaniline	4) N, N-dimethyl	
28.		oup responds to carbyla	mine test		
20.	1) -NH ₂	2) NH	3) -CONH	4) N	
29.	· 2	g which is more basic	o) o o n n ₂	.,	
	1) n - butyl amine	2) isobutylamine	3) Sec. butylamine	4) diethylamine	
30.	Impure Aniline is pu	rified by			
	1) distillation		2) steam distillation		
	3) distillation under r	•	4) fractional crystallis	sation	
31.	Towards litmus, Ani				
	1) Acidic	2) Basic	3) Neutral	4) Bleaching agent	
32. 212	Which of the followi	ng can react with an all	kyl halide		
342					

	1) 19 and in a	2) 2° and i	2) 28 and in a	
	1) 1° amine	2) 2° amine	3) 3° amine	4) All the above
33.	The substance with r 1) C ₆ H ₅ CN	hauseating smell is 2) $C_6H_5NO_2$	3) C ₆ H ₅ NH ₂	4) C ₆ H ₅ NC
34.	Aniline doesn't react 1) dil. HCl	with 2) dil.NaOH	3) CH ₃ , CHO	4) Br ₂ water
35.	Nitrobenzene on redu 1) Azobenzene	uction with Hydrogen i 2) Hydrazobenzene	in presence of Nickel gi 3) Phenyl hydroxyl ami	
36.	Schiffs base is used a 1) Oxidant	s a 2) Reductant	3) Antichlor	4) Antioxidant
37.	Aniline is obtained by 1) Coal Tar	y the destructive distill 2) Molasses	ation of 3) Indigo	4) Proteins
38.	Aniline is soluble in 1) dil.HCl	2) dil.NaOH	3) Water	4) Na,CO, solution
39.		h excess of CH ₃ I. The fi	,	, 2 3
57.	1) $C_{A}H_{S}NHCH_{3}$	5		4) C ₆ H ₅ I
40.	0 5 5	0 5 52	eus when added to anil 3) CH,COCI	0 5
41.	5	ng is not a property of a	5	e test
42.	Which of the followir 1) Toludine	ng is a mixed 2° amine 2) N - Methylaniline	3) Dimethylamine	4) Methyldiethyl amine
43.	The general formula	of amines is		
	1) C _n H _{2n+1} N	2) C _n H _{2n+2} N	3) C _n H _{2n+3} N	4) C _n H _{2n} N
44.	The general formula (1) RNH ₂	of quaternary ammonia 2) R ₂ NH	am salt is 3) R ₃ N	4) R ₄ NX
45.	Which of the followir	ng contains imino grou	p [>NH]	
	1) Aniline	2) O - Toludine	3) Benzylamine	4) N - methyl aniline
46.	The number of mole hydrazobenzene is	es of hydrogen atoms	required to convert 1 r	mole of nitrobenzene to
	1) 5	2) 10	3) 4	4) 8
47.	Freshly prepared ani 1) Colourless	line is ? 2) Brown	3) Yellow	4) Pale Yellow
48. 49.	4) aniline is less basic Bromination of Anili	with aqueous alkali ic than ammonia ene diazonium chlorid c than ammonia ne with bromine water		amo anilines
	3) 2, 4 – Dibromo anil			

AMINES

FLIVIII				
	4) White precipitate of	of 2, 4, 6 – Tribromo ani	line	
50.	Aniline forms anilini 1) An alkyl halide'	um salt when it reacts 2) Acetyl chloride	with 3) Sulphuric acid	4) Benzoyl chloride
51.	The amine that does r 1) Isopropyl amine 3) Tertiary butyl amir	not form hydrogen bonc ne	ls is 2) Neopentyl amine 4) N, N – Dimethyl ar	mino ethane
52.	The number of prima with formula C ₄ H ₁₁ N 1) 4, 3, 1		iary amine isomers po 3) 3, 2, 1	ssible for the compound 4) 4, 2, 1
53.	In the diazotisation o 1) HNO ₃ , HCI 3) NaNO ₂ , HNO ₂ at 0–5°	f Aniline, the reagent o 2) NaNO ₂ ,HCI at0–5° C 4) HNO ₂ only	-	
54.		m chloride, the functior 2) –N=N⁺–CI⁻	nal group is 3) –N⁺=N–CI⁻	4) none
55.	Diazonium salts are f 1) aliphatic primary a 3) alicyclic primary a	amines	2) aromatic primary a 4) heterocycli aromat	amines ic nitrogen compounds
56.	 aromatic primary a aromatic primary a 	e into diazonium salt us amine into diazonium s	salt using NaNO ₂ +HCl salt using NaNO ₂ +HCl	at 60-70ºC at ice cold temperature
57.	3) treating with $H_{3}PC$	wed by treating with H		
58.	Which of the followir 1) Benzenamine	ng does not give diazor 2) Benzyl amine		acid at 273K? 4) o-hydroxy aniline
59.	Which diazonium sal 1) Benzene diazoniur 3) Benzene diazoniur		perature 2) Benzene diazoniur 4) Benzene diazoniur	
60.	Replacement of $-N_2^+$) 1) Diazo coupling	^{(•} group by -Cl or -Br or 2) Hoffmann reactior	-CN is called 3) Sandmayer reaction	4) Perkin reaction
61.	Action of HCI on Ben 1) p-chloro benzene c 3) Chloro benzene	izene diazonium chlori diazonium chloride	de in the presence of co 2) o-chloro benzene c 4) o-dichloro benzene	liazonium chloride
		WORK SH	EET - II	
1.	NitroBenzene \longrightarrow	HydrazoBenzene.		
	Here the reagent is 1) Sn + HCI	2) Zn + NH₄Cl	3) Zn + NaOH	4) LIAIH ₄

AMINIS

 NH_2 NO₂ 2. In the reaction The equivalent weight of NitroBenzene is 2) $\frac{M}{2}$ 3) $\frac{M}{4}$ 4) $\frac{M}{\epsilon}$ 1) M 0 3. $R - \ddot{N} \rightarrow O$ and R - O - N = O are a pair of 1) Chain Isomers 2) Metamers 3) Functional Isomers 4) Tautomers 4. Here the reagent is 2) Zn + NaOH 3) Sn + HCI 1) Zn + NH,Cl 4) LIAIH 5. KOH Hydrazobenzene The ratio of the number of moles of Hydrogen atoms required to get 1 mole of azobenzene and 1 mole of hydrazobenzene 1) 4 : 5 2) 5 : 4 3) 1 : 1 4) 2 : 3 + HNO₃ $\xrightarrow{H_2SO_4 \text{ conc.}}$ the main product of the reaction 6. 2) O - dinitrobenzene 3) m - dinitrobenzene 4) P - dinitrobenzene 1) Nitrobenzene Which of the following statements is wrong? 7. I) amines possess pyramidal shape II) amines act as Bronsted bases III) 1º amines show metamerism IV) 2º amines show metamerism 1) I, II and III 2) II, III and IV 3) III only 4) I, II and IV N,N-dimethyl butanamine-2 contains 8. 1) six sp³ hybridised carbon atoms 2) seven sp³ hybridised atoms 3) two sp³ hybridised nitrogen atoms 4) 1 and 2 are correct 9. Primary amino group is absent in 1) p-amino phenol 2) o-amino phenol 3) N-methyl ethanamine 4) phenyl amine 10. A): n-propyl amine is 1° but isopropyl amine is 2° amine R) : n-propyl amine and isopropyl amine are position isomers 1) A and R are true and R explains A 2) A and R are true but R does not explain A 3) A is true but R is false 4) A is false and R is true 11. N,N-dimethyl butanamine-2 is the functional isomer of 2) N-methyl-2-ethyl butanamine-2 1) N-butanamine-2

AMINES

) trimethyl amine		4) triethyl amine	
	-butyl amine and isol	butyl amine are ison		
1)) optical	2) functional	3) chain	4) position
13. H	low many primary ar	mine structural isomer	rs with the molecular fo	rmula C ₄ H ₁₁ N.
1)) 1	2) 2	3) 3	4) 4
	NHCH ₃			
14.	can react wit	th a maximum of	. moles of CH ₃ I	
,) 4	2) 3	3) 2	4) 1
15. Ir	n the nitration of anili	ne the amino group is	protected by conversic	on into
1)) Tribromo derivative	2) Isocyanide	3) Diazonium salt	4) Acetyl derivative
	J. J	rown on exposure to ai	0	
) Nitrobenzene nloride	2) m-dinitrobenzene	3) Aniline	4) Benzene diazonium
		J-nhenvl benzene suln	honamide from aniline	the reagent used is
) H_2SO_4	2) SOCI ₂	3) C ₆ H ₅ CI	4) $C_6H_5SO_2CI$
	Vhich of the following iven below ?	is correct with respect	to the order of basic na	tures of different amines
1)) C ₆ H ₅ NH ₂ > NH ₃ >	$CH_3NH_2 > (CH_3)_2NH_2$		
		$H_2 > C_6 H_5 N H_2 > N H_3$		
۷)	$(c_{13})_2$ (c_{13})	¹¹ 2 ^{×C6¹¹5¹¹12^{×11}12}	3	
3)) $CH_{3}NH_{2} > (CH_{3})_{2}$	$\rm NH > C_6H_5NH_2 > \rm NH_2$	3	
4)) $(CH_3)_2 NH > CH_3 N$	$H_2 > NH_3 > C_6H_5NH$	2	
19. V	Vhich of the following	g methods is used to p	repare Aniline on large	escale?
_	F	$\frac{Ge}{H_3O^+}$ C ₆ H ₅ NH ₂ +2H		
	0 0 2	0002	-	
	0 5 2	$\xrightarrow{\text{/HCl}} C_6H_5NH_2 + 2H_2C$		
С	$C_6H_5OH_2+NH_3$	$\frac{\text{CnCl}_2}{00^0\text{C}} \rightarrow \text{C}_6\text{H}_5\text{NH}_2\text{+}\text{H}_2\text{C}_2$	0	

D) $C_6H_5CI + 2NH_3 \xrightarrow{Cu_2O, 200^{0}C} C_6H_5NH_2 + NH_4CI$ 1) A only 2) B or C 3) C only 4) A or D

AMINIS

EXERCISE - I / ANSWERS WORK SHEET - I

1) 1	2) 2	3) 4	4) 1	5) 1	6) 2	7) 1	8) 3	9) 4	10) 3
11) 3	12) 2	13) 3	14) 1	15) 3	16) 1	17) 3	18) 2	19) 1	20) 4
21) 1	22) 4	23) 3	24) 1	25) 3	26) 4	27) 1	28) 1	29) 4	30) 2
31) 3	32) 4	33) 4	34) 2	35) 4	36) 4	37) 3	38) 1	39) 3	40) 4
41) 4	42) 2	43) 3	44) 4	45) 4	46) 1	47) 1	48) 4	49) 4	50) 3
51) 4	52) 1	53) 2	54) 4	55) 2	56) 3	57) 2	58) 2	59) 2	60) 3
61) 3									
WORK SHEET - II									

1) 3	2) 4	3) 3	4) 3	5) 1	6) 3	7) 3	8) 4	9) 3	10) 4
11) 4	12) 3	13) 4	14) 3	15) 4	16) 3	17) 4	18) 4	19) 1	

EXERCISE - II

WORKSHEET-IA

1.	Column - I	Column - II
	1) $C_6H_5 - NO_2 \rightarrow C_6H_5 - NH_2$	(P) Alkaline medium
	2) $C_6H_5 - NO_2 \rightarrow C_6H_5 - N = N - C_6H_5$	(Q) Glucose in NaOH
	3) $C_6H_5 - NO_2 \rightarrow C_6H_5 - NH - NH - C_6H_5$	(R) Sn/HCI in acidic medium
	4) $C_6H_5 - NO_2 \rightarrow C_6H_5 - NON - C_6H_5$	(S) Alkaline sodium stannite in basic medium
2.	Column - I	Column - II
	1) Hofmann's reagent	(P) Primary amines
	2) Hinsberg's reagent	(Q) Carbondisulphide
	3) Mustard oil smell	(R) Oxayl chloride
	4) Thiourea	(S) Separation of $1^0_{,} 2^0$ and 3^0 amines
3.	Column - I	Column - II
	1) The compound gives violet colour with	(P) Urea
	NaOH and few drops of CuSO ₄	
	2) A compound gives white ppt with oxalic ac	id (Q) Carbamic acid
	3) A compound produced by the reaction of primary amine & carboxylic acid	(R) Amide linkage
	4) A compound gives diazo coupling in strong alkaline medium	(S) Phenol

AMINES

EXERCISE - II / ANSWERS

WORKSHEET-IA

1) 1-QR; 2-QSQS; 3-Q; 4-P	2) 1-R; 2-S; 3-P; 4-PQ
3) 1-RS; 2-S; 3-PQ; 4-PQ	4) 1-PR; 2-PR; 3-PQR; 4-S
5) 1-R; 2-Q,S,T; 3-P,Q,S,T; 4-P,R	6) 1-Q,R; 2-P,Q,R,S,T; 3-P,Q,R,S ; 4-P,Q,R,S

BIOMOLECULES (CARBOSYDRATES) EXERCISE - I

WORK SHEET - I

Biomolecules Carbohydrates:

1.	The smallest units in 1) Organelle	living organism is 2) Tissue	2) Organ	4) Biomolecule		
2.	Oxygen balance in th 1) Photosynthesis	e atmosphere is main 2) Protein synthesis	tained by a process cal 3) Respiration	led 4) Fat synthesis		
3.	The materials require 1) CO_2 and H_2O 3) $CO_{2'}$ H_2O and sunl	d for photosynthesis a ight	re 2) Chlorophyll only 4) CO ₂ , H ₂ O, sunlight and cholrophyll			
4.	Biological reactions a 1) Exergonic	ssociated with positive 2) Endergonic	e Δ G are called 3) Exothermic	4) Endothermic		
5.	Which one of the follo 1) Ribose	owing is a pentose sug 2) Arabinose	ar? 3) Lyxose	4) All the three		
6.	Monosaccharides cor 1) Six carbon atoms o 3) Four carbon atoms	nly only	2) Five carbon atoms 4) May contain 3 to 7	-		
7.	Raffinose on hydroly 1) glucose, fructose an 3) fructose, glucose an	nd lactose	2) glucose, fructose and galactose4) glucose, fructose and mannose			
8.	Which of the followir 1) Xylose	ng is not an oligosaccha 2) Maltose	aride 3) Raffinose	4) Sucrose		
9.	A Laevorotatory suga 1) Glucose	ar present in fruits is 2) Fructose	3) Sucrose	4) Lactose		
10.	Glucose is not 1) a hexose	2) a carbohydrate	3) an oligosaccharide	e 4) an aldose		
11.	On heating glucose w 1) Orange	rith Fehling solution, w 2) Red	ve get a precipitate who 3) Black	ose colour is 4) White		
12.	-	nirror test with Tollen's 2) Alcoholic group	s reagent. It shows the 3) Ketonic group	presence of 4) Aldehydic group		
13.	The reagent which for 1) Fehling solution	rms crystalline osazon 2) Phenyl hydrazine	e derivatives with glu 3) Benedict's solutior			
14.	When glucose is heat 1) Lactic acid	ed with nitric acid the 2) Saccharic acid	product is 3) Glycollic acid	4) oxalic acid		
15.	Glucose when heated glycosides because it 1) a -CHO group			gives α and β methyl 4) Five –OH groups		
16.	When hemiacetal read 1) dihemiacetal	cts with alcohol the pro 2) alcohol	oduct is 3) acetal	4) Peptide		
17.	Freshly prepared α - becomes	-D-glucose solution ha	as specific rotation +1	11°and after sometime it		

DIO	IOLECULES (CAP	DOILIDKALES						
	1) +52°	2) +99°	3) –92°	4) None				
18.	Which does not show	mutarotation?						
	1) Glucose	2) Fructose	3) Maltose	4) Sucrose				
19.				g formation is in between				
• •	1) C_1 and C_5	2) C_1 and C_4	3) C_1 and C_3	4) C_2 and C_4				
20.	The wrong statement about glucose is							
	1) It has one 1°- alcoh	0 1	2) It has four 2° - alco					
	3) It has one aldehydd	ic group	4) It has one 3° - alco	holic groups				
21.	Fructose contains	liceroup	2) One katonia group					
	 3) 3 secondary alcoho 2) primary alcoholio 	0 1	2) One ketonic group4) All the above)				
22.	Glucose and mannos	0 1	_)					
~~.	1) Mirror images	2) Anomers	3) Functional isomer	s 4) Isomers				
23.	Anomers have differe	,	,	,				
20.	1) Physical Properties		3) Specific rotation	4) All of these				
24			resents correct configur	ration in terms of D & L, R				
	& S and d & l designa							
	1) D, R, d	CHO I						
	2) D, R, 1 3) D, S, d	Н——ОН						
	4) D, S, 1	CH ₂ OH						
25.	,	ng is called as Laevulos	so ?					
20.	1) Glucose	2) Fructose	3) Lactose	4) Maltose				
26.	The sweetest sugar a	mong the following is						
	1) Fructose	2) Glucose	3) Sucrose	4) Galactose				
27.	For naturally occuring 1) D , –	(fructose, the configurated) D, +	tion and sign of specific 3) L, –	rotation respectively 4) L , +				
28.		trihydroxy acetone are						
	1) Anomers	2) Enantiomeres	3) Functional isomer	, 1				
29.	0	es, the configuration of		e				
	1) R	2) S	3) D	4) L				
30.	0	0		nD - (+) - glucose are				
	1) 2S, 3S, 4R, 5R	2) 2S, 3R, 4S, 5R	3) 2R, 3R, 4S, 5S	4) 2R, 3S, 4R, 5R				
31.	Glucose and cane sug	ar can't be distinguishe	d by					
	1) Fehling's solution	Ŭ	3) Tollen's reagent	4) Benedict's solution				
32.	In which of the follow	ving all are disaccharid	es?					
	1) Maltose, Sucrose, I		2) Maltose, Lactose, G					
	3) Glycogen, Lactose,	Sucrose	4) Starch, Maltose, L	actose				
33.	A disaccharide on hy							
	,	he same monosacchari	ide					
	2) Two differnt mono3) Three molecules of	saccharides the same monosaccha	ride					
	of mile more uno	are builte monosuccila						

BIOMOLECULES (CARBOSYDRATES)

	4) Two molecules of the same or different m		CARDOS I DRATES)			
34.	Change in optical rotation of sucrose soluti	on due to hydrolysis is	called			
	1) Specific rotation 2) Inversion	3) Rotatory motion	4) Mutarotation			
35.	Inverted sugar is 1) Optically inactive form of sugar fructose	2) Equimolecular m	2) Equimolecular mixture of glucose and			
	3) Mixture of glucose and fructose	4) A variety of cane su	ıgar			
36.	Which of the following is not a reducing sug1) Glucose2) Sucrose	gar ? 3) Lactose	4) Maltose			
37.	 The glycosidic linkage in carbohydrates is 1) Link between two carbon atoms in a carb 2) Link between a carbon atom and an oxyg 3) Link between carbon atoms in a carbohydra of water. 4) None of these 	gen atom				
38.	Identify the one which does not belong to th hydrolysis	ne class to which the oth	er three belong based on			
	1) Sucrose2) Fructose	3) Lactose	4) Maltose			
39.	Which among the following does not give a1) Fructose2) Glucose	silver mirror test with 3) Galactose	Tollen's reagent ? 4) Sucrose			
40.	Sucrose molecule contains					
	 a glucopyranose and a fructopyranose u a glucopyranose and a fructofuranose un 	nits				
	3) a glucopyranose and a fructopyranose u					
41	4) a glucofuranose and a fructofuranose ur	lits				
41.	Maltose consists of	2) and B D Char				
	1) Only α -D glucose units 3) Glucose and fructose	2) α and β - D Glucose units 4) Fructose only				
42.	Which of the following is animal polysaccha	· ·				
12.	1) Amylopectin 2) Glycogen	3) Amylose	4) Cellulose			
43.	Amylose consists of					
	1) Branched chain of $ lpha$ -D-glucose units	2) Unbranched chain	of β -D-glucose units			
	3) Units of sucrose	4) Unbranched chain	of α -D-glucose units			
44.	Amylopectin is a polymer of					
	1) β -D glucose 2) α -D glucose	3) β -D fructose	4) α - D fructose			
45.	In Amylopectin the linkage absent is					
	1) C ₁ & C ₄	2) C ₁ & C ₆				
	3) C ₁ & C ₂	4) Both $C_1 \& C_6$ and C	1& C ₄			
46.	Direct conversion of starch into glucose ma	y be carried out by				
	1) fermentation with diastase	2) fermentation with a	•			
	3) heating it with dil HCl	4) fermentation with	maltase			

BIOMOLECULES (CARBOHYDRATES)

47.	The intermediate cor 1) Lactose	npound in the conversi 2) Maltose	ion of starch to glucose 3) Fructose	is 4) Sucrose			
48.	Starch is turned to di	saccharide in presence	of				
	1) Maltase	2) Zymase	3) Diastase	4) Lactase			
49.	 1) It occurs in the cell 2) It is a disaccharide 3) It gives a dark blue 	-	ution	tion			
50.	Saliva helps in the di	gestion of					
	1) Fats	2) Starch	3) Proteins	4) Vitamins			
51.		ng carbohydrates is the		of cell wall?			
	1) Starch	2) Maltose	3) Cellulose	4) Sucrose			
52.	Cellulose is the polyr						
	1) L- fructose	2) D-fructose	3) D-glucose	4) Amylose			
53.	Cellulose is rigid due 1) Hydrogen Bonding 3) cell wall material	g	 2) β (1,4) glycosidic linkage 4) vegetable matter 				
_		WORK SH					
1.	In majority of the cell are	s, the principle biomole	ecules undergoing oxid	ation during respiration			
	1) Vitamins	2) Fats	3) Proteins	4) Carbohydrates			
2.	Which of the following	ng monosaccharides is	a pentose				
	1) Glucose	2) Frutose	3) Ribose	4) Galactose			
3.	(A) : Dark reaction in	photosynthesis is carr	ied by ATP hydrolysis				
4.	(R) : For dark reactions $\Delta G = -Ve$ 1) Both (A) and (R) are true and (R) is the correct explanation of (A) 2) Both (A) and (R) are true and (R) is not the correct explanation of (A) 3) (A) is true but (R) is false 4) (A) is false but (R) is true						
	1) ATP $\xrightarrow{H_2o}$ ADP	2) ATP $\xrightarrow{H_2o}$ A	3) ATP $\xrightarrow{H_2^o}$ AMF	2 4) ADP $\xrightarrow{H_2o}$ A			
5.	List - I Chemical property of A) Acetylation B) Reaction with HC C) Reaction with HI/ D) Oxidation with H Correct match is	f Glucose N P	 3) ATP → AMP 4) ADP → A List-II Structure elucidation of Glucose 1) Presence of carbonyl group 2)Six carbon atoms straight chain. 3)Presence of 1⁰-alcohol group 4) Presence of 5 - OH group 				

BIOMOLECULES (CARBOSYDRATES)

		•	р	C	р	DI					DRAIES
	1)	A 1	В 2	C 3	D 4	2)	A 4	В 1	C 2	D 3	
	3)	3	1	2	4	2) 4)	4 3	2	1	4	
6.	,							- tween glu			ose?
		len's rea					-	ict's solut			
7.	Oxida	tion of	olucose	with Ag	Ogives	5					
		Gluconio	-	-	ucaric a		3) L-Gluo	conic acid	4)	L-Gluca:	ric acid
8.	Fructose gives the silver mirror test because it 1) Contains an aldehyde group 2) Contains a keto group 3) Undergoes rearrangement under the alkaline conditions of the reagent to form a mixture of glucose and mannose 4) It has pyranose structure									a mixture of	
9.	α-D-	Glucose	e and β -	D-glucos	e differ fr	com each	other due	e to differe	nce in c	one carbor	n with respect
	to its ?										
	,	e of hem		ring			-	er of OH و	groups		
10	,	nfigurat		an af D (71		4) Confoi		0		
10.		tion are			Jucose	the perc	entages	or α and	i p and	omers at	equilibrium
			respect		nd 80		(2) (26) (2)	64	4)	64 and 2	6
	,	and 20		2) 20 a:			3) 36 and		,	64 and 3	
11.				-	ent is co						mpounds?
	1) The	y are di	astereo	mers		4	2) Both a:	re compo	nents c	of lactose	
	3) The	y are C	-4 epin	ners		4	4) All the	above ar	e corre	ct	
12.	1) it is 2) it u 3) it u	dextror ndergoe ndergoe	otatory es inter es intero	conversi	on betwe	een it's p ee it's α	and $\beta(+)$	structure) Glucopy			
13.	The n	umber o	of chiral	l centres :	in the op	pen-chai	in structu	are of Glu	cose is	5	
	1) 3			2) 4			3) 5		4)	6	
14.		umber o	of chiral		in the cy			orm of Gl			
	1) 3			2) 4			3) 5		4)		
15.	of x° t 1) 19°,	o a cons , 52.5°	tant va	lue of y°. 2) 111°	The val , 52.5°	ues of x	and y are 3) 52.5°, 1	e respectiv 19°	vely 4)	52.5°, 11	
16.	The er	nd prod	uct (B)	formed in	n the rea	ction sec	quence. C	Glucose –	$\frac{\text{HCN}}{\text{H}_2\text{O}^+}$	$\rightarrow A - \frac{HI}{2}$	$\xrightarrow{P} B_{\cdot}$
		anoic a		2) hexa			3) heptar		3	heptano	
17.	With 1 1) 3	now ma	ny mol	ecules of 2) 4	acetic aı	-	e does or 3) 5	e molecu	le of gl 4)		act?
18.	,	ect state	ements	among tł	ne follow		<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		т)	0	
				ng sugar		0					
	,			0 0	maltose	e are link	ed by 1.4	4 - linkage	2.		
	,		0				<u> </u>				

BIOMOLECULES (CARBOHYDRATES)

	C) β - D - glucose and β - D - fructose units are linked by 1,4 - linkage in lactose D) All polysaccharides are reducing nonsugars										
	1) On				ucing no C, D			only	4) /	A, B, C only	
19.	 Which one of the following statements is not true for glucose ? 1) α -D(+)-glucose undergoes mutarotation 2) It has four asymmetric carbons in Fischer projection formula 3) It gives saccharic acid with Tollen's reagent 4) It reacts with hydroxyl amine 										
20.	Regarding lactose some statements are given below A) On hydrolysis lactose gives β - D - galactose and β - D - glucose B) In lactose C ₁ of β - D - galactose has acetal structure and C ₁ of β - D - glucose has hemiaceta structure C) In lactose molecule β -D - galactose is a nonreducing unit and β - D - glucose is a reducing unit The correct statements are										
	1) A, C	2		2) A, B		3) B, C 4) A, B, C				А, В, С	
21.	List-	I					List - II				
	A) α	and β-I) Glucos	е			1) Mutaro	tation			
		and (-) C and L-nc					2) Enantic 3) Anome				
	D) α	from Z	≥β-form	n			4) configurational isomers				
		А	В	С	D		А	В	С	D	
	1) 3)	2 3	3 2	4 4	1 1	2) 4)	2 3	3 2	1 1	4 4	

WORK SHEET - III

- 3) α D–galactose
- 1) Reduction of glucose gives only sorbitol

2) Reduction of fructose gives only mannitol

3.

BIOMOLECULES (CARBOSYDRATES)

3) Reduction of fructose gives only sorbitol

4) Reduction of glucose gives both sorbitol and mannitol

4. Which of the following on oxidation to give a dicarboxylic acid becomes a meso compound.

BIOMOLECULES (CARBOHYDRATES)

8. Which of the following compounds is a β -ketohexafuranose?

9. The optical rotation of the α form of a pyranose is +150.70, that of the β form is +52.80. In solution an equilibrium mixture of the anomers has an optical rotation of +80.20. The percentage of the α form at equilibrium is

1) 28 % 2) 32 %

3) 68 % 4) 72 %

- A pyranose ring consists of a skeleton of 1) 5 carbon atoms and one oxygen atom 2) 6 ca
- 3) 6 carbon atoms and one oxygen atom
- 2) 6 carbon atoms

4) 4 carbon atoms and one oxygen atom.

EXERCISE - I / ANSWERS

WORK SHEET - I

01) 4	02) 1	03) 4	04) 2	05) 4	06) 4	07) 2	08) 1	09) 2	10) 3
11) 2	12) 4	13) 2	14) 2	15) 3	16) 3	17) 1	18) 4	19) 1	20) 4
21) 4	22) 4	23) 4	24) 1	25) 2	26) 1	27) 1	28) 3	29) 1	30) 4
31) 2	32) 1	33) 4	34) 2	35) 2	36) 2	37) 3	38) 2	39) 4	40) 2
41) 1	42) 2	43) 4	44) 2	45) 3	46) 3	47) 2	48) 3	49) 3	50) 2
51) 3	52) 3	53) 1							

WORK SHEET - II

1) 4	2) 3	3) 3	4) 2	5) 2	6) 4	7) 1	8) 3	9) 3	10) 3
11) 4	12) 3	13) 2	14) 3	15) 2	16) 3	17) 3	18) 3	19) 3	20) 4

WORK SHEET - III

01) 2	02) 2	03) 2	04) 1	05) 3	06) 4	07) 1	08) 2	09) 2	10) 1
/	/				/	/	,	,	

10.

BIOMOLECULES (CARBOSYDRATES)

EXERCISE - II

WORK SHEET- IA

	WORK SH	EET- IA		
01.	Carbohydrate are : 1) hydrates of carbon 3) polyhydroxy aldehydes	 polyhydroxy aldehydes or ketones polyhydroxy ketones 		
02.	Which carbohydrate is as important as st articles in daily use as well as most abunde 1) Cellulose 2) Glucose		in manufacture of many 4) Sucrose	
03.	Carbohydrate contains:		,	
05.	a)- OH group 2) - CHO group	3) $\sum = O$ group	4) -COOH group	
04.	Aqueous solution of carbohydrate with 2 of H_2SO_4 gives a ring at the junction. The color1) Yellow2) green	-	tion of α - naphthol and 4) red	
05.	Which reagent is used for detection of suga 1) Baeyer's reagent 3) Fehling's reagent	ar in urine ? 2) Ozonolysis 4) Benedicts solution	n	
06.	The carbohydrates are important constitue 1) bio fuels to provide energy 3) heat insulator	ent of our diet; they fun 2) shock absorbing 4) none of the above	pad	
07.	Which molecule possess the general formu 1) Glyceraldehyde 3) Acetic acid	la of carbohydrates, bu 2) Arabinose 4) All of these	t is not a carbohydrate?	
08.	Which does not contain carbohydrate ?1) Cellulose2) Wax	3) Fats	4) Oils	
09.	Artificial sweetener used in soft drinks is : 1) glucose 3) cellulose	2) fructose 4) asparatame		
10.	The letter 'D' in carbohydrates represents 1) its direct synthesis 3) its mutarotation	 2) its dextrorotation 4) its configuration 		
11.	Glucose reacts with methyl alcohol to give 1) α - methyl glucoside 3) an ester	2) β - methyl gluco 4) an amide	side	
12.	Glucose and fructose posses the following 1) taste 3) action of Tollens reagent	similarities : 2) action of heat 4) direction of option	cal rotation	
13.	Glucose is Converted by zymase into			
	1) dicarboxylic acid	2) alcohol		
	3) amino acids	4) aromatic acids		
14.	Glucose gives many reactions of aldehyde	,		

BIOMOLECULES (CARBOHYDRATES)

DIU	VIOLECULES (CA	KDOH I DKALESJ						
	1) it is hydrolysed t	to acetaldehyde	2) it is a polyhydro	xy ketone				
	3) it is a cyclic alde	-						
	4) it is a hemiacetal in equilibrium with its aldehyde form in solution							
15.	Osazone formation involves only 2 carbon atoms of glucose because of							
	1) chelation		2) oxidation					
	3) reduction		4) hydrolysis					
16.	Sugars are characte identical osazones?	rised by the prepara	tion of osazone deriva	tives. Which sugar have				
	1) Glucose and la	nctose	2) Glucose and fru	ictose				
	3) Glucose and ara	abinose	4) Glucose and mal	tose				
17.	Glucose reacts with	acetyl chloride to form	pentacetyl glucose, it ir	ndicates presence of				
	1) five primary alco	oholic groups	2) five secondary al	coholic groups				
	3) aldehydes as we	ll as alcoholic group	4) five - OH groups	6				
18.	When glucose reacts	with bromine water, th	ne major product is :					
	1) gluconic acid	2) saccharic acid	3) sorbitol	4) galactose				
19.	Common table suga	r is more formally descr	ribed as:					
	1) glucose	2) lactose	3) maltose	4) sucrose				
20.	The sugar present ir	n fruits is :						
	1) fructose	2) glucose	3) sucrose	4) galactose				
21.	The sugar present ir	n honey is :						
	1) sucrose	2) glucose	3) fructose	4) maltose				
22.	Which of the followi	ng is dextro rotatory?						
	1) Glucose	2) Fructose	3) Sucrose	4) None of these				
23.	A certain compound solution. The compo	0 0	vith ninhydrin, but pos	sitive test with Benedict's				
	1) protein	2) monosaccharide	3) lipid	4) amino acid				
24.	Colour of osazone of	of glucose is						
	1) red	2) brown	3) yello	4) orange				
25.	On heating with con	IC. H_2SO_4 sucrose gives:						
	1) CO	2) SO ₂	3) CO ₂	4) none of these				
26.	Invert sugar is							
	1) chemically inacti	ve form of sugar 2) e	equimolecular mixture	of glucose and fructose				
	3) mixture of gluco	se and sucrose	4) a variety of cane	sugar				
27.	The disaccharide ha	ving two glucose units	is:					
	1) lactose	2) maltose	3) sucrose	4) ribose				
28.	Glycogen is :							
	1) monosaccharide	2) disaccharide	3) trisaccharide	4) polysaccharide				
29.	An example of disac	charide made up of tw	,	, 1 ,				
	1) maltose	2) sucrose	3) lactose	4) none				
30.	Cane sugar is made	of						

BIOMOLECULES (CARBOSYDRATES)

	 5 membered glucose ring and 5 membered fructose ring 6 membered glucose ring and 6 membered fructose ring 							
	3) 6 membered glucose ring and 5 membered fructose ring							
	4) 6 membered galactose ring and 6 membered fructose ring							
31.	Raffinose on hydrolysis gives							
	1) Glucose2) Mannose	3) Fructose	4) Galactose.					
32.	Starch can be used as an indicator		:					
	 glucose in aqueous solution iodine in aqueous solution 	2) Proteins in blood4) urea in blood						
33.	The ultimate product of the hydro	'						
55.	1) glucose2) fructose	3) sucrose	4) None of these					
34.	Cellulose is a linear polymer of	J) sucrose	4) None of these					
54.	1) α -D-glucose 2) β -D-glu	1cose 3) α -fructose	4) None of these					
35.	Starch is polymer of :	kose of a nacione	i) None of these					
	1) fructose 2) glucose	3) lactose	4) None of these					
36.	Starch is changed into disaccharide	,	-)					
	1) diastase 2) maltase	3) lactase	4) zymase					
37.	Which is used for making rayon (a	rtificial silk)?						
	1) Starch 2) Cellulose	3) terephthalic acid	4) Adipic acid					
38.	After digestion, starch is converted	into:						
	1) glucose 2) fructose	3) lactose	4) sucrose					
39.	An essential constituent of plant is	:						
	1) cellulose 2) glucose	3) sugar	4) raffinose					
40.	Which of the following is/are solu	ble in water						
	1) Glucose 2) Cellulose	3) Fructose	4) Sucrose					
41.	Human digestive system does not	hydrolyse :						
	1) starch 2) maltose	3) glycogen	4) cellulose					
42.	Starch is made up of :							
	1) glucose and fructose	(2) amylose and amy	ylopectin					
	3) amylose and glycogen	4) amylopectin and	glycogen					

EXERCISE - II / ANSWER

WORK SHEET- IA

01) 2	02) 2	03) 3	04) 2	05) 1	06) 3	07) 3	08) 1	09) 2	10) 3
1) 234	2) 1	3) 123	4) 3	5) 34	6) 1	7) 3	8) 234	9) 4	10) 4
11) 1,2	12) 123	13) 2	14) 4	15) 2	16) 2	17) 4	18) 1	19) 4	20) 1
21) 3	22) 1,3	23) 2	24) 3	25) 123	26) 2	27) 2	28) 4	29) 1	30) 3
31) 134	32) 3	33) 1	34) 2	35) 2	36) 1	37) 2	38) 1	39) 1	40) 134
41) 4	42) 2								

BIOCHEMICALS (ACIDS, PROTEINS, ENZYMES, VITAMINS & NUCLIC ACID) EXERCISE - I

WORK SHEET - I

Amino acids & Proteins:

1.	The functional group	which found in amino	o acid is	
	1) -COOH group	2) – NH_2 group	3) –CH ₃ group	4) both 1 & 2
2.	The peptide linkage	is		
	I			
	1) – CH – COO – NH		2) – CH – CO – NH –	
	 3) -CH-CH,-CO-NI	4	 4) - CH - NH - NH -	-00-
3.	· 2	ng contains nitrogen ?		
	1) Fats	2) Proteins	3) Carbohydrates	4) Hydrocarbons
4.	The building unit of	all proteins are		
	1) monosaccharides	2) lipids	3) amino acids	4) primary amines
5.	A tripeptide contains	s peptide links		
	1) 3	2) 2	3) 6	4) 4
6.	The structural featur	e which distinguishes j	proline from α - amino	o acids is
	1) It is optically inact	ive	2) It contains aromati	ic group
	3) It is a dicarboxylic	acid	4) It is a secondary ar	nine
7.	Which of the followi	ng amino acids possess	ses a non-polar side cha	ain
	1) isoleucine	2) serine	3) cysteine	4) glutamic acid
8.	Which of following a	mino acids contains a	thiol group in the side	chain
	1) methionine	2) cysteine	3) valine	4) serine
9.	The amino acid whic	h contain a hydroxy gr	oup in the side chain	
	1) cysteine	2) glutamine	3) serine	4) leucine
10.	Essential amino acid	among the following is	5	
	1) Glycine	2) Tryptophan	3) Alanine	4) Proline
11.	Imino acid among th	ese compounds is		
	1) Serine	2) Proline	3) Tyrosine	4) Lysine
12.	The number of amine	o acids found in protei	ns that a human body c	an synthesize is
	1) 20	2) 10	3) 5	4) 14
13.	Which one of the foll	owing is not an essenti	al anino acid ?	
	1) Valine	2) Leucine	3) Lysine	4) Alanine
14.	Among the following	g the basic amino acid i	S	

BIOCHEMICALS (ACIDS, PROTEINS, ENZYMES, VITAMINS & NUCLIC ACID) 1) Glycine 2) Argenine 3) Proline 4) Cysteine 15. Which of the following statement is not correct? 1) proteins are polyamides formed from amino aicds 2) except glycine, all other amino acids show optical activity 3) natural proteins are made up of L-isomers of amino acids 4) in α amino acids, – NH₂ and – COOH groups are attached to different carbon atoms 16. For an aminoacid 'X', the isoelectric point is 6.1. Then 'X' is 1) Acidic amino acid 2) Basic amino acid 3) Neutral amino acid 4) Acidic or basic amino acid 17. Which of the following statement is not correct? 1) amino acid can exist as inner salt 2) each polypeptide has one C - terminal and other N - terminal 3) Enzymes are naturally occurring simple proteins 4) The union of two amino acids produces two peptide linkages 18. The primary structure of a protein tells about 1) 3D arrangement of all atoms 2) shape of poly peptide chain 3) specific sequence of amino acids 4) 3D arrangement of oligo peptide chains 19. The dipeptide glycylalanine contains 1) glycine as C-terminal residue 2) glycine as N-terminal residue 3) alanine as N-terminal residue 4) either (1) or (b)20. β -pleated structure of proteins is 1) Primary structure 2) Secondary structure 3) Tertiary structure 4) Quaternary structure 21. The back bone for different segments in a protein is in the following form 1) α -helix 2) α -pleated 3) coil 4) 1 or 3 22. The helical structure of proteins is stabilized by 1) H-bonding 2) Van der Waals' forces 3) ionic bond 4) peptide bond 23. Secondary structure of protein refers to 1) Mainly denatured proteins and structure of prosthetic groups 2) Three-dimensional structure, especially the bond between amino acid residues that are distinct from each other in the polypeptide chain 3) Linear sequence of amino acid residues in the polypeptide chain 4) Regular folding patterns of continuous portions of the polypeptide chain The bond that determines the secondary structure of a protein is 24. 1) Co-ordinate bond 2) Covalent bond 3) Hydrogen bond 4) Ionic bond 25. Which of the following is a globular protein? 1) Collagen 2) Myoglobin and Haemoglobin 4) Enzymes 3) Myosin 26. Tertiary structure of a protein will lead the polypeptide chains to get the following shapes 1) linear, octahedral 2) angular, tetrahedral 3) fibrous, globular 4) fibrous, planar

27. Maximum possible hydrogen bonds are present in

BIOC	CHEMICALS (ACII	DS, PROTEINS, ENZ	ZYMES, VITAMINS	5 & NUCLIC ACID)			
	1) 3.6 ₁₃ Helix	2) Keratin	3) Silk fibroin	4) β - D - fructose			
28.	Mark the wrong statement about denaturation of proteins 1) The primary structure of the protein does not change 2) Globular proteins are converted into fibrous proteins 3) Fibrous proteins are converted into globular 4) The biological activity of the protein is cancelled						
29.	called	-		heat or chemical agent is			
20	1) dehydration	2) denaturation	3) deamination	4) denitrogenation			
30.	 Addition of an electrolyte such as sodium dodecyl sulphate causes 1) renaturation of proteins since it stabilises hydrophobic interactions 2) denaturation of proteins since it disturbs hydrophobic interactions 3) renaturation of proteins since it maintains necessary isoelectric point 4) denaturation of proteins since it causes cleavage of O = C - N - H bonds 						
31.	Which of the followir 1) boiling egg 3) enzymatic action	ng is an example of "irre	eversible denaturation 2) change of amino ac 4) its synthesis	-			
32.	Enzymes are 1) Complex nitrogeno 3) Living organisms	us substances produced	l in living cells	2) Steroids 4) Dead organisms			
33.	The non-protein portion of a protein is called1) Functional2) Characteristic group 3) Prosthetic4) Enolic group						
34.	The prosthetic group	attached to the enzyme	es of vitamin B_{12} at the	time of reaction is			
	1) cellulose	2) 5 - deoxy adenosyl	3) β -methly aspartic a	cid 4) glutamic acid			
35.	The function of enzyr 1) transport oxygen 3) catalyse biochemic	nes in the living system al reactions	n is to 2) provide immunity 4) provide energy				
36.	Which one of the follo 1) Wool	owing is not a protein? 2) Nail	3) Hair	4) DNA			
37.	Enzymes belong to w	hich class of compound	ds?				
38.	 Polysaccharides Polynitro heterocyc Enzymes are made up 		2) Polypeptides 4) Hydrocarbons				
	1) Edible proteins 3) Nitrogen containin		2) Proteins with spec 4) Carbohydrates	ific structure			
39.	Regarding enzymes, incorrect statement is1) an enzyme is generally a protein3) enzyme gets deactivated during reactions4) enzyme gets activated during reactions						
40.	Water soluble vitami						
	1) A,D	2) E,K	3) D,E	4) C,B			
41.	Which one of the foll 1) Milk	owing is a source of vit 2) Liver	amin "A" ? 3) Yeast	4) Egg			

BIOC	HEMICALS (ACI	DS, PROTEINS, EN	ZYMES, VITAMINS	S & NUCLIC ACID)		
42.	Night blindness is du	ue to the deficiency of				
	1) Vitamin A	2) Hormones	3) Vitamin B ₁₂	4) Riboflavin		
43.	The chief source of v	itamin D is				
	1) Fish liver oil	2) Spinach	3) Cow dung	4) Citrous fruit		
44.	Antiricketic Vitamin					
	1) Vitamin A	2) Vitamin B ₁₂	3) Vitamin C	4) Vitamin D		
45.	Sterol, the basic unit of vitamin D, consists of 4 rings they are1) Three 6-carbon rings one five carbon ring2) Three 5-carbon rings one six carbon ring3) Four 6-carbon rings only4) Four 5-carbon rings only					
46.	Calcium absorption i	n intestine is the function	on of			
	1) Vitamin A	2) Vitamin B	3) Vitamin C	4) Vitamin D		
47.	Anti sterility factor w	hich is necessary for fe	tility of men and birth p	process of the female is		
	1) Vitamin E	2) Vitamin A	3) Vitamin C	4) Vitamin D		
48.	Deficiency of Vitami	n E leads to				
	1) Neurosis of heart r		2) Degeneration of la	crymal gland		
	3) Beri-Beri		4) Dermatitis	, 0		
49.	In all green leaves an	nd vegetables which of	the following vitamin i	s available ?		
	1) Vitamin A	2) Vitamin D	3) Vitamin K	4) Vitamin B ₁₂		
50.	Which of the following	ng vitamin is Naphtha	quinone derivative ?			
	1) A	2) B	3) D	4) K		
51.	Anti haemorrhagic v	itamin is				
	1) A	2) B	3) D	4) K		
52.	Deficiency of Vitami	n B ₂ leads to				
	1) Bow legs	2) Cheilosis	3) Pellegra	4) Vision loss		
53.	Which of the followi	ng vitamin is known a	s Nicotinic acid ?			
	1) B ₁	2) B ₂	3) B ₃	4) B ₅		
54.	Defficiency of the fol	lowing vitamin leads to	o pellagra			
	1) A	2) B ₂	3) B ₅	4) C		
55.	Which of the following	ng vitamin acts as impo	ortant component of NA	ADP (&) DPN ?		
	1) A	2) D	3) B ₅	4) B ₁₂		
56.	The following vitami 1) B ₁	n plays a role in transpo 2) B ₂	ortation of amino acids a 3) B ₃	across the cell membrane. 4) B ₆		
57.	Convulsion is due to	deficiency of vitamin				
	1) B ₁	2) B ₂	3) B ₅	4) B ₆		
58.	The cheaf source of v	vitamin "H" is				
	1) Yeast	2) Citrous fruit	3) Rice polish	4) Cereals		
59.	Deficiency of vitami	n "H" leads to				
	1) Dermatitis	2) Loss of hair				

ENZYMES VITAMINS & NUCLIC ACID) DIOCHEMICALS (ACIDS DD O TENIG

BIOC	IOCHEMICALS (ACIDS, PROTEINS, ENZYMES, VITAMINS & NUCLIC ACID)									
	3) Incre	ease of b	olood cl	nolestero	1		4) All of these			
60.	Which	of the f	ollowir	ng vitami	in involv	ves in t	n the synthesis of RNA ?			
	1) A			2) B			3) C		4) E	3 ₉
61.	Vitami	n B ₁₂ is	rich in							
	1) Sewa	age sluc	lge	2) Liver	of pig		3) Egg		4) a	all
62.	Format	tion of I	RBC is b	oecause o	of					
	1) Muc	oprotei	n	2) Vitar	nin B ₁₂		3) Vitam	in C	4) E	30th 1 & 2
63.	Ascorb	oic acid	resemb	les the st	ructure	of				
	1) Vita	min A		2) Gluc	ose		3) Cellul	ose	4) V	/itamin D
64.	Deficie	ncy of V	Vitamir	n"C" lea	ds to					
	1) gum	swellir	ıg				2) blead easily and teeth become loose			
	3) dela	y in wo	und he	aling			4) all			
65.	Dark red tongue, fissuring at corners of mouth and lips					are the sy	mptoms	s of the deficiency of		
	which vitamin									
	1) C			2) A			3) B ₂		4) I)
66.	Some examples are given in List - II and their typ List - I List				r type is g List - II	iven in Li	st - I			
	1) Lipio	đ					1) Histid	ine		
	2) Prote	ein					2) Ascor	bic acid		
	,	no acid					3) Cephalin			
	4) Horr						4) Insulin			
	5) Vita	mın A	В	С	D		А	В	С	D
	1)	л 4	D 1	2	5	2)	3	2	5	1
	3)	3	5	1	4	4)	3	4	1	2
67.	Vitami 1) Pyrio	n B ₆ is 1 doxine	known	as 2) Thia	mine		3) Tocop	herol	4)]	Riboflavin
68.	Vitami	n D is c	alled							
	,	orbic aci	id				,	erol or erg	ocalcife	rol
	3) Thia						4) Ribofla	avin		
69.		n E is a 10cobal		ed 2) Toco	pherol		3) Lactof	lavin	4) <i>A</i>	Ascorbic acid
70.				,	-	t soluł	ole in wate 3) B_2		4) I)
71.	<i>.</i>	st sourc	e of vit	$\frac{2}{D_1}$ amin C is	S		-,-2		-) -	-
		eliver oi		2) Egg y			3) Citrou	s fruits	4) F	Fish liver oil
72.	The deficiency of vitamin K causes									

BIOC	1) Haemorrhage		2) Lengthening time of blood clotting		
	3) Inflammation of	C	4) Both (1) and (b)		
73.	Milk contains vitar				
	1) A, D and E	2) A, B ₁₂ and D	3) C, D and K	4) B_{1}, B_{2} and D	
74.		nia is caused by the def	•		
	1) B ₁	2) B ₂	3) B ₆	4) B ₁₂	
75.	Deficiency of vitam	in E causes			
	1) Scurvy		2) Loss of appetite		
	3) Loss of sexual po	wer and reproduction	4) Beri Beri		
76.		ving is a fat soluble vita			
	1) Vitamin A	2) Riboflavin	3) Pyridoxine	4) Thiamine	
77.	The metal present i	n vitamin B ₁₂ is			
	1) Iron	2) Manganese	3) Cobalt	4) Magnesium	
78.	The deficiency of w	hich of the following vi	tamins adversely affec	ts eye sight ?	
	1) A	2) D	3) B ₁₂	4) E	
79.	Match items List - I List - I	with those in List - II fr	om the combinations s List - II	hown:	
	I. Saliva		A. Genetic material		
	II. Nucleic acid		B. Digestive enzyme	2	
	III. Ascorbic acid		C. Antibiotic D. Sex hormone		
	IV. Testosterone		E. Vitamin		
	1) I - B; II - A; III - C;	IV - E	2) I - B; II - A; III - E; IV - D		
	3) I - A; II - B; III - E;	IV - C	4) I - C; II - B; III - A;	IV - D	
80.	Match List - I with I List - I	List - II and select the co	rrect answer using the List - II	codes given below.	
	I.Anti-beriberi facto	r	A. Vitamin C		
	II. Pancreas		B. Glycerides		
	III. Palm oil		C. Vitamin B ₁		
	IV. L (+)-Ascorbic a		D. Insulin		
	1) I - C; II - D; III - B;		2) I - C; II - D; III - A;		
81.	3) I - A; II - B; III - D Match List - L (name		4) I - A; II - B; III - C;	ease) and select the correct	
01.	answer using the co	,			
	List - I		List - II		
	I) Ascorbic acid		1) Beri-beri		
	II) Retinol		2) Cracked lips		
	III) Riboflavin		3) Scurvy		

IV) Thiamine 4) Night blindness 1) I - B; II - A; III - C; IV - D 2) I - A; II - B; III - C; IV - D 3) I - D; II - C; III - B ; IV - A 4) I - C; II - D; III - B; IV - A 82. Match the following List I List II I) Riboflavin 1) B_1 II) Pantothenic acid 2) B₂ III) Niacin 3) B₃ 4) B₅ IV) Thiamine The correct match is А В С D А В С D 1) IV Ι III П 2) IV Ш Ι П Ш IV П IV П Ш 3) Ι 4) Ι 83. Which of the following constitutes the genetic material of the cell? 1) Nucleic acids 2) Proteins 3) Lipids 4) Carbohydrates 84. Nuclic acids are called acids mainly because of the presence of 1) -COOH group 2) -OH group of sugar unit 3) -OH group of the heterocyclic base 4) -OH group of phosphate unit 85. Which of the following is not a pyrimidine base 1) Uracil 2) Thymine 3) Cytosine 4) Guanine 86. The following does not belong to either purines or pyrimidines 1) Tryptophan 2) Cytosine 3) Uracil 4) Adenine 87. Purine without ketonic group is 1) adenine 2) adenosine 3) cytidine 4) thymidine 88. The purine base present in RNA is 1) Guanine 2) Thymine 3) Cytosine 4) Uracil 89. 6 - amino purine is 1) Adenosine 2) Adenine 3) Cytosine 4) Thymine The bases that are common in both RNA and DNA are 90. 1) adenine, guanine, cytosine 2) adenine, guanine, thymine 3) adenine, uracil, cytosine 4) guanine, uracil, thymine 91. The pyrimidine bases present in RNA are 1) Cytosine and Thymine 2) Thymine and Uracil 3) Cytosine and Uracil 4) Uracil and Guanine 92. Adenosine monophosphae (AMP) is a 1) nucleotide 2) nucleoside 3) insecticide 4) antibacterial 93. An example for N - glycoside is 4) Cytidine 1) Adenine 2) Guanine 3) Cytosine

BIOCHEMICALS (ACIDS, PROTEINS, ENZYMES, VITAMINS & NUCLIC ACID)

94.	•	DS, PROTEINS, EN	DNA?	& NUCLIC ACID)			
	1) adenine	2) ribose	3) cytosine	4) guanine			
95.	A nitrogenous base	which is present in the	structure of RNA but n	ot in DNA is			
	1) Uracil	2) Thymine	3) Cytosine	4) Guanine			
96.	The pentose sugar i	n DNA and RNA has					
	1) Open chain struct	ure	2) Pyranose structure				
	3) Furanose structur	e	4) None of the above				
97.	Adenosine is an exa	mple of a					
	1) Nucleotide	2) Nucleoside	3) Purine base	4) Pyridine base			
98.	Nucleoside on hydrolysis gives						
	1) Pentose sugar and purine base						
	2) Pentose sugar, ph	osphoric acid, purine c	or pyrimidine base				
	3) Pentose sugar and	d a heterocyclic base					
		and phosphoric acid					
99.		sequence is represente		_			
	1) Phosphate - base	•	2) Sugar - base - phos	-			
100	3) Base - sugar - pho	1	4) Base - phosphate -	0			
100.			to one another through				
101.	1) Hydrogen bond	2) Peptide bond bhosphate linkage is ger		4) Phosphate groups			
101.	1) C - 1 of sugar	2) C - 2 of sugar	3) C - 5 of sugar	4) N - of base			
102.	, 6	, 0	nd phosphate ester link	,			
		tively of the sugar mole		0			
	0	tively of the sugar mole					
		tively of the sugar mole					
	4) C'_{5} and C'_{1} respec	tively of the sugar mole	cule				
103.	Adenine pairs with						
	1) two hydrogen bor		2) one hydrogen bond				
	3) three hydrogen bo		4) four hydrogen bonds				
104.	<i>v</i> 1	-	all turn of the DNA dou				
105	1)4	2) 6	3) 8	4) 10			
105.	The base present in O			NH ₂			
	N N N		NH	N			
	1) N	2)N	3)				
106.	N Hydrolysis of adence	osine triphosphate invo	lves rupture of	H			
	1) Base-sugar bond		2) Sugar-phosphate b	ond			
	3) P-O-P bond		4) P–N–P bond				
107.	The backbone of a n	ucleotide strand contair	ns the following sequence	ce of arrangement			

BIOCHEMICALS (ACIDS, PROTEINS, ENZYMES, VITAMINS & NUCLIC ACID)

107. The backbone of a nucleotide strand contains the following sequence of arrangement

BIOCHEMICALS (ACIDS, PROTEINS, ENZYMES, VITAMINS & NUCLIC ACID)					
	1) Base-Sugar	2) Sugar-Phosphate	3) Base-Phosphate	4) Base ₁ -Base ₂	
108.	Number of base pairs present in total DNA of human cell (human genome) is around				
	1) 2.9×10^5	2) 2.9 × 10^8	3) 2.9×10^7	4) 2.9 × 10 ⁹	
109.	AT/GC value for human beings is				
	1) 1.52	2) 1.25	3) 0.93	4) 1	
110.	The ratio of number of A+G to the number of C + T in DNA of E. Coli species is				
	1)1:1	2) 0.93	3) 1.52	4) 1.8	
111.	1 0	couplings between base units of DNA is through :			
	1) Hydrogen bonding		2) Electrostatic bonding 4) Vander Waals forces		
440	3) Covalent bonding 4) Vander Waals forces		es		
112.	 The main role of DNA in a living system is It is the structural material of cell walls It is an enzyme It carries the hereditary characteristics of the organism It participates in cellular respiration 				
113.	Synthesis of identical copies of DNA is called				
	1) transcription	2) replication	3) translation	4) reverse transcription	
114.	Which of the following statements about RNA is incorrect ?				
	1) It has a single strand 2) It does not undergo replication				
	3) It contain any pyridimine base 4) It contro			hesis of proteins	
115.	If the sequence of bases in DNA is TGAACCCTT, the sequence of bases in m-RNA is				
	1) ACUUGGGAA	2) TCUUGGGTT	3) ACUUCCCAA	4) TUCUGTUTU	
116.	The synthesis of m R	NA will be in the direc	tion of		
	1) $3^1 \rightarrow 5^1$	2) $5^1 \rightarrow 3^1$	3) by both	4) none	
117.	The genetic information of a human cell contained in of chromosomes				
	1) 46 pairs	2) 23 pairs	3) 46	4) 23	
118.	Which of the following	ng processes is "semi c	onservative" ?		
	1) translation	2) transcription	3) replication	4) reverse transciption	
119.					
	latter in the presence	•			
	1) RNA ligase	2) DNA ligase	3) r-RNA	4) m-RNA	
120.	 Which of the following statements about DNA is not correct ? 1) It has a double helix structure 2) It undergoes replication 3) The two strands in a DNA molecule are exactly similar 				
101	4) It contains the pentose sugar, 2-deoxyribose The RNAs which take part in the synthesis of proteins is/are				
121.		1	-	4) A 11 th - th 1	
	1) m-RNA	2) r- RNA	3) t-RNA	4) All the three above	

122.	Each codon consists	of nitrogen base	S			
	1) four	2) twenty	3) three	4) sixty four		
123.	Transcription is a pro	ocess when				
	1) messenger RNA is	formed from DNA	2) ribosome RNA is fo	ormed from DNA		
	3) protein is synthesis	sed at the ribosomes	4) none of the above			
124.	The chemical change in DNA molecule that could lead to synthesis of protein with an altered amino acid sequence is called					
	1) Replication	2) Lipid formation	3) Cellular membrane	e 4) Mutation		
125.	The relationship between the nucleotide triplets and the amino acids is called					
	1) Translation	2) Transcription	3) Replication	4) A genetic code		

EXERCISE - I /ANSWERS

WORK SHEET - I

1) 4	2) 2	3) 2	4) 3	5) 2	6) 4	7) 1	8) 2	9) 3	10) 2
11) 2	12) 2	13) 4	14) 2	15) 4	16) 3	17) 4	18) 3	19) 2	20) 2
21) 4	22) 1	23) 4	24) 3	25) 2	26) 3	27) 1	28) 4	29) 2	30) 2
31) 1	32) 1	33) 3	34) 2	35) 3	36) 4	37) 2	38) 2	39) 4	40) 4
41) 2	42) 1	43) 1	44) 4	45) 1	46) 4	47) 1	48) 1	49) 3	50) 4
51) 4	52) 2	53) 4	54) 3	55) 3	56) 4	57) 4	58) 1	59) 4	60) 4
61) 2	62) 2	63) 2	64) 3	65) 3	66) 3	67) 1	68) 2	69) 2	70) 4
71) 3	72) 4	73) 4	74) 4	75) 3	76) 1	77) 3	78) 1	79) 2	80) 1
81) 4	82) 4	83) 1	84) 4	85) 4	86) 1	87) 1	88) 1	89) 2	90) 1
91) 3	92) 1	93) 4	94) 2	95) 1	96) 3	97) 2	98) 3	99) 3	100) 4
101) 3	102) 3	103) 1	104) 4	105) 4	106) 3	107) 2	108) 3	109) 1	110) 1
111) 1	112) 3	113) 2	114) 3	115) 1	116) 2	117) 2	118) 3	119) 2	120) 3
121) 4	122) 3	123) 1	124) 4	125) 4					

WORK SHEET- IA

01.	The simplest amino acid is1) Crysteine2) alanine3) glycine4) histidine							
02.	Amino acids usually exist in the form of Zwitter ions. This means that they consist of							
	 the basic NH₂ group and acidic COOH group the basic NH₃⁺ group and the acidic COO⁻ group basic COO⁻ group and acidic NH₃⁺ group no acidic or basic group as such 							
03.	Consider in the compound given : H_3^{\oplus} The correct order of acidic nature							
	of the positions X, Y, Z is $C_{(X)}^{(Y)}$ 1) $Z > X > Y$ 2) $X > Y > Z$ 3) $X > Z > Y$ 4) $Y > X > Z$							
04.	One of the the essential alpha amino acids is							
~-	1) Iysine 2) glycine 3) serine 4) proline							
05.	The pH value of a solution in which a polar amino acid doesn't migrate under the influenceof an electric field is called1) isoelectronic point2) isoelectric point3) neutralisation point4) None of these							
06.	An amino acid which contain secondary amine group is							
00.	1) serine2) proline3) tyrosine4) lysine							
07.	The structural feature which distinguishes proline from natural $ lpha - amino$ acids is that							
	1) proline is optically inactive2) proline contains an aromatiac group3) proline is a dicaraboxylic acid4) proline is a secondary amine							
08.	Which amino acid is achiral?1) Alanine2) Valine3) Proline4) None of these							
09.	 Which is not a true statement? 1) α -carabon atom of α -amino acids is asymmetric except in glycine 2) All proteins contain α -amino acids of L-configuration 3) Human body can synthesize all proteins they need 4) At pH=7 both amino group and carboxylic group exists in the ionised form 							
10.	The acid showing salt-like character in aqeous solutions is 1) acetic acid 2) benzoic acid 3) formic acid 4) α -amino acetic acid							
11.	Which of the following structure represents the peptide chain?							
	$1) \begin{array}{c} \stackrel{H}{-N} \stackrel{L}{-N} $							
12.	All common amino acids except one react with cold nitrous acid (HNO ₂) and evolve nitrogen							

BIOCHEMICALS (ACIDS, PROTEINS, ENZYMES, VITAMINS & NUCLIC ACID) gas, that amino acid is 1) cysteine 2) proline 3) histidine 4) None of these 13. The amino acid cysteine often forms a disulphide bond with another nearby cysteine. The reaction is best classified as 1) an addition 2) a substitution 3) an oxidation 4) a reduction 14. Which of the following is not an amino acid? 2) Alanine 3) Histidine 1) Glycine 4) Benzidine 15. Peptides on hydrolysis gives 1) amines 2) amino acids 3) ammonia 4) alcohols Peptides are composed of amino acids joined by amide bonds. Which of the following 16. statemaents is not correct? 1) Amide groups are more resistant to hydrolysis than are similar ester groups 2) p- π resonance stabilises the amide bond 3) Stable conformations of peptide are restricted to those having planar amide groups 4) Amide groups does not participate in hydrogen bonding 17. A tripeptide is composed equally of L-valine, L-tyrosine and L-alanine (one molecule of each). How many isomeric tripeptides of this kind may exist? 1) Three 2) four 3) Six 4) Eight 18. Threonine is (2S, 3R)-2-amino-3-hydroxybutanoic acid. Which of the following is threonine? 1) $\begin{array}{c} H & \xrightarrow{H_2N} & H_2 \\ HO & & H \end{array}$ b) $\begin{array}{c} H_2N & \xrightarrow{H} & H \\ HO & & H \end{array}$ 3) $\begin{array}{c} H_2N & \xrightarrow{H} & H \\ H & & OH \end{array}$ 6) $\begin{array}{c} H & \xrightarrow{H_2N} & H \\ H & & OH \end{array}$ 6) $\begin{array}{c} H & \xrightarrow{H} & H \\ H & & OH \end{array}$ 6) $\begin{array}{c} H & \xrightarrow{H} & H \\ H & & OH \end{array}$ 6) $\begin{array}{c} H & \xrightarrow{H} & H \\ H & & OH \end{array}$ 6) $\begin{array}{c} H & \xrightarrow{H} & H \\ H & & OH \end{array}$ 7) $\begin{array}{c} H & \xrightarrow{H} & H \\ H & & OH \end{array}$ 7) $\begin{array}{c} H & \xrightarrow{H} & H \\ H & & OH \end{array}$ 7) $\begin{array}{c} H & \xrightarrow{H} & H \\ H & & OH \end{array}$ 7) $\begin{array}{c} H & \xrightarrow{H} & H \\ H & & OH \end{array}$ 7) $\begin{array}{c} H & \xrightarrow{H} & H \\ H & & OH \end{array}$ 7) $\begin{array}{c} H & \xrightarrow{H} & H \\ H & & OH \end{array}$ 7) $\begin{array}{c} H & \xrightarrow{H} & H \\ H & & OH \end{array}$ 7) $\begin{array}{c} H & \xrightarrow{H} & H \\ H & & OH \end{array}$ 7) $\begin{array}{c} H & \xrightarrow{H} & H \\ H & & OH \end{array}$ 7) $\begin{array}{c} H & \xrightarrow{H} & H \\ H & & OH \end{array}$ 7) $\begin{array}{c} H & \xrightarrow{H} & H \\ H & & OH \end{array}$ 7) $\begin{array}{c} H & \xrightarrow{H} & H \\ H & \xrightarrow{H} & H \\ H & \xrightarrow{H} & OH \end{array}$ 7) $\begin{array}{c} H & \xrightarrow{H} & H \\ H & \xrightarrow{H} & H \\ H & \xrightarrow{H} & OH \end{array}$ 7) $\begin{array}{c} H & \xrightarrow{H} & H \\ H & \xrightarrow{H} & H \\ H & \xrightarrow{H} & OH \end{array}$ 7) $\begin{array}{c} H & \xrightarrow{H} & H \\ H & \xrightarrow{H} & H \\ H & \xrightarrow{H} & OH \end{array}$ 7) $\begin{array}{c} H & \xrightarrow{H} & H \\ H & \xrightarrow{H} & \xrightarrow{H} & H \\ H & \xrightarrow{H} & H \\ H & \xrightarrow{H} & \xrightarrow{H} & \xrightarrow{H} & H \\ H & \xrightarrow{H} & \xrightarrow{H} & \xrightarrow{H} & \xrightarrow{H} & \xrightarrow{H} & H \\ H & \xrightarrow{H} & \xrightarrow$ CH₃ 19. The methyl and ethyl esters of many amino acids are sold commercially as their hydrochloride salts. Why are these derivatives not sold in the form of the neutral amino esters? 1) The salts are solids, whereas many amino esters are liquids and are difficult to package 2) Rearrangement to the N-alkyalmino acid takes place 3) Polymerisation takes place by acylation of amine groups by an ester 4) An extra step in their preparation would be required

- 20.Which of the following is used in a colour test of amino acid?
1) Ninhydrin2) Cyanogen bromide
3) Trypsin4) Chymotrypsin
- Isoelectric point is1) the pH at which all molecular species are ionised and that carry the same charge

2) the pH at which all molecular species are neutral and uncharged

3) the pH at which half the molecular species are ionised (charge4) and other half unionised4) the pH at which negataively and positively charged molecular species are present in equal concentration

COOH $H_2N \rightarrow H$ $CH_2 \rightarrow H$ $H_3i = 1.8, pK_{a2} = 9.2 and pK_{a3} = 6.0.$ The isoelectric point, PI of

histidine is likely to be

22.

1) in between 1.8 and 6.0	2) in between 6.0 and 9.2
3) below 1.8	4) above 9.2

23. Glutamic acid, $H_2N - CH(CH_2CH_2COOH)$.COOH has $pK_{a1'}$ (α -COOH) = 2.2, $pK_{a2}(\alpha - NH_3) = 9.8$ and $pK_{a3}(R \text{ group COOH}) = 4.3$. The isoelectric point of glutamic acid is 1) 5.9 2) 7 3) 10.2 4) 3.25

24. Which of the following is the major solute species in a solution of lysine at pH = 10.5(pI=9.6)?

25. Which of the following is the major solute species in a solution of glutamic acid at pH=4.3?

26. In an electric field, if an amino acid migrates towards cathode, the pH of the solution is said to be

1) less than pI 2) more than pI 3) equal than pI 4) 7 (seven)

27. Deamination of proteins occurs mainly in the

2) liver

1) small intestine

3) spleen

4) pancreas

28. During the process of digestion, the proteins present in food materials are hydrolysed to amino acids. The two enzymes are involved in the process.

Proteins $\xrightarrow{\text{Enzyme}-A}$ polypeptides $\xrightarrow{\text{Enzyme}-B}$ amino acids are respectively.

- 1) pepsin and trypsin 2) invertase and zymase
- 3) amylase and maltase 4) diastase and lipase

29. The helical structure or a secondary structure of proteins is stabilised by

1) peptide bonds 2) dipeptide bonds 3) H-bond 4) ether bonds

30. Proteins give

- 1) a violet colour with alkaline $CuSO_4$ solution
- 2) a purple colour on boiling with dilute ninhydrin solution
- 3) yellow colour on boiling with HNO₃

4) All the above

31. The destruction of the biological nature and activity of proteins by heat or chemical agent is called

1) dehydrataion 2) denaturation 3) denitrogenation 4) deamination

32. Which of the following is not an important secondary structural feature in large peptides and proteins?

1) The α -helix 2) The β -turn 3) Chair conformation 4) The β -pleatead sheet

The primary structure of protein is based upon the 33. 1) hydrogen bonding 2) van der Waal's attraction 3) ionic bonding 4) covalent bonding Which of the following forces are responsible for tertiary structure? 34. 1) Ionic bonding 2) H-bonding 3) Covalent bonding 4) Disulphide crosslinkage 35. Denaturation is the alteration or loss of the unique three-dimensional structure. Which of the following, can cause denaturation? 1) UV radiation 2) Changes in pH 3) Addition of heavy metals 4) Addition of alcohol or detergents

WORK SHEET- IIB

- 46. Match the following: COLUMN I
 (1) CH₃-CH(OH)-CHO
 - (2) $HOCH_2 CH(OH).CHO$
 - (3) $CH_3 CH(NH_2).COOH$
 - (4) $Ph.CH(CH_2NH_2).COOH$
- 47. Match the following: COLUMN I

соон

COLUMN II

- (P) Carbohydrate
- (Q) Amino acid
- (R) Positive Tollen's test
- (S) Ninhydrint test

COLUMN II

(P) Optically active amino acid

(Q) Suitable for van slyke estimation

(R) Neutral amino acid

(4) H₂N-H CH₂COOH

(S) Basic amino acid

Aspartic acid

EXERCISE - II / ANSWERS

WORK SHEET- IA

1) 3	2) 4	3) 1	4) 4	5) 1	6) 4	7) 2	8) 1	9) 4	10) 4
1) 3	2) 3	3) 2	4) 1	5) 2	6) 2	7) 4	8) 4	9) 4	10) 4
11) 3	12) 2	13) 3	14) 4	15) 1	16) 4	17) 3	18) 3	19) 3	20) 1
21) 4	22) 2	23) 4	24) 4	25) 2	26) 1	27) 1	28) 1	29) 3	
31) 4	31) 2	32) 3	33) 4	34) 2	35) 24	4			

WORK SHEET- IIB

PRINCIPALS RELATED TO PRACTICAL CHEMISTRY

Section (A): Catalytic hydrogenation and Monohalogenation

- Which of the following hydrocarbons give same product on hydrogenation? 1.
 - (A) 2-Methylhex-1-ene & 3-Methylhex-3-ene
 - (B) 3-Ethylhex-1-en-4-yne & 2-Methylhept-2-en-4-yne
 - (C) 3-Ethylcycloprop-1-ene & 1,2-Dimethylcycloprop-1-ene
 - (D) 2-Methylbut-2-ene & 3-Methylbut-1-ene
- Number of moles of hydrogen will required for complete hydrogenation of one mole of follow-2. ing compound ?

(A) 6

(A) a

(C) 5

(D) 3

(B) 7 3. If 1 mole H₂ is reacted with 1 mole of the following compound, which double bond will be hydrogenated?

- (B) b (C) c (D) d
- 4. Only two isomeric monochloro derivatives are possible for -
 - (A) n-Pentane (B) 2,4-Dimethyl pentane
 - (A) n-Pentane (D) 2,3-Dimethyl butane
- 5. The number of possible monochloro derivatives of 2,2,3,3-Tetramethylbutane is -
 - (A) 2(B) 3 (C) 4 (D) 1
- Which of the following alkene gives four monochloro (structural isomers) products after hy-6. drogenation ?
 - (A) Pent-2-ene

- (B) 2-Methylbut-2-ene (D) 2,3-Dimethylbut-2-ene
- (C) 3-Methylhex-2-ene 7. Which of the following compound will give four monochloro (structural) products on monochlorination?

8. How many products (structural isomers only) are formed by monochlorination of given compound?

(A) 4 (B) 3 (C) 5 (D) 6

Section (B) : Ozonolysis reactions

 $X \xrightarrow{O_3/Zn}$ 9. H₂/Ni → Y. The IUPAC name of compound Y is : (A) 2-Cyclohexylbutane (C) Butylcyclohexane

- (B) 1-Methylpropylcyclohexane
- (D) 1-Cyclohexylbutane

10. An alkene give two moles of HCHO, one mole of CO_2 and one mole of $CH_3 - C - CHO$ on ozonolysis. What is structure of alkene?

(A)
$$CH_2 = CH - CH - CH = CH_2$$

 I_{CH_3}
(B) $CH_2 = CH - CH - CH = CH_2$
 I_{CH_3}
(C) $CH_3 - C = CH - CH = CH_2$
 I_{CH_3}
(D) $CH_2 = C = CH - CH = CH_2$
 I_{CH_3}
(D) $CH_2 = C = CH - CH = CH_2$
 I_{CH_3}

11. An unknown compound on ozonolysis to give acid C_2 and a ketone CO. From this information, identify structure of unknown compound.

(C) (CH₃)₂CHCH=CHCH₂CH₃

(B)
$$CH_{3}CH_{2}$$
 C= CHCH₂CH₃

(D) CH₃CH₂CH₂CH₂CH₂CH₃

12. The chemical reactions of an unsaturated compund 'M' are given below. Determine the possible structural formula of 'M'

13. When one mole of the given compound reacts with sodium metal then how many moles of H gas will release?

(A) 1 mole

(B) 1.5 mole

(C) 2 mole

(D) 0.5 mole

- (C) Molisch's reagent
 - 377

22. The following two compounds I and II can be distinguished by using reagents-

Its structure can be (A) $CH_2 = CH - (CH_2)_2 - C - CH_2OH$ (B) $OHC - (CH_2)_2 - CH = CH - COOH$ (C) $\bigcirc OH$ (D) $\bigcirc OH$ (D) $\bigcirc OH$ (D) $\bigcirc OH$

- A unsaturated hydrocarbon (P) on reductive ozonolysis produces a dicarbonyl compound (Q).
 (Q) forms precipitate with 2,4-DNP but no reaction with Tollen's reagent. Identify the structure of (P).
- 30. An organic compound C_8H_8O gives positive 2,4-DNP test and positive iodoform test. What is the common name of compound amongst the following which satisfies this criteria?
 - (A) Benzophenone

- (B) Acetophenone
- (C) Benzylalcohol
- (D) para-ethyl phenol

Section (F) : Test for acids, esters and amides

31. An oragnic compound X ($C_4H_8O_2$) gives positive test with NaOH and phenolpthalein. Structure of X will be :

(A)
$$CH_3 - CH_2 - CH_2 - CH_3 - C - CH_3$$

(B) $CH_3 - C - C - CH_3$
(C) $CH_3 - C - C - C_2H_5$
(D) $CH_3 - C - OCH_3$
(D) $CH_3 - C - OCH_3$
(D) $CH_3 - C - OCH_3$

32. Which of the following would produce effervescence with sodium bicarbonate?

33. Which of the following compound will give smell of NH_3 with conc. NaOH ?

34. An aromatic organic compound with 68.9% of C and 4.92% of H gives CO_2 with NaHCO₃. The organic compound is :

35. C₅H₁₀O₂ → Hydrogen gas (P) Na → Hydrogen gas

Find the isomer of P which fails to give above tests ?

Section (G) : **Test for amines**

- 36. Which of the following will not give positive test with CHCl₃ / KOH ?
 - (A) CH₃–CH₂–NH–CH₃

СН₃ | (D) СН₃ – СН– NН₂

(B) 2,4-dimethylaniline

(D) N-methylaniline

(B) CH₃-CH₂-CH₂-NH₂

- 37. A positive carbylamine test is given by :
 - (A) N,N-dimethylaniline
 - (C) N-methyl-o-methylaniline
- 38. The Hinsberg's method is used for :
 - (A) preparation of primary amines
 - (C) preparation of tertiary amines

- (B) preparation of secondary amines
- (D) separation of amine mixtures
- 39. Which of the following amine does not react with Hinsberg's reagent ? (A) $CH_3CH_2NH_2$ (B) $(CH_3CH_2)_2NH$ (C) $(CH_3CH_2)_3N$ (D) All of these

Section (H) : Qualitative analysis of elements

- 40. In the Lassaigne's test, one of the organic compounds gave red colour with FeCl₃. Compound can be :
- $(A) Na_2S (B) NH_2CSNH_2 (C) C_6H_5Cl (D) NaCN$ 41. The compound that does not give a blue colour in Lassaigne's test is
 (A) C_6H_5-NH_2 (B) CH_3CONH_2 (C) NH_2-NH_2 (D) C_6H_5-NO_2
- 42. Nitrogen containing organic compound when fused with sodium metal forms: (A) NaNO, (B) NaCN (C) NaNH, (D) NaNC
- 43. The sodium extract of an organic compound on acidification with acetic acid and addition of lead acetate solution gives a black precipitate. The organic compound contains(A) Nitrogen
 (B) Halogen
 (C) Sulphur
 (D) Phosphorus
- 44. The sodium extract of an organic compound on treatment with FeSO_4 solution, FeCl_3 and HCl gives red solution. The Red colour of : (A) Fe(CN)₂ (B) Fe₁[Fe(CN)₂]₂ (C) [Fe(SCN)]²⁺ (D) FeS
- (A) $Fe(CN)_3$ (B) $Fe_4[Fe(CN)_6]_3$ (C) $[Fe(SCN)]^{2+}$ (Section (I) : Quantitative analysis of elements

45. In Kjeldahl; s method, nitrogen present in the sample is estimated as :

(A) N_2 (B) NH_3 (C) NO_2 (D) None of these

46.		is method for the estimat	•	
	(A) Sodium	(B) Magnesium	(C) Mercury	(D) Copper
47.	The dessicants used for a hydrogen are:	absorbing water during Lie	ebig; s method for estimation	tion of carbon and
	(A) CaCl ₂	(B) Na_2SO_4	(C) $MgSO_4.7H_2O$	(D) Mg(CO)
48.	The equivalent weight of $\frac{1}{2}$	2 1	(0) 1180 04.1120	$(2)^{1/1}B(210_4)_2$
	(A) Molecular weight \times	-	(B) Molecular weight	× basicity
	(C) Molecular weight/ba	-	(D) Molecular weight/	
49.	Liebig test is used to esti	•		ucially
17.	(A) H	(B) C	(C) C and H both	(D) N
50.		nation of halogen, 0.15 g of	. ,	· · /
50.		f bromine in the compoun		
	(A) 18.05	(B) 53.19	(C) 63.10	(D) 34.04
51.		aving molecular mass 60 is		
51.	N = 46.67%. The compo	-	Tould to contain $C = 20$	70, 11 = 0.0770 and
	(A) CH_3NCO	und 15	(B) CH_3CONH_2	
	$(C) (NH_2)_2CO$		(D) $CH_3CH_2CONH_2$	
52.	22	nas 85% carbon and vapou		sible formula of the
52.	hydrocarbon will be.	as 05% carbon and vapou	i density of 26. The poss	
	•	(B) $C_{2}H_{4}$	(C) $C_{2}H_{2}$	(D) $C_4 H_8$
53.		t of nitrogen in an organic		
55.	(A) Berthelot method	(B) Beilstein method	(C) Lassaigne test (D)	
54.		timation for nitrogen is no	· · · · ·	Rjeldani s nictilod
J - .	(A) Acetamide	(B) Aliphatic amines		(D) Amino acids
Sectio	n (A) : I st Group	(b) ruplate aniles	(C) Diazo compounds	(D) / Millio delds
55.	· · ·	h KI solution to give yello	w precipitate which on a	ldition of excess of
55.		on (6 M) of KI dissolves fo		
	is :			
	(A) Hg_2^{2+}	$(B) Ag^+$	(C) Pb^{2+}	(D) Cu^{2+}
56.		of a solution of a single s		
	1 1	ammonia solution, one for	1 1	e with dilute NaCl
		a black precipitate with H		
	(A) $AgNO_3$	(B) $Pb(NO_3)_2$	(C) $\text{Hg(NO}_3)_2$	(D) $Mn(NO_3)_2$
57.	Consider the following o	bservation :		
	M^{n+} + HCl (dilute)	white precipitate $\xrightarrow{\Lambda}$ w	vater soluble $\underline{\operatorname{CrO}_{4}^{2-}}$ ye	ellow precipitate.
	The metal ion M ⁿ⁺ will b		,	
	(A) Hg^{2+}	$(B) Ag^+$	(C) Pb ²⁺	(D) Sn^{2+}
58.		h \dot{NH}_4OH solution the cor	()	
	(A) Hg_2Cl_2	(B) $Hg(NH_2)Cl$	(C) Hg(NH ₃) ₂ Cl	(D) HgCl ₂ .NH ₃
59.	Consider the following e	-	() 8(3/2	
		$Ag(NH_3)_2]^+ + CI^-$ White I	opt of AgCl appears on a	dding
	(A) NH ₂	(B) aq. NaBr		
60.	AgCl with NH_3 forms a d	-	(C) aq. HNO_3	(12) aq. 111_4
00.	(A) $[Ag(NH_3)_2]Cl$		(C) $[Ag(NH_2)_2]Cl$	(D) Ag mirror
	(···) [·································	$(\mathbf{D})^{T}\mathbf{G}^{T}\mathbf{O}_{3}$		

Section (B) : IIA Group

61.		ity appears while passing	H_2S gas even in slightl	y acidic medium in
	the absence of II group ra			
	(A) sulphur is present in			
		precipitated as sulphides.		
		$_{2}$ S gas by some acid radica		
		precipitated as hydroxide		
62.		Cl precipitates II group but	t not IV group because :	
	(A) HCl activates H_2S			
	(B) HCl increases concer			
	(C) HCl decreases conce			
	(D) HCl lowers the solut			
63.		nCl2 is added to a solution		white precipitate is
	-	precipitate is due to the fo		
	(A) Hg_2Cl_2	(B) $SnCl_4$	(C) Sn	(D) Hg
64.		H_4OH is added to an aque		sulphate an intense
		This is due to the formation		
		(B) $Cu(OH)_2$		$(D) (NH_4)_2 SO_4$
65.		ed by the action of H_2S on		
	(A) cupric chloride	(B) cadmium chloride		(D) ferric chloride.
66.		wing salts will produce of	clear and transparent of	original solution in
	2M HCl?			
		(B) $Pb(CO_3)$		
67.		poured into a large volum	e of water the white pre-	cipitate produced is
	of:			
60	(A) BiO.OH	(B) $\operatorname{Bi}_2 \operatorname{O}_3($	C) BiOCl	(D) Bi(OH) ₃
68.		pairs the precipitates are re	ed and black coloured re	spectively and both
	precipitates are soluble in			
60	(A) HgI_2 , $\operatorname{Hg}_2\operatorname{I}_2$	(B) HgI_2 , BiI_3		
69.		solution (i.e. O.S) on mi		tion gives a yellow
		eous sodium hydroxide. T		$(\mathbf{D}) 1 1$
C 4 ¹	(A) mercury	(B) iron	(C) silver	(D) lead
	n (C) : IIB Group	untol outubido io polublo in	VAC (million and and	an autobida) .
70.	_	netal sulphide is soluble in	=	-
70	(A) HgS When white emotelling n	(B) PbS	(C) $\operatorname{Bi}_2 S_3$	(D) Sb_2S_3
72.		recipitate of magnesium an		
	-	cipitate of silver arsenate	is formed. The colour o	r precipitate is :
	(A) Yellow (C) White	(B) Brownish red		
Section	(C) White $(\mathbf{D}) \cdot \mathbf{H} \mathbf{r} \mathbf{d} \mathbf{C}$ roup	(D) Brownish black		
73.	n (D) : IIIrd Group When NH Cliss added to	a solution of NU OU .		
75.	When NH_4Cl is added to (A) the disconsistion of N			
	(A) the dissociation of N (B) the concentration of N			
	(B) the concentration of (C) the concentrations of		9	
		both OH^- an NH_4^+ increase	<i>с</i> .	
	(D) the concentration of	on ion decreases.		

74.	To avoid the precipitation and Cr ³⁺ the third group	on of Hydroxides of Zn^{2+} , solution should be	Mn ²⁺ and Ni ²⁺ along with	n those of Fe^{3+} , Al^{3+}
	(A) Concentrated HNO ₃		(B) Treated with exce	ss of NH Cl
	(C) Concentrated H_2SO_4		(D) Treated with exce	
75.		(X) fumes in moist air, a		
		ought near to it. An acidic		
		ate which dissolves in NaC		-
	precipitate with H ₂ S Her			
	(A) FeCl ₃	(B) AlCl ₃	(C) $ZnCl_2$	(D) None of these
75.		an inorganic salt in dilute		
	•	(III) and reddish brown co	blouration with sodium a	cetate solution. The
	cation of the salt is : (A) Ni ²⁺	(B) Fe^{3+}	(C) Cu^{2+}	(\mathbf{D}) none
76.		recipitates can be complete		(D) none
70.	(A) Aq. NH_3	(B) HCl	(C) NaOH/H ₂ O ₂	(D) H_2SO_4
Sectio	on (E) : IVth Group	(2) 1101		$(2)^{2}_{2}^{2}^{2}_{3}^{2}_{4}^{2}_{4}$
77.	· · · –	salt gives following react	ions.	
		tate with sodium hydroxid		on exposure to air.
	(ii) It gives white precip	itate with ammonia solution	on which is soluble in an	nmonium salts.
	(A) Mn^{2+}	(B) Zn^{2+}	(C) Al^{3+}	(D) Ni ²⁺
78.		itate with H2S in presence		nd this precipitate is
		en metal sulphide could be $(\mathbf{P}) \subseteq \mathbf{S}$		
79.	(A) ZnS	(B) CoS	(C) MnS $\mathbf{Z}n^{2+}$ ion in a solution.	(D) NiS
19.		the concentration of free	E ZII IOII III a SOlution	of the complex ion
	$[7n(NH)4]^{2+}$			
	$[Zn(NH_3)4]^{2+}$	7 ² + (-,) + ANUL (-,)	177 (NUL) 1^{2+} ()	
	2	$Zn^{2+}(aq) + 4NH_3(aq) \longleftarrow$	\rightarrow [Zn(NH ₃) ₄] ²⁺ (aq)	
	z add to the solution some	:		
20	add to the solution some $(A) H_2O$	e: (B) HCl (aq)	(C) $NH_3(aq)$	
80.	add to the solution some (A) H_2O An aqueous solution of	(B) HCl (aq) colourless metal sulphate	(C) NH ₃ (aq) M, gives a white precip	itate with NH ₄ OH.
80.	add to the solution some (A) H_2O An aqueous solution of This was soluble in excess	 (B) HCl (aq) colourless metal sulphate ss of NH₄OH. On passing F 	(C) NH ₃ (aq) M, gives a white precip	itate with NH ₄ OH.
80.	add to the solution some (A) H_2O An aqueous solution of This was soluble in excess tate is formed. The meta	(B) HCl (aq) colourless metal sulphate ss of NH_4OH . On passing F l M in the salt is :	(C) NH ₃ (aq) M, gives a white precip H_2S gas through this solut	itate with NH_4OH .
80. 81.	add to the solution some (A) H_2O An aqueous solution of This was soluble in excess tate is formed. The meta (A) Ca	 (B) HCl (aq) colourless metal sulphate ss of NH₄OH. On passing F 1 M in the salt is : (B) Ba 	(C) NH ₃ (aq) M, gives a white precip H_2S gas through this solut (C) Al	(D) Zn
	add to the solution some (A) H_2O An aqueous solution of This was soluble in excess tate is formed. The meta (A) Ca	(B) HCl (aq) colourless metal sulphate ss of NH_4OH . On passing F l M in the salt is :	(C) NH ₃ (aq) M, gives a white precip H_2S gas through this solut (C) Al	(D) Zn
	add to the solution some (A) H_2O An aqueous solution of This was soluble in excess tate is formed. The meta (A) Ca A metal salt solution wh plex. The metal is : (A) Ni	 (B) HCl (aq) colourless metal sulphate ss of NH₄OH. On passing F 1 M in the salt is : (B) Ba en treated with dimethyl g (B) Zn 	 (C) NH₃(aq) M, gives a white precip H₂S gas through this solut (C) Al (C) Co 	(D) Zn
	add to the solution some (A) H_2O An aqueous solution of This was soluble in excess tate is formed. The meta (A) Ca A metal salt solution wh plex. The metal is : (A) Ni The ion that can not be p	 (B) HCl (aq) colourless metal sulphate ss of NH₄OH. On passing H 1 M in the salt is : (B) Ba (B) Zn (B) Zn (B) HCl (aq) 	 (C) NH₃(aq) M, gives a white precip I₂S gas through this solut (C) Al (C) Co (C) Co ence of dil. HCl. 	(D) Zn (D) Mn.
81. 82.	add to the solution some (A) H_2O An aqueous solution of This was soluble in excess tate is formed. The meta (A) Ca A metal salt solution wh plex. The metal is : (A) Ni The ion that can not be p (A) Pb ²⁺	 (B) HCl (aq) colourless metal sulphate ss of NH₄OH. On passing F 1 M in the salt is : (B) Ba en treated with dimethyl g (B) Zn precipited by H2S in prese (B) Bi³⁺ 	 (C) NH₃(aq) M, gives a white precip H₂S gas through this solut (C) Al (C) Co 	(D) Zn ves a rose red com-
81. 82. Sectio	add to the solution some (A) H_2O An aqueous solution of This was soluble in excess tate is formed. The meta (A) Ca A metal salt solution wh plex. The metal is : (A) Ni The ion that can not be p (A) Pb ²⁺ on (F) : Vth, VIth and Ze	 (B) HCl (aq) colourless metal sulphate ss of NH₄OH. On passing H 1 M in the salt is : (B) Ba en treated with dimethyl g (B) Zn precipited by H2S in prese (B) Bi³⁺ ro Group 	 (C) NH₃(aq) M, gives a white precip H₂S gas through this solut (C) Al (C) Co (C) Co ence of dil. HCl. (C) Cu²⁺ 	(D) Zn (D) Mn.
81. 82.	add to the solution some (A) H_2O An aqueous solution of This was soluble in excess tate is formed. The meta (A) Ca A metal salt solution wh plex. The metal is : (A) Ni The ion that can not be p (A) Pb ²⁺ on (F) : Vth, VIth and Ze Aqueous Solution of Ba	 (B) HCl (aq) colourless metal sulphate so of NH₄OH. On passing F 1 M in the salt is : (B) Ba en treated with dimethyl g (B) Zn precipited by H2S in prese (B) Bi³⁺ ro Group Br2 gives yellow precipita 	 (C) NH₃(aq) M, gives a white precip H₂S gas through this solut (C) Al (C) Co (C) Co ence of dil. HCl. (C) Cu²⁺ 	(D) Zn (D) Mn.
81. 82. Sectio	add to the solution some (A) H_2O An aqueous solution of This was soluble in excess tate is formed. The meta (A) Ca A metal salt solution wh plex. The metal is : (A) Ni The ion that can not be p (A) Pb ²⁺ on (F) : Vth, VIth and Ze Aqueous Solution of Ba (A) K ₂ CrO ₄	 (B) HCl (aq) colourless metal sulphate ss of NH₄OH. On passing F 1 M in the salt is : (B) Ba en treated with dimethyl g (B) Zn precipited by H2S in prese (B) Bi³⁺ ro Group Br2 gives yellow precipitat (B) AgNO₃ 	 (C) NH₃(aq) M, gives a white precip H₂S gas through this solut (C) Al (C) Co (C) Co ence of dil. HCl. (C) Cu²⁺ 	(D) Zn (D) Mn.
81. 82. Sectio 83.	add to the solution some (A) H_2O An aqueous solution of This was soluble in excess tate is formed. The meta (A) Ca A metal salt solution wh plex. The metal is : (A) Ni The ion that can not be p (A) Pb ²⁺ on (F) : Vth, VIth and Ze Aqueous Solution of Ba (A) K ₂ CrO ₄ (C) (CH ₃ COO) ₂ Pb	 (B) HCl (aq) colourless metal sulphate ss of NH₄OH. On passing H 1 M in the salt is : (B) Ba en treated with dimethyl g (B) Zn precipited by H2S in prese (B) Bi³⁺ ro Group Br2 gives yellow precipita (B) AgNO₃ (D) (A) and (B) both 	 (C) NH₃(aq) M, gives a white precip H₂S gas through this solut (C) Al (C) Co (C) Co (C) Co ence of dil. HCl. (C) Cu²⁺ 	(D) Zn (D) Zn (D) Mn. (D) Mn. (D) Ni ²⁺
81. 82. Sectio	add to the solution some (A) H_2O An aqueous solution of This was soluble in excess tate is formed. The meta (A) Ca A metal salt solution wh plex. The metal is : (A) Ni The ion that can not be p (A) Pb ²⁺ on (F) : Vth, VIth and Ze Aqueous Solution of Ba (A) K_2CrO_4 (C) (CH ₃ COO) ₂ Pb The addition of K2CO3	 (B) HCl (aq) colourless metal sulphate so of NH₄OH. On passing F 1 M in the salt is : (B) Ba en treated with dimethyl g (B) Zn precipited by H2S in prese (B) Bi³⁺ ro Group Br2 gives yellow precipita (B) AgNO₃ (D) (A) and (B) both (aq) to the following solu 	 (C) NH₃(aq) M, gives a white precip H₂S gas through this solut (C) Al (C) Co (C) Co (C) Co ence of dil. HCl. (C) Cu²⁺ ate with : 	(D) Zn (D) Zn (D) Mn. (D) Mn. (D) Ni ²⁺
81.82.Section 83.	add to the solution some (A) H_2O An aqueous solution of This was soluble in excess tate is formed. The meta (A) Ca A metal salt solution wh plex. The metal is : (A) Ni The ion that can not be p (A) Pb ²⁺ on (F) : Vth, VIth and Ze Aqueous Solution of Ba (A) K_2CrO_4 (C) (CH ₃ COO) ₂ Pb The addition of K2CO3	 (B) HCl (aq) colourless metal sulphate ss of NH₄OH. On passing H 1 M in the salt is : (B) Ba en treated with dimethyl g (B) Zn precipited by H2S in prese (B) Bi³⁺ ro Group Br2 gives yellow precipita (B) AgNO₃ (D) (A) and (B) both 	 (C) NH₃(aq) M, gives a white precip H₂S gas through this solut (C) Al (C) Co (C) Co (C) Co ence of dil. HCl. (C) Cu²⁺ ate with : 	(D) Zn (D) Zn (D) Mn. (D) Mn. (D) Ni ²⁺
81. 82. Sectio 83.	add to the solution some (A) H_2O An aqueous solution of This was soluble in excess tate is formed. The meta (A) Ca A metal salt solution wh plex. The metal is : (A) Ni The ion that can not be p (A) Pb ²⁺ on (F) : Vth, VIth and Ze Aqueous Solution of Ba (A) K ₂ CrO ₄ (C) (CH ₃ COO) ₂ Pb The addition of K2CO3 every case but that one v	(B) HCl (aq) colourless metal sulphate so of NH ₄ OH. On passing H 1 M in the salt is : (B) Ba en treated with dimethyl g (B) Zn precipited by H2S in prese (B) Bi ³⁺ ro Group Br2 gives yellow precipitat (B) AgNO ₃ (D) (A) and (B) both (aq) to the following solution which does not produce present the solution of the produce present the solution of the solution o	 (C) NH₃(aq) M, gives a white precip H₂S gas through this solut (C) Al (C) Co (C) Co (C) Co ence of dil. HCl. (C) Cu²⁺ ate with : 	(D) Zn (D) Zn (D) Mn. (D) Mn. (D) Ni ²⁺

85.	_	salt gives white precipitate	with AgNO3 solution a	s well as with dilute
	H_2SO_4 . It may be (A) Pb(NO ₃) ₂	(B) $Ba(NO_3)_2$	(C) BaCl ₂	(D) CuCl ₂
86.	Mg is not precipitated in	52	(0) $Duch_2$	$(D) \operatorname{cucl}_2$
	(A) MgCO ₃ is soluble in		(B) Ksp of MgCO ₃ is	high.
	(C) $MgCO_3^3$ is soluble in		(D) None.	C
87.	5	m a yellow ppt with potassi	ium chromate in acetic a	cid, a white ppt with
		gives no ppt with sodium		
	(A) Lead carbonate		(B) Basic lead carbor	
	(C) Barium nitrate		(D) Strontium nitrate	
88.		tance dissolves in water. C		
		black precipitate dissolves		
		$_{2}$ SO ₄ , a white precipitate is		
	(A) BaSO ₄	(B) SrSO ₄	(C) PbSO ₄	(D) $CdSO_4$
89.		ormed by passing ammonia	a into Nessler's reagent	in due to the forma-
	tion of			
G (*	(A) $\operatorname{Hgl}_{4}^{2-}$	(B) NH ₂ O–Hg–Hgl	$(C) NH_2 - Hg - O - Hg -$	-I (D) NH ₃ -Hg-I
	on (A) : Heating in dry te		ha aalawa ahaa aaa faara	hhua ta wikita Than
90.	-	s heated in dry test tube, t	ne colour changes from	blue to white. Then
	metal sulphate may be: $(A) B_{2}SO$	(\mathbf{B}) CuSO 5H O	(\mathbf{C}) N ₂ SO	(D) None of these
91.		(B) $CuSO_4.5H_2O$ can not evolve more than of		
<i>)</i> 1.	(A) NaNO ₃ (s)	(B) $MgCO_3(s)$	one gas (vapour) ir neau	ed in dry test tube.
	(C) $\operatorname{FeSO}_4(s)$	(D) $(NH_4)2Cr_2O_7(s)$		
92.	4	orphous inorganic compo	und becomes vellow an	d on cooling, turns
	white again. The salt may		,	8,
	(A) $PbCO_3$	(B) MgCO ₃	(C) ZnCO ₃	(D) $K_2 CO_3$
93.	5	metal carbonates liberate.		2 5
	(A) Na_2CO_3	(B) K_2CO_3	$(\tilde{C}) Rb_2 CO_3$	(D) Ag_2CO_3
94.	In which of the followin	g reactions a brown colou	red gas is evolved ?	
	(A) KBr (s) + dil. H_2SO	$_{4} \longrightarrow$	(B) $NH_4NO_2 \xrightarrow{\Delta}$	
	(C) NaNO ₃ $\xrightarrow{\Delta}_{800^{\circ}C}$		(D) $AgNO_3(s) + conc$	H SO N
Section		hand tost	(2) 1 g_{1} (3) (3) (3)	\cdots
95.	on (B) : Flame and borax Why is concentrated HC	I used to dissolve the give	on metal calt in the flam	a tast 9
<i>))</i> .	(A) strong acids produce	•		
	(B) HCl is volatile	e better fiame test.		
	. ,	de produce better flame te	st	
		e seen in the flame in prese		
96.		lame of a Bunsen burner is		
	(A) Blue Zone		(B) Zone of complete	e combustion
	(C) Zone fo partial com	bustion	(D) All parts of the fl	
97.	-	on red colour in flame test	-	
	could be:		1	. /
	(A) Li	(B) Mg	(C) Ca	(D) Ba
98.	In Borax bead test, meta	l oxides react with B_2O_3 ar	nd form a coloured bead	. This bead contains.
	(A) orthoborate ion	(B) metaborate ion	(C) double oxide	(D) tetraborate ion

99. Which one of the following ions does not give borax bead test : (A) Cr^{3+} (B) Cu^{2+} (D) Zn^{2+} (C) Mn^{2+} 100. In the Borax bead test of Co²⁺, the blue colour of bead is due to the formation of : $(A) B_2 O_2$ (B) Co_3B_2 $(C) Co(BO_{2})_{2}$ (D) CoO A salt gives white residue in charcoal cavity test but in cobalt nitrate test it gives pink mass. It 101. represents: (A) Zn^{+2} (B) Al^{+3} (C) Mg^{+2} (D) PO_{4}^{-3} Section (C) : dil. HCl / dil. H2SO4 group Which of the following anions are identified by dil. HCl : 102. (A) NO₂⁻, NO₃²⁻, CO₃²⁻ (B) NO₂⁻, NO₃⁻, SO₃₂⁻ (D) CH₃COO⁻, I⁻, CO₃²⁻ (C) S^{2-} , SO_3^{2-} , NO_2^{-} Two inorganic compounds A and B were heated in a dry test tube. A evolved a colourless gas 103. which turned lead acetate paper black and **B** evolved a gas which turned lime water milky. The anions in A and B respectively are : (A) SO_{3}^{2-}, CO_{3}^{2-} (B) SO^{2-}, CO^{2-}_{3} (C) PO_{4}^{3-}, HSO_{3}^{-} (D) S^{2-} , NO₂⁻ If addition of conc. H₂SO₄ is made to an unknown salt, a colourless and odourless gas is pro-104. duced then which of the following can be present? (B) **S**²⁻ (A) CO_{3}^{2-} $(C) Cl^{-}$ (D) NO_{3}^{-} A gas turns lime water milky and acidified K₂Cr₂O₇ solution green then gas is : 105. (A) HCl $(B) H_2S$ $(C) SO_{2}$ $(D) CO_{2}$ A gas has smell like rotten egg and turns lead acetate paper black. The gas is : 106. $(A) NO_{2}$ $(B) H_2S$ $(D) SO_{2}$ $(C) CO_{2}$ Rotten egg smell (P) dil. H₂SO4 (CH₃COO)₂Pb CdCO₃ suspension Salt with X⁻² anion Yellow ppt↓ Black ppt↓ (S) (Q) 106. Sodium Nitroprusside Violet (\mathbf{R})

Anion (X2;V) is:

(A)
$$CO_3^{2-}$$

(B)
$$SO_{3}^{2-}$$

(D) $S_2 O_3^{2-}$

- The acidic solution of a salt produces blue colour with KI starch solution. The reaction indi-107. cates the presence of :
- (A) Sulphite (B) Bromide (C) Nitrite (D) Chloride 108. Sulphide ion reacts with Na₂[Fe(CN)₂NO] to form a purple coloured compound (X). In this reaction oxidation state of iron.
 - (A) changes from +2 to +3

(B) changes from +3 to +2

(C) changes from +2 to +4

```
(D) does not change.
```

(C) SO²⁻

- Section (D) : Conc. H2SO4 group
- Which of the following pair of anions are identified by conc. H_2SO_4 . 109.
 - (C) Br^{-}, CO_{3}^{2-} (D) $CO_{3}^{2-}, CH_{3}COO^{-}$ (A) NO_{3}^{-}, CO_{3}^{2-} (B) CI^{-}, NO_{3}^{-}

110.	Which of the following H_2SO_4 ?	anion behaves in a differer	t manner than other on	heating with conc.
	(A) CI⁻	(B) I ⁻		
	(C) Br^-	(D) All behave in a simil	lar manner	
111.	Which of the following i	eagents turns white precip	itate of AgCl yellow ?	
	(A) NaNO ₃	$(B) Na_3AsO_3$	(C) Na_3AsO_4	(D) NaCN
112.	A Unknown salt (S) whe	n heated with dil. H_2SO_4 do e obtained. The vapours wi	es not evolve brown vap	ours but with conc.
	(A) NO_2^-	(B) NO_{3}^{-}	(C) I ⁻	(D) B r ⁻
113.	When a mixture of solid	NaCl and solid $K_2Cr_2O_7$ is	heated with concentrate	ed H _s SO ₁ , deep red
		is is due to the formation of		2 4' 1
	(A) chromous chloride		(C) chromic chloride (I	D) chromic sulphate
114.	AgCl dissolves in ammo	•		, 1
	(A) Ag+, NH_4^+ and Cl^-		(B) $[Ag(NH_3)]^+$ and C	1-
	(C) $[Ag_2(NH_3)]^{2+}$ and C ⁻		(D) $[Ag(NH_3)_2]^+$ and C	C1-
115.	2 0	conc. H_2SO_4 gives deep r		
	pair:	2 4 0 1	5	
	(A) $\operatorname{Cr}_{2}O_{7}^{2-}$ and Cl^{-}		(B) Br ⁻ and $Cr_2O_72^-$	
	(C) NO_3^2 and CI^2		(D) CrO_4^2 and NO_3^2	-
116.		concentrated H ₂ SO ₄ produ		
	solution. The salt may co		-	
	(A) chloride	(B) carbonate	(C) acetate	(D) bromide
117.	A colourless solution of	a compound gives a precipi	tate with AgNO ₃ solution	n but no precipitate
		O_{3} . The action of concent		
		n gas. The compound is :	2 .	
	(A) $Ba(CH_3COO)_2$	(B) $CaCl_2$	(C) NaI	(D) NaBr
118.	Which of the following g	gas turn starch iodide pape	r blue?	
	$(A) CO_2$	$(B) SO_2$	$(C) NO_2$	$(D) H_2 S$
119.	Nitrate is confirmed by r	ing test. The brown colour	of the ring is due to for	mation of :
	(A) ferrous nitrite		(B) nitroso ferrous sul	phate
	(C) ferrous nitrate		(D) FeSO_4 .NO ₂	
Sectio	on (E) : Precipitation Rea			
120.		ing phosphate is heated w	5	
	solution, a canary yellow	precipitate is formed. The	e formula of the yellow p	precipitate is :
	$(A) (NH_4)_3 PO_4$		$(B) (NH_4) 3PO_4 .12Mo$	
	$(C) (NH_4)_3 PO_4 .12 MoO_3$		$(D) (NH_4) 3PO_4 (NH_4)$	$2MO_4$
121.	-	es a yellow precipitate wit	-	cipitate dissolves in
	dil. Nitric acid as well as	s in ammonium hydroxide.		
	$(\Lambda) \mathbf{D} \mathbf{w}^{-}$	(D) I-	(C) DO 3-	$(D) SO 2^{-}$

(A) Br^- (B) I^- (C) PO_4^{3-} (D) SO_42^-