NEET CHEMISTRY

CENTRE FOR EDUCATIONAL DEVELOPMENT OF MINORITIES OsmaniaUniversity

Minorities Welfare Department, Govt. of Telangana

Nizam College Campus, Gunfoundary, Hyderabad - 500 001.

Phone / Fax: 040-23210316; www.tscedm.com; email: cedm_ou@yahoo.com

NEET CHEMISTRY

Ву

JAMSHED Centre Head & Sr. IIT Faculty in Chemistry

Excellential College, Madhapur, Hyderabad.

CENTRE FOR EDUCATIONAL DEVELOPMENT OF MINORITIES OsmaniaUniversity

Minorities Welfare Department, Govt. of Telangana

Nizam College Campus, Gunfoundary, Hyderabad - 500 001.

Phone / Fax: 040-23210316; www.tscedm.com; email: cedm_ou@yahoo.com

NEET

CHEMISTRY

Editorial Board

Prof. S. A. Shukoor : Director

Centre for Educational Development of Minorities

Dr. Syed Israr Ahmed : Project Officer

Centre for Educational Development of Minorities

Author

Jamshed : Centre Head and Senior IIT Faculty in Chemistry,

Excellentia College, Madhapur, Hyderabad.

© Copyright Reserved

First Edition: 2024

Not for Sale

CENTRE FOR EDUCATIONAL DEVELOPMENT OF MINORITIES Osmania University

Minorities Welfare Department, Govt. of Telangana

Nizam College Campus, Gunfoundary, Hyderabad - 500 001.

Phone: 040-23210316; www.tscedm.com; mail: cedm_ou@yahoo.com

PREFACE

Taking competitive examinations has became the order of the day for any educated young man who is desirous of seeking any coveted job, a seat in any prestigious college. The approach required for such competitive examination is different from that of taking an academic examination.

It was observed that most of the minority candidates do not fare well at these competitive examinations not because they lack in talents but because they can neither afford to join the private coaching centres nor could purchase the required study material.

In order to improve the participation and performance of the candidates belonging to minorities in such competitive examinations, the Minorities Welfare Department, State Government sponsored a project to Osmania University. The University in turn established Centre for Educational Development of Minorities (CEDM) in 1994 in Nizam College. Since then, the Centre has been offering free coaching for the benefit of candidates belonging to minority communities appearing for various job seeking and admission seeking competitive examinations at Hyderabad and other minority concentrated districts of the state. In respect of job-seeking examinations, the Centre is providing free coaching and study material for TS TRT, TS TET etc. and for admission oriented examinations such as NEET, EAMCET, ICET, ECET, EdCET, DEECET and POLYCET etc. In addition to these coaching programmes, the Centre is also providing free coaching and study material to X class Urdu medium minority students in minority concentrated districts of the state to strengthen their educational foundation and to improve their performance in SSC Public Examination.

We wish to place on record the pains the compilers have taken to summarize and arrange the important questions. The Centre gratefully acknowledges their services.

If these study materials are of any help to the candidates, we feel immensely rewarded for the humble efforts we have put in.

Hyderabad April 2024 Prof. S. A. Shukoor, DIRECTOR

CONTENT

First Year

Some Basic Principles of Chemistry (Stoichiometry).	1
Atomic Structure	22
Periodic Table	39
Chemical Bonding	58
Thermodynamics	78
Equilibrium	98
Redox Reactions	135
<i>p</i> -Block Elements (Group 13 to 18 elements)	151
Organic Chemistry	163
Hydrocarbons	192
Second Year	220
Solutions	220
Chemical Kinetics	251
d and f Block Elements	268
<u> </u>	
Alcohols, Phenols and Ehters	307
Aldehydes, Ketones and Carboxylic Acids	320
Aminies	341
Biomolecules	349
Principles related to Practical Chemistry	375
	Some Basic Principles of Chemistry (Stoichiometry) Atomic Structure Periodic Table Chemical Bonding Thermodynamics Equilibrium Redox Reactions p-Block Elements (Group 13 to 18 elements) Organic Chemistry Hydrocarbons Second Year Solutions Electrochemistry Chemical Kinetics d and f Block Elements Coordination Compounds Halokanes and Halorenes Alcohols, Phenols and Ehters Aldehydes, Ketones and Carboxylic Acids Aminies Biomolecules Principles related to Practical Chemistry

1.	Chemical equation is balanced according to the law of							
	1) Multiple propo	rtion	2) Reciprocal prop	2) Reciprocal proportion				
	3) Conservation o	fmass	4) Definite propor	tions				
2.	Which of the folloproportion?	Which of the following pairs can be cited as an example to illustrate the law of multiple proportion?						
	1) Na ₂ O, K ₂ O	2) CaO,MgO	3) Al_2O_3 , Cr_2O_3	4) CO,CO ₂				
3.	Percentage of copper and oxygen in samples of CuO obtained by different methods were found to be the same. This proves the law of							
	1) Constant propo	ortions	2) Reciprocal prop	portions				
	3) Multiple propo	rtions	4) Conservation of	f mass				
4.	The law of conservation of mass holds good for all of the following except							
	1) All chemical re	actions	2) Nuclear reaction	ns				
	3) Endothermic re	eactions	4) Exothermic read	ctions				
5.	Law of combining volumes was proposed by							
	1) Lavoisier	2) Gay Lussac	3) Avogadro	4) Dalton				
6.	In the reaction Hydrogen (g)+Oxygen(g) \rightarrow water vapour, the ratio of volumes is 2:1:2. This illustrates the law of							
	1) conservation of	mass	2) combining weig	ghts				
	3) combining volu	imes	4) all the above					
7.	In compound A, 1.00 g nitrogen combines with 0.57 g oxygen. In compound B, 2.00 g nitrogen combines with 2.24 g oxygen. In compound C, 3.00 g nitrogen combines with 5.11 g oxygen. These results obey the following law.							
	1) Law of constan	_	2) Law of multiple	proportion				
	3) Law of reciproc	4) Dalton's law of	of partial pressure					
8.	The law of multip	le proportions is ilustrate	ed by the two compo	ands				
	-	le and sodium bromide	2) Ordinary water					
	3) Caustic soda aı	nd caustic potash	4) Sulphur dioxide	4) Sulphur dioxide and sulphur trioxide.				
9.	=	eight of lead from oneoxic		ad by heating in a current of ht of lead obtained from the				
	1) Law of reciproc	cal proportions	2) Law of constant	t proportions				
	3) Law of multiple	e proportions	4) Law of equivale	ent proportions				
10.	LIST - 1		LIST - 2					
	A) Law of conser	vation of Mass	1) $\frac{V_1}{V_2} = \frac{n_1}{n_2}$					
	B) Avogadro's La	W	2) $2H_{2(s)} + O_{2(g)} \rightarrow 2H_2O_{(s)}$					
	C) Gay-Lussac's I	aw of combining volume	es 3) 12g of C + 32g o	3) 12g of C + 32g of O_2 = 44g CO_2				
	D) Law of conserv	ation of Energy	4) $H_{2(g)} + Cl_{2(g)} \rightarrow$	2HCl _(g)				

						5	5) H _{2(g)} +	$Cl_{2(g)} \rightarrow$	2HCl	(g)′ ∆H=-18	4.6k.J	
	The co	orrect m	natch is									
	1110 01	A	В	С	D		Α	В	С	D		
	1)	3	1	4	5	2)	3	1	5	4		
	3)	3	1	2	5	4)	1	2	4	5		
11.			ure carbo lata supp		de, irresp	ective of	ve of its source contains 27.27% carbon and 72.73%					
	1) Lav	v of con	stant cor	npositio	n	2	2) Law of	conserv	tion of	mass		
	3) Lav	v of reci	procal p	roportic	ons	4	l) Law of	multiple	e propo	ortions		
12.	which		io of the							nd carbon d 2:16 and 12:		
	•		ltiple pro	_		2	2) Law of	recipro	cal prop	portions		
	,		servatio				l) Law of	constan	t propo	ortions		
13.	3 0											
	1) 1 lit	tre		2) 22.4	14 lit	3	3) 6.02×1	0 ²³ lit	•	4) 22.414 ml		
14.	1 gran	n - atom	of oxyg	en is								
	1) 1 g of oxygen 2) 16g of oxygen 3) 22.4 g of oxygen 4) 8g of oxygen							en				
15.	One g	ram mo	olecule of	oxygen	is							
	1) 16 g	gms of o	xygen	2) 32 gr	ms of oxy	gen 3	3) 8gms o	f oxyger	1 4	4) 1gm of oxy	/gen	
16.	A mol	le is										
	1) The amount of substance containing the same number of chemical units as the number of atoms in exactly 12g of C^{12} .							umber of				
	2) The	e amour	nt of subs	stance co	ontaining	g Avoga	dro num	ber of cl	nemical	units.		
	3) The	unit fo	r expres	sing am	ount of a	substar	nce		4	4) all the abo	ve	
17.	The m	nass of a	mole of	hydrog	en atoms	is						
	1) 1.00	08 g		2) 2.01	6g	3	3) 6.02×1	0^{23} g	4	4) 1.008 amu	l	
18.	The m	nolar ma	ass of hy	drogen i	s							
	1) 1.00	08 g		2) 2.01	6 g	3	3) 6.02×1	0^{23} g		4) 2.016 amu	[
19.		O	itams of	,	epresent		,	Ü		,		
17.			toms of		сртсести)) 22 ~ of	0147400				
	•			oxygen			2) 32 g of					
	3) 22.4	4L of O ₂	atSIP			4	k) 8g of o	xygen				
20.					gen repre	esents						
	1) 6.02	2×10 ²³ n	nolecules	s of oxyg	gen	2	2) 8 gms (of oxyge	n			
	3) 16g	of O ₂				4	4) 11.2L of O ₂ at STP					
21.	The cl	harge p	resent on	1 mole	electrons	s is						
		00 Cou					2) Coulor	nb				
	,	0×10 ⁻¹⁹										
	,					4	l) 0.1 Far	auay				
22.	The w	eight o	f 0.1 mol	e of Na ₂	CO_3 is							
	1) 106	g		2) 10.6	g	3	3) 5.3 g		4	4) 6.02×10 ²² §	5	
2												

23.	Avogadro number of	f helium atoms have a n	nass of						
	1) 2g	2) 4g	3) 8g	4) 4×6.02×10 ²³ g					
24.	The volume of two m	oles of oxygen at STP is							
	1) 22.4 L	2) 11.2 L	3) 40 L	4) 44.8 L					
25.	The ratio between the number of molecules in equal masses of nitrogen and oxygen is								
	1) 7:8	2) 1:9	3) 9:1	4) 8:7					
26.	The gas which is twi	ce as dense as oxygen ı	under the same condition	ons is					
	1) Ozone	2) Sulphur trioxide	3) Sulphur dioxide	4) Carbon dioxide					
27.	i) Number of atomsiii) Number of moles	·	th respect which one of ii) Number of molecu iv) Mass	ales					
	1) Only i is correct	2) Only iii correct	3) Only iv Correct	4) Both i & iv correct					
Note:1	1) Both (A) and (R) are t	. ,	• , ,						
			e correct explanation o	f (A)					
	3) (A) is true but (R) i								
20	4) (A) is false but (R)		h - u - f - u - 1 u 1						
28.	(A): 2 g of hydrogen contains Avogadro number of molecules								
29.	 (R): One mole of an ideal gas at STP occupies 22.4 lt. (A): 2 g of Hydrogen contains Avogadro number of atoms (R): One mole of any gas contains Avogadro number of molecules 								
30.		ess, N_2 and H_2 combine n simple volume ratio	in 1 : 3 volume ratio						
31.	(A): 1 c.c. of Nitroger	(A): 1 c.c. of Nitrogen at STP contains 2.69×10^{19} molocules							
	(R): Molar volume of	an ideal gas st STP con	tains Avogadro numbe	r of molecules					
32.	(R): Equal volumes of	f all gases under the san	cupy 11.2 lt. of volume and conditions contain eq	at STP. ual number of molecules					
33.	Which of the following	0 0							
	1) One gram atom of 1		2) 5 moles of N ₂						
24	3) 10^{24} carbon atoms		4) 44.8 lit of He at STI						
34.	1 gram of hydrogen of 6×10^{23} atoms	2) 12×10 ²³ atoms	Then 4 grams of He cor 3) 24×10^{23} atoms	ntains 4) 1.5×10 ²³ atoms					
35.	,	combine in the ratio of	,	4) 1.5^10 atoms					
oo.	1) Atomic weights		3) Equivalent weight	s 4) Mass numbers					
36.	,	,	s M. Its equivalent weig	,					
JO.	1) 3M	2) M	3) $\frac{M}{2}$	4) $\frac{M}{3}$					
27	The equivalent weigh	,	· <u>L</u>	· 3					
37.	THE EQUIVAIENT WEIGH	II OI CaCO2							

SOM	IE DASIC CO	NOEDTS OF OHE	MISTRY (STOICH	IOMETRY)					
SOIV	1) 100	2) 50	MISTRY (STOICH 3) 33.3	4) 25					
38.	Equivalent we	eight of K ₂ Cr ₂ O ₇ in ac	ridic medium is						
	1) 24.5	2) 49	3) 147	4)296					
39.	The equivalen	t weight of Bayer's reag	gent is						
	1) 31.6	2) 52.6	3) 79	4) 158					
40.		ight of KMnO ₄ is "M". ight of KMnO ₄ is	. In a reaction KMnO	$_4$ is reduced to K_2MnO_4 .	The				
	1) M	$2)\frac{M}{2}$	$3)\frac{M}{3}$	$4)\frac{M}{5}$					
41.	$2H_2O \rightarrow 4e^- + O_2 + 4H^+$. The equivalent weight of molecular oxygen is								
	1) 32	2) 16	3) 8	4) 4					
42.	(A): Normality is always a multiple of molarity								
	(R): Molarity i	(R): Molarity is in no way related to normality							
	The correct an	The correct answer is							
	1) Both (A) and (R) are true and (R) is the correct explanation of (A)								
	2) Both (A) and (R) are true and (R) is not the correct explanation of (A)								
	3) (A) is true b	ut (R) is false	4) (A) is false b	ut (R) is true					
43.	(A): The basic	ity of H_3PO_3 is 2							
	(R): Three hydrogen atoms are attached to phosphorus through oxygen atoms								
	The correct answer is 1) Both (A) and (R) are true and (R) is the correct explanation of (A)								
			not the correct explana						
	3) (A) is true b	` '	4) (A) is false b	` '					
44.	weight of pota	ssium dichromate is 29	94 gm, its equivalent we	=	ılar				
45	1) 294	2) 147	3) 49	4) 24.5					
45.	_		ne reaction [M = molecu	liar weight]					
	21 α_2 β_2 α_3 α_2	\rightarrow 2NaI + Na ₂ S ₄ O ₆ is		M					
	1) M	2) $\frac{M}{2}$	$3)\frac{M}{3}$	$4)\frac{\mathrm{M}}{4}$					
46.	The equivalen	t weight of CuSO ₄ when	n it is converted to Cu ₂ I ₂	[M=mol.wt]					
	$1)\frac{M}{1}$	$2)\frac{M}{2}$	$3)\frac{M}{3}$	4) 2 M					

The equivalent weight of Iodine in the reaction 2Na $_2S_2O_3+I_2 \rightarrow 2NaI+Na_2S_4O_6$ is [M=mol. 47. wt]

2) $\frac{M}{2}$ 3) $\frac{M}{3}$ 4) 2M 1) M

The equivalent weight of glucose in the $\mathrm{reactionC_6H_{12}O_6} + 6\mathrm{O_2} \rightarrow 6\mathrm{CO_2} + 6\mathrm{H_2O}$ is 48. [M=mol. wt]

SOME	BASIC	CONCEDTS	∩ E	CHEMISTRY	(STOICHIOMETRY
SOME	DASIC	CONCEPIS	UF	CHEIMISTRI	

		30	IVIL DA		ONCL	130	CIT		11 (31)	Oloil		
	$1)\frac{M}{4}$			2) $\frac{M}{12}$		3	$\frac{M}{24}$		4	$\frac{M}{48}$		
49.		um Eau	iivalent w	12	KMnO		2 4			40		
4 2.	A) A	_	iivaieiii w	reigitt of	KWIIO ₄	s	a) 158					
	,	eutral					o) 79					
	,	rongly l	basic				2) 52.6					
		eakly b					d) 31.6					
	,	orrect n					,					
	1) A -	d, B - c,	. C - a, D -	· C	2	2) A - d,	B - c, C - a	a, D - b				
	3) A -	d, B - b,	, C - a, D -	- c	4	4) A - d, B - c, C - a, D - a						
50.	LIST	- 1				1	LIST - 2					
		ecules)						al formu	la)			
	A) Gl	ucose				1	$1)$ BNH $_2$					
	B) Ox	alic aci	d			2	2) CH ₂ O					
	C) Ind	organic	Benzene			3	3) CH					
	D) Ox	cygenate	ed water			4	4) CHO ₂					
					5	5) HO						
	The c	orrect n										
		A	В	C	D	- \	A	В	C	D		
	1)	3	5	2	4	2)	2	4	1	5		
	3)	1	3	2	4	4)	4	2	1	3		
51.	(A):1	Empiric	al formul	la of glu	cose and	acetic a	cid is CI	H_2O				
	(R): I	f percer	ntage com	npositio	n is same	, then er	npirical	formula	is same			
	The c	orrect a	nswer is									
	1) Bo	th (A) a	nd (R) are	e true ar	nd (R) is t	the corre	ect expla	nation of	f (A)			
	2) Bo	th (A) a	nd (R) are	e true ar	nd (R) is 1	not the c	orrect e	xplanatio	on of (A))		
	•		but (R) is		, ,			-				
	4) (A)	is false	but (R) i	s true								
52.	Oxida	ation sta	ate of 'S' i	in S _s mo	lecule is							
	1) 0			2) +2		3	3) +4		4	+6		
53.	•	ation sta	ate of N i	n N H is	2		•					
00.	1) +1			2) +3	,	9	3) -1/3		1	\ 1		
				,)) - 1/3		4	-1		
54.	Oxida	ation nu	ımber of	C in CH	$_{2}$ O is							
	1) -2			2) +2		3	3) 0		4	4) 4		
55.	Oxida	ation sta	ate of Ni i	in Ni(CC	D) ₄ is							
	1) 0			2) 4	-	3	3) 8		4	2 (
56.	•	ation ata	ata of Ea i	•	CNI) I		,			,		
56.		ation Sta	ate of Fe i	•	CIN) ₆]		2) . 2		4			
	1) +6			2) +4		3	3) +2		4	.) +5		
57.	Oxida	ation nu	ımber an	d valenc	cy of oxy	gen in O	F ₂ are					
	1) +1,	2		2) +2, 2	<u> </u>	3	3) +1, 1		4	+2,1		
58.	In wh	nich of t	he follow	ing the	oxidatio	n state o	f chlorir	ne is +5?				
	1) HC			2) HCl			3) HClO		4	HCl		
	-,	- 4		_,	- 3		,	2	-	,		

59.		In the conversion of $K_2Cr_2O_7$ to K_2CrO_4 the oxidation number of the following changes									
	1) K			2) Cr			3) Oxyge	n		4) No	ne
60.	The	oxidatio	n numb	er of sulp	ohur in S	$_{8}$, $S_{2}F_{2}$ a	ınd H ₂ S a	ıre			
	1) 0,	+ 1 and	- 2	2) +2, +	-1 and -2	2	3) 0, +1 a	nd + 2	4	k) -2, + 1 aı	nd - 2
61.	In th	e conve	rsion of	CrO_4^{-2} –	\rightarrow Cr ₂ O ₇ ²	$\overline{}$, the o	xidation	number	of chron	nium	
	1) in	creases		2) decr	eases		3) becom	es zero	4)remai	ns unchar	iged
62.	LIS	Γ-1		LIST -	2						
				(Oxida	tion state	e)					
	A) +	3		1) Nitro	ogen						
	B) +	1		2) Nitro	ous oxide	9					
	C) 0			3) Nitra	3) Nitrate ion						
	D) +	5		4) Hyd	4) Hydroxylamine						
				5) Nitri	5) Nitrite ion						
	The	correct n	natch is								
	1\	A	В	C	D	2)	A	В	C	D	
	1) 3)	1 4	4 5	3 3	2 1	2) 4)	5 5	2 2	4 1	3 3	
63.	,					,	dation sta			9	
	1) 0			2) +6			3) +2			l) +4	
64.	Oxid	Oxidation number and Covalency of sulphur in \mathbf{S}_8 molecule are respectively									
		and 8		2) 0 an			3) 0 and 2			(and 2)	
65.	Sum	Sum of the oxidation numbers of carbon in acetaldehyde is									
	1) – 2			2) +2			3) – 4		4	l) - 1	
66.		_	powder	oxidatio						N 9 14	
67	1) -1		ımbar at	2) –2, +	-2, +1 3) -1, +1 4) -2,+1 bhur in oleum (H ₂ S ₂ O ₇) is						
67.	1) +4		annoer or	2) +2	moleum		3) –2		4	<u>l</u>) +6	
68.	The		nd forme in it is	,	rown ring		,	nula [Fe(,	e oxidation
	1) +1	L		2) +2			3) +3		4	l) zero	
69.	Oxid	lation nu	ambers c	of sodium	, mercur	y in soc	lium ama	ılgam ar	e		
	1) ze	ro, zero		2) +1, -	-1		3) -2, +2		4	1) 0, +1	
70.			assed int		cold KOF	I soluti	on. What	are the c	xidatior	numbers	of chlorine
	1) -1	, +5		2) –1, +	-3		3) +1, +7		4	l) +1, –1	
71.	The	oxidatio	n state c	of sulphu	r in Na ₂ S	$_4O_6$ is					
	1) 3/	′2		2) 2/3			3) 5/2		4	4) 2/5	
72.	The	oxidatio	n numbe	er of sulpl	nur in S ₂ C	0_8^{2-} is					
	1) +7	7		2) +6			3) +4		4	ł) +5	

73.	The o	xidatio	n numbei	of Cr ir	n CrO ₅ is		J. J		(0		
	1) + 10	0		2) + 6			3) + 4			4) + 5	
74.	LIST	-1		LIST -	2						
	A) NF	\mathbb{I}_3		1) Oxid	lant						
	B) KM			2) Both	oxidant	and r	eductant				
		C) SO ₂ 3) Neither oxidant no						t			
	D) He	_		4) Red							
	,			5) Deh	ydrating	agent					
	The co	orrect m	natch is	,	, 0	O					
		A	В	C	D		A	В	C	D	
	1)	4	3	1	5	2)	2	4	1	3	
	3)	4	1	2	3	4)	3	2	1	4	
75.	In the	reactio	n, I ₂ + 2K	$ClO_3 \rightarrow$	2KIO ₃ +	· Cl ₂					
	i) Iod	ine is o	xidised				ii) Chlorine is reduced				
	iii) Ioo	dine dis	places cl	nlorine			iv) KClO	is deco	mpose	ed	
	The co	orrect co	ombinati	on is			·				
	1) Onl	ly i & iv	are corre	ect			2) Only iii & iv are correct				
	3) i, ii,	iii are o	correct				4) All are	correct			
76. The oxidation number of phosphorus in sodium hypophosphite is											
	1) +3			2) +2			3) +1			4) -1	
77.	Oxida	ntion sta	ite of oxy	gen in p	otassiun	n supe	eroxide is				
	1) -1/	′2		2) –1			3) –2			4) 0	
78.	Average oxidation number of iodine in KI_3										
	1) +1/	/3		2) -1/3	3		3) +3			4) –1	
79.	The oxidation number of nitrogen in NCl ₃ is										
	1) +3			2) -3			3) zero			4) -1/3	
80.	What	are the	oxidatio	n numb	ers of 'N	' in NI	H_4NO_3 ?				
	1) +3,	- 5		2) -3, +	-5		3) +3, +6			4) -2, +2	
81.	The o	xidatio	n numbe	r of pho	sphorus	in Ba ((H ₂ PO ₂) ₂ is	3			
	1) +3			2) +2			3) +1			4) -1	
82.	In wh	ich one	of the fol	llowing	compou	nds th	e oxidatio	n numbe	r of Io	dine is fractional?	
	1) IF ₃			2) IF ₅			3) IF ₇			4) KI ₃	
83.	PbS+I	$H_2O_2 \rightarrow$	PbSO ₄ +	4H,O. I1	n this rea	ction I	PbS underg	goes			
		dation	1	2) redu			3) both			4) None	
84.	In the	reaction	n								
	$P_4 + 3$	OH-+3	3H ₂ O →	3H ₂ PC	$0_2^- + PH_3$	phos	phorus is u	ındergoi	ng		
	1) oxi	dation		2) redu	ction		3) dispro	portiona	ition	4) hydrolysis	
85.	Which	n of the	followin	g is not	a redox r	eactio	n?				
	1) 2Ba	O+O ₂ -	→ 2BaO ₂				2) BaO ₂ +	H ₂ SO ₄ -	→ BaS($O_4 + H_2 O_2$	
		_	2KCl+3C	\mathcal{O}_2			4) SO ₂ +2				
86.	In a reaction between zin and iodine, in which zinc iodide is formed, what is being oxidised										

SOME	BASIC CONCER 1) Zinc ions	PTS OF CHEMIST 2) Iodide ions	RY (STOICHIOME 3) Zinc atom	TRY) 4) Iodine				
87.	Which of the followin	g is redox reaction						
	1) H ₂ SO ₄ with NaOH		2) In atmosphere, O ₃ fr	rom O ₂ by lightning				
	3) Evaporation of H ₂ C)						
	4) Nitrogen oxide from	n nitrogen and oxygen	by lightning					
88.	$C+O_2 \rightarrow CO_2$ the reac	tion is						
	1) Chemical combinat	ion	2) Decomposition read	tions				
	3) Displacement react	ions	4) Disproportionation reactions					
89.	Which of the followin	g is decomposition rea	ction					
	1) $2HgO \rightarrow 2Hg + O_2$		2) $CH_4 + 2O_2 \rightarrow CO_2 +$	2H ₂ O				
	3) $S + O_2 \rightarrow SO_2$		4) $Cl_2 + 2KBr \rightarrow 2KCl$	+ Br ₂				
90.	Which one of the following is not prepared from halide by chemical oxidation process							
	1) F ₂	2) Cl ₂	3) Br ₂	4) I ₂				
91.	Which of the followin	g is metal displacemen	t reaction	_				
	1) $Zn + CuSO_4 \rightarrow Zn$		2) $2Na + 2H_2O \rightarrow 2N$	-				
	3) Ca + $2H_2O \rightarrow Ca(OH)_2 + H_2$ 4) $2HgO \rightarrow 2Hg + O_2$							
92.	$Zn + CuSO_4 \rightarrow ZnSO$	•	->-					
93.	1) Oxidising agent	, 0 0	3) Reduced	4) Oxidant				
<i>9</i> 3.	Which of the followin 1) NaCl+KNO ₃ \rightarrow Na	_	2) $CaC_2O_4+2HCl \rightarrow C$	aCl +H C O				
	-	\rightarrow MgCl ₂ +2NH ₄ OH						
94.	In the reaction 3Mg+N		1) 211 2118 2118	221(011)2				
) 1 .	1) Magnesium is redu	2 00 2	2) Magnesium is oxidi	zed				
	3) Nitrogen is oxidize		4) None of these					
95.	Which one of the halo	gn is prepared by only	electrolysis method					
	1) Cl ₂	2) Br ₂	3) F ₂	4) I ₂				
96.	Layer test is used for o		0) 11 1	A) NT 11				
	1) Chalogens	2) Pnicogens	3) Halogens	4) Noble gases				
		EXERCIS	E - II					
1.		1g/mL. Assuming that lume of a water molect		oetween water molecules				
	1) 1.5×10 ⁻²³ ml	2) 6×10 ⁻²³ ml	3) 3×10 ⁻²³ ml	4) 3×10 ⁻²² ml				
2.	Ordinary water contains one part of heavy water per 6000 parts by weight. The number of heavy water molecules present in a drop of water of volume 0.01mL is (density of water is 1g/							
	mL) 1) 2.5×10 ¹⁶	2) 5×10 ¹⁷	3) 5×10 ¹⁶	4) 7.5×10 ¹⁶				

3. An α -particle changes into a Helium atom. In the course of one year the volume of Helium collected from a sample of Radium was found to be 1.12 ×10⁻²mL at STP. The number of α

	particles emitted l	by the sample of Radiu	ım in the same time is						
	1) 6×10^{17}	2) 3×10^{17}	3) 1.5×10^{17}	4) 1.2×10^{18}					
4.	A gaseous mixtur number of molecu		nitrogen in the ratio 1:4	4 by weight. The ratio of their					
	1) 1:4	2) 4:1	3) 7:32	4) 3:16					
5.			50g of calcium carbona						
	1) 6.023×10 ²³	2) 30.1×10 ²³	3) 9.035×10 ²³	4) 1.206×10 ²⁴					
6.		en required to prepare							
	1) 16g	2) 32g	3) 8g	4) 64g					
7.	One mole of CH ₄		2) 4						
	1) 6.02×10 ²³ atoms	s of hydrogen	2) 4gm atoms of h	•					
	3) 3g of carbon		4) 1.81×10 ²³ mole	T					
8.			ules in equal masses of						
	1) 1:1	2) 4:1	3) 1:4	4) 2:1					
9.	The number of su number)	The number of sulphur atoms present in 0.2 mole of sodium thiosulphate is (N=Avogadro number)							
	1) 4N	2) 0.2N	3) 0.4N	4) 0.1N					
10. The number of nitrogen molecules present in 1c.c of gas at NTP is									
	1) 2.67×10 ²²	2) 2.67×10 ²¹	3) 2.67×10 ²⁰	4) 2.67×10 ¹⁹					
11.	The mixture conta	aining the same numbe	er of molecules as that o	of 14 g of CO is					
	1) 14g of nitrogen	+ 16g of oxygen	2) 7g of nitrogen	+ 16g of oxygen					
	3) 14g of nitrogen	+8g of oxygen	4) 7g of nitrogen	+8g of oxygen					
12.	Which of the follo	Which of the following is heaviest?							
	1) 50g of iron		2) 5 moles of nitro	2) 5 moles of nitrogen					
	3) 0.1 gram atom o	of silver	4) 10^{23} atoms of c	4) 10^{23} atoms of carbon					
13.	The density of a weight of the gas		trogen, under the sam	e conditions. The molecular					
	1) 5.6	2) 28	3) 56	4) 14					
14.	The density of a g	as at STP is 1.5g/L at S	STP. Its molecular weig	tht is					
	1) 22.4	2) 33.6 g	3) 33.6	4) 44.8					
15. 7g of nitrogen occupies a volume of 5 litres under certain conditions. Under the same of one mole of a gas, having molecular weight 56, occupies a volume of									
	1) 40L	2) 20L	3) 10L	4) 80L					
16.	One mole of oxyg	en (O_2) is present in th	e following mass of sul	phuric acid					
	1) 98g	2) 24.5g	3) 196g	4) 49g					
17.	The number of gra	am - atoms of sulphur	in 2 moles of peroxydis	sulphuric acid is					
	1) 2	2) 3	3) 1	4) 4					
18.	Four ten litre flask	s are separately filled	with the gases hydroge	n, helium, oxygen and ozone					

SOME BASIC CONCEPTS OF CHEMISTRY (STOICHIOMETRY) at the same temperature and pressure. The ratio of the total number of atoms of these gases

		ent flasks would be	The fatio of the total fit	iniber of atoms of these gases					
	1) 1:2:3:2	2) 2:1:2:3	3) 1:3:2:2	4) 1:1:1:1					
19.	If the relative ato	omic mass of oxygen is 6	64 units, the molecular	mass of CO becomes					
	1) 112	2) 128	3) 28	4) 7					
20.	Three grams of control formed is	arbon is completely bur	nt in excess of oxygen.	The weight of carbon dioxide					
	1) 22g.	2) 44g.	3) 11 g	4) 5.5 g					
21.		e percentage of O ₂ in a n	· -	8g of O ₂ ?					
	1) 25%	2) 75%	3) 50%	4) 40%					
22.	The volume in l completely is	itres of CO ₂ liberated a	at STP, when 10g of 9	0% pure limestone is heated					
	1) 2.016	2) 20.16	3) 2.24	4) 22.4					
23.	7.5 g of a gas occ	cupies 5.6 litres as STP.	The gas is						
	1) NO	2) N ₂ O	3) CO	4) CO ₂					
24.	$H_3PO_4 + 2KOH$	\rightarrow K ₂ HPO ₄ + 2H ₂ O							
	Based on the abo	ve reaction equivalent	weight of H ₃ PO ₄ is						
	1) 196	2) 98	3) 49	4) 32.67					
25.	A bivalent metal	has 12 equivalent weig	tht. The molecular weight.	ght of its oxide is					
	1) 16	2) 32	3) 40	4) 52					
26.	Molecular weigh acidic medium is		ts equivalent weight wl	nen it is oxidised by KMn ${\sf O}_4$ in					
	1) 392	2) 196	3) 130.6	4) 78.5					
27.	The eqivalent weights of 'S' in SCl ₂ and S ₂ Cl ₂ are in the ratio								
	1) 1 : 2	2) 2 : 1	3) 1 : 1	4) 1 : 4					
28.	The equivalent weight of a metal in different compounds are 18.6 ad 28. Atomic mass of the metal would be								
	1) 18.6	2) 28	3) 46.6	4) 56					
29.	· ·	ne requires five times it stion. The molecular fo		nder the same conditions for					
	1) C_2H_6	2) C_4H_{10}	3) C_3H_8	4) CH ₄					
30.	_	tance gave, on combus la of the substance	tion, 0.361 g of CO_2 an	d $0.147g$ of H_2O . What is the					
	1) CH ₂ O	2) C ₃ H ₆ O	3) $C_3H_6O_2$	4) $C_2H_6O_2$					
31.	•	npound yields the follo ne simplest formula of t		osition. 65.03% of Ag; 15.68% t.wt=52]					
	1) Ag_2CrO_4	2) $Ag_2Cr_2O_7$	3) AgCrO ₂	4) $AgCr_2O_3$					
32.	The percentage of	of oxygen in NaOH is	- -	- 2 0					
	1) 40	2) 6	3) 8	4) 20					
				•					

33.	The percentage	of nitrogen in Magnesiu	ım nitride is				
	1) 14	2) 28	3) 42	4) 56			
34.	The mass of wat	er (in grams) in one mo	le of crystalline hypo i	S			
	1) 18	2) 90	3) 158	4) 248			
35.	-	anic compound on con arbon and Hydrogen in		CO_2 and 0.54g of H_2O . The			
	1) 75, 25	2) 60, 40	3) 83.33, 16.67	4) 77.8, 22.2			
36.	-	ound gave 112ml of nit	-	P in the Dumas method. The			
	1) 25	2) 41.5	3) 42.4	4) 21.2			
37.	A compound co	ntains 90% C and 10% I	H. The empirical form	ıla of the compound is			
	1) C ₈ H ₁₀	2) $C_{15}H_{30}$	3) C_3H_4	4) C ₁₅ H ₄₀			
38.	60g of a compou	ınd on analysis gave C=	=24g, H=4g and O=32g	. Its empirical formula is			
	1) $C_2H_4O_2$	2) CH ₂ O	3) CH ₂ O ₂	4) C_2H_2O			
39.	The empiricial f formula of the co	-	is CH ₂ O. Its molecular	weight is 120. The molecular			
	1) $C_3H_6O_3$	2) $C_4H_8O_4$	3) $C_2H_4O_2$	4) $C_6H_{12}O_6$			
40.	In the reaction						
	$MnO_4^- + SO_3^{2-} + H^+ \rightarrow Mn^{2+} + SO_4^{2-}$ the number of H ⁺ ions involved is						
	1) 2	2) 6	3) 8	4) 16			
41.	$Cr(OH)_3 + H_2$ equation	$O_2 \xrightarrow{\text{Alkali}} CrO_4^{-2} +$	H ₂ O the number of OF	- required to balance the above			
	1) 1	2) 3	3) 4	4) 6			
42.	In the reaction the stoichiometry coefficients of $ \mbox$						
	$\mathrm{Cr}_2\mathrm{O}_7^{2-} + \mathrm{NO}_2^{-}$	$+ H^+ \rightarrow Cr^{3+} + NO_3^-$	$+ H_2O$				
	1) 1,3,8	2) 1,4,8	3) 1,3,12	4) 1,5,12			
43.		noles of MnO_4^- and Cr_2 edium respectively	${}_{2}\mathrm{O}_{7}^{-2}$ separately require	red to oxidise 1 mole of FeC ₂ O ₄			
	1) 0.5 ; 0.6	2) 0.6 ; 0.4	3) 0.4; 0.5	4) 0.6 ; 0.5			
44.		pure sample of $KClO_3$ to					
	1) 2.45g	2) 1.225g	3) 9.90g	4) None			
45.	6g of Mg reacts 1) 0.5g	with excess of an acid. T 2) 1g	he amount of hydroge 3) 2g	n produced would be 4) 4g			
46.	The number of r	noles of Fe_2O_3 formed w	when 5.6 lit of O ₂ reacts	with 5.6g of Fe?			
	1) 0.125	2) 0.01	3) 0.05	4) 0.10			
47.	What volume of	H ₂ at NTP is required t	o convert 2.8g of N_2 in	to NH ₃ ?			
	1) 2240 ml	2) 22400 ml	3) 6.72 lit	4) 224 lit			

48.	The number of	grams of NaOH that co	ompletely neutralises 9	.8g of phosphoric acid is		
	1) 120	2) 24	3) 36	4) 12		
49.		% by volume of oxygen. ne under the same cond	-	red for the complete combustion	n	
	1) 2L	2) 4L	3) 10L	4) 0.4L		
50.			ygen are exploded toge resulting volume of the	ther and the reaction mixture in mixture is	s	
	1) 40 ml	2) 20 ml	3) 30 ml	4) 10 ml		
51.	The volume of	CO ₂ obtained by the cor	nplete decomposition o	f one mole of NaHCO ₃ at STP i	s	
	1) 22.4 L	2) 11.2 L	3) 44.8 L	4) 4.48 L		
52.	How many litr of Na ₂ CO ₃ ?	es of CO ₂ at STP will be	formed when 100 ml of	0.1M H ₂ SO ₄ reacts with exces	s	
	1) 22.4	2) 2.24	3) 0.224	4) 5.6		
53.	$25.5 \mathrm{g} \mathrm{of} \mathrm{H}_2\mathrm{O}_2\mathrm{s}$ weight of the s		ion gave 1.68L of O ₂ at S	TP. The percentage strength b	y	
	1) 30	2) 10	3) 20	4) 25		
54.	What is the vol into sulphurdi	. ,	aired at STP to complete	ely convert 1.5 moles of sulphu	r	
	1) 11.2	2) 22.4	3) 33.6	4) 44.8		
55.	A peroxidase e enzyme is	nzyme contains 2% selo	enium (Se=80). The mir	iimum molecular weight of th	е	
	1) 1000	2) 2000	3) 4000	4) 800		
56.	The amount of Mg in gms. to be dissolved in dilute $\rm H_2SO_4$ to liberate $\rm H_2$ which is just sufficient to reduce 160g of ferric oxide is					
	1) 24	2) 48	3) 72	4) 96		
57.		= -	ed in the reation Na ₂ Co ired to yield 1gm of CaO	$O_3 + CaCl_2 \rightarrow CaCO_3 + 2NaCCO_3$	l.	
	1) 8.5g	2) 10.5g	3) 11.52g	4) 1.152g		
58.				$15O_2(g) \rightarrow 12CO_2(g) + 6H_2O(g)$ ete combustion of 39g of liquid		
	1) 11.2	2) 22.4	3) 42	4) 84		
59.	The mass of 80	% pure H ₂ SO ₄ required	l to completely neutrali	se 60g of NaOH is		
	1) 92g	2) 58.8g	3) 73.5g	4) 98g		
60.	_	•	=56). The molecular w cule of haemoglobin is	eight of haemoglobin is 68000).	
	1) 2	2) 3	3) 4	4) 5		

SOME BASIC CONCEPTS OF CHEMISTRY (STOICHIOMETRY) Assuming that air at STP contained 80% by volume of nitrogen, the volume of air at STP that

61.	Ü	at STP contained 80% b nolecules of Nitrogen i		the volume of air at STP that		
	1) 18 L	2) 44.8 L	3) 22.4 L	4) 11.2 L		
622.		of two elements A and y atoms are present in	-	ctively. If x gm of A contains		
	1) 2y	2) y/2	3) y	4) 4y		
63.	20 ml of nitric oxide be	e combines with 10 ml o	of oxygen at STP to giv	e NO ₂ . The final volume will		
	1) 30 ml	2) 20 ml	3) 10 ml	4) 40 ml		
64.	The number of mo	les of KI required to pro	oduce $0.4\mathrm{moleK_2HgI_4}$	is		
	1) 1	2) 3	3) 16	4) 1.6		
65.	A compound contains atoms of three elements A, B and C. If the oxidation number of A is +2, B is +5 and that of C is -2, the possible formula of compound is					
	1) $A_3(BC_4)_2$	2) $A_3(B_4C)_2$	3) ABC ₂	4) $A_2(BC_3)_2$		
66.	How many mole oxygen atoms?	es of magnesium pho	osphate, Mg ₃ (PO ₄) ₂	will contain 0.25 mole of		
	1) 0.02	2) 3.125×10^{-2}	3) 1.25×10^{-2}	4) 2.5×10^{-2}		
67.	Total number of su	ılphate ions present in	3.92g of chromic sulpl	nate is (Cr = 52, S=32, O=16)		
	1) 1.8×10 ²²	2) 1.8×10 ²³	3) 1.2×10 ²¹	4) 6×10 ²³		
68.	The number of mo	lecules in one litre of w	ater is (density of wate	er = 1g/mL)		
	1) 6×10 ²³ / 22.4	2) 3.33×10 ²⁵	3) 3.33×10 ²³	4) 3.33×10 ²⁴		
69.	The mass of 1.5×10 1) 60g	0 ²⁰ atoms of an element 2) 60mg	is 15mg. The atomic n 3) 60	nass of the element is 4) 6		
70.	If 0.5 mol of $BaCl_2$ is mixed with 0.2 mol of Na_3PO_4 the maximum number of moles of $Ba_3(PO_4)_2$ that can be formed is					
	1) 0.7	2) 0.5	3) 0.30	4) 0.10		
71.	A copper plate of $20 \text{cm} \times 10 \text{cm}$ is to be plated with silver of 1 mm thickness. The number of silver atoms required for the plating is (density of silver = 10.8 g/c.c)					
	1) 1.2×10 ²⁴	2) 2.4×10 ²⁴	3) 1.2×10 ¹³	4) 2.4×10 ²³		
72.	Bell metal contain copper is (Cu=64)	s 80% copper. The ma	ss of Bell metal which	a contains 1.5×10 ²⁰ atoms of		
	1) 2mg	2) 20mg	3) 40mg	4) 12.8mg		
73.		$Ca(OH)_2$ and H_3PO_4 are of moles of $Ca_3(PO_4)_2$ for		nder dilute conditions. The		
	1) 1	2) 1/2	3) 1/3	4) 3		
74.	The mass of 1.5×10 is) ²⁶ molecules of a subst	tance is 16kg. The mole	ecular mass of the substance		

SOM	E BASIC CO	ONCEPTS (OF CHEMIS	STRY (STOICHI	OMETRY)	
	1) 64g		a.m.u	3) 16 a.m.u	4) 32 a.m.u	
<i>7</i> 5.	A mixture of ?	7g of nitrogen	and 8g of oxys	gen at STP occupies a	a volume of	
	1) 11,200 mL	2) 22	2, 400 mL	3) 2240 mL	4) 5600 mL	
76.		A ₂ B ₃ is 26gm.	_	_	$\operatorname{rnds} \operatorname{A}_2\operatorname{B}_3$ and AB_2 . The weight	_
	1) 15,20	2) 20),25	3) 20,30	4) 25,30	
77.		neasured unde	_		en and gives 160 ml of CO_2 . In and pressure, the formula of	
	1) C_3H_8	2) C	$_{1}H_{8}$	3) C_6H_{14}	4) C_4H_{10}	
78.	0.2 mole of ar alkane is	n alkane on co	mplete combu	ustion gave 26.4g of 0	CO_2 . The molecular weigh	ıt of
	1) 16	2) 30)	3) 44	4) 58	
79. 0.4g of a compound on complete combustion gave 56ml of CO ₂ at 7 percentage of carbon in the compound is				CO_2 at 760mm and 0°C.	The	
	1) 50	2) 60)	3) 27.5	4) 7.5	
80.		umber of atom		_	and are as follows. A=1.33,	B=1
	1) $A_2B_2C_3$	2) A	ВС	3) $A_8 B_6 C_9$	4) $A_3B_3C_4$	
81.		_			n C=26.7% and H=2.2%. olecular formula of the aci	
	1) CH ₂ O ₂	2) C	$_{2}H_{2}O_{4}$	3) $C_3H_3O_4$	4) $C_2H_4O_4$	
82. In a compound C, H and N atoms are present in 9:1 : 3.5 by weight. M compound is 108. Molecular formula of compound is				weight. Molecular weigh	t of	
	1) $C_2H_6N_2$	2) C	$_{3}H_{4}N$	3) $C_6 H_8 N_2$	4) $C_9H_{12}N_3$	
			EXERC	ISE - I		
	1) 4	2) 4	3) 1	4) 2	5) 2	
	6) 3	7) 2	8) 4	9) 3	10) 1	
	11) 1	12) 1	13) 2	14) 2	15) 2	
	16) 4	17) 1	18) 2	19) 1	20) 1	
	21) 1	22) 2	23) 2	24) 4	25) 4	
	26) 3	27) 4	28) 2	29) 4	30) 1	
	31) 1	32) 4	33) 2	34) 1	35) 3	

36) 4

37) 2

38) 2

39) 2

40) 1

	SOME BASIC	CONCEPTS	OF CHEMIS	TRY (STOICHIOMETRY	')
41) 3	42) 3	43) 3	44) 3	45) 1	
46) 1	47) 2	48) 3	49) 1	50) 2	
51) 1	52) 1	53) 3	54) 3	55) 1	
56) 3	57) 2	58) 2	59) 4	60) 1	
61) 4	62) 4	63) 2	64) 3	65) 1	
66) 3	67) 4	68) 1	69) 1	70) 4	
71) 3	72) 2	73) 2	74) 3	75) 3	
76) 3	77) 1	78) 2	79) 2	80) 2	
81) 3	82) 4	83) 1	84) 3	85) 2	
86) 3	87) 4	88) 1	89) 1	90) 1	
91) 1	92) 2	93) 4	94) 2	95) 3	
96) 3					
		EXERCIS	SE - II		
1) 3	2) 3	3) 2	4) 3	5) 3	
6) 2	7) 2	8) 2	9) 3	10) 4	
11) 4	12) 2	13) 3	14) 3	15) 2	
16) 4	17) 4	18) 2	19) 1	20) 3	
21) 3	22) 1	23) 1	24) 3	25) 3	
26) 1	27) 1	28) 4	29) 3	30) 1	
31) 1	32) 1	33) 2	34) 2	35) 3	
36) 4	37) 3	38) 2	39) 2	40) 2	
41) 3	42) 1	43) 4	44) 1	45) 1	
46) 3	47) 3	48) 4	19) 3	50) 2	
73) 2	74) 3	77) 3	79) 3	81) 3	
82) 3	84) 4	85) 4	86) 1	90) 3	
91) 3	92) 3	93) 2	94) 4	96) 1	
51) 2	52) 1	53) 2	54) 3	55) 4	
56) 1	57) 2	58) 3	59) 2	60) 1	
61) 3	62) 4	63) 3	64) 4	65) 3	
66) 2	67) 3				

EXERCISE- IA

Comprehension I

Mole of any reagent contains 6.023×10^{23} particles. The particles may be atom, molecule, ions, electron, proton and neutron. One mole of atom is equal to 1 gm-atom which is equal to atomic weight of atom. 1 gm-molecule of any gas is 1 mole of gas whose volume is 22.4 litre at N.T.P.

1.	The volume of 3.011×10 ²³ atoms of hydrogen gas at N.T.P. is:						
	1) 1.12 litres	2) 2.24 litres	3) 2.8 litres	4) 5.6 litres			
2.	Mass of 1 atom of a	n element X_2 is 6.64 x 10) ⁻²³ gm. Molecular wt. c	of X_2 is about:			
	1) 80	2) 60	3) 40	4) 20			
3.	be present in 1 Kg C	0.2?		many gm-atoms of O_2 will			
		2) 62.5 gm-atom	3) 15.63 gm-atom	4) 125 gm-atom			
Comp	orehension II						
	the 14th general conelementary particle occupies 22.4 litre vasa substance is also cas is plenty, heap or the elementary particles	ference on weights and s as the number of ato olume. Molar volume o alled gram atomic mass e collection of large nu	I measurements in 1977 oms present in 12 g of of solids and liquids is a or gram molar mass. T mbers. 1 mole of a subs Atomic mass unit {amu	h basic S.I. unit adopted by I. A mole contains as many C. 1 mole of a gas at STP not definite. Molar mass of the virtual meaning of mole stance contains 6.023 x 10 ²² t) is the unit of atomic mass,			
4.	The mass of one amu is approximately:						
	1) 1 g	2) 0.5 g	3) 1.66xl0 ⁻²⁴ g	4) 3.2 x 10 ⁻²⁴ g			
5.	5.6 litre of a gas at S	TP are found to have a	mass of 22 g. The mole	ecular mass of the gas is:			
	1) 22	2)44	3) 88	4) 33			
6.	The mass of one mo	lecule of water is appro	oximately:				
	1) 1 g	2) 0.5 g	3) 1.66 x 10 ⁻²⁴ g	4) $3.2 \times 10^{-23} \text{ g}$			
7.	How many atoms a	re present in 49 g of H	SO ₄ ?				
	1) $7 \times 6.023 \times 10^{23}$	2) 5 x 6.023 x 10^{23}	3) 6x6.023x 10 ²³	4) $7 \times 3.02 \times 10^{23}$			
8.	x L $\rm N_2$ gas at STP contains $3x10^{22}$ molecules. The number of molecules in x L ozone at STP will be:						
	1) 3×10^{22}	2) 4×10^{23}	3) 6.02×10^{23}	4) 3×10^2			
Comp	rehension - III						
	Isotopes are the atoms of same element; they have same atomic number but different mass numbers. Isotopes have different number of neutrons in their nucleus. If an element exists in two isotopes having atomic masses $^{1}a'$ and $'b'$ in the ratio $m:n$, then average atomic mass will be $mxa + nxb/m + n$ Different isotopes of same element have same position in the periodic table. The elements which have single isotope are called monoisotropic elements. Greater is the percentage composition of an isotope, more will be its abundance in nature.						
9.				ratio of Its average atomic			
	1) 1 : 1	2) 2:1	3) 3:1	4) 3:2			
10.		ing isotopes is/are use		atomic mass?			
	$1)_{6}C^{12}$	2) ₆ C ¹⁴	$3)_{8}O^{16}$	4) $_{7}N^{14}$			

11.		on is 10.81. It has tw and 20% respectively.	-	y ₅ B ¹¹ and	₅ B ^x with th	eir relative
	1) 10.05	2) 10	3) 10.01		4) 10.02	
12.	The ratio of the mass 1:9. The molecular r	s of C-12 atom to that mass of element X is:	of an atom of elem	ent X (wh	ose atomici	ty is four) is
	1) 480 g mol ⁻¹	2) 432 g mol ⁻¹	3) 36 g mol ⁻¹		4) 84 g mol	1
13.		opes are found as 98 ms in 12 g of the samp	-	ctively in	any sample	e. Then, the
	1) 1.5 mole atoms	2) 1.032 x 10 ²² ato	ms 3) 2.06×10^{21}	atoms	4) 2 g atoms	5
Comp	rehension - IV					
	various elements pro	s the simplest formulesent in one molecule res the number of ator	of the compound.	However,	, the molecu	lar formula
	Molecular formula	= (Empirical formul1)) x n			
	$n = \frac{Moleculo}{Empirical}$					
	A compound may	have same empirical rcentage composition			oth these fo	rmulae are
	Answer the following	ng questions:				
14.	Which of the follow	ing compounds have	same empirical fo	rmula?		
	1) Acetic acid	2) Glucose	3) Sucrose		4) Formalde	ehyde
15.	Which of the follow	ing represents the for	rmula of a substan	ce which o	contains 50	% oxygen?
	$1) N_2O$	2) CO ₂	3) NO ₂		4) CH ₃ OH	
16.	An oxide of iodine ((I = 127) contains 25.4	g of iodine and 8 g	g of oxyge	n. Its formu	la could be:
	1) I_2O_3	2) I ₂ O	3) $I_{2}O_{5}$		4) I ₂ O ₇	
17.	•	acid gas occupies 5.6 ts molecular formula $_2)$ H_2 F_2		te will be:	ne empirical 4) H_4F_4	formula of
Comp	rehension - V					
	ber) of all elements compound is fractio ent oxidation states redox reactions oxid electrons from redu		d state is zero. If or ation state of the ed ins electrons and re occur simultaneou	kidation st lement wh reducing a sly and th	tate of any enich is presengent lose enere will be e	element in a ent in differ- lectrons. In
			$N^3 = N^2$	$=N^1$		
18.	Oxidation state of N	\mathbb{I}^1 , \mathbb{N}^2 , \mathbb{N}^3 and \mathbb{H} in \mathbb{H}^N	N ₃ i.e., H	are r	espctively	
	1) 0,0,-1,+1	2) -1, 0, 0,+1/3	3) +1/3,+1/	,+1/3,+1	4) 0, +2/3,	+1/3,0
19.		eight of chl $5NaCl + NaClO_3$		ıle in	the the	reaction
	$3Ci_2 + 0IVUOII \rightarrow$	Sivuci I Trucio3	1311_2 O, will be.			

 20. How much volume of 0.1 M FeC₂O₄ solution will be required to reduce 200 mL of 0.6 M K₂Cr₂O₇ acidic solution: 1) 600mL 2) 120ml 3) 2400 mL 4) 3000 mL Comprehension - VI 10 moles of SO₂ and 4 moles of O₂ are mixed in a closed vessel of volume 2 litres. The mixture is heated in presence of Pt catalyst. Following reaction takes place: 2SO₂(g) + O₂(g) → 2SO₃(g) Assuming the reaction proceeds to completion. 21. Select the correct statement: 1) SO₂ is the limiting reagent 3) Both SO₂ and O₂ are limiting 4) Cannot be predicted 22. Number of moles of SO₃ formed in the reaction will be: 1) 10 2) 4 3) 8 4) 14 23. Number of moles of excess reactant remaining: 1) 4 2) 2 3) 6 4) 8 24. The calculation on the given reaction is based on: 1) Boyle's law 2) Charles' law 3) Gay-Lussac's law 4) A v o g a d r o ' hypothesis 	SOME	E BASIC CONCER 1) 35.5	PTS OF CHEMIST 2)7.1	RY (STOICHIOME 3) 21.3	ETRY) 4) 42.6		
Comprehension - VI 10 moles of SO₂ and 4 moles of O₂ are mixed in a closed vessel of volume 2 litres. The mixture is heated in presence of Pt catalyst. Following reaction takes place: 2SO₂(g) + O₂(g) → 2SO₃(g) Assuming the reaction proceeds to completion. 21. Select the correct statement: 1) SO₂ is the limiting reagent 2) O₂ is the limiting reagent 3) Both SO₂ and O₂ are limiting 4) Cannot be predicted 22. Number of moles of SO₃ formed in the reaction will be: 1) 10 2) 4 3) 8 4) 14 23. Number of moles of excess reactant remaining: 1) 4 2) 2 3) 6 4) 8 24. The calculation on the given reaction is based on: 1) Boyle's law 2) Charles' law 3) Gay-Lussac's law 4) A v o g a d r o '	20.		= -		reduce 200 mL of 0.6 M		
10 moles of SO₂ and 4 moles of O₂ are mixed in a closed vessel of volume 2 litres. The mixture is heated in presence of Pt catalyst. Following reaction takes place: 2SO₂(g) + O₂(g) → 2SO₃(g) Assuming the reaction proceeds to completion. 21. Select the correct statement: 1) SO₂ is the limiting reagent 2) O₂ is the limiting reagent 3) Both SO₂ and O₂ are limiting 4) Cannot be predicted 22. Number of moles of SO₃ formed in the reaction will be: 1) 10 2) 4 3) 8 4) 14 23. Number of moles of excess reactant remaining: 1) 4 2) 2 3) 6 4) 8 24. The calculation on the given reaction is based on: 1) Boyle's law 2) Charles' law 3) Gay-Lussac's law 4) A v o g a d r o '		1) 600mL	2) 120ml	3) 2400 mL	4) 3000 mL		
is heated in presence of Pt catalyst. Following reaction takes place: $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$ Assuming the reaction proceeds to completion. $21. \text{Select the correct statement:} \\ 1) SO_2 \text{ is the limiting reagent} \\ 3) Both SO_2 \text{ and } O_2 \text{ are limiting} \\ 4) \text{ Cannot be predicted} \\ 22. \text{Number of moles of SO}_3 \text{ formed in the reaction will be:} \\ 1) 10 \qquad 2) 4 \qquad 3) 8 \qquad 4) 14 \\ 23. \text{Number of moles of excess reactant remaining:} \\ 1) 4 \qquad 2) 2 \qquad 3) 6 \qquad 4) 8 \\ 24. \text{The calculation on the given reaction is based on:} \\ 1) \text{ Boyle's law} \qquad 2) \text{ Charles' law} \qquad 3) \text{ Gay-Lussac's law} 4) \text{ A v o g a d r o '} \\ \end{aligned}$	Compr						
Assuming the reaction proceeds to completion. 21. Select the correct statement: 1) SO ₂ is the limiting reagent 2) O ₂ is the limiting reagent 3) Both SO ₂ and O ₂ are limiting 4) Cannot be predicted 22. Number of moles of SO ₃ formed in the reaction will be: 1) 10 2) 4 3) 8 4) 14 23. Number of moles of excess reactant remaining: 1) 4 2) 2 3) 6 4) 8 24. The calculation on the given reaction is based on: 1) Boyle's law 2) Charles' law 3) Gay-Lussac's law 4) A v o g a d r o '							
1) SO ₂ is the limiting reagent 3) Both SO ₂ and O ₂ are limiting 4) Cannot be predicted 22. Number of moles of SO ₃ formed in the reaction will be: 1) 10 2) 4 3) 8 4) 14 23. Number of moles of excess reactant remaining: 1) 4 2) 2 3) 6 4) 8 24. The calculation on the given reaction is based on: 1) Boyle's law 2) Charles' law 3) Gay-Lussac's law 4) A v o g a d r o '		2.07 2.07	3 (0)	on.			
1) 10 2) 4 3) 8 4) 14 23. Number of moles of excess reactant remaining: 1) 4 2) 2 3) 6 4) 8 24. The calculation on the given reaction is based on: 1) Boyle's law 2) Charles' law 3) Gay-Lussac's law 4) A v o g a d r o '	21.	1) SO ₂ is the limiting r	eagent				
1) 4 2) 2 3) 6 4) 8 24. The calculation on the given reaction is based on: 1) Boyle's law 2) Charles' law 3) Gay-Lussac's law 4) A v o g a d r o '	22.				4) 14		
1) Boyle's law 2) Charles' law 3) Gay-Lussac's law 4) A v o g a d r o '	23.			· ·	4) 8		
	24.	The calculation on th	e given reaction is base	ed on:			
7 1		1) Boyle's law hypothesis	2) Charles' law	3) Gay-Lussac's law	4) Avogadro's		
 Total number of moles of gaseous component after the reaction will be. 1) increase 3) remain same 4) may increase or decrease 		1) increase 2) decrease					
Comprehension - VII Read the following passage and answer the following questions. Oleum is mixture of H_2SO_4 and SO_3 , i.e., $H_2S_2O_7$ which is obtained by passing SO_3 in solution of H_2SO_4 . In order to dissolve SO_3 in oleum, dilution of oleum is done by water in which oleum is converted into pure H_2SO_4 as shown below: $H_2SO_4 + SO_3 + H_2O \rightarrow 2H_2SO_4$ (pure) When 100 gm oleum is diluted with water then total mass of diluted oleum is known at percentage labelling in oleum. For example: 109% H_2SO_4 labelling of oleum sample mean that 109 gm pure H_2SO_4 is obtained on diluting 100 gm oleum with 9 gm H_2O which dissolve	Compri	Read the following part and SO ₃ , i.e., H ₂ S ₂ O ₇ dissolve SO ₃ in oleum pure H ₂ SO ₄ as shown When 100 gm oleum percentage labelling in	which is obtained by a, dilution of oleum is debelow: $H_2SO_4 + SO_3$ is diluted with water in oleum. For example:	passing SO_3 in solution lone by water in which $+H_2O \rightarrow 2H_2SO_4(p)$ then total mass of dilutions $+H_2SO_4$ labelling	on of H ₂ SO ₄ . In order to oleum is converted into oure) uted oleum is known as of oleum sample means		
all free SO ₃ in oleum. 26. If the number of moles of free SO ₃ , H ₂ SO ₄ and H ₂ O be x, y and z, respectively in 118% H ₂ SO ₄	26.	all free SO_3 in oleum.					
labelled oleum, the value of $(x+y+z)$ is:				2 , ,	r		
1) 2.2 2) 3.2 3) 3.4 4) 4.2		1) 2.2	2) 3.2	3) 3.4	4) 4.2		
27. How much volume of 1.00 M NaOH will be required to neutralise 118% H ₂ SO ₄ labelled oleum 1) 1.204 litre 2) 1.806 litre 3) 2.408 litre 4) 4.816 litre	27.			=	2 1		
28. In '109% H ₂ SO ₄ ' labelled oleum, the percent of free SO ₃ and H ₂ SO ₄ are: 1) 30%, 70% 2) 40%, 60% 3)60%, 40% 4) 15%, 85%	28.	= -		·			
Comprehension - VIII	Compr	•		, .			

Read the following passage and answer the questions based on it. H_2O_2 acts both as oxidant and reducing agent. H₂O and O₂ are products when H₂O₂ acts as oxidant and reducing agent respectively. The strength of $H_2\tilde{O}_2$ is expressed in terms of molarity, normality, % strength and volume strength. H_2O_2 decomposes as $H_2O_2 \to H_2O + 1/2O_2(g)$ i.e., one mole O_2 is released from 2 mole H_2O_2 'X' 'volume' strength of H_2O_2 means 1 volume (mL or litre) of H_2O_2

sample released x volume (mL or litre) O₂ gas at NTP on its decomposition.

	Hence molarity = $x/1$	1.2 moles per litre, i.e.,	normality of $H_2O_2 =$	x/5.6
	_	, i.e. , $x = 5.6 \times Normalit$ entage strength of H_2O		n) present in $100 \text{mL H}_2\text{O}_2$
29.	The percentage streng 1) 10%	gth of 20 'vol' H ₂ O ₂ is 2) 6.06%	3)22%	4) 15%
30.	How much volume of	H_2O_2 solution of 22.4 's	vol' strength is required	l to oxidise 6.3 gm oxalic
	a 1)10mL	c 2)11.2mL	i 3) 25 mL	d :
31.			0 mL and 10 mL of thi on. The volume strengt	s diluted H_2O_2 solution h of H_2O_2 is:
	1) 2.8'Vol'	2) 5.6'Vol'	3) 11.2'Vol'	4) 22.4 'Vol'
Compre	ehension - IX			
	types of iodine titration of I ₂ estimation. Any of	n (1) lodometric & (2) Io oxidant which liberates	odimetric. lodometric m	used on it. There are two tethod is indirect method is liberated iodine is esti- $NaI + Na_2S_4O_6$
32.	<u> </u>	<u> </u>	to excess of KI solution S_2O_3 solution. The value	in acidic medium. The e of x is:
	1) 1/10 M	2) 1/20 M	3) 1/12 M	4) 1/120 M
33.			npurity reacted with K purity of CuSO ₄ .5H,O	I and liberated I_2 reacted is:
	1) 21.58%	2) 41.58%	3) 51.58%	4) 61.58%
34.				
	1) 8.6%	2) 18.7%	3) 25.8%	4) 34.4%
Compre	chension - X			
	number of gm-equival of solute dissolved per ture of solution but mo ity and molarity are e	lent of solute dissolved Kg of solvent. Normali blality is independent of qual but in dibasic acid ion processes number o	per litre of solution. Mo ty and molarity change temperature. In case of d or base molarity is tw	ution while normality is lality is number of moles with change of tempera- monobasic acid normal- to times of normality. In eactants as well as prod-
35.			heated, 2.25 gm HC1 sulting solution will be 3) 0.58M	was lost and volume of about: 4)1.16M
36.	The volume of 0.1 M Cabe:	$n(OH)_2$ required to neutr	alise 0.2 MH ₃ PO ₃ solution	on of volume 0.25 dm³ will
	1)100mL	2) 250 mL	3) 500 mL	4) 750 mL

SOME BASIC CONCEPTS OF CHEMISTRY (STOICHIOMETRY) EXERCISE - IIB

- 1. COLUMN-I
 - A) CrO₅
 - B) Mole fraction
 - C) Atomic mass
 - D) Loschmidt Number
- 2 COLUMN-I
 - A) 1 a.m.u.
 - B) 2.4gm of Mg²⁺
 - C) 11.2 L NH₃ at N.T.P.
 - D) Molality
- 3. COLUMN-I
 - A) 96 g of ozone
 - B) 1.6 gm CH₄
 - C) 2.24 L C_2H_4 at N.T.P.
 - D) 0.054 L H₂O
- 4. COLUMN-I
 - A) 22.4 volume of H_2O_2
 - B) 32 g of O_2
 - C) 11.2 L CO₂ at S.T.P.
 - D) H₃PO₃
- 5. **COLUMN-I**
 - A) $Cu^{2+} + I^{-} \rightarrow I_{2} +$
 - B) $Cu^{2+} + Cl^{-} \rightarrow CuCl_{2} + \dots$
 - C) $MnO_4^- + H^+ + e^- \rightarrow Mn^{2+} + ...$
 - D) $Cr_2O_7^{2-} \rightarrow Cr_2O_3....$

COLUMN-II

- P) 6.4 x (specific heat)⁻¹
- Q) +6
- R) No. of molecules in 1cm³ of gas at N.T.P.
- S) Independent of temperature

COLUMN-II

- P) Independent of temperature
- Q) 21.08×10^{23} neutrons
- R) 6.023×10^{23} electrons
- S) 1.66xl0⁻²⁷kg

COLUMN-II

- P) 2.41×10^{23} hybridised orbitals
- Q) 3.61×10^{23} hybridised orbitals
- R) 6gm-atom
- S) 2.9×10^{21} O H bonds

COLUMN-II

- P) Dibasic
- Q) 9.034 x 10²³ atoms
- R) 2.0 moles L-1
- S) 9.64×10^{24} electrons

COLUMN-II

- P) Eq. wt. of oxidant = M.wt/6
- Q) Eq. wt. of oxidant = M.wt/5
- R) Eq. wt. of oxidant = M.wt/1
- S) Eq. wt. of oxidant = M.wt/2
- 6. Match the stoichiometric coefficients listed in Column II with the species listed in Column I and involved in the balanced equation of the reaction:

$$FeC_2O_4 + MnO_4^- + H^+ \rightarrow Fe^{3+} + Mn^{2+} + CO_2 + H_2O$$

COLUMN-I

COLUMN-II

- A) FeC₂O₄
- B) MnO₄
- $C) H^{\dagger}$
- D) CO,

- P) 10
- Q) 24
- R) 5
- S) 3
- 7. 2.0 L water gas was mixed with 8.0 L of air $(H_2: O_2 = 4:1 \ by \ volume)$ and ignited. The resulting gaesous mixture was cooled to 25°C and successively brought in contact with aqueous KOH and alkaline pyrogallol. If all volumes were measured at 25°C and 1atm pressure, match the following

COLUMN-I

COLUMN-II

- A) Total volume of mixture that results
- P) 6.4 L B) Contraction in volume by aqueous KOH Q) 0.6 L
- R) 1.0 L C) Contraction in volume by alkaline pyrogallol
- D) Volume of residual gas

- S) 9 L.
- 8. Match type of the salt formed with the appropriate reaction.

COLUMN-I

COLUMN-II

Reaction

- A) 1 mole of oxalic acid + 1 Mole of NaOH
- B) 1 mole of H₂PO₂ + 1 mole KOH
- C) 1 mole of $Ca(OH)_3 + 1$ mole of HCl
- D) Dry slaked lime + Cl₂

- Type of Salt P) Mixed salt
- Q) Basic salt
- R) Acid salt
- S) Normal salt

9. **COLUMN-I**

COLUMN-II

A)
$$N_2 + 3H_2 \rightarrow 2NH_3$$

P) 4.16×10^{-2} mol Product was formed

$$\begin{array}{cccc} 0.1 \ \textit{mol} & 0.1 \ \textit{mol} \\ H_2 & + & 2C \rightarrow & C_2H_2 \end{array}$$

B)
$$1g$$
 $1g$

Q) 4.16 ×10⁻² mol Product was formed

C)
$$_{0.5\,g}^{C}$$
 + $_{0.2}^{C}$ \rightarrow $_{0.5\,g}^{CO_2}$ R) 6.25×10^{-2} mol Product was formed

D)
$$2H_2 + O_2 \rightarrow 2H_2O$$
 $1g$ $1g$

S) 6.67 ×10⁻² mol Product was formed

EXERCISE - IA

9) 3

25) 2

EXERCISE-IIB

EXERCISE - I

		Extercis				
1.	Which of the follow	ving is not a fundamental	particle?			
	1) Proton	2) Neutron	3) Alpha particle	4) Electron		
2.	A neutral atom (At	.no. >1) has				
	1) electron and pro	ton	2) neutron and elect	ron		
	3) neutron, electron	and proton	4) neutron and prot	on		
3.	The study of discha	rge of electricity through	gases led to the disco	very of		
	1) Structure of the a	tom	2) Nucleus			
	3) Spectral lines		4) Electron			
4.	Electron is a particl	e having a				
		of one unit and zero mas				
		of one unit and zero mass				
		of one unit and a mass of	-	_		
		of one unit and a mass of	r about 1.67 × 10 -	; ·		
5. T	he value of e/m for a		2) 0 005486 2/2	4) 1 00066 0/0		
		2) $1.6724 \times 10^{-24} \text{ c/g}$	3) 0.003486 C/g	4) 1.00866 c/g		
6.	Charge of electron 1 1) 1.602×10^{-10} Cou		2) 4.8 × 10 ⁻¹⁰ coulon	n la		
	3) 1.602 × 10 ⁻¹⁹ e.s.		4) 4.8×10^{-10} e.s.u	iib		
7.	The e/m of proton:		4) 4.0 ·· 10 ·· C.3.u			
7.	_	2) 9.57 × 10 ⁴ c/g	3) 19 14 × 10^4 c/ σ	4) $0.478 \times 10^4 \text{c/g}$		
8.	Atomic number is e		3) 13.11 10 0, 8	1) 011/0 10 0/8		
0.		_	2) number of protor	os in the nucleus		
	1) number of neutro		2) number of protor			
0	3) sum of protons a A & Z can be	na neutrons	4) atomic mass of th	e eiement.		
9.		2) (2)	4) 1471 1 1		
	1) negative	2) fractional	3) zero	4) Whole number		
10.	The number of protons electrons and $^{80}_{35}$ Br are respectively					
	1) 35, 35, 80	2) 35, 35, 45	3) 80, 80, 35	4) 45, 45, 35		
11.	Which one of the fo	ollowing is an isobar of 60	\mathbb{C}^{14} ?			
	1) $_{6}C^{13}$	2) $_{6}C^{12}$	3) $_{7}N^{14}$	4) $_{7}$ N ¹⁵		
12.	Number of protons	in the nucleus of carbon	atom is			
	1) 7	2) 8	3) 4	4) 6		
13.	The number of nuc	leons in chlorine-37 is				
	1) 17	2) 20	3) 54	4) 37		
14.	The nucleus of an a	tom contains				
	1) Electrons and pr	otons	2) Protons and neutrons			
	3) Electrons and beta particles		4) Protons and alpha particles			

CHE	EMISTRY *		→ A	TOMIC STRUCTURE		
15.	The isotopes of neu	tral atoms of an elemen	nt differ in			
	1) Atomic number	2) Mass number	3) Number of electro	ons 4) Chemical properties		
16.	The nucleus of triti	um consists of				
	1) 1 proton + 1 neut	ron		2) 1 proton + 3 neutrons		
	3) 1 proton + zero n	eutrons	4) 1 proton + 2 neu	trons		
17.	Sodium ion is isoele	ectronic with atom				
	1) Mg^{2+}	2) Al ³⁺	3) Ne	4) N ³⁻		
18.	An atom differs fro	m its ion in				
	1) Nuclear charge	2) Mass number	3) Number of electr	ons4) Number of neutrons		
19.	In C ¹⁴ isotope the n	umber of neutrons wou	ald be			
	1) 6	2) 14	3) 8	4) 10		
20.	The number of neu	trons in the dipositve z	zinc ion (Mass no. of Zr	a = 65)		
	1) 35	2) 33	3) 65	4) 67		
21.	Rutherford's alpha	ray scattering experim	ent showed for the first	t time that the atom has		
	1) Nucleus	2) Proton	3) Electron	4) Neutron		
22.	The radius of the at	om is of the order of (P	MT)			
	1) 10 ⁻¹⁰ cm	2) 10 ⁻¹³ cm	3) 10 ⁻¹⁵ cm	4) 10 ⁻⁸ cm		
23.	When alpha particles are sent through athin metal foil, most of them go straight through the foil because					
	1) Alpha particles are	e much heavier than elec	trons			
	2) Alpha particles	are positively charged				
	3) Most part of the a	atom is empty	4) Alpha particles	move with high velocity		
24.	Identify the incorre	ctly matched set from t	he following SET - B			
	1) Wavelength(χ)		Nanometre			
	2) Frequency (υ)		Hertz			
	3) Wave number ($\overline{\mathfrak{t}}$	o)	metre ⁻¹			
	4) Velocity (C)		ergs			
25.	Einstein was award		0) TI (' F	2		
	1) General theory of a	•	· -	2) The equation, E = mc ² 4) Explanation of photoelectric offect		
26.	,	3) Enunciation of quantum theory 4) Explanation of photoelectric effect In electromagnetic radiation, which of the following has greater wavelength than visible				
20.	light?	radiation, which of the	ie following has greate	i wavelengin man visible		
	1) U.V-rays	2) I.R-rays	3) Gamma rays	4) X-rays		
27.	Which of the follow 1) Gamma rays	ving is not an electroma 2) Alpha rays	agnetic radiation? 3) Radio waves	4) X-rays		
28.		oton is inversely propo		4) \$7.1!!		
20	1) Wavelength	2) Frequency	3) Wave number	4) Velocity		
29.	The value of Plancl	S S CONSIGNIUS				

ATC	MIC STRUCTURE	₩		→ CHEMISTRY		
	1) 6.626 × 10 ⁻²⁷ Js	2) $6.626 \times 10^{-34} Js$	3) 6.023×10^{23} Js	4) 1.602 × 10 ⁻¹⁹ Js		
30.	Which of the following properties of a wave is independent of the other?					
	1) Wave number	2) Wave length	3) Frequency	4) Amplitude		
31.	The radiation with highest wave number					
	1) Microwaves	2) X - rays	3) I.R rays	4) Radiowaves		
32.	Which of the followi 1) $E = mc^2$	ng relates to photon be 2) Photoelectric effe		as a stream of particles? 4) E = h ν		
33.	The metal best used 1) Na	in photoelectric cells is 2) Mg	s 3) Al	4) Cs		
34.	The energy required to emit an electron from the surface of a metal is called					
	1) Activation energy	2) Threshold energy	3) Critical energy	4) Kinetic energy		
35.	Kinetic energy of photoelectrons is independent on of incident radiation.					
	1) Wavelength	2) Wave number	3) Frequency	4) Intensity		
36.	(A): K and Cs are co	mmonly used in photo	pelectric cells.	,		
00.	` '	(A): K and Cs are commonly used in photoelectric cells.(R): K and Cs can emit electrons when exposed to light of lesser frequency.				
	1) Both (A) and (R) are true and (R) is the correct explanation of (A)					
	• • • • • • • • • • • • • • • • • • • •					
	2) Both (A) and (R) are true and (R) is not the correct explanation of (A)					
	3) (A) is true but (R) is false					
	4) (A) is false but (R) is true					
37.	If the wavelength of an electomagnetic radiation is 2000^{0} A. What is the energy in ergs?					
	1) 9.94 × 10 ⁻¹²	2) 9.94 × 10 ⁻¹⁰	3) 4.97×10^{-12}	4) 4.97 × 10 ⁻¹⁹		
38.	The energy of a photon is 3×10^{-12} ergs. What is its wavelength in nm?					
	(h= 6.62×10^{-27} erg. sec;C= 3×10^{10} Cm.s ⁻¹)					
	`	2) 1324	3) 66.2	4) 6.62		
39.	The frequency assoc	iated with photon of r	adiation having a wave	length of 6000A ⁰ is		
	1) $5 \times 10^{14} \text{Hz}$	2) $5 \times 10^{10} \text{Hz}$	3) $2 \times 10^{14} \text{Hz}$	4) $5 \times 10^{15} \mathrm{Hz}$		
40.	The wave number of the radiation whose quantum is 1 erg is					
	1) 5×10^{15} cm ⁻¹	2) 15×10^5 cm ⁻¹	3) 1.5×10^{15} cm ⁻¹	4) 5×10^5 cm ⁻¹		
41.	Energy of a photon with a wave length of 450 nm is					
	1) 4.36×10^{-12} ergs	2) 4.36×10^{-13} ergs	3) 4.36×10^{-20} ergs	4) 4.36×10^{-11} ergs		
42.	A wave has a freque	ncy of $3 \times 10^{15} \text{ sec}^{-1}$. T	The energy of that photo	n is		
	1) 1.6×10^{-12} erg	2) 3.2×10^{-11} erg	3) 2.0×10^{-11} erg	4) 3×10^{15} erg		
43.	The wave length of l	ight having wave num	nber 4000 cm ⁻¹ is			
	1) 2.5μ m	2) 250μ m	3) $25 \mu m$	4) 25nm		
44.	The energy of an electromagnetic radiation is 19.875×10^{-13} ergs. What is the wave number in cm ⁻¹ ? (h = 6.625×10^{-27} erg.sec; $c = 3 \times 10^{10}$ cm.sec ⁻¹)					
	1) 1000	2) 10 ⁶	3) 100	4) 10,000		

51. The following series of lines is found in the ultraviolet region of hydrogen atomic spectrum

- 1) Balmer
- 2) Paschen
- 3) Brackett
- 4) Lyman

52. Brackett series is produced when the electrons from outer orbits jump to

- 1) Third orbit
- 2) Second orbit
- 3) Fourth orbit
- 4) Fifth orbit

53. The equation corresponding to the wave number of spectral lines in Pfund series is

1)
$$R\left[\frac{1}{4^2} - \frac{1}{5^2}\right]$$

1) $R \left| \frac{1}{4^2} - \frac{1}{5^2} \right|$ 2) $R \left| \frac{1}{3^2} - \frac{1}{4^2} \right|$ 3) $R \left[\frac{1}{2^2} - \frac{1}{3^2} \right]$ 4) $R \left[\frac{1}{5^2} - \frac{1}{6^2} \right]$

4)
$$R\left[\frac{1}{5^2} - \frac{1}{6^2}\right]$$

54. n₁ value in Balmer series is

1) 2

- 2) 1
- 3)3

4) 0

55. The value of Rydberg constant is

- 1) 109677 cm⁻¹
- 2) 109700 cm⁻¹ s⁻¹
- 3) 10968 cm⁻¹
- 4) 10970 m

A spectral line with $\lambda = 4938 A^0$ belongs to the - series of Hydrogen atom 56.

- 2) Balmer
- 3) Parchen
- 4) Pfund

Among the first lines of Lyman, Balmer, Paschen and Brackett series in hydrogen atomic 57. spectra, which has higher energy?

- 1) Lyman
- 2) Balmer
- 3) Paschen
- 4) Bracket

58. What are the values of n₁ and n₂ respectively for H_b line in the Lyman series of hydrogen atomic spectrum?

- 1) 3 and 5
- 2) 2 and 3
- 3) 1 and 3
- 4) 2 and 4

59. The fourth line of the Balmer series corresponds to the electronic transition between two

ATO	MIC STRUCTU	RE «		*CHEMISTRY		
	orbits of the Hato	om, Identify the orbits.				
	1) 3 and 1	2) 5 and 1	3) 5 and 2	4) 6 and 2		
60.	In a H-atom, the transition takes place from L to K shell. If $R = 1.08 \times 10^7 \text{m}^{-1}$, the wave length of the light emitted is nearly					
	1) 4400A°	2) 1250A°	3) 1650A°	4) 1850A°		
61.	The wave length of first member of Balmer series of a hydrogen atom is nearly (The value of Rydberg constant $R = 1.08 \times 10^7 \text{m}^{-1}$)					
	1) 4400A°	2) 5500A°	3) 6600A°	4) 7700A°		
62.	The wave length of H_{δ} line of Balmer series of a hydrogen atom is nearly (R = 1.08 × 10 ⁷ m ⁻¹)					
	1) 4090A°	2) 5400A°	3) 6800A°	4) 7200A°		
63.	The first emission line of hydrogen atomic spectrum in the Balmer series appears at (R=Rydberg constant)					
	1) $\frac{5R}{36}$ cm ⁻¹	2) $\frac{3R}{4}$ cm ⁻¹	3) $\frac{7R}{144}$ cm ⁻¹	4) $\frac{9R}{400}$ cm ⁻¹		
64.	What is the wave length of H_b line in Balmer series of hydrogen spectrum? (R = Rydberg constant)					
	1) 36/5R	2) 5R/36	3) 3R/16	4) 16/3R		
65.	If in Hydrogen atom, an electron jumps from $n_2=2$ to $n_1=1$ in Bohr's orbit, then the value of wave number of the emitted photon will be (R=109700 cm ⁻¹)					
	1) 54850 cm ⁻¹	2) 82275 cm ⁻¹	3) 62875 cm ⁻¹	4) 10970 cm ⁻¹		
66.	The wavelength of the radiation emitted, when in hydrogen atom electron falls from infinity to stationary state 1, would be (Rydberg constant $1.097 \times 10^7 \text{m}^{-1}$)					
	1) 91 nm	2) 9.1×10^{-8} nm	3) 406 nm	4) 192 nm		
67.	The first use of quantum theory to explain the structure of atom was made by					
	1) Planck	2) Einstein	3) Bohr	4) Heisenberg		
68.	Bohr's theory is applicable to					
	1) Li ⁺²	2) Li ⁺	3) He ⁺	4) Both 1 and 3		
69.	Bohr's theory is n 1) H	ot applicable to 2) He ⁺	3) Li ²⁺	4) H ⁺		
70	,	,	,	4)11		
70.	 (A): Bohr's orbits are called stationary orbits (R): Electrons remain stationary in these orbits for some time 1) Both (A) and (R) are true and (R) is the correct explanation of (A) 2) Both (A) and (R) are true and (R) is not the correct explanation of (A) 3) (A) is true but (R) is false 4) (A) is false but (R) is true 					
71.	If the electron of a hydrogen atom is present in the first orbit, the total energy of the electron is					
	1) $\frac{-e^2}{r}$	$2) \frac{-e^2}{r^2}$	3) $\frac{-e^2}{2r}$	4) $\frac{-e^2}{2r^2}$		
72.	The angular momentum of an electron present in the excited state of hydrogen is 1.5h/ π The electron is present in					
	1) Third orbit	2) Second orbit	3) Fourth orbit	4) Fifth orbit		

CHEMISTRY **

ATOMIC STRUCTURE

- 73. According to Bohr's theory, the angular momentum of electron in 5th orbit is
 - 1) 2.5 h/p
- 2) 25 h/p
- 3) $1.0 \, h/p$
- 4) 10 h/p
- 74. The angular momentum of a revolving electron in an orbit is equal to
 - 1) $\frac{\text{nh}}{2\pi}$
- 2) $\frac{h}{2\pi}$
- 3) $\left(\frac{\text{nh}}{2\pi}\right)^2$
- 4) $\frac{n\pi}{2h}$

- 75. Energy of an electron in nth Bohr orbit is given as
 - 1) $-\frac{n^2h^2}{4\pi^2mZe^2}$
- $2) \frac{2\pi^2 Z^2 me^4}{n^2 h^2}$
- $3) \frac{2\pi Ze^2}{nh}$
- 4) $-\frac{n^2h^2}{2\pi^2Z^2me^4}$
- 76. The energy of the electron when it is at an infinite distance from the nucleus is
 - 1) Infinity
- 2) Zero
- 3) Minimum
- 4) Can not be predicted
- 77. According to Bohr's theory, when ever the electron drops from a higher energy level to a lower energy level, the frequency of radiation emitted is related to the energy change as
 - 1) $\lambda = \frac{h}{mv}$
- 2) $mvr = \frac{nh}{2\pi}$
- 3) $v = \frac{\Delta E}{h}$
- 4) $v = \frac{h}{\Delta E}$
- 78. In an atom when an electron jumps from K-shell to M-shell
 - 1) Energy is absorbed

- 2) Energy is emitted
- 3) Energy is neither absorbed nor emitted emitted
- 4) Sometimes energy is absorbed and some times
- 79. The expression for radius of a Bohr orbit in hydrogen atom is
 - 1) $\frac{\text{nh}}{2\pi\text{mr}}$
- 2) $\frac{\text{n}^2\text{h}^2}{4\pi^2\text{me}^2}$
- 3) $-\frac{2\pi^2 \text{me}^4}{\text{n}^2\text{h}^2}$
- $4) \frac{n^2}{4\pi^2 mhe^2}$
- 80. As the electron moves away from the nucleus its potential energy --- and kinetic energy ---
 - 1) Decreases, increases

2) Increases, increases

3) Decreases, decreases

- 4) Increases, decreases
- 81. Identify the correctly matched set from the following lists

LIST - A

LIST - B

I) Energy

a) $\frac{2\pi ze^2}{nh}$

II) Velocity

b) $-\frac{2\pi^2 mz^2 e^4}{n^2 h^2}$

III) Rydberg constant

c) $\frac{2\pi^2 mz^2 e^4}{h^3 c}$

IV) Radius

- $d) \frac{n^2h^2}{4\pi^2mze^2}$
- e) $-\frac{4\pi^2 mz^2 e^4}{n^2 h^2}$

1) I - e, II - a, III - c, IV - d

2) I - b, II - a, III - c, IV - d

3) I - e, II - b, III - e, IV - d

4) I - b, II - a, III - d, IV - c

- 82. Bohr's model can explain
 - 1) The spectrum of hydrogen atom only
 - 2) Spectrum of an atom or ion containing one electron only
 - 3) The spectrum of hydrogen molecule

ATOMIC STRUCTURE |

4) The solar spectrum

Splitting of spectral lines under the influence of strong magnetic field is called 83.

1) Stark effect

2) Zeeman effect

3) Photoelectric effect

4) None of these

Radius of tenth Bohr orbit of the hydrogen atom is. 84.

1) 0.53A°

2) 5.3A°

3) 53A°

4) $5.3 \times 5A^{\circ}$

Radius of 3rd Bohr orbit is 85.

1) 6.529A°

2) 2.116A°

3) 4.761A°

4) 8.464A°

Velocity of the electron in the 1st Bohr orbit 86.

1) 2.18×10^8 cm/sec

2) 2.18×10^8 m/sec

3) 2.18×10^{16} cm/se

4) 36559×10^8 cm/sec

87. The energy that is needed to remove an electron from the 1st Bohr orbit of Hydrogen atom is

1) 2.72 ev

2) 40.8 ev

3) 13.6 ev

4) 54.4 ev

The speed of an electron in the inner most orbit of the hydrogen (Bohr radius = 52.9 pm; me = 88. 9.11×10^{-31} kg) is

1) 2.19×10^4 m.s⁻¹

2) $2.19 \times 10^6 \text{ m.s}^{-1}$

3) 2.19×10^7 m.s⁻¹

4) $2.19 \times 10^8 \text{ m.s}^{-1}$

89. The energy of an electron present in Bohr's second orbit of hydrogen atom is

1) -1312 J atom⁻¹

2) - 328 kJ mol⁻¹

3) - 328 I mol⁻¹

4) - 164 kJ mol⁻¹

The de-Broglie's equation treats an electron to be 90.

1) a particle

2) a wave

3) ray

4) both (1) and (2)

91. Wavelength of the wave associated with a moving electron

> 1) Decreases with increase in speed of electron increase in speed of electron

2) Increases with

3) Remains same irrespective of speed of electron

4) is zero.

92. The uncertainity principle and the concept of wave nature of matter were proposed by ----and ---- respectively

1) Pauli, Hund

2) Heisenberg, Aufbau

3) Heisenberg, de Broglie

4) Heisenberg, Planck

Bohr's postulate that $mvr = \frac{nh}{2\pi}$ is proved mathematically by 93.

1) Pauli's exclusion principle

2) de Broglie wave nature of the electron

3) Heisenberg's uncertainity principle

- 4) Sommerfield theory
- 94. The momentum of a particle of wave length 1A° is

1) 6.625×10^{-27} g. cm.s⁻¹

2) 6.625×10^{-19} g. cm.s⁻¹

3) 6.625×10^{-16} g. cm.s⁻¹

- 4) 6.625×10^{-23} g. cm.s⁻¹
- 95. The de Broglie wavelength of a particle with mass 1 g and velocity 100 m/s is

1) 6.63×10^{-33} m

2) 6.63×10^{-34} m

3) 6.63×10^{-35} m

4) 6.63×10^{-36} m

96. The de Broglie wave length of a riffle bullet of mass 2 grams moving with a velocity of 2m/sec is

1) $\frac{6.6 \times 10^{-34}}{2 \times 2}$ m 2) $\frac{6.6 \times 10^{-27}}{2 \times 10^{-3} \times 2}$ cm 3) $\frac{6.6 \times 10^{-34}}{2 \times 10^{-3} \times 2}$ m 4) $\frac{6.6 \times 10^{-27}}{2 \times 2}$ m

A cricket ball of mass 0.5kg is moving with a velocity of 100 m.s⁻¹, the wavelength associated 97.

with its motion is

1)
$$13.25 \times 10^{-26}$$
m

2)
$$13.25 \times 10^{-34}$$
m

3)
$$13.25 \times 10^{-36}$$
m

4)
$$6.6 \times 10^{-34}$$
m

98. If the Planck's constant $h = 6.6 \times 10^{-34}$ Js, the de-Broglie's wave length of a particle having momentum of 3.3×10^{-24} kg.ms⁻¹ will be

1)
$$2 \times 10^{-10}$$
m

2)
$$1 \times 10^{-15}$$
 m

4)
$$4 \times 10^{-10}$$
 m

99. The de Broglie wave length associated with a particle of mass 1 mg moving with a velocity of 1 m/sec is

1)
$$6.63 \times 10^{-29}$$
 m

2)
$$6.63 \times 10^{-31}$$
 m

3)
$$6.63 \times 10^{-28}$$
 m

4)
$$6.63 \times 10^{-22}$$
 m

100. The de Broglie wavelength of a tennis ball of mass 60 g moving with a velocity of 10 metres per second is approximately

101. The de Broglie wavelength associated with a ball of mass, 200 g and moving at a speed of 5 metres/hour, is in the order of ($h = 6.625 \times 10^{-34} \text{ Js}$)

5)
$$10^{-35}$$

102. If uncertainity in position is zero, the uncertainity in momentum of an electron will be

103. Identify the correct set from the following for fundamental particles

LIST - A

LIST - B

I) Decreasing order of masses

II) Decreasing order of e/m values

b)p >
$$e^- > n$$

III) Decreasing order of de-Broglie's

c)n > p >
$$e^-$$

wavelength with same velocities

IV) Decreasing order of uncertainty in velocity d) $n > e^- > p$

when Δ x is same

The correct match is

3)
$$I - c$$
, $II - d$, $III - b$, $IV - a$

104. Uncertainity in position of a minute particle of mass 25g in space is 10^{-5} m. What is the uncertainity in its velocity (in ms⁻¹)? (h = 6.6×10^{-34} Js)

1)
$$2.1 \times 10^{-34}$$

2)
$$0.5 \times 19^{-34}$$

3)
$$2.1 \times 10^{-28}$$

4)
$$0.5 \times 10^{-23}$$

105. The uncertainty in momentum of an electron is 1×10^{-5} kg.m/s. The uncertainty in its position will be (h = 6.62×10^{-34} kg.m/s)

1)
$$1.05 \times 10^{-28}$$
 m

2)
$$1.05 \times 10^{-26}$$
 m

3)
$$5.27 \times 10^{-30}$$
 m

4)
$$5.27 \times 10^{-28}$$
 m

106. The uncertainty in the momentum of a particle is 3.31×10^{-2} kgms⁻¹. The uncertainty in its position is (in metres)

1)
$$1.59 \times 10^{-33}$$

2)
$$0.33 \times 10^{-30}$$

3)
$$0.4 \times 10^{-20}$$

4)
$$3.3 \times 10^{-24}$$

107. According to Schrodinger model, nature of electron in an atom is as

1) Particles only

2) Wave only

3) Both simultaneously

4) Sometimes waves and sometimes particles

АТО	MIC STRUCTU	RE -		*CHEMISTRY		
108.	Which one of the following expressions represent the electron probability function (D)					
	1) $4\pi r dr \psi^2$	2) $4\pi r^2 dr \psi$	3) $4\pi r^2 dr \psi^2$	4) 4πr dr ψ		
109.	Radial part of the wave function depends on quantum numbers					
	1) n and s	2) 1 and m	3) 1 and s	4) n and l		
110.	p-orbitals are degenerate					
	1) Two fold	2) Three fold	3) Four fold	4) Five fold		
111.	Number of nodal planes that a p-orbital has					
	1) 0	2) 1	3) 2	4) 3		
112.	Which of the following is correct with respect to 'p' orbitals?					
	1) Spherical		2) Strong directional	l character		
	3) Five fold degenerate 4) No directional		4) No directional ch	aracter		
113.	The maximum number of electrons accommodated in 5f orbitals					
	1) 5	2) 10	3) 14	4) 18		
114.	The maximum probability of finding an electron of a particular energy in an orbital is about					
	1) 80%	2) 85%	3) 95%	4) 99%		
115.	Number of nodal spaces in 4s orbital is					
	1) 0	2) 1	3) 3	4) 4		
116.	(A) : The p-orbita	ıl has dumb-bell shape				
	(R): Electron present in p-orbital can have any one of the three values of magnetic quantum numbers $(0, +1, -1)$					
	1) Both (A) and (R) are true and (R) is the correct explanation of (A)					
	2) Both (A) and (R) are true and (R) is not the correct explanation of (A)					
	3) (A) is true but	` '				
117	4) (A) is false but	•	.11.			
117.	1 ne number of na 1) 1	odal planes for P_x orbita	3) 3	4) 0		
118.	·	2) 2	3) 3	4) 0		
110.	Number of node 1) 0	2) 1	3) 2	4) 3		
119.	The orbital without nodal planes is					
117.	1) 1s	2) 2p	3) 3d	4) 3p		
120.	·	cal nodes in a 4s orbital	,	, 1		
120.	1) Zero	2) 1	3) 2	4) 3		
121.	Which d-orbital has its four lobes along the axes					
	1) d _{xy}	2) $d_{x^2-y^2}$	3) d _{z²}	4) d _{xz}		
122.	The density of electron cloud of the orbital d_{xy} in yz plane is					
	1) Zero	2) Maximum	3) Not determined	4) None		
123.	The probability of	of finding an electron in	p _y orbital along the x-axis	sis		
	1) Maximum	2) Zero	3) Not determined			

CHE	MISTE	XY ←							ATOM	IC STI	RUCTURE
124.	The n	umber	of nodes	and no	dal planes	in 4p orbi	tal are	respec	tively		
	1) 2, 1			2) 1, 2		3) 2	2, 3		4)	3, 2	
125.	The n 1) 1	umber (of nodes	possible 2) 2	in radial p	robability (3) 3		ution c	arve of 3c		is
126.Th	ne numb 1) Zer		odal pla	nes 'd' or 2) one	bital has	3) t	wo		4)	three	
127.	maxir										m, the minor n the nucleus
	1) 1.1	$A^{o}, 0.5$	3A°,2.6	A^{o}		2) ().53A	°,1.1A°	,2.6A°		
	3) 2.6	6A°,1.1	A°,0.53	A^{o}		4) ().53A	°,2.116	$6A^{\circ}, 2.6A$	o	
128.	 (A): There are two nodal regions in 3s- orbital (R): There is no nodal plane in 3s orbital The correct answer is 1) Both (A) and (R) are true and (R) is the correct explanation of (A) 2) Both (A) and (R) are true and (R) is not the correct explanation of (A) 3) (A) is true but (R) is false 4) (A) is false but (R) is true 										
129.]	LIST - 1	L			LIS	T - 2				
	A) Bohr's atomic model				1) F	1) Fine spectrum of Hydrogen					
	B) de-	B) de-Broglie's concept				2) <i>A</i>	Atomio	orbital			
	,	Ü	-	ic model		,	3) Dual nature of any particle in motion				notion
	•			equation		,	4) Quantisation of angular momentu				
	,		natch is	1		, -					
		A	В	С	D			A	В	С	D
	1)	2	3	4	1		2)	4	3	2	1
	3)	4	3	1	2		4)	3	4	2	1
130.	For co	For complete description of an electron in an atom, the number of quantum numbers required is						ers required			
	1) one	9		2) Two)	3) T	hree		4)	Four	
131.	The a	zimuth	al quant	um num	ber indica	tes of	f the o	rbital			
	1) Siz	e		2) Shaj	pe	2) (Orienta	ation	4)	Spin	
132.	Whic	h of the	followir	ng is indi	cated by t	he magne	tic qua	antum r	number?		
	1) Siz	e		2) Sha	pe	3) S	Spatial	orienta	ation 4)	Spin	
133.	Princ	ipal qu	antum n	umber is	s related to	0					
	1) Siz	1) Size of the orbital				2) S	2) Spin angular momentum				
	3) Orl	oital ang	gular mo	mentun	າ	4) (Drienta	ation of	orbital i	n space	
134.	The s	pin qua	ntum nı	ımber ha	as a value	of					
	1) 1/	2		2) +1/	2	3) -	1/2		4)	either +	1/2 or -1/2
135.	Wher	there a	ire two e	lectrons	in the sam	ne orbital t	hey h	ave	spins		

ATOMIC STRUCTURE ◀

1) +
$$\frac{1}{2}$$
, + $\frac{1}{2}$ 2) - $\frac{1}{2}$, - $\frac{1}{2}$ 3) + $\frac{1}{2}$, - $\frac{1}{2}$

2)
$$-\frac{1}{2}$$
, $-\frac{1}{2}$

3)
$$+\frac{1}{2}$$
, $-\frac{1}{2}$

136. The values of quantum numbers n, l and m for the fifth electron of boron is

1)
$$n = 2$$
, $l = 1$, $m = -1$ 2) $n = 2$, $l = 0$, $m = -1$ 3) $n = 2$, $l = 2$, $m = -1$ 4) $n = 1$, $l = 2$, $m = -1$

$$2, 1 = 0, m = -1$$

3)
$$n = 2$$
, $l = 2$, $m = -1$

4)
$$n = 1$$
, $l = 2$, $m = -1$

137. When n=3, l=1, the designation given to the orbital is

138. Which of the following designation is impossible?

139. 1 = 3, then the values of magnetic quantum numbers are

1)
$$\pm 1$$
, ± 2 , ± 3

2)
$$0, \pm 1, \pm 2, \pm 3$$

140. For a f-orbital, the values of m are

The impossible set of quantum numbers is 141.

1)
$$n = 2, 1 = 0, m = 0, s = +1/2$$

2)
$$n = 2, 1 = 1, m = 0, s = +1/2$$

3)
$$n = 2, 1 = 0, m = 1, s = -1/2$$

4)
$$n = 3$$
, $l = 1$, $m = -1$, $s = -1/2$

142. Which of the following quantum numbers are not possible?

1)
$$n = 2$$
, $l = 1$, $m = -1$, $s = -1/2$

2)
$$n = 3$$
, $l = 2$, $m = -3$, $s = +1/2$

3)
$$n = 2$$
, $l = 0$, $m = 0$, $s = +1/2$

4)
$$n = 3$$
, $l = 2$, $m = -2$, $s = +1/2$

143. The correct set of quantum numbers for the unpaired electron of chlorine atom is

144. The two electrons occupying an orbital are distinguished by

m

0

- 1) Principal quantum number
- 2) Azimuthal quantum number
- 3) Magnetic quantum number
- 4) Spin quantum number

145. Which of the following sets of quantum numbers is correct for an electron in 4 f orbital?

1)
$$n = 4$$
, $l = 3$, $m = +4$, $s = +1/2$

2)
$$n = 3$$
, $l = 2$, $m = -2$, $s = +1/2$

3)
$$n = 4$$
, $l = 3$, $m = +1$, $s = +1/2$

4)
$$n = 4$$
, $l = 4$, $m = -4$, $s = -1/2$

The set of quantum numbers not applicable to an electron is 146.

$$2) 1, 0, 0, +1/2$$

$$3) 1, 0, 0, -1/2$$

$$4) 2, 0, 0, +1/2$$

m

1

147. For the p_a orbital, conventionally m is

$$1) -2$$

$$2) + 2$$

148. For the $\mathbf{d}_{\mathbf{z}^2}$ orbital, the value of m may be

149. The qunatum number not obtained from the Schrodinger's wave equation is

CHE	MISTRY *		→ A	TOMIC STRUCTURE		
	1) n	2) 1	3) m	4) s		
150.	A given orbital is	labelled by the magnet	ic quantum number, m	= -1. This can not be		
	1) s- orbital	2) p-orbital	3) d-orbital	4) f-orbital		
151.	The shape of orbit	tal for which l = 1 is				
	1) Spherical	2) Dumb-bell	3) Double dumb-b	ell 4) Circular		
152.	The maximum nu	mber of electrons in a s	ub-shell is given by the	expression.		
	1) (1+2)	2) (21+2)	3) (41+2)	4) (l+1)		
153.	The magnetic qua	ntum number, m for the	e outermost electron in	the sodium atom is		
	1) 1	2) 0	3) 2	4) -1		
154.	For the configurat	ion 1s ² 2s ¹ , the quantum	numbers for the outer	most electron are		
	1) 2,1,0, –1/2	2) 2,0,0,+1/2	3) 2,1,0,+1/2	4) 2,0,1,+1/2		
155.	The maximum nu	mber of electrons that a	p-orbital can accomod	ate is		
	1) 6	2) 2	3) 10	4) 14		
156.	The number of orl	bitals in the quantum le	evel n = 4 is			
	1) 4	2) 9	3) 16	4) 18		
157.	The quantum nun	nber which is equal for	all the d-electrons in a	n atom is		
	1) 1	2) m	3) s	4) n		
158.	Correct set of four quantum numbers for the valence electron of Rubidium (Z=37) is					
	1) 5, 0, 0, +1/2	2) 5, 1, 0, +1/2	3) 5, 1, 1, +1/2	4) 6, 0, 0, +1/2		
159.	n, l and m values	of the 2p _z orbital are				
	1) 3,2,1	2) 2,1,0	3) 1,2,0	4) 2,0,1		
160.	The azimuthal qua	antum number for the l	ast electron in sodium	atom is		
	1) 1	2) 2	3) 0	4) 3		
161.	Which of the followelectron with $n = 3$	owing is not a possible	e value of azimuthal q	uantum number (l) for an		
	1) zero	2) 1	3) 2	4) 3		
162.	Maximum numbe	er of electrons that can b	e present in M and N -	shells respectively are		
	1) 18, 32	2) 8, 18	3) 32, 50	4) 32, 48		
163.	What is the maximorbit?	num number of electro	ns that can be theoretic	cally present in the seventh		
	1) 49	2) 32	3) 72	4) 98		
164.	The correct set of o	quantum numbers for a	4d electron is			
	1) 4, 3, 2, +1/2	2) 4, 2, 1, 0	3) 4, 3, -2, +1/2			
	4) 4, 2, 1, -1/2		5) 4, 2, -2, 0			
165.	Which of the follo	wing sets of quantum r	numbers is correct for a	n electron in 4f - orbitals?		
	1) n = 4, l = 3, m =	4, s = +1/2	2) n = 4, l = 4, m =			
	3) $n = 4$, $l = 3$, $m =$	+1, $s = +1/2$	4) $n = 3$, $l = 2$, $m =$	-2, s = $+1/2$		

ATO	MIC STRUCTU	RE «		*CHEMISTRY		
166.	No two electrons	in an orbital can have par	allel spin. This stateme			
	1) Hund's rule		2) Aufbau principle			
	3) Pauli's exclusi	on principle	4) (n+l) rule			
167.	Electrons never p	oair, if there are empty orb	itals in a given sub-shel	ll. This is		
	1) Aufbau princij	ple	2) Paulis exclusion p	orinciple		
	3) Hund's rule of	maximum multiplicity	4) Heisenberg's unce	ertainity principle		
168.	Which of the follo	owing explains the sequen	ce of filling electrons ir	n different subshells?		
	1) Hund's rule	2) Aufbau principle	3) Pauli's principle	4) All of these.		
169.	Nitrogen atom ha	as 3 unpaired electrons in i	ts ground state. It can	be explained by		
	1) Auf - bau princ	ciple 2) Paulis principle	3) Hund's rule	4) None of these		
170.	The electronic co	nfiguration of sodium is				
	1) [Ne]3s ²	2) [Ne]3s ¹	3) [Ar]4s ¹	4) $[Ar]4s^2$		
171.	Which of the follo	owing may represent the g	round state of nitrogen	atom?		
	$^{1)}$ $\downarrow \uparrow]$ $\downarrow \uparrow]$	$ \downarrow \downarrow$	2)			
	3) $\downarrow\uparrow$ $\downarrow\uparrow$ \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow					
172.	Electronic config	uration of the element witl	n atomic number 56 and	d mass number 138 is		
	1) [Xe]6s ²	2) [Kr]5s ²	3) [Xe] $6s^2 6p^2$	4) [Xe]3d ² 5d ²		
173.	(A): The electron	nic configuration of boron	cannot be $1s^22s^3$,			
	(R): No two electrons in an atom can have the same set of all the four quantum numbers					
	1) Both (A) and (R) are true and (R) is the correct explanation of (A)					
	2) Both (A) and (R) are true and (R) is not the correct explanation of (A)					
	3) (A) is true but (R) is false					
	4) (A) is false but (R) is true					
174.	The correct valen	ce electronic configura-tio	n for Cu (Z =29) is			
	1) $3d^9 4s^2$	2) $3d^{10} 4s^1$	3) $3d^{10} 4s^2$	4) $3d^8 4s^2$		
175.	Which one of the	following pairs of ions ha	ve the same electronic o	configuration		
	1) Cr ³⁺ , Fe ³⁺	2) Fe ³⁺ , Mn ²⁺	3) Fe ³⁺ , Co ³⁺	4) Sc ³⁺ , Cr ³⁺		
176.	,	,	0)10 ,00	1,00 ,01		
170.	The (n + l) value : 1) 4	2) 5	3) 6	4) 7		
177.	,	e electron in the hydrogen a	,	-) ·		
177.	0,	quantum number only	-	umbers		
	,	l quantum number	2) All the quantum numbers4) The principal and azimuthal quantur			
178.	After 3d-sub leve	el is completely filled the di	fferentiating electron e	nters into sub level.		
	1) 4s	2) 4p	3) 4f	4) 5s		
		_				

CHE	MISTRY		→ A7	TOMIC STRUCTURE			
179.	The correct ground state electronic configuration of chromium atom is						
	1) [Ar] $3d^5 4s^1$	2) [Ar] $3d^4 4s^2$	3) [Ar] $3d^6$	4) [Ar] $3d^5 4s^2$			
180.	The configuration	1s ² 2s ² 2p ⁶ 3s ² 3p ³ corres	ponds to				
	1) S	2) P	3) Na	4) Ar			
181.	The configuration	$1s^2 2s^1 2p_x^{-1} 2p_y^{-1} 2p_2^{-1}$ rep	presents				
	1) Nitrogen atom (_		2) Carbon atom (ground state)			
	3) An excited carbon atom 4) An excited nitrogen atom						
182.	The total number of	of 'p' electrons present i	n phosphorous atom is				
	1) 9	2) 2	3) 8	4) 3			
183.	The valence electron	on configuration of an e	element with atomic nun	nber 23 is			
	1) $3d^5$	2) $3d^3 4s^2$	3) $3d^2 4s^1 4p^1$	4) $3d^2 4s^2 4p^1$			
184.	Mg ²⁺ and Al ³⁺ hav						
	1) Protons		2) Neutrons	2) Neutrons			
	3) Electronic confi	guration	4) Neutrons + proto	ns			
185.	The number of un	paired electrons in the	valence shell of silicon is				
	1) 2	2) 3	3) 1	4) 0			
		EXERC	ISE - II				
1.	If λ_0 & λ be threshold wavelength & wavelength of incident light, the velocity of photo electron ejected from the metal surface is						
	1) $\sqrt{\frac{2h}{m}(\lambda_0 - \lambda)}$	2) $\sqrt{\frac{2hc}{m}(\lambda_0 - \lambda)}$	$3) \sqrt{\frac{2hc}{m}} \left(\frac{\lambda_0 - \lambda}{\lambda_0 \lambda} \right)$	$4) \sqrt{\frac{2h}{m} \left(\frac{1}{\lambda} - \frac{1}{\lambda_0} \right)}$			
02.	is emitted. The an	other light source of wan K.E is 4eV, the value o	velength $\lambda/3$ ejects phof work function is	photoelectron of K.E $1 \mathrm{eV}$ oto electron from the same $4) 0.5 \mathrm{eV}$			
03	1) 1 eV	2) 2 eV	3) 4 eV	,			
03.				$f = 2f_0$ is incident on the			
	metal plate, velocit	metal plate, velocity of electron emitted in V_1 . When a frequency of incident radiation is $5f_0$,					
	V_2 is velocity of er	nitted electron, then $\mathit{V}_{\scriptscriptstyle{1}}$	$:V_2$ is				
	1) 1 : 4	2) 1 : 2	3) 2:1	4) 4:1			
04.	-	relength 470 nm falls or m/s . Then work funct	-	o electrons emitted with a			

- Which of the following characteristic property of a metal should have to exhibit photoelectric 05.
 - 1) Low ionisation potential
- 2) High ionisation potential

ATOMIC STRUCTURE |≪

3) High electronegativity

4) High electron affinity

- 06. The wavelength & number of spectral lines for an electronic transition is depends on
 - 1) Number of electrons undergoing transition
 - 2) Nuclear charge of atom
 - 3) Difference in the energy of energy levels involved in the transition
 - 4) The velocity of an electron undergoing transition.
- The wavelength of H-spectrum lines in given as 07.

$$\lambda = c \left(\frac{n^2}{n^2 - 4} \right)$$
 when $n > 2$ the value of constant 'e' in the above expression is

- 1) $3 \times 10^5 m / \text{sec}$
- 2) $3 \times 10^{10} cm/sec$ 3) $1.06 \times 10^{7} m$
- 4) 364.7 nm
- Ratio of mth to nth wavelength of Lyman series in H-spectrum in equal to 08.

1)
$$\frac{\lambda_m}{\lambda_n} = \frac{\left(m^2 - 1\right) \times n^2}{\left(n^2 - 1\right) \times m^2}$$

2)
$$\frac{\lambda_m}{\lambda_n} = \frac{(m+1)^2}{(n+1)^2} \times \frac{(n+1)^2 - 1}{(m+1)^2 - 1}$$

3)
$$\frac{\lambda_m}{\lambda_n} = \frac{(n+1)^2}{(m+1)^2} \times \frac{(m+1)^2 - 1}{(n+1)^2 - 1}$$

4)
$$\frac{\lambda_m}{\lambda_n} = \frac{(n^2 - 1) \times m^2}{(m^2 - 1) \times n^2}$$

- If the first emission in the Lyman series of H-spectrum occurs at $\lambda = 121.5$ nm then, energy 09. difference (KJ mole⁻¹) between the first & second shell of H-atom
- 1) $985 KJ \ mole^{-1}$ 2) $9850 KJ \ mole^{-1}$ 3) 9.85 KJ / mole 4) 98.5 KJ / mole
- If λ_v , λ_x & λ_m represents the wavelength of visible light, x-ray & microwave respectively, 10. then:
 - 1) $\lambda_{m} > \lambda_{r} > \lambda_{r}$ 2) $\lambda_{m} > \lambda_{r} > \lambda_{r}$ 3) $\lambda_{r} > \lambda_{r} > \lambda_{r}$ 4) $\lambda_{r} > \lambda_{r} > \lambda_{r}$

- 11. The which of the following statements are incorrect about the photoelectric effect
 - 1) The kinetic energy of photo electron depends on nature of metal
 - 2) The no. of photo electrons is proportional to the energy of light incident
 - 3) The kinetic energy of photo electron is proportional to the intensity of light
 - 4) Highly electropositive metals like cesium can exhibit photo electric effect
- The kinetic energy (KE) of photoelectron emitted on irradiating a metal surface with frequency 12. θ is related by KE = $h\theta$ -IE. The plots of K.E vs incident frequency θ shows
 - 1) A straight line, slope equal to plank's constant
 - 2) A straight line with intercept on x-axis equal to the product of threshold frequency & plank's constant
 - 3) A straight line with extrapolated on y-axis is equal to IE
 - 4) A straight line with intercept on-x-axis equal to threshold frequency
- The photoelectric emission requires a threshold frequency ϑ_0 for a certain metal. If incident 13. photons has wavelengths $\lambda_1 = 2200 \stackrel{0}{A} \& \lambda_2 = 1900 \stackrel{0}{A}$ produce two photo electrons with $KE_1 \& KE_2$ receptivity & $KE_1 = 2KE_2$. Then
 - 1) ϑ_0 is $1.1483 \times 10^{15} \,\mathrm{sec}^{-1}$
- 2) λ_0 is $2.6126 \times 10^{-7} m$

3) λ_0 is $1.1483 \times 10^{-16} m$

4) ϑ_0 is $2.16 \times 10^{-7} \text{ sec}^{-1}$.

CHEMISTRY *

ATOMIC STRUCTURE

14. Which of the following graph(s) are incorrect about photoelectric effect.

- 15. A certain photon emitted by an excited Li⁺² sample is unable to ionise a H-atom sample from grand state then the photon can be related as following transition in Li⁺² sample
 - 1) First line of Lyman series
- 2) Last line of Bracket series
- 3) Second line of Balmer series
- 4) Second line of Paschen series
- 16. The value of constant 'R' in the following expression $\overline{\vartheta} = R \left(\frac{1}{n_1^2} \frac{1}{n_2^2} \right)$ is
 - 1) $2.18 \times 10^{-18} J / atom$

- 2) $3.29 \times 10^{-15} s^{-1}$
- 3) $1.09677 \times 10^7 m^{-1}$

- 4) $9.1086 \times 10^{-8} m$
- 17. Which of the following graphs represents photoelectric effect

18. The graph between photo electron current (3) & intensity of photon (I)

- 19. Kinetic energy of photo electron varies with
 - 1) Nature of metal
- 2) Intensity
- 3) Amplitude
- 4) Both A & C

EXERICSE-I

1)3 2) 3 3) 4 4) 3 5) 1 6) 4 7) 2 8) 2 9) 4 10) 2 11) 3 13) 4 15) 2 12) 4 14) 2 16) 4 17) 3 18) 3 19) 3 20) 1 21) 1 22) 4 23) 3 24) 4 25) 4 26) 2 27) 2 28) 1 29) 2 30) 4 31) 2 32) 4 33) 4 34) 2 35) 4 36) 1 37) 1 38) 1 39) 1 40) 1 41) 1 42) 3 43) 1 44) 4 45) 1 46) 1 47) 1 48) 1 49) 2 50) 1 52) 3 53) 4 54) 1 55) 1 57) 1 58) 3 59) 4 60)251) 4 56) 2 61) 3 65) 2 62) 1 63) 1 64) 4 66) 1 67) 3 68) 4 69) 4 70) 3 79) 2 71) 3 73) 1 78) 1 80) 4 72) 1 74) 1 75) 2 76) 2 77) 3 81) 2 82) 2 83) 2 84) 3 85) 3 86) 1 87) 3 88) 2 89) 2 90) 4 91) 1 92) 3 93) 2 94) 2 95) 1 96) 3 97) 3 98) 1 99) 3 100) 1 101) 4 102) 2 103) 2 104) 3 105) 3 106) 1 107) 3 108) 3 109) 4 110) 2 111) 2 112) 2 113) 3 114) 3 115) 3 116) 2 117) 1 118) 2 119) 1 120) 4 121) 2 122) 1 123) 2 124) 1 125) 4 126) 3 127) 2 128) 3 129) 2 130) 4 131) 2 132) 3 133) 1 134) 4 135) 3 136) 1 137) 4 138) 3 139) 2 140) 4 141) 3 142) 2 143) 3 144) 4 145) 3 146) 1 147) 3 148) 3 149) 4 150) 1 151) 2 152) 3 153) 2 154) 2 155) 2 156) 3 157) 1 158) 1 159) 2 160) 3 161) 4 162) 1 163) 4 164) 4 165) 3 166) 3 167) 3 168) 2 169) 3 170) 2 171) 2 172) 1 173) 1 174) 2 175) 2 176) 4 177) 1 178) 2 179) 1 180) 2 181) 3 182) 1 183) 2 184) 3 185) 1

EXERCISE - II

01) 3 02) 4 03) 2 04) 2 05) 1 06) 3 07) 4 08) 2 09) 1 10) 1 11) 23 12) 134 13) 12 14) 1234 15) 24 16) 1234 17) 3 18) 1 19) 1

EXERCISE - I

1.	The maximum number of elements available in elemental form						
	1) 26	2) 92	3) 111	4) 118			
2.	Which of the followi	ng is Dobereiner triad					
	1) Li, Na, K	2) Fe, Co, Ni	3) Ru, Rh, Pd	4) Os, Ir, Pt			
3.	Number of short per	riods in short form of p	eriodic table				
	1) 3	2) 2	3) 4	4) 6			
4.	Considering the che on	mical properties, atom	ic weight of the eleme	ent 'Be' was corrected based			
	1) Valency	2) Configuration	3) Density	4) Atomic volume			
5.	Eka silicon is now k	nown as					
	1) Scandium	2) Gallium	3) Germanium	4) Boron			
6.	The element 'Sc' is k	nown long back as					
	1) eka-aluminium	2) eka-boron	3) eka-silicon	4) eka-mercury			
7.	By taking chemical properties into consideration, the atomic weights of the following elements were corrected						
	1) Te & I	2) Ar & K	3) Co & Ni	4) Be & In			
8.	Anomalous pair am	ong the following is					
	1) Boron - Silicon		2) Beryllium - Indi				
0	3) Aluminium - Gallium 4) Cobalt - Nickel The longest and shortest periods are						
9.	1) 1 & 6	rtest periods are 2) 2 & 6	3) 6 & 1	4) 1 & 7			
10.	•	,	,	,			
10.	The number of elements present in 2nd, 3rd, 4th and 5th periods of modern periodic table respectively are						
	1) 2, 8, 8 & 18	2) 8, 8, 18 & 32	3) 8, 8, 18 & 18	4) 8, 18, 18 & 32			
11.	Which of the following pair of elements are from the same group of the periodic table						
	1) Mg, Cs	2) Mg, Sr	3) Mg, Cl	4) Na, Cl			
12.	Elements of a vertical	al group have					
	1) Same atomic num		•	2) Same electronic configuration			
	3) Same number of v	•	4) Same number of				
13.	•	ic configuration of eler	•				
1.1	1) $ns^2 np^4$	2) $ns^2 np^3$	3) $ns^2 np^1$	$4) ns^2 np^2$			
14.	1) 2	nfiguration is observed 2) 8	3) 18	e group 4) 32			
15.	The starting element	,	<i>5)</i> 1 0	-,			
10.	1) K	2) Rb	3) Kr	4) Xe			

PER	IODIC TABLE			→ CHEMISTRY				
16.		mic number 15 and mass	number 31 is present is	n				
	1) group 5 and po	eriod 4	2) group 5 and period 3					
	3) group 15 and p	period 3	4) group 15 and per	riod 4				
17.	In the periodic ta	ble, the elements are arrar	nged in the periods foll	owing the				
	1) Hund's rule of	maximum multiplicity	2) Pauli's exclusion	principle				
	3) Aufbau princi	ple	4) Both (1) and (2)					
18.	Which of the foll group?	owing pairs of atomic nur	mbers represents eleme	ents belonging to the same				
	1) 11, 20	2) 12, 30	3) 13, 31	4) 14, 33				
19.	As per the moder functions of their		al and chemical propert (E1998)	ies of elements are periodic				
	1) atomic number	r	2) electronic configu	uration				
	3) atomic weight		4) atomic size					
20.	An element with	atomic number 20 will be	placed in which period	d of the periodic table?				
	1) 4	2) 3	3) 2	4) 1				
21.	If the atomic nun	nber of an element is 33, it	will be placed in the p	eriodic table in the				
	1) First group	2)Third group	3) Fifth group	4) Seventh group				
22.	The number of po	eriods present in the long	form of the periodic tab	ole				
	1) 6	2) 7	3) 8	4) 18				
23.	The electronic co	nfiguration of group III el	ements is					
	1) $ns^2 np^3$	$2) ns^2np^5$	3) ns2np1	4) ns^2np^2				
24.	The total number	of gaseous elements are						
	1) 8	2) 9	3) 10	4) 11				
25.	In a period, elements are arranged in strict sequence of							
	1) Decreasing ch	1) Decreasing charges in the nucleus 2) Increasing charges in the nucleus						
	3) Constant char	ges in the nucleus	4) Equal charges in the nucleus					
26.	The general elect	ronic configuration of d-b	lock elements is					
	1) ns ¹⁻² (n-1)d ¹⁻	10 2) $ns^2(n-1)d^1(n-2)f$	¹⁻¹⁴ 3) ns ¹⁻² (n-1)d ¹⁻⁹	4) $ns^{1-2} np^6 (n-1)d^{1-10}$				
27.	Identify the corre	ectly matched set among th	ne following					
	1) Scandium-d-b	1) Scandium-d-block-representative element						
	•	2) Lanthanum-d-block-innertransition element						
	*	ock - transition element						
	4) Actinium - d -	block - transition element						
28.	=	ve elements get the neares						
	1) By losing elect		2) By gaining electr					
	By sharing electron			4) By losing or gaining				
29.	In transition elen	nents, the shells that are in	completely filled					
	1) Ultimate shell	only	2) Penultimate shel	l only				
	3) Both ultimate	& penultimate shells	4) Outermost three	shells				

CH	EMISTRY «			PERIODIC TABLE				
30.	The characteristic	properties of transition	elements are due to					
	1) Unpaired electr	1) Unpaired electrons in d-subshell 2) d-orbitals have fi						
	3) Presence of 2 no	odal planes for d-orbital	4) Because they belor	g to d-block				
31.	Rare earths are ge	nerally						
	1) Actinides		2) f-block elements	2) f-block elements				
	3) Inner transition	elements	4) Lanthanides					
32.	Lanthanum belon	igs to						
	1) s-block	2) p-block	3) d-block	4) f-block				
33.	In the periodic tab	ole transition elements be	egin with					
	1) Scandium	2) Zinc	3) Copper	4) Mercury				
34.	Inert gas element	which has a different val	lence shell configuration					
	1) Xe	2) Ne	3) Kr	4) He				
35.	Atomic numbers	of actinides are						
	1) 57 to 71	2) 80 to 103	3) 58 to 71	4) 90 to 103				
36.	Most of the non-m	Most of the non-metals are present in the long form of the periodic table in						
	1) p-block	2) f-block	3) d-block	4) s-block				
37.	Metal used as catalyst in the hydrogenation of vegetable oils							
	1) Iron	2) Molybdenum	3) Nickel	4) Sodium				
38.	The 4f-subshell is	successively filled for						
	1) Rare earths	2) Rare gases	3) Transition metals	4) Alkaline earth metals				
39.	The role of 'Molvh	odenum' in Haber's synt	thesis is	,				
	•	•		4)Promoter for catalyst				
40.	The period in which s-block, p-block and d-block elements are present							
10.	1) 1	2) 6	3) 7	4) 3				
41.	Elements of p-bloo	•	5) 1	-, -				
T1.	1) Only non-meta		2) Only metalloids					
	3) Metalloids and		4) Metalloids, non-m	etals and metals				
42.	•	is colourless in aqueous	•	etais arta metais				
44.	1) Ca ²⁺	2) Sc ³⁺	3) Zn ²⁺	4) all the above				
10	,	,	,	4) all the above				
43.		owing configuration corr	1	v 4 2 2 2 2 4 2 1				
	1) $1s^2 2s^2 2p^5$	2) $1s^2 2s^2 2p^6$	3) $1s^22s^1$	4) $1s^2 2s^2 2p^6 3s^1$				
44.	The rare gas that i	is most abundant in the a	atmosphere is					
	1) He	2) Ne	3) Ar	4) Kr				
45.	In lanthanides, the	e differentiating electron	enters into					
	1) d - subshell	2) f - subshell	3) p - subshell	4) s - subshell				
46.	Which is not a tra	nsition metal?						
	1) Ag	2) Pb	3) Cr	4) Pt				
47.	The general electronic the group	onic configuration (n-1)d	³ ns ² indicates that the par	ticular element belong to				
	1) VB	2) VA	3) IVB	4) IIB				

- 1) Mulliken oil drop method
- 2) Rutherford's a-ray scattering experiment
- 3) X-ray diffraction technique
- 4) Electric discharge tube experiment

60. Atomic radius depends upon

- 1) Number of bonds formed by the atom
- 2) Nature of the bonding
- 3) Oxidation state of the atom
- 4) All the above

61. Covalent bond length of chlorine molecule is 1.98Å. Then covalent radius of chlorine is

- 1) 1.98Å
- 2) 1.7Å
- 3) 2.05Å
- 4) 0.99Å

62. Van der waal's radius is used for

1) Molecular substances in gaseous state only

Which one is the correct order of the size of the iodine species?

76.

1) $I > I^+ > I^-$

2) $I > I^- > I^+$

3) $I^+ > I^- > I$

77. The correct sequence which shows decreasing order of the ionic radii of the elements is

1) $Na^+ > Mg^{2+} > Al^{3+} > O^{2-} > F^-$

2) $Na^+ > F^- > Mg^{2+} > O^{2-} > Al^{3+}$

3) $O^{2-} > F^{-} > Na^{+} > Mg^{2+} > Al^{3+}$

4) $Al^{3+} > Mg^{2+} > Na^{+} > F^{-} > O^{2-}$

78. The Lanthanide contraction relates to

1) Oxidaion states

2) Magnetic state

3) Atomic radii

4) Valence electrons

79. Which of the following process refers to ionisation potential?

1) $X_{(s)} \to X^{+}_{(o)} + e^{-}$

 $(2)X_{(g)} + aq \rightarrow X_{(aq)}^+ + e^{-3}X_{(g)} \rightarrow X_{(g)}^+ + e^{-} \rightarrow X_{(g)}^- + e^{-} \rightarrow X_{(g)}^-$

80. When the screening effect increases, ionisation energy

1) Decreases

2) Increases

3) First increases and then decreases

4) Remains constant

81. With an increase in the extent of penetration of valence electrons, ionisation energy

1) Decreases

2) Increases

3) Remains constant 4) Both are not related

82. The group of elements with highest second ionisation energy is

1) IIA group

2) Zero group

3) VIIA group

4) IA group

83. How many ionisation energies can carbon have? Electronic configuration of carbon

in Ground state : $1s^2 2s^2 2p_x^{-1} 2p_y^{-1}$

in Excited state : $1s^2 2s^1 2p_x^{\ 1} 2p_y^{\ 1} 2p_z^{\ 1}$.

1) 1

2) 2

3)4

4) 6

84. First ionisation potential of magnesium is greater than that of aluminium because

1) Aluminium atom is very large when compared to Mg

2) Aluminium has a stable electronic configuration

3) Magnesium has a stable electronic configuration

4) The electron affinity of Magnesium is positive (energy is absorbed)

85. Electrons with the highest penetrating power are

1) p-electrons

2) s-electrons

3) d-electrons

4) f-electrons

86. The element that possess the lowest ionisation energy among the following

1) Oxygen

2) Fluorine

3) Sulphur

4) Nitrogen

87. Atoms of the following group possess the highest ionisation energies

1) IA

2) IIA

3) VA

4) Zero

88. Atoms of the following group possess the lowest ionisation energies

2) IIA

3) VA

4) Zero

89. Configuration of the element with the highest ionisation energy is

1) $[Ne]3s^1$

2) [Ne] $3s^2 3p^3$

3) [Ne] $3d^{10} 4s^2 4p^3$

4) [Ne] $3s^2 3p^4$

90. When Lithium vapour is taken in a discharge tube and the potential difference between the electrodes is 5.4 ev, there is a sudden increase in the flow of current. The ionisation energy of Lithium is

CHI	EMISTRY ←			PERIODIC TABLE			
	1) 54 ev	2) 520 kJ mol ⁻¹	3) 54 kJ atom ⁻¹	4) 5.4 ev atom ⁻¹			
91.	Which of the follow	wing transition involves	maximum amount of er	nergy?			
	1) $M_{(g)}^- \rightarrow M_{(g)}$	2) $M_{(g)} \rightarrow M_{(g)}^+$	3) $M_{(g)}^+ \to M_{(g)}^{2+}$	4) $M_{(g)}^{+2} \to M_{(g)}^{3+}$			
92.	The first ionisation	n potential is maximum f	or				
	1) Lithium	2) Uranium	3) Iron	4) Hydrogen			
93.	The lowest first configurations.	ionization energy wou	ld be associated with	which of the following			
	1) $1s^22s^22p^63s^1$	2) $1s^22s^22p^5$	3) $1s^22s^22p^6$	4) $1s^22s^22p^63s^23p^2$			
94.	The maximum te configuration	ndency to form unipos	itive ion is for the ele	ment with the electronic			
	1) $1s^22s^22p^63s^2$	2) 1s ² 2s ² 2p ⁶ 3s ² 3p ¹	3) $1s^22s^22p^63s^23p^2$	4) $1s^22s^22p^63s^23p^3$			
95.	As one moves alor	ng a given row in the per	iodic table, ionisation e	nergy			
	1) Remains same		2) Increasing from left to right				
	3) First increases a	nd then decreases	4) decreases from left to right				
96.		on energy values of an electrons in the element		872 and 5972 K.Cals The			
	1) 4	2) 3	3) 1	4) 2			
97.	Ionisation potentia	al values of Li, Be and B a	are respectively in kJ mo	ol ⁻¹			
	1) 801, 899, 520	2) 520, 801, 899	3) 899, 801, 520	4) 520, 899, 801			
98.	Screening effect is	not common for the elem	ents of the period				
	1) 7	2) 3	3) 1	4) 4			
99.	Electron affinity is 1)Energy required to take out an electron from an isolated gaseous atom 2)The tendency of an atom to attract an electron towards itself 3)Energy absorbed when an electron is added to an isolated atom in gaseous state 4)Energy released when an electron is added to an isolated atom in the gaseous state						
100.	The property of an element that cannot be determined directly but can be obtained indirectly from Born-Haber cycle is						
	 Ionisation poter character 	ntial 2) Electron affinity	3) Electronegativity	4) Electropositive			
101.	Electron affinity is	measured in					
	1) No units	2) kcal mol ⁻¹	3) kJ mol ⁻¹	4) Both (2) and (3)			
102.	1) First electron aff	Which of the following is an endothermic process? 1) First electron affinity of chlorine 2) Second electron affinity of oxygen					
	·	aCl from gaseous ions					
	4) Hydration of M	•					
103.		ft to right, electron affini	tv				
100.	1) Increases	2) Decreases	3) Remains constant	ŧ			

115. Electronegativity on Mulliken scale is limited to

2) 2

1) Monovalent atoms

scale 1) 0.208

2) Bivalent atoms

3) 2.8

4) 544

CHI	EMISTRY ←			PERIODIC TABLE			
	3) Both monovale	nt and bivalent atoms	4) All multivalent at	oms			
116.	If I and E are ionisatis given as	ation energy and electron a	affinity of an element in	kJ mole ⁻¹ electronegativity			
	$1) \frac{I+E}{2}$	2) $\frac{I + E}{5.6}$	3) $\frac{I + E}{129}$	4) $\frac{I + E}{544}$			
117.	In a period electro	negativity is highest for					
	1) Chalcogen	2) Halogen	3) Inert gas	4) Alkali metal			
118.	The values that are	e useful in writing chemic	cal formulae and in calc	ulation of oxidation states			
	1) Ionisation poter	ntial 2) Electron affinity	3) Electronegativity	4) Metallic character			
119.	Elements with hig	h electronegativity are ge	enerally				
	1) Good reductant	ts 2) Hard solids	3) Good oxidants	4) Soft solids			
120.	The stable oxidati	on state of Thallium, a III	A group element is				
	1) +1	2) +3	3) -3	4) +5			
		EXERCI	SE - II				
1.	The triad not pres	ent in Group VIII of Mend	deleeff's table				
	1) Li, Na, K	2) Fe, Co, Ni	3) Ru, Rh, Pd	4) Os, Ir, Pt			
2.	-	ole, inversion of atomic w um 2) Boron - Scandium		•			
3.	The period that co	ontains only gaseous elen	nents is				
	1) 1	2) 2	3) 3	4) 4			
4.		h belong to 3rd period an	0 1 1				
_	1) Silicon	2) Carbon	3) Germanium	4) Tin			
5.	(A) : According to masses.) Mendeleeff, periodic pr	operties of elements is	a function of their atomic			
	(R): Atomic numb	per is equal to number of p	protons				
	The correct answe	eris					
	1) Both (A) and (R) are true and (R) is the correct explanation of (A)						
	2) Both (A) and (R) are true and (R) is not the correct explanation of (A)						
	3) (A) is true but (R) is false					
	4) (A) is false but	(R) is true					
6.	Pair of elements w	vith the following atomic	numbers have the same	chemical properties			
	1) 13 & 22	2) 3 & 11	3) 4 & 24	4) 2 & 1			
7.	The sub-shells fill	ed one by one for 4th peri	od elements are				
	1) 3d, 4s and 4p	2) 4s, 4p and 4d	3) 4s, 3d and 4p	4) 3d, 4p and 4s			
8.	The starting elements 1) Rb and Xe	ent and last element in the 2) Cs and I	e largest period in mode 3) Cs and Rn	ern periodic table are 4) Fr and Kr			

1) Na, F 2) Mg, Ca 3) Na, Cl 4) Be, Al 10. Atomic number of nitrogen is 7. The atomic number of the third member in the same family is 1) 23 2) 15 3) 33 4) 51 11. Element with atomic number 38, belongs to 1) II A group and 5th period 3) V A group and 2nd period 4) III A group and 5th period 3) V A group and 2nd period 4) III A group and 5th period 3) V A group and 2nd period 4) III A group and 5th period 3) V A group and 2nd period 4) III A group and 5th period 4) III A group and 5th period 50 Y A group and 2nd period 3) V A group and 2nd period 4) III A group and 5th period 51 Y A group and 2nd period 4) III A group and 5th period 51 Y A group and 2nd period 52 Y A group and 2nd period 51 Y A group and 2nd period 52 Y A group and 2nd period 51 Y A group and 2nd period 52 Y A group and 2nd 2nd 2nd 2nd 2nd 2nd 2nd 2nd 2nd 2	PER	RIODIC TABLE			→ CHEMISTRY			
Atomic number of nitrogen is 7. The atomic number of the third member in the same family is 1) 23 2) 15 3) 33 4) 51 Element with atomic number 38, belongs to 1) II A group and 5 th period 2) II A group and 2 nd period 3) V A group and 2 nd period 4) III A group and 5 th period 5 V A group and 2 nd period 4) III A group and 5 th period 5 V A group and 2 nd period 4) III A group and 5 th period 5 V A group and 2 nd period 5 V A group and 2 nd period 5 V A group and 2 nd period 6 V A group and 2 nd period 7 V A group and 2 nd period 8 V A group and 2 nd period 9 V A group and 2 nd period 9 V A group and 2 nd period 9 V A group and 2 nd period 12. Set of elements with the following atomic numbers belong to the same group 1) 9, 16, 35, 3 2) 12, 20, 4, 38 3) 11, 19, 27, 5 4) 24, 47, 42, 55 13. Which of the following pairs has both members from the same group of the periodic table? 1) Mg-Va 4) Mg-Cl 14. The elements with atomic number 10,18,36,54 and 86 are all 1) Light metals 2) Inert gases 3) Halogens 4) Rare earths 11, 10,000 2) Na, Cl 3) Ca, Cl 4) Cl, Br 15 The period that includes all blocks of elements is 1) 1 N,O 2) Na, Cl 3) Ca, Cl 4) Cl, Br 16. The period that includes all blocks of elements is 1) 1 S + 10 Ck metals and transition metals, which are more metallic? 1) s-block metals and transition metals, which are more metallic? 1) s-block metals and transition metals, which are more metallic? 1) s-block metals and transition metals 3) Both are equally metallic 4) Cannot be predicted 18. Element with atomic number 52 belongs to 1) s-block 4) f-block 19. The general electronic configuration of f-block elements is 1) ns² np² (n-1) d ⁿ⁻¹ (n-2) f ¹⁻¹⁴ 2) ns² (n-1) d ⁿ⁻¹ (n-2) f ¹⁻¹⁴ 3) ns² nd ⁿ⁻¹ nf ¹⁻¹⁴ 4) ns² (n-1) d ⁿ⁻¹ (n-2) f ¹⁻¹⁴ 3) ns² nd ⁿ⁻¹ nf ¹⁻¹⁴ 4) ns² (n-1) d ⁿ⁻¹ (n-2) f ¹⁻¹⁴ 3) ns² nd ⁿ⁻¹ nf ¹⁻¹⁴ 4) ns² (n-1) d ⁿ⁻¹ (n-1) f ¹⁻¹⁴ 20. The common oxidation state exhibited by inner transition elements 1) c12 2) 7, 53 3) 19, 35 4) 38, 51 22. Which of the following is an	9.	Which of the follow	ring has both membe	ers from the same period	d of the periodic table			
1) 23 2) 15 3) 33 4) 51 Element with atomic number 38, belongs to 1) II A group and 5th period 2) II A group and 2nd period 3) V A group and 2nd period 4) III A group and 5th period 3) V A group and 2nd period 4) III A group and 5th period 12. Set of elements with the following atomic numbers belong to the same group 1) 9, 16, 35, 3 2) 12, 20, 4, 38 3) 11, 19, 27, 5 4) 24, 47, 42, 55 13. Which of the following pairs has both members from the same group of the periodic table? 1) Mg-Ba 2) Mg-Na 3) Mg-Cu 4) Mg-Cl 14. The elements with atomic number 10,18,36,54 and 86 are all 1) Light metals 2) Inert gases 3) Halogens 4) Rare earths 15. Which of the following pairs has elements containing same number of electrons in the outermos orbit? 1) N,O 2) Na, Cl 3) Ca, Cl 4) Cl, Br 16. The period that includes all blocks of elements is 1) 1 2) 2 3) 6 4) 7 17. Among s-block metals and transition metals, which are more metallic? 1) s-block metals and transition metals, which are more metallic? 1) s-block metals and transition for the predicted 18. Element with atomic number 52 belongs to 1) s-block 2) p-block 3) d-block 4) f-block 19. The general electronic configuration of f-block elements is 1) ns² np6 (n-1)dt0-1 (n-2)f1-14 2) ns² (n-1)dt0-1 (n-2)f1-14 3) ns² ndt0-1 nf1-14 4) ns² (n-1)dt0-1 (n-1)f1-14 20. The common oxidation state exhibited by inner transition elements usually in their compounds is 1) +2 2) +3 3) +5 4) Zero 21. The pair of atomic numbers which represent the p-block elements 1) 6, 12 2) 7,53 3) 19, 35 4) 38, 51 22. Which of the following is an element present in the d-block, but not a transition element 1) Cd 2) Cu 3) Ca 4) Cr 23. Which of the following is an element present in the d-block, but not a transition element 1) Cd 2) Cu 3) Ca 4) Cr 24. Common oxidation state of elemental transition metal is 1) +1 2) 0 3) +3 4) +2 25. Configuration that does not denote a transition element 1) 3dt 4s² 2) 3dt0 4s² 13 3) 3dt0 4s² 4p² 4) 3dt8 4s²		1) Na, F	2) Mg, Ca	3) Na, Cl	4) Be, Al			
11. Element with atomic number 38, belongs to 1) II A group and 5th period 2) II A group and 2nd period 3) V A group and 2nd period 4) III A group and 5th period 2) II A group and 2nd period 4) III A group and 2nd period 4) Mg-CI 4) CL, Br 4) CL, Br 4) CL, Br 4) CL, Br 4) Canot be predicted 4) Element with atomic number 52 belongs to a period and transition elements is a period and transition elements 1) A group and 2nd 4nd 4nd 4nd 4nd 4nd 4nd 4nd 4nd 4nd 4	10.	Atomic number of r	nitrogen is 7. The ator	mic number of the third	member in the same family is			
1) II A group and 2 nd period 3) V A group and 2 nd period 4) III A group and 5 th period 12. Set of elements with the following atomic numbers belong to the same group 1) 9, 16, 35, 3 2) 12, 20, 4, 38 3) 11, 19, 27, 5 4) 24, 47, 42, 55 13. Which of the following pairs has both members from the same group of the periodic table? 1) Mg-Ba 2) Mg-Na 3) Mg-Cu 4) Mg-Cl 14. The elements with atomic number 10,18,36,54 and 86 are all 1) Light metals 2) Inert gases 3) Halogens 4) Rare earths 15. Which of the following pairs has elements containing same number of electrons in the outermos orbit? 1) N,O 2) Na, Cl 3) Ca, Cl 4) Cl, Br 16. The period that includes all blocks of elements is 1) 1 2) 2 3) 6 4) 7 17. Among s-block metals and transition metals, which are more metallic? 1) s-block metals 3) Both are equally metallic 4) Cannot be predicted 18. Element with atomic number 52 belongs to 1) s-block 2) p-block 3) d-block 4) f-block 19. The general electronic configuration of f-block elements is 1) ns² np6 (n-1)d ⁰⁻¹ (n-2)f ¹⁻¹⁴ 2) ns² (n-1)d ⁰¹ (n-2)f ¹⁻¹⁴ 3) ns² nd ⁰¹ nf ¹⁻¹⁴ 4) ns² (n-1)d ⁰¹ (n-1)f ¹⁻¹⁴ The common oxidation state exhibited by inner transition elements usually in their compounds is 1) +2 2) +3 3) +5 4) Zero 21. The pair of atomic numbers which represent the p-block elements 1) 6, 12 2) 7, 53 3) 19, 35 4) 38, 51 Which of the following is an element present in the d-block, but not a transition element 1) Cd 2) Cu 3) Ca 4) Cr 20a. Which of the following is an alloy of non- transition elements 1) Elektron 2) Brass 3) Bronze 4) German silver 24. Common oxidation state of elemental transition metal is 1) +1 2) 0 3) +3 4) +2 Configuration that does not denote a transition element 1) 3d ¹ 4s ² 2) 3d ¹⁰ 4s ¹ 3) 3d ¹⁰ 4s ² 4) 3d ⁸ 4s ²		1) 23	2) 15	3) 33	4) 51			
3) V A group and 2 nd period 4) III A group and 5 th period 12. Set of elements with the following atomic numbers belong to the same group 1) 9, 16, 35, 3 2) 12, 20, 4, 38 3) 11, 19, 27, 5 4) 24, 47, 42, 55 13. Which of the following pairs has both members from the same group of the periodic table? 1) Mg-Ba 2) Mg-Na 3) Mg-Cu 4) Mg-Cl 14. The elements with atomic number 10,18,36,54 and 86 are all 1) Light metals 2) Inert gases 3) Halogens 4) Rare earths 15. Which of the following pairs has elements containing same number of electrons in the outermos orbit? 1) N,O 2) Na, Cl 3) Ca, Cl 4) Cl, Br 16. The period that includes all blocks of elements is 1) 1 2) 2 3) 6 4) 7 17. Among s-block metals and transition metals, which are more metallic? 1) s-block metals 2) Transition metals 3) Both are equally metallic 4) Cannot be predicted 18. Element with atomic number 52 belongs to 1) s-block 2) p-block 3) d-block 4) f-block 19. The general electronic configuration of f-block elements is 1) ns² np6 (n-1)d ⁰⁻¹ (n-2)f ¹⁻¹⁴ 2) ns² (n-1)d ^{0,1} (n-1)f ¹⁻¹⁴ 20. The common oxidation state exhibited by inner transition elements usually in their compounds is 1) +2 2) +3 3) +5 4) Zero 21. The pair of atomic numbers which represent the p-block elements 1) 6, 12 2) 7, 53 3) 19, 35 4) 38, 51 22. Which of the following is an element present in the d-block, but not a transition element 1) Cd 2) Cu 3) Ca 4) Cr 23. Which of the following is an alloy of non- transition elements 1) Elektron 2) Brass 3) Broze 4) German silver 24. Common oxidation state of elemental transition metal is 1) +1 2) 0 3) +3 4) +2 25. Configuration that does not denote a transition element 1) 3d ¹ 4s ² 2) 3d ¹⁰ 4s ¹ 3) 3d ¹⁰ 4s ² 4p ² 4) 3d ⁸ 4s ²	11.	Element with atom	ic number 38, belong	gs to				
12. Set of elements with the following atomic numbers belong to the same group 1) 9, 16, 35, 3 2) 12, 20, 4, 38 3) 11, 19, 27, 5 4) 24, 47, 42, 55 13. Which of the following pairs has both members from the same group of the periodic table? 1) Mg-Ba 2) Mg-Na 3) Mg-Cu 4) Mg-Cl 14. The elements with atomic number 10,18,36,54 and 86 are all 1) Light metals 2) Inert gases 3) Halogens 4) Rare earths 15. Which of the following pairs has elements containing same number of electrons in the outermos orbit? 1) N,O 2) Na, Cl 3) Ca, Cl 4) Cl, Br 16. The period that includes all blocks of elements is 1) 1 2) 2 3) 6 4) 7 17. Among s-block metals and transition metals, which are more metallic? 1) s-block metals 3) Both are equally metallic 4) Cannot be predicted 18. Element with atomic number 52 belongs to 1) s-block 2) p-block 3) d-block 4) f-block 19. The general electronic configuration of f-block elements is 1) ns² np6 (n-1)d ⁰⁻¹ (n-2)f ¹⁻¹⁴ 2) ns² (n-1)d ^{0,1} (n-2)f ¹⁻¹⁴ 3) ns² nd ^{0,1} nfl ¹⁻¹⁴ 4) ns² (n-1)d ^{0,1} (n-1)f ¹⁻¹⁴ 20. The common oxidation state exhibited by inner transition elements usually in their compounds is 1) +2 2) +3 3) +5 4) Zero 21. The pair of atomic numbers which represent the p-block elements 1) 6, 12 2) 7, 53 3) 19, 35 4) 38, 51 Which of the following is an element present in the d-block, but not a transition element 1) Cd 2) Cu 3) Ca 4) Cr 23. Which of the following is an alloy of non- transition elements 1) Elektron 2) Brass 3) Bronze 4) German silver Common oxidation state of elemental transition metal is 1) +1 2) 0 3) +3 4) +2 Configuration that does not denote a transition element 1) 3d ¹ 4s² 2) 3d ¹⁰ 4s² 4) 3d ⁸ 4s²		1) II A group and 5 ^t	^h period	2) II A group and	l 2 nd period			
1) 9, 16, 35, 3 2) 12, 20, 4, 38 3) 11, 19, 27, 5 4) 24, 47, 42, 55 13. Which of the following pairs has both members from the same group of the periodic table? 1) Mg-Ba 2) Mg-Na 3) Mg-Cu 4) Mg-Cl 14. The elements with atomic number 10,18,36,54 and 86 are all 1) Light metals 2) Inert gases 3) Halogens 4) Rare earths Which of the following pairs has elements containing same number of electrons in the outermos orbit? 1) N,O 2) Na, Cl 3) Ca, Cl 4) Cl, Br 16. The period that includes all blocks of elements is 1) 1 2) 2 3) 6 4) 7 17. Among s-block metals and transition metals, which are more metallic? 1) s-block metals 3) Both are equally metallic 4) Cannot be predicted 18. Element with atomic number 52 belongs to 1) s-block 2) p-block 3) d-block 4) f-block 19. The general electronic configuration of f-block elements is 1) ns² np6 (n-1)d ⁰⁻¹ (n-2)f ¹⁻¹⁴ 2) ns² (n-1)d ^{0,1} (n-1)f ¹⁻¹⁴ 20. The common oxidation state exhibited by inner transition elements usually in their compounds is 1) +2 2) +3 3) +5 4) Zero 21. The pair of atomic numbers which represent the p-block elements 1) 6, 12 2) 7, 53 3) 19, 35 4) 38, 51 Which of the following is an element present in the d-block, but not a transition element 1) Cd 2) Cu 3) Ca 4) Cr 23. Which of the following is an element present in the d-block, but not a transition element 1) Cd 2) Cu 3) Ca 4) Cr 24. Common oxidation state of elemental transition elements 1) Elektron 2) Brass 3) Bronze 4) German silver 2. Common oxidation state of elemental transition element 1) 2d ¹ 4s ² 2) 3d ¹⁰ 4s ² 3) 3d ¹⁰ 4s ² 4p ² 4) 3d ⁸ 4s ²		3) V A group and 2 ¹	nd period	4) III A group and	d 5 th period			
Which of the following pairs has both members from the same group of the periodic table? 1) Mg-Ba 2) Mg-Na 3) Mg-Cu 4) Mg-Cl 14. The elements with atomic number 10,18,36,54 and 86 are all 1) Light metals 2) Inert gases 3) Halogens 4) Rare earths Which of the following pairs has elements containing same number of electrons in the outermos orbit? 1) N,O 2) Na, Cl 3) Ca, Cl 4) Cl, Br 16. The period that includes all blocks of elements is 1) 1 2) 2 3) 6 4) 7 17. Among s-block metals and transition metals, which are more metallic? 1) s-block metals 2) Transition metals 3) Both are equally metallic 4) Cannot be predicted 18. Element with atomic number 52 belongs to 1) s-block 2) p-block 3) d-block 4) f-block 19. The general electronic configuration of f-block elements is 1) ns² np6 (n-1)d ⁰⁻¹ (n-2)f ¹⁻¹⁴ 2) ns² (n-1)d ⁰⁻¹ (n-2)f ¹⁻¹⁴ 3) ns² nd ⁰⁻¹ nf ¹⁻¹⁴ 4) ns² (n-1)d ⁰⁻¹ (n-1)f ¹⁻¹⁴ 20. The common oxidation state exhibited by inner transition elements usually in their compounds is 1) + 2 2) + 3 3) + 5 4) Zero 21. The pair of atomic numbers which represent the p-block elements 1) 6, 12 2) 7, 53 3) 19, 35 4) 38, 51 Which of the following is an element present in the d-block, but not a transition element 1) Cd 2) Cu 3) Ca 4) Cr 23. Which of the following is an alloy of non- transition elements 1) Elektron 2) Brass 3) Bronze 4) German silver 24. Common oxidation state of elemental transition metal is 1) +1 2) 0 3) all 4s² 2) 3d ¹⁰ 4s² 4) 3d ⁸ 4s²	12.	Set of elements with	n the following atom	ic numbers belong to th	e same group			
1) Mg-Ba 2) Mg-Na 3) Mg-Cu 4) Mg-Cl 14. The elements with atomic number 10,18,36,54 and 86 are all 1) Light metals 2) Inert gases 3) Halogens 4) Rare earths 15. Which of the following pairs has elements containing same number of electrons in the outermos orbit? 1) N,O 2) Na, Cl 3) Ca, Cl 4) Cl, Br 16. The period that includes all blocks of elements is 1) 1 2) 2 3) 6 4) 7 17. Among s-block metals and transition metals, which are more metallic? 1) s-block metals 2) Transition metals 3) Both are equally metallic 4) Cannot be predicted 18. Element with atomic number 52 belongs to 1) s-block 2) p-block 3) d-block 4) f-block 19. The general electronic configuration of f-block elements is 1) ns² np6 (n-1)d ⁰⁻¹ (n-2)f ¹⁻¹⁴ 2) ns² (n-1)d ^{0,1} (n-2)f ¹⁻¹⁴ 3) ns² nd ^{0,1} nf ¹⁻¹⁴ 4) ns² (n-1)d ^{0,1} (n-1)f ¹⁻¹⁴ 20. The common oxidation state exhibited by inner transition elements usually in their compounds is 1) +2 2) +3 3) +5 4) Zero 21. The pair of atomic numbers which represent the p-block elements 1) 6, 12 2) 7, 53 3) 19, 35 4) 38, 51 22. Which of the following is an element present in the d-block, but not a transition element 1) Cd 2) Cu 3) Ca 4) Cr 23. Which of the following is an alloy of non- transition elements 1) Elektron 2) Brass 3) Bronze 4) German silver 24. Common oxidation state of elemental transition metal is 1) +1 2) 0 3) +3 4) +2 25. Configuration that does not denote a transition element 1) 3d ¹ 4s ² 2) 3d ¹⁰ 4s ¹ 3) 3d ¹⁰ 4s ² 4p ² 4) 3d ⁸ 4s ²		1) 9, 16, 35, 3	2) 12, 20, 4, 38	3) 11, 19, 27, 5	4) 24, 47, 42, 55			
The elements with atomic number 10,18,36,54 and 86 are all 1) Light metals 2) Inert gases 3) Halogens 4) Rare earths Which of the following pairs has elements containing same number of electrons in the outermos orbit? 1) N,O 2) Na, Cl 3) Ca, Cl 4) Cl, Br The period that includes all blocks of elements is 1) 1 2) 2 3) 6 4) 7 Among s-block metals and transition metals, which are more metallic? 1) s-block metals 2) Transition metals 3) Both are equally metallic 4) Cannot be predicted Element with atomic number 52 belongs to 1) s-block 2) p-block 3) d-block 4) f-block The general electronic configuration of f-block elements is 1) ns² np6 (n-1)d ⁰⁻¹ (n-2)f ¹⁻¹⁴ 2) ns² (n-1)d ^{0,1} (n-2)f ¹⁻¹⁴ 3) ns² nd ^{0,1} nf ¹⁻¹⁴ 4) ns² (n-1)d ^{0,1} (n-1)f ¹⁻¹⁴ The common oxidation state exhibited by inner transition elements usually in their compounds is 1) +2 2) +3 3) +5 4) Zero The pair of atomic numbers which represent the p-block elements 1) 6, 12 2) 7, 53 3) 19, 35 4) 38, 51 Which of the following is an element present in the d-block, but not a transition element 1) Cd 2) Cu 3) Ca 4) Cr Which of the following is an alloy of non- transition elements 1) Elektron 2) Brass 3) Bronze 4) German silver Common oxidation state of elemental transition metal is 1) +1 2) 0 3) 4 ⁸ 48 ² 4) 3d ⁸ 4s ² 4) 3d ⁸ 4s ²	13.	Which of the follow	ring pairs has both m	nembers from the same	group of the periodic table?			
1) Light metals 2) Inert gases 3) Halogens 4) Rare earths Which of the following pairs has elements containing same number of electrons in the outermos orbit? 1) N,O 2) Na, Cl 3) Ca, Cl 4) Cl, Br 16. The period that includes all blocks of elements is 1) 1 2) 2 3) 6 4) 7 17. Among s-block metals and transition metals, which are more metallic? 1) s-block metals 2) Transition metals 3) Both are equally metallic 4) Cannot be predicted 18. Element with atomic number 52 belongs to 1) s-block 2) p-block 3) d-block 4) f-block 19. The general electronic configuration of f-block elements is 1) ns² np6 (n-1)d ⁰⁻¹ (n-2)f ¹⁻¹⁴ 2) ns² (n-1)d ^{0.1} (n-2)f ¹⁻¹⁴ 3) ns² nd ^{0.1} nf ¹⁻¹⁴ 4) ns² (n-1)d ^{0.1} (n-1)f ¹⁻¹⁴ 20. The common oxidation state exhibited by inner transition elements usually in their compounds is 1) + 2 2) + 3 3) + 5 4) Zero 21. The pair of atomic numbers which represent the p-block elements 1) 6, 12 2) 7, 53 3) 19, 35 4) 38, 51 22. Which of the following is an element present in the d-block, but not a transition element 1) Cd 2) Cu 3) Ca 4) Cr 23. Which of the following is an alloy of non- transition elements 1) Elektron 2) Brass 3) Bronze 4) German silver 24. Common oxidation state of elemental transition metal is 1) +1 2) 0 3) +3 4) +2 25. Configuration that does not denote a transition element 1) 3d ¹ 4s² 2) 3d ¹⁰ 4s ¹ 3) 3d ¹⁰ 4s² 4p² 4) 3d ⁸ 4s²		1) Mg-Ba	2) Mg-Na	3) Mg-Cu	4) Mg-Cl			
Which of the following pairs has elements containing same number of electrons in the outermos orbit? 1) N,O 2) Na, Cl 3) Ca, Cl 4) Cl, Br The period that includes all blocks of elements is 1) 1 2) 2 3) 6 4) 7 Among s-block metals and transition metals, which are more metallic? 1) s-block metals 3) Both are equally metallic 4) Cannot be predicted Element with atomic number 52 belongs to 1) s-block 2) p-block 3) d-block 4) f-block The general electronic configuration of f-block elements is 1) ns² np6 (n-1)d ⁰⁻¹ (n-2)f ¹⁻¹⁴ 2) ns² (n-1)d ^{0,1} (n-2)f ¹⁻¹⁴ 3) ns² nd ^{0,1} nf ¹⁻¹⁴ 4) ns² (n-1)d ^{0,1} (n-1)f ¹⁻¹⁴ 20. The common oxidation state exhibited by inner transition elements usually in their compounds is 1) +2 2) +3 3) +5 4) Zero 21. The pair of atomic numbers which represent the p-block elements 1) 6, 12 2) 7, 53 3) 19, 35 4) 38, 51 22. Which of the following is an element present in the d-block, but not a transition element 1) Cd 2) Cu 3) Ca 4) Cr 23. Which of the following is an alloy of non- transition elements 1) Elektron 2) Brass 3) Bronze 4) German silver Common oxidation state of elemental transition metal is 1) +1 2) 0 3) +3 4) +2 Configuration that does not denote a transition element 1) 3d ¹ 4s² 2) 3d ¹⁰ 4s ¹ 3) 3d ¹⁰ 4s² 4p² 4) 3d ⁸ 4s²	14.	The elements with	atomic number 10,18	8,36,54 and 86 are all				
orbit? 1) N,O 2) Na, Cl 3) Ca, Cl 4) Cl, Br The period that includes all blocks of elements is 1) 1 2) 2 3) 6 4) 7 17. Among s-block metals and transition metals, which are more metallic? 1) s-block metals 2) Transition metals 3) Both are equally metallic 4) Cannot be predicted 18. Element with atomic number 52 belongs to 1) s-block 2) p-block 3) d-block 4) f-block 19. The general electronic configuration of f-block elements is 1) ns² np6 (n-1)d ⁰⁻¹ (n-2)f ¹⁻¹⁴ 2) ns² (n-1)d ^{0,1} (n-2)f ¹⁻¹⁴ 3) ns² nd ^{0,1} nf ¹⁻¹⁴ 4) ns² (n-1)d ^{0,1} (n-1)f ¹⁻¹⁴ 20. The common oxidation state exhibited by inner transition elements usually in their compounds is 1) +2 2) +3 3) +5 4) Zero 21. The pair of atomic numbers which represent the p-block elements 1) 6, 12 2) 7, 53 3) 19, 35 4) 38, 51 22. Which of the following is an element present in the d-block, but not a transition element 1) Cd 2) Cu 3) Ca 4) Cr 23. Which of the following is an alloy of non- transition elements 1) Elektron 2) Brass 3) Bronze 4) German silver 24. Common oxidation state of elemental transition metal is 1) +1 2) 0 3) 4) 42 25. Configuration that does not denote a transition element 1) 3d ¹ 4s ² 2) 3d ¹⁰ 4s ¹ 3) 3d ¹⁰ 4s ² 4p ² 4) 3d ⁸ 4s ²		1) Light metals	2) Inert gases	3) Halogens	4) Rare earths			
16. The period that includes all blocks of elements is 1) 1 2) 2 3) 6 4) 7 17. Among s-block metals and transition metals, which are more metallic? 1) s-block metals 2) Transition metals 3) Both are equally metallic 4) Cannot be predicted 18. Element with atomic number 52 belongs to 1) s-block 2) p-block 3) d-block 4) f-block 19. The general electronic configuration of f-block elements is 1) ns² np6 (n-1)d ⁰⁻¹ (n-2)f ¹⁻¹⁴ 2) ns² (n-1)d ^{0,1} (n-2)f ¹⁻¹⁴ 3) ns² nd ^{0,1} nf ¹⁻¹⁴ 4) ns² (n-1)d ^{0,1} (n-1)f ¹⁻¹⁴ 20. The common oxidation state exhibited by inner transition elements usually in their compounds is 1) +2 2) +3 3) +5 4) Zero 21. The pair of atomic numbers which represent the p-block elements 1) 6, 12 2) 7, 53 3) 19, 35 4) 38, 51 22. Which of the following is an element present in the d-block, but not a transition element 1) Cd 2) Cu 3) Ca 4) Cr 23. Which of the following is an alloy of non- transition elements 1) Elektron 2) Brass 3) Bronze 4) German silver 24. Common oxidation state of elemental transition metal is 1) +1 2) 0 3) +3 4) +2 25. Configuration that does not denote a transition element 1) 3d ¹ 4s ² 2) 3d ¹⁰ 4s ¹ 3) 3d ¹⁰ 4s ² 4p ² 4) 3d ⁸ 4s ²	15.		ng pairs has elements	s containing same numb	er of electrons in the outermost			
1) 1 2) 2 3) 6 4) 7 Among s-block metals and transition metals, which are more metallic? 1) s-block metals 2) Transition metals 3) Both are equally metallic 4) Cannot be predicted 18. Element with atomic number 52 belongs to 1) s-block 2) p-block 3) d-block 4) f-block 19. The general electronic configuration of f-block elements is 1) ns² np6 (n-1)d ⁰⁻¹ (n-2)f ¹⁻¹⁴ 2) ns² (n-1)d ^{0,1} (n-2)f ¹⁻¹⁴ 3) ns² nd ^{0,1} nf ¹⁻¹⁴ 4) ns² (n-1)d ^{0,1} (n-1)f ¹⁻¹⁴ 20. The common oxidation state exhibited by inner transition elements usually in their compounds is 1) +2 2) +3 3) +5 4) Zero 21. The pair of atomic numbers which represent the p-block elements 1) 6, 12 2) 7, 53 3) 19, 35 4) 38, 51 22. Which of the following is an element present in the d-block, but not a transition element 1) Cd 2) Cu 3) Ca 4) Cr 23. Which of the following is an alloy of non- transition elements 1) Elektron 2) Brass 3) Bronze 4) German silver 24. Common oxidation state of elemental transition metal is 1) +1 2) 0 3) +3 4) +2 25. Configuration that does not denote a transition element 1) 3d ¹ 4s ² 2) 3d ¹⁰ 4s ¹ 3) 3d ¹⁰ 4s ² 4p ² 4) 3d ⁸ 4s ²		1) N,O	2) Na, Cl	3) Ca, Cl	4) Cl, Br			
Among s-block metals and transition metals, which are more metallic? 1) s-block metals 3) Both are equally metallic 4) Cannot be predicted 18. Element with atomic number 52 belongs to 1) s-block 2) p-block 3) d-block 4) f-block 19. The general electronic configuration of f-block elements is 1) ns² np6 (n-1)d ⁰⁻¹ (n-2)f ¹⁻¹⁴ 2) ns² (n-1)d ^{0,1} (n-2)f ¹⁻¹⁴ 3) ns² nd ^{0,1} nf ¹⁻¹⁴ 4) ns² (n-1)d ^{0,1} (n-1)f ¹⁻¹⁴ 20. The common oxidation state exhibited by inner transition elements usually in their compounds is 1) + 2 2) + 3 3) + 5 4) Zero 21. The pair of atomic numbers which represent the p-block elements 1) 6, 12 2) 7, 53 3) 19, 35 4) 38, 51 22. Which of the following is an element present in the d-block, but not a transition element 1) Cd 2) Cu 3) Ca 4) Cr 23. Which of the following is an alloy of non- transition elements 1) Elektron 2) Brass 3) Bronze 4) German silver 24. Common oxidation state of elemental transition metal is 1) +1 2) 0 3) +3 4) +2 Configuration that does not denote a transition element 1) 3d ¹ 4s ² 2) 3d ¹⁰ 4s ¹ 3) 3d ¹⁰ 4s ² 4p ² 4) 3d ⁸ 4s ²	16.	The period that incl	ludes all blocks of el	ements is				
1) s-block metals 3) Both are equally metallic 4) Cannot be predicted 18. Element with atomic number 52 belongs to 1) s-block 2) p-block 3) d-block 4) f-block 19. The general electronic configuration of f-block elements is 1) ns² np6 (n-1)d ⁰⁻¹ (n-2)f ¹⁻¹⁴ 2) ns² (n-1)d ^{0,1} (n-2)f ¹⁻¹⁴ 3) ns² nd ^{0,1} nf ¹⁻¹⁴ 4) ns² (n-1)d ^{0,1} (n-1)f ¹⁻¹⁴ 20. The common oxidation state exhibited by inner transition elements usually in their compounds is 1) + 2 2) + 3 3) + 5 4) Zero 21. The pair of atomic numbers which represent the p-block elements 1) 6, 12 2) 7, 53 3) 19, 35 4) 38, 51 22. Which of the following is an element present in the d-block, but not a transition element 1) Cd 2) Cu 3) Ca 4) Cr 23. Which of the following is an alloy of non- transition elements 1) Elektron 2) Brass 3) Bronze 4) German silver 24. Common oxidation state of elemental transition metal is 1) +1 2) 0 3) +3 4) +2 Configuration that does not denote a transition element 1) 3d ¹ 4s ² 2) 3d ¹⁰ 4s ¹ 3) 3d ¹⁰ 4s ² 4p ² 4) 3d ⁸ 4s ²		1) 1	2) 2	3) 6	4) 7			
3) Both are equally metallic 4) Cannot be predicted Element with atomic number 52 belongs to 1) s-block 2) p-block 3) d-block 4) f-block The general electronic configuration of f-block elements is 1) ns² np6 (n-1)d ⁰⁻¹ (n-2)f ¹⁻¹⁴ 2) ns² (n-1)d ^{0,1} (n-2)f ¹⁻¹⁴ 3) ns² nd ^{0,1} nf ¹⁻¹⁴ 4) ns² (n-1)d ^{0,1} (n-1)f ¹⁻¹⁴ 20. The common oxidation state exhibited by inner transition elements usually in their compounds is 1) + 2 2) + 3 3) + 5 4) Zero 21. The pair of atomic numbers which represent the p-block elements 1) 6, 12 2) 7, 53 3) 19, 35 4) 38, 51 22. Which of the following is an element present in the d-block, but not a transition element 1) Cd 2) Cu 3) Ca 4) Cr 23. Which of the following is an alloy of non- transition elements 1) Elektron 2) Brass 3) Bronze 4) German silver 24. Common oxidation state of elemental transition metal is 1) +1 2) 0 3) +3 4) +2 25. Configuration that does not denote a transition element 1) 3d ¹ 4s ² 2) 3d ¹⁰ 4s ¹ 3) 3d ¹⁰ 4s ² 4p ² 4) 3d ⁸ 4s ²	17.	Among s-block metals and transition metals, which are more metallic?						
18. Element with atomic number 52 belongs to 1) s-block 2) p-block 3) d-block 4) f-block 19. The general electronic configuration of f-block elements is 1) ns² np6 (n-1)d ⁰⁻¹ (n-2)f ¹⁻¹⁴ 2) ns² (n-1)d ^{0,1} (n-2)f ¹⁻¹⁴ 3) ns² nd ^{0,1} nf ¹⁻¹⁴ 4) ns² (n-1)d ^{0,1} (n-1)f ¹⁻¹⁴ 20. The common oxidation state exhibited by inner transition elements usually in their compounds is 1) + 2 2) + 3 3) + 5 4) Zero 21. The pair of atomic numbers which represent the p-block elements 1) 6, 12 2) 7, 53 3) 19, 35 4) 38, 51 22. Which of the following is an element present in the d-block, but not a transition element 1) Cd 2) Cu 3) Ca 4) Cr 23. Which of the following is an alloy of non- transition elements 1) Elektron 2) Brass 3) Bronze 4) German silver 24. Common oxidation state of elemental transition metal is 1) +1 2) 0 3) +3 4) +2 25. Configuration that does not denote a transition element 1) 3d ¹ 4s² 2) 3d ¹⁰ 4s ¹ 3) 3d ¹⁰ 4s² 4p² 4) 3d ⁸ 4s²		1) s-block metals		2) Transition me	tals			
1) s-block 2) p-block 3) d-block 4) f-block 19. The general electronic configuration of f-block elements is 1) ns² np6 (n-1)d ⁰⁻¹ (n-2)f ¹⁻¹⁴ 2) ns² (n-1)d ^{0,1} (n-2)f ¹⁻¹⁴ 3) ns² nd ^{0,1} nf ¹⁻¹⁴ 4) ns² (n-1)d ^{0,1} (n-1)f ¹⁻¹⁴ 20. The common oxidation state exhibited by inner transition elements usually in their compounds is 1) + 2 2) + 3 3) + 5 4) Zero 21. The pair of atomic numbers which represent the p-block elements 1) 6, 12 2) 7, 53 3) 19, 35 4) 38, 51 22. Which of the following is an element present in the d-block, but not a transition element 1) Cd 2) Cu 3) Ca 4) Cr 23. Which of the following is an alloy of non- transition elements 1) Elektron 2) Brass 3) Bronze 4) German silver 24. Common oxidation state of elemental transition metal is 1) +1 2) 0 3) +3 4) +2 25. Configuration that does not denote a transition element 1) 3d ¹ 4s² 2) 3d ¹⁰ 4s¹ 3) 3d ¹⁰ 4s² 4p² 4) 3d ⁸ 4s²		3) Both are equally	metallic	4) Cannot be pre	edicted			
19. The general electronic configuration of f-block elements is $1) \text{ ns}^2 \text{ np}^6 \text{ (n-1)d}^{0-1} \text{ (n-2)f}^{1-14} \qquad 2) \text{ ns}^2 \text{ (n-1)d}^{0,1} \text{ (n-2)f}^{1-14}$ $3) \text{ ns}^2 \text{ nd}^{0,1} \text{ nf}^{1-14} \qquad 4) \text{ ns}^2 \text{ (n-1)d}^{0,1} \text{ (n-1)f}^{1-14}$ $20. \qquad \text{The common oxidation state exhibited by inner transition elements usually in their compounds is}$ $1) + 2 \qquad 2) + 3 \qquad 3) + 5 \qquad 4) \text{ Zero}$ $21. \qquad \text{The pair of atomic numbers which represent the p-block elements}$ $1) 6, 12 \qquad 2) 7, 53 \qquad 3) 19, 35 \qquad 4) 38, 51$ $22. \qquad \text{Which of the following is an element present in the d-block, but not a transition element}$ $1) \text{ Cd} \qquad 2) \text{ Cu} \qquad 3) \text{ Ca} \qquad 4) \text{ Cr}$ $23. \qquad \text{Which of the following is an alloy of non-transition elements}$ $1) \text{ Elektron} \qquad 2) \text{ Brass} \qquad 3) \text{ Bronze} \qquad 4) \text{ German silver}$ $24. \qquad \text{Common oxidation state of elemental transition metal is}$ $1) + 1 \qquad 2) 0 \qquad 3) + 3 \qquad 4) + 2$ $25. \qquad \text{Configuration that does not denote a transition element}$ $1) 3d^1 4s^2 \qquad 2) 3d^{10} 4s^1 \qquad 3) 3d^{10} 4s^2 4p^2 \qquad 4) 3d^8 4s^2$	18.	Element with atomic number 52 belongs to						
1) $ns^2 np^6 (n-1)d^{0-1} (n-2)f^{1-14}$ 2) $ns^2 (n-1)d^{0,1} (n-2)f^{1-14}$ 3) $ns^2 nd^{0,1} nf^{1-14}$ 4) $ns^2 (n-1)d^{0,1} (n-1)f^{1-14}$ 20. The common oxidation state exhibited by inner transition elements usually in their compounds is 1) + 2 2) + 3 3) + 5 4) Zero 21. The pair of atomic numbers which represent the p-block elements 1) 6, 12 2) 7, 53 3) 19, 35 4) 38, 51 22. Which of the following is an element present in the d-block, but not a transition element 1) Cd 2) Cu 3) Ca 4) Cr 23. Which of the following is an alloy of non- transition elements 1) Elektron 2) Brass 3) Bronze 4) German silver 24. Common oxidation state of elemental transition metal is 1) +1 2) 0 3) +3 4) +2 25. Configuration that does not denote a transition element 1) $3d^1 4s^2$ 2) $3d^{10} 4s^1$ 3) $3d^{10} 4s^2 4p^2$ 4) $3d^8 4s^2$		1) s-block	2) p-block	3) d-block	4) f-block			
3) ns² nd ^{0,1} nf ¹⁻¹⁴ 4) ns² (n-1)d ^{0,1} (n-1)f ¹⁻¹⁴ 20. The common oxidation state exhibited by inner transition elements usually in their compounds is 1) + 2 2) + 3 3) + 5 4) Zero 21. The pair of atomic numbers which represent the p-block elements 1) 6, 12 2) 7, 53 3) 19, 35 4) 38, 51 22. Which of the following is an element present in the d-block, but not a transition element 1) Cd 2) Cu 3) Ca 4) Cr 23. Which of the following is an alloy of non- transition elements 1) Elektron 2) Brass 3) Bronze 4) German silver 24. Common oxidation state of elemental transition metal is 1) +1 2) 0 3) +3 4) +2 25. Configuration that does not denote a transition element 1) 3d ¹ 4s ² 2) 3d ¹⁰ 4s ¹ 3) 3d ¹⁰ 4s ² 4p ² 4) 3d ⁸ 4s ²	19.	The general electron	nic configuration of f	f-block elements is				
The common oxidation state exhibited by inner transition elements usually in their compounds is 1) + 2		1) $ns^2 np^6 (n-1)d^{0-1}$	$(n-2)f^{1-14}$	2) $ns^2 (n-1)d^{0,1}$ (s	2) $ns^2 (n-1)d^{0,1} (n-2)f^{1-14}$			
The common oxidation state exhibited by inner transition elements usually in their compounds is 1) + 2		3) $ns^2 nd^{0,1} nf^{1-14}$		4) ns ² (n-1)d ^{0,1} (n	n–1)f ^{1–14}			
The pair of atomic numbers which represent the p-block elements 1) 6, 12 2) 7, 53 3) 19, 35 4) 38, 51 Which of the following is an element present in the d-block, but not a transition element 1) Cd 2) Cu 3) Ca 4) Cr Which of the following is an alloy of non-transition elements 1) Elektron 2) Brass 3) Bronze 4) German silver Common oxidation state of elemental transition metal is 1) +1 2) 0 3) +3 4) +2 Configuration that does not denote a transition element 1) 3d ¹ 4s ² 2) 3d ¹⁰ 4s ¹ 3) 3d ¹⁰ 4s ² 4p ² 4) 3d ⁸ 4s ²	20.		The common oxidation state exhibited by inner transition elements usually in their compound					
1) 6, 12 2) 7, 53 3) 19, 35 4) 38, 51 22. Which of the following is an element present in the d-block, but not a transition element 1) Cd 2) Cu 3) Ca 4) Cr 23. Which of the following is an alloy of non-transition elements 1) Elektron 2) Brass 3) Bronze 4) German silver 24. Common oxidation state of elemental transition metal is 1) +1 2) 0 3) +3 4) +2 25. Configuration that does not denote a transition element 1) 3d ¹ 4s ² 2) 3d ¹⁰ 4s ¹ 3) 3d ¹⁰ 4s ² 4p ² 4) 3d ⁸ 4s ²		1) + 2	2) + 3	3) + 5	4) Zero			
1) 6, 12 2) 7, 53 3) 19, 35 4) 38, 51 22. Which of the following is an element present in the d-block, but not a transition element 1) Cd 2) Cu 3) Ca 4) Cr 23. Which of the following is an alloy of non-transition elements 1) Elektron 2) Brass 3) Bronze 4) German silver 24. Common oxidation state of elemental transition metal is 1) +1 2) 0 3) +3 4) +2 25. Configuration that does not denote a transition element 1) 3d ¹ 4s ² 2) 3d ¹⁰ 4s ¹ 3) 3d ¹⁰ 4s ² 4p ² 4) 3d ⁸ 4s ²	21.	The pair of atomic r	numbers which repre	esent the p-block eleme	nts			
1) Cd 2) Cu 3) Ca 4) Cr 23. Which of the following is an alloy of non- transition elements 1) Elektron 2) Brass 3) Bronze 4) German silver 24. Common oxidation state of elemental transition metal is 1) +1 2) 0 3) +3 4) +2 25. Configuration that does not denote a transition element 1) 3d ¹ 4s ² 2) 3d ¹⁰ 4s ¹ 3) 3d ¹⁰ 4s ² 4p ² 4) 3d ⁸ 4s ²		-	-	-				
1) Cd 2) Cu 3) Ca 4) Cr 23. Which of the following is an alloy of non- transition elements 1) Elektron 2) Brass 3) Bronze 4) German silver 24. Common oxidation state of elemental transition metal is 1) +1 2) 0 3) +3 4) +2 25. Configuration that does not denote a transition element 1) 3d ¹ 4s ² 2) 3d ¹⁰ 4s ¹ 3) 3d ¹⁰ 4s ² 4p ² 4) 3d ⁸ 4s ²	22.	Which of the follow	ving is an element pr	esent in the d-block, bu	t not a transition element			
1) Elektron 2) Brass 3) Bronze 4) German silver 24. Common oxidation state of elemental transition metal is 1) +1 2) 0 3) +3 4) +2 25. Configuration that does not denote a transition element 1) $3d^1 4s^2$ 2) $3d^{10} 4s^1$ 3) $3d^{10} 4s^2 4p^2$ 4) $3d^8 4s^2$			-					
1) Elektron 2) Brass 3) Bronze 4) German silver 24. Common oxidation state of elemental transition metal is 1) +1 2) 0 3) +3 4) +2 25. Configuration that does not denote a transition element 1) $3d^1 4s^2$ 2) $3d^{10} 4s^1$ 3) $3d^{10} 4s^2 4p^2$ 4) $3d^8 4s^2$	23.	Which of the follow	ving is an alloy of no	n- transition elements				
1) +1 2) 0 3) +3 4) +2 25. Configuration that does not denote a transition element 1) $3d^{1} 4s^{2}$ 2) $3d^{10} 4s^{1}$ 3) $3d^{10} 4s^{2} 4p^{2}$ 4) $3d^{8} 4s^{2}$					4) German silver			
25. Configuration that does not denote a transition element 1) $3d^1 4s^2$ 2) $3d^{10} 4s^1$ 3) $3d^{10} 4s^2 4p^2$ 4) $3d^8 4s^2$	24.	Common oxidation	state of elemental tr	ansition metal is				
1) $3d^{1} 4s^{2}$ 2) $3d^{10} 4s^{1}$ 3) $3d^{10} 4s^{2} 4p^{2}$ 4) $3d^{8} 4s^{2}$		1) +1	2) 0	3) + 3	4) + 2			
, , , , , , , , , , , , , , , , , , ,	25.	· ·			4) 3d ⁸ 4s ²			
	26.	,	,	, 1	•			

CHI	EMISTRY -			→ PERIODIC TABLE		
	1) Ac	2) Ce	3) Th	4) U		
27.	An element has 18	electrons in the outer m	nost shell. The elemer	nt is		
	1) Transition metal	2) Rare earth metal	3) Alkaline earth 1	metal 4) Alkali metal		
28.	Element with electr	onic arrangement [Ar]	ě.			
	1) s-block	2) p- block	3) d - block	4) f - block		
29.	(A) : The transition	metal ions are generall	y paramagnetic in na	nture		
	(R): Metal ions with	h incompletely filled d-	orbitals are paramag	netic in nature.		
		are true and (R) is the care true and (R) is not		on of (A)		
30.	Number of outer sh	ells partially filled for r	epresentative elemer	nts		
	1) Zero	2) One	3) Two	4) Three		
31.	The atomic number	of the element which is	s not included in the 1	main body of the period table		
	1) 43	2) 57	3) 68	4) 80		
32.	Zinc is not considered as a transition metal because 1) It is diamagnetic 2) It is not known to from alloys 3) It has no unpaired electrons 4) It has white shade					
33.		figuration of an element which is just below		$3s^2 3p^3$. What is the atomic ble		
	1) 33	2) 34	3) 31	4) 49		
34.	Atomic radii of fluo 1) 0.72, 1.62	orine and neon in angst 2) 0.72, 0.72	rom units are respect 3) 1.2, 1.2	tively 4) 1.62, 0.72		
35.	Which of the follow	ving will have largest s	ize?			
	1) Br	2) I ⁻	3) I	4) F		
36.	The size of the following species increases in the order					
	1) $Mg^{2+} < Na^+ < F^-$	< Al ³⁺	2) $Al^{3+} < Mg^{2+} < I$	2) $Al^{3+} < Mg^{2+} < Na^+ < F^-$		
	3) $Na^+ < F^- < Al^{3+} <$	≤ Mg ²⁺	4) $Na^+ < Al^{3+} < M$	4) $Na^+ < AI^{3+} < Mg^{2+} < F^-$		
37.	In a period of representative elements, the decrease in ionic radius when compared with the corresponding decrease in atomic radius					
	1) is equal	2) is less	3) is more	4) Cannot be predicted		
38.	In which of the foll	owing sets, elements ha	nve nearly same atom	nic radii?		
	1) Li, Be, B	2) Mg, Ca, Sr	3) Fe, Co, Ni	4) O, S, Se		
39.	Correct order of ato $1) N < C < P < S$		3) C < N < P < S	4) N < C < S < P		
40.	 Crystal radius > Van der waals radius Covalent radius 	nssumed to have the typ Van der waals radius adius > Crystal radius > Crystal radius > Var adius > Covalent radiu	> Covalent radius > Covalent radius n der waals radius	r order is		

PERIO	ODIC TABLE			→ CHEMISTRY
41.	Which of the following 1) Be ⁺²	ng has smallest radius? 2) Li ⁺	3) O ⁻²	4) F-
42.	Which of the followin	g series of elements ha	ve most nearly the same	e atomic radius ?
	1) Mg, Ca, Sr, Ba	2) Ca, Ge, As, Se	3) B, C, N, O	4) Cr, Mn, Fe, Co
43.	If the Ionisation poter 1) 4.34 eV	tial (I.P.) of Na is 5.48 e 2) 5.68 eV	eV. The I.P. of K will be 3) 10.88 eV	4) 5.48 eV
44.	A sudden jump betwee associated with config		d and third ionisation e	energies of an element is
	1) $1s^22s^22p^63s^1$	2) $1s^22s^22p^63s^23p^1$	$3) 1s^2 2s^2 2p^6 3s^2 3p^2$	4) $1s^22s^22p^63s^2$
45.		g elements (whose electors is the state of t	ctronic configurations a	re given below), the one
	1) [Ne] $3s^23p^1$	2) [Ne] $3s^23p^3$	3) [Ne] $3s^23p^2$	4) $[Ar]3s^{10}4s^24p^2$
46.	The first ionization en	ergy of Lithium will b	e	
	1) Greater than Be	2) Less than Be	3) Equal to that of Na	4) Equal to that of F
47.	would be associated v	vith the electronic conf	iguration	energies of an element
	1) $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^2$	2 2) $1s^{2}$, $2s^{2}$, $2p^{6}$, $3s^{2}$	3) $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^3$	1 4) $1s^{2}$, $2s^{2}$, $2p^{6}$, $3s^{1}$
48.	Generally the ionisation one which is not an ex		d increases, but there ar	e some exceptions. The
	1) Be & B	2) N & O	3) Mg & Al	4) Na & Mg
49.	Element that has the h	nighest first ionisation of 2) Mg	energy among the follo 3) Al	wing is 4) Si
50.	1) the greater attraction	on of the electrons by the f the half filled p - orbi nitrogen		ause of
51.	Which element has th	e greatest tendency to l	lose electrons?	
	1) F	2) S	3) Fe	4) Be
52.	Second ionisation pot 1) Equal to that of fluc 3) Greater than that of	orine	2) Less than that of flu4) Half of that of fluor	
53.	Among the elements correct order of ionisa	0	tomic numbers 9, 10, 11	and 12 respectively the
	1) A > B > C > D	2) $B > A > D > C$	3) $B > A > C > D$	4) D > C > B > A
54.		ing process maximum 2) $O_{(g)}^{-} + e^{-} \rightarrow O_{(g)}^{-2}$	energy is released 3) $S_{(g)} + e^- \rightarrow S_{(g)}^-$	4) $S^{-}_{(g)} + e^{-} \rightarrow S^{-2}_{(g)}$
55.			le with the electron affi	
	1) F ⁻	2) F	3) F ⁺	4) F ²⁺
56.	When an electron is a 1) C	dded, energy is absorb 2) N	ed in which of the follo 3) F	wing? 4) O

CH	EMISTRY ←			PERIODIC TABLE			
57.	The correct order (Roorkee)	of electron affinity of th	ne elements of oxygen fami	ly in the periodic table is			
	1) O > S > Se	2) $S > O > Se$	3) S > Se > O	4) Se > O > S			
58.	The I.P of X ⁻ ion is	equal to					
	1) EA of X	2) EN of X	3) IP of X	4) IP of X+			
59.	Energy is released	in the process of					
	1) $Na_{(g)} \rightarrow Na_{(g)}^+$	+ e 2) $O^{-}_{(g)}$ + e \rightarrow O^{-1}	$^{2}_{(g)}$ 3) $N^{-2}_{(g)} + e \rightarrow N^{-3}_{(g)}$	4) $O_{(g)} + e \rightarrow O_{(g)}^{-}$			
60.	Which of the follow	wing is the correct orde	er of electron affinity				
	1) I > Br > F > Cl	2) F < Cl < Br < I	3) $F > C1 > Br > I$	4) I < Br < F < Cl			
61.	Pair of elements w	ith equal values of elec	tronegativiy				
	1) Be, Al	2) Mg, Al	3) Mg, Ca	4) F, Ne			
62.	The electronegativ	rity of the following ele	ments increase in the order	r			
	1) C, N, Si ,P	2) N , Si, C, P	3) Si, P, C, N	4) P, Si, N, C			
63.	compound formed	Two elements A and B have the following electronic configurations. The formula of the compound formed between them can be $A = 1s^2 2s^2 2p^6 3s^2 3p^1 B = 1s^2 2s^2 2p^4$					
	1) AB	2) AB ₂	3) A_2B_3	4) A_3B_2			
64.	,	, 2	CO_3 . The formula of that m	. 3 2			
04.	1) MClO ₄	2) M_2ClO_4	3) M ₃ ClO ₄	4)M(ClO ₄) ₂			
65.			, , 4/2				
	$1)\mathrm{M_3PO_4}$	2) MPO_4	3) $M_3(PO_4)_2$	$4) \mathrm{M_2PO_4}$			
66.	An oxide of an element belongs to	ment is a gas and disso	lves in water to give an acio	dic solution. The element			
	1) II group	2) IV group	3) VIII group	4) Zero group			
67.	Acidic nature of th	Acidic nature of the similar oxides of a group from top to bottom					
	1) Increases then decreases	2) Decreases	3) Remains constant	4) First increases and			
68.	Which of the follow	Which of the following properties increases across a period					
	1) Reducing prope	•	2) Size of atom				
	3) Acidic nature of	oxides	4) Metallic property				
69.	Among the follow	ing elements most acid	lic oxide is given by				
	1) Al	2) P	3) N	4) Sb			
70.	The strongest redu	ıcing agent is					
	1) K	2) Al	3) Mg	4) Br			
71.	The more basic ox	ide is					
	1) CaO	2) MgO	3) K ₂ O	4) Na ₂ O			
72.	,	,	c arrangement will be form	·			
, 4.	1) Acidic oxide	2) Basic oxide	3) Neutral oxide	4) Amphoteric oxide			

Diagonal relationship is present between the lighter elements of periods

73.

PERI	ODIC TABLE			→ CHEMISTRY		
	1) Second, third	2) Second, fourth	3) Third, fourth	4) Third, fifth		
74.	The diagonal relation	nship phenomenon is	not observed after			
	1) I A Group	2) II A Group	3) III A Group	4) IV A Group		
75.	The polarising power	er of which of the follo	wing pair is similar			
	1) Li, Mg	2) Li ⁺ , Mg ²⁺	3) Li^{2+} , Mg^{2+}	4)Li ⁺ , Mg ⁺		
76.	(A): Be and Al have	similar properties.				
	(R): Cations of Be and Al have same polarising power					
77.	Which of the follow	ing oxide is amphoteri	c?			
	1) CrO	2) Cr ₂ O ₃	3) CrO ₃	4) CrO ₅		
78.	(A): Li forms covale	nt compounds				
	(R): Li ⁺ ion is small	and has high polarizing	ng power			
79.	$(A) : As_2O_3, Sb_2O_3$ an	re amphoteric in nature	e			
	(R): As, Sb are meta	lliods				
80.	(A):Lithium resemb	oles magnesium in its p	roperties			
	(R): The ratio of ion	ic charge to (Ionic radi	us) ² is almost same for 1	Li ⁺ and Mg ²⁺		
81.	Some statements are	e given. Among them t	he correct statements ar	re		
		reater than that of Mag				
	_	reater than IP ₁ of Heliu				
	c) IP ₂ of sodium is g	reater than IP ₁ of Neor	ı			
	d) IP ₁ of oxygen is g	reater than that of Nitr	rogen			
	1) All are correct		2) Only a, b and c ar	re correct		
	3) Only a,b are corre	ect	4) Only a, d are corr	rect		
82.	Elements X, Y and Z statements is true ab		19, 37 and 55 respective	ly. Which of the following		
	1) Their ionization p	ootential would increa	se with increasing ator	nic number		
	2) 'Y' would have ar	n ionization potential b	etween those of X and	Z.		
	3) Z would have the	e highest ionization po	tential			
	4) Y would have the	e highest ionization po	tential			
83.	The statement that i	s false for the long forr	n of the periodic table i	S		
	1) It reflects the sequ	uence of filling the elec	trons in the order of su	b energy levels s,p,d and f		
	2) It helps to predict	the stable valency stat	tes of the element			
	•		al properties of the ele			
	4) It helps to predict	the relative ionicity of	the bond between any	two elements		
84.	The compound of vathe formula:	anadium has magnetic	moment of 1.73 BM. T	he vanadium chloride has		
	1) VCl ₂	2) VCl ₃	3) VCl ₄	4) VCl ₅		

CHEMISTRY 4

→ PERIODIC TABLE

The frequency of the characterstic X ray of $\, K_{\alpha} \,$ line of metal target 'M' is 2500 cm⁻¹ and the 85. graph between $\sqrt{\mathbf{v}}$ Vs 'z' is as follows, then atomic number of M is

- 1) 49
- 2) 50
- 3) 51
- 4) 25

(IE)₁ and (IE)₂ of Mg_(σ) are 740, 1540 kJ mol⁻¹. Calculate percentage of Mg⁺_(σ) and Mg²⁺_(σ) if 1 g of Mg_(σ) 86. absorbs 50.0 kJ of energy.

- 1) $\%Mg^+ = 70\%$ $\%Mg^{+2} = 30\%$
- 2) %Mg⁺ = 68.35% %Mg⁺² = 31.65%
- 3) %Mg⁺ = 72% %Mg⁺² = 28%
- 4) %Mg⁺ = 60% %Mg⁺² = 40%

87. Use (IE) and (EA) listed below to determine whether the following process is endothermic exothermic.

$$Mg_{(g)} + 2F_{(g)} \rightarrow Mg^{2+}_{(g)} + 2F^{-}_{(g)}$$

$$(IE)_1$$
 of $Mg_{(g)} = 737.7$ kJmol⁻¹

$$(IE)_2$$
 of $Mg_{(g)} = 1451 \text{ kJ mol}^{-1}$

$$(EA) \text{ of } F(g) = -328 \text{ kJ mol}^{-1}$$

- 1) Exo
- 2) Endo
- 3) both
- 4) None

88. If Aufbau rule is not followed, K – 19 will be placed in block

- 1) s
- 2) p
- 3) d
- 4) f

89. $M(g) \rightarrow M^+(g) + e^-, \Delta H = 100eV$

$$M(g) \rightarrow M^{2+}(g) + 2e^{-}, \Delta H = 250eV$$

which is incorrect statement?

- 1) I_1 of $M_{(g)}$ is 100 eV 2) I_1 of $M_{(g)}^+$ is 150 eV 3) I_2 of $M_{(g)}$ is 250 eV 4) I_2 of $M_{(g)}$ is 150 eV

AB is predominantly ionic as A+ B- if 90.

- 1) $(IP)_A < (IP)_B$
- 2) $(EA)_A < (EA)_B$ 3) $(EN)_A < (EN)_B$ 4) $(IP)_B < (IP)_A$

91. EN of the element (A) is E_1 and IP is E_2 . Hence EA will be

- 1) $2E_1 E_2$
- 2) $E_1 E_2$
- 3) $E_1 2E_2$
- 4) $(E_1 + E_2)/2$

92. Gd (64) has.... unpaired electrons with sum of spin

- 1) 7. 3.5
- 2)8,3
- 3) 6, 3
- 4) 8, 4

93. For the process

$$X_{(g)} + e^- \rightarrow X^-(g)$$
, $\Delta H = x$ and

$$X^{-}_{(g)} \rightarrow X_{(g)} + e^{-}, \Delta H = y$$

Select correct alternate:

- 1) ionisation energy of $X^{-}(g)$ is y
- 2) electron affinity of X(g) is X
- 3) electron affinity of X(g) is -y
- 4) all are correct statements.

PERIODIC TABLE

CHEMISTRY

- 94. Some statements are given regarding nature of oxides
 - i) In second period, nitrogen form strongest acidic oxide
 - ii) In third period, sodium froms strongest basic oxide
 - iii)Oxides of metalloids are generally amphoteric in nature
 - 1) I and II are correct

2) II and III are correct

3) I and III are correct

4) I, II and III are correct

EXERCISE - III

- 1. The long form of the periodic table is based on the properties of elements as a function of
 - 1) atomic size
- 2) electronegativity
- 3) atomic number
- 4) atomic mass
- 2. What is the electronic configuration of the outer shell of the elements of Group 14?
 - 1) ns²np⁴
- 2) ns^2np^6
- 3) ns^2np^2
- 4) ns²
- 3. The complex formation tendency is maximum in elements belonging to the
 - 1) s-block
- 2) p-block
- 3) d-block
- 4) none of these

- 4. Which of the following elements are rare earths?
 - 1) Niobium
- 2) Samarium
- 3) Uranium
- 4) Osmium
- 5. The outer electronic configuration of d-block elements in the periodic table is
 - 1) $3d^{10}4s^2$
- 2) $3s^23p^4$
- 3) $6s^24p^3$
- 4) $3s^23p^64s^2$
- 6. Which of the following has the maximum number of unpaired electrons?
 - 1) Ti³⁺
- 2) V^{3+}
- 3) Fe^{2+}
- 4) Mg^{2+}
- 7. An element with the atomic number 21 belongs to the
 - 1) s-block
- 2) p-block
- 3) d-block
- 4) f-block

- 8. Which of the following can not be iso electronic
 - 1) two different cations

2) two different anions 3) cation and anion

- 4) two different atoms
- 9. The frequency of the chracterstic X-ray of K_{α} line of metal target 'M' is 2500 cm⁻¹ and the graph between \sqrt{v} vs 'Z' is as follows, then atomic number of that metal (M) is
 - 1) 50
 - 2) 51
 - 3) 25
 - 4) 49

- 10. Which one of the following is a different pair
 - 1) Li, Na
- 2) Be, Ba
- 3) N, As
- 4) O, At

- 11. Anamolous pair among the following are
 - (i) Co, Cu
- (ii) Ar K
- (iii) Te I
- (iv) Th Pr

- 1) (i) and (ii)
- 2) (i) and (iii)
- 3) (iii) and (iv)
- 4) (ii), (iii) and (iv)

- 12. Which of the following statements are true?
 - 1) Mendeleev's periodic law is based on the atomic number of elements
 - 2) The table presented by Mendeleev did not have the zero group.
 - 3) Each group in Medeleev's periodic table was divided into two subgroups
 - 4) Mendeleev's periodic table consists of ten horizontal rows or series.

CHI	EMISTRY «			PERIODIC TABLE				
13.	Which of the follow	wing belong to a triac	1?					
	1) Osmium	2) Platinum	3) Iridium	4) Palladium				
14.	Which of the follow	wing elements are pre	esent in Group 16 of th	e periodic table ?				
	1) Cerium	2) Tungsten	3) Thorium	4) Platinum				
15.	Which of the follo periodic table?	wing outer electronic	c configurations corre	esponds to the d-block of the				
	1) $3s^23p^3$	2) $3d^54s^1$	3) $3s^23p^64s^2$	4) $5d^{1}6s^{2}$				
16.	Which of the follow	wing are correct?						
	1) The configuration	1) The configuration of Mo (Z=42) is [Kr]4d ⁵ 5s ¹ .						
	,	2) The configuration of Mo ($Z = 42$) is [Kr]4d ⁴ 5s ² .						
	,	on of Ag (Z=47) is [Kr]	=					
		n of Ag ($Z = 47$) is [Kr]						
Comr	,	9 (, , = =	and answer the ques	tion no's 17 to 19)				
7	,	0.	_	iodic law is the physical and				
	chemical propertie	s are periodic function		hts. Mendeleeff predicted the				
17.	Eka boron was nar	ned as						
	1) Aluminium	2) Gallium	3) Scandium	4) Germanium				
18.	Which of the follow	wing are absent in Me	ndeleef's periodic tabl	e				
	1) zero group	2) Halogens	3) Metals	4) liquids				
19.	Which elements at	omic weights are corr	ected					
	1) Be	2) In	3) U	4) All the above				
Comp	rehension - II (Read t	the following passage	e and answer the ques	stion no's 20 to 22)				
	·	,		e classified into 4 blocks s, p, d erties, elements are classified				
20.	are called	rare-earths,						
	1) Lanthanides	2) actinides	3) transuranic el	ements 4) all the above				
21.	Many gases, non -	metals and metalloids	s are present in the	····				
	1) d-block	2) s -block	3) p-block	4) f-block				
22.	•	nents are solids excep	, -	,				
	1) Fe	2) Ag	3) Hg	4) Sc				
23.	,	, 0	<i>5)</i> 11g	4) 30				
23.	Match List - 1 with		List II/Elaman	t /				
	List - I (Group/Per	iou)	·	List - II (Element)				
	1) 7th period 2) IIIB group		1,	p) Transition elements				
	3) IA		r) Hydrogen	q) Inner transition elements				
	4) VIIA		s) Halogens					
24.	,	number in List - I, witl	, 0					
<u>- +</u> .	List - I (Atomic nu		List - II (Group)					
	1) 55	<i></i> ,	p) VIII					
	2) 45		q) IIIB					
	<u> </u>		41 1110					

PERI	ODIC TABLE	₩	CHEMISTRY
	3) 81	r) IIIA	
	4) 64	s) IA	
25.	An element 'Y' b	belong to 1^{st} period & 1^{st} group in Modern Periodic Table. Its	atomic number is
26.	The number of §	groups which contains only gaseous elements is	
27.	The atomic num	ber of newly predicted Noble gas element may be 110 + a. v	value of 'a' is
28.	The number of e	elements present in short periods are	
29.	Maximum numb	per of elements are present in ${ m III}_{ m B}$ group. Among them d-block	c elements present
30.	All the four bloc	ks and four types of elementsare present in the pe	eriod

CHEMISTRY

→ PERIODIC TABLE

EXERCISE - I

1) 2 2) 1 3) 1 4) 1 5)3 6) 2 9) 3 10)3 7) 4 8) 4 11) 2 12) 3 13) 4 14) 3 15) 2 16) 3 17) 3 18) 3 19) 2 20) 1 21)3 22) 2 23) 3 24) 4 25) 2 26) 1 27) 4 28) 4 29) 3 30) 1 31) 4 32) 3 33) 1 34) 4 35) 4 37) 3 38) 1 39) 4 40) 2 36) 1 41) 4 49) 2 42) 4 43) 2 44) 3 45) 2 46) 2 47) 1 48) 4 50) 4 51) 1 52) 3 53) 3 54) 1 55) 1 57) 3 58) 3 59) 3 60) 4 56) 2 61) 4 62) 2 63) 1 64) 2 65) 4 66) 3 67) 1 68) 3 69) 1 70) 1 71)3 79) 3 72) 4 73) 4 74) 4 75) 1 76) 4 77) 3 78) 3 80) 1 81) 2 82) 4 83) 4 85) 2 87) 4 88) 1 89) 2 90) 4 84) 3 86) 3 91) 4 92) 4 93) 1 94) 2 95) 2 97) 4 98) 3 99) 4 96) 2 100) 2 101) 4 102) 2 103) 1 104) 3 105) 2 106) 2 107) 4 108) 1 109) 4 110) 1 111) 3 112) 1 113) 4 114) 3 115) 1 116) 4 117) 2 118) 3 119) 3 120) 1

EXERCISE-II

1) 1 10) 3 2) 1 3) 1 4) 1 5) 2 6) 2 7) 3 8) 3 9) 3 11) 1 12) 2 13) 1 14) 2 15) 4 16) 3 17) 1 18) 2 19) 2 20) 2 21) 2 29) 1 22) 1 23) 1 24) 2 25) 3 26) 3 27) 1 28) 3 30) 2 31)3 32) 3 33) 1 34) 1 35) 2 36) 2 37) 3 38) 3 39) 4 40) 2 41) 1 42) 4 43) 1 45) 2 47) 2 48) 4 49) 4 50) 2 44) 4 46) 2 51)3 52) 3 53) 2 54) 3 55) 2 56) 2 57) 1 58) 1 59) 4 60) 4 61) 1 62) 3 63) 3 64) 4 65) 3 66) 2 67) 2 68) 3 69) 3 70) 1 79) 1 71)3 72) 2 73) 1 74) 4 75) 2 76) 1 77) 2 78) 1 80) 1 81) 2 82) 2 84) 3 87) 2 88) 3 89) 4 90)3 83) 2 85) 3 86) 2 91) 1 92) 4 93) 4 94) 1

EXERCISE - III

1) 3 2) 3 3)3 4) 2 5) 1 6) 3 7) 3 8) 4 9) 2 10) 4 11) 34 13) 123 14) 13 15) 24 16) 13 17) 3 18) 1 19) 4 20) 1 12) 24 21) 3 23) 1-P,Q; 2-P, Q; 3-R; 4-R,S 22) 3 24) 1-S; 2-P; 3-R; 4-Q 25) 1 26) 1 27) 7 28) 8 29) 4 30) 6

EXERCISE - I

		· · · · · · · · · · · · · · · · · · ·					
1.	Valency of an element in	ndicates					
	1) combining power wit	th hydrogen	2) acidity				
	3) electrons in the outer	most orbit	4) none of these				
2.	Between atoms of a mole	Between atoms of a molecule, there exists					
	1) only attractive forces		2) only repulsive force	es			
	3) both attractive and re	pulsive forces	4) neither attractive no	or repulsive forces			
3.		orine combine to form) greater than that of		ne gas, the energy of the 2) equal to that of			
	3) lower than that of sep	arate atoms	4) none of these				
4.	Most energetic species a	mong the following i	is				
	~ -	l) Ne	3) F	4) F ₂			
5.	The coordination numb	ers of cation and anio	on in NaCl crystal are re	espectively			
	1) 8, 6	2) 8, 8	3) 6, 6	4) 6, 8			
6.	Which of the following i	is easily formed?					
	_) Calcium bromide	3) Potassium chloride	4) Potassium bromide			
7.	Among the compounds 1) NaCl 2	NaCl, KCl, RbCl and) KCl	l CsCl, the one with gre 3) CsCl	atest ionic character is 4) RbCl			
8.	The 8:8 type of packing	is present in	,	•			
) KCl	3) CsCl	4) MgF ₂			
9.	Which of the following is favourable condition for the formation of ionic bond? 1) Small cation with small charge 2) Small anion with large charge 3) Large difference in the electronegativity 4) Small cation with high charge						
10.	The toal number of Na+	ions present per unit	t cell of NaCl is				
	1) 1	2) 6	3) 8	4) 4			
11.	The number of ion pairs	that constitute one u	ınit cell of CsCl				
	1) 4	2) 2	3) 8	4) 1			
12.	Which of the following in 1) Sublimation energy 2		•	4) Electonegativity			
13.	In a NaCl crystal, cation 1) Electrons 2	s and anions are held) Electrostatic forces		4) Covalent bonds			
14.	Molten sodium chloride 1) Free electrons 2	conducts electricity) Free ions	due to the presence of 3) Free molecules	4) Free atoms			
15.	Number of electrons tra fluoride	ansferred from one A	Al atom during bond fo	ormation in Aluminium			
	1) 1 2	2) 2	3) 3	4) 4			
16.	Which one of the follow	ing has an electroval	ent linkage?				
	1) CH ₄ 2) MgCl ₂	3) SiCl ₄	4) BF ₃			
17.	Which of the following 1) CaF_2 2	is least ionic? ?) CaBr ₂	3) CaCl ₂	4) CaI ₂			

CHE	MICAL BONDING	44		→ CHEMISTRY
18.		l''		CHEWIISTKI
10.	The strongest ionic bo 1) LiF	2) NaF	3) RbF	4) CsF
19.	Which is more stable 1) Li ⁺	among the following 2) K ⁺	3) Cs ⁺	4) Na ⁺
20.	What is the crystal str	ucture of CsCl?		
	1) Body centered cubic	2) Face centered cubic	3) Tetrahedral	4) Octahedral
21.	Which of the followin 1) High electronegativ 3) Low ionisation pot	•	for cation formation 2) High electron affin 4) Smaller atomic size	•
22.	Which of the followin	g is not correct		
	1) low ionisation pote	ntial is a favourable co	ndition for the formation	on of cation
	2) coordination numb	per of Cs in CsCl is 8	3) ionic bond is direct	tional
	4) ionic compounds h	ave high melting poin	ts	
23.	AB is an ionic solid. The is proportional to	ne ionic radii of A ⁺ and	B ⁻ are respectively r _c an	d r _a . Lattice energy of AB
	1) $\frac{r_c}{r_a}$	2) $(r_c + r_a)$	3) $\frac{r_a}{r_c}$	$4) \frac{1}{r_c + r_a}$
24.	(A): Ionic compounds	s tend to be non-volatile	e	
		in ionic compounds ar		
25.	· · ·	$1 \mathrm{Zn^{2+}}$ ions, $\mathrm{Ca^{2+}}$ is mor		
	* *	n ²⁺ ions are diamagneti		
26.		ductor in the solid state		
27	` '	are not free in the solid	1 state	
27.	(A): Ionic compounds(R): Ionic bond is nor			
20	, ,			
28.		bits both electrovalence	•	4) Clal a viva a
• •	1) Neon	2) Sodium	3) Barium	4) Chlorine
29.	The total number of eV.B.T.	electrons that take part	in forming bonds in C	₂ molecule according to
	1) 2	2) 4	3) 6	4) 10
30.	In the farmation of co 1) transter of electrons 3) sharing of electrons	s take place	2) electrons are gained 4) gaining of electrons	•
31.		_	atoms has a pair of elect	_
01.	1) unequally shared b 3) with identical spin	etween the two	-	om one atom to another
32.	A covalent bond is lik	ely to be formed betwe	en two elements which	
	1) have high electrone	•	2) have low ionization	
	3) have low melting p	oints	4) form ions with a sn	nall charge
33.	Covalent compounds	are generally soluble i	n	
	1) polar solvents	•	3) concentrated acids	4) all solvents
34	, -	og has directional chara		

CHI	EMICAL BONDING	₩		CHEMISTRY	
	1) ionic bond	_	2) metallic bond		
	3) covalent bond		4) both covalent and	ionic bonds	
35.	Maximum number of	covalent bonds by wh	nich two atoms can be b	onded to each other	
	1) Four	2) Two	3) Three	4)No fixed number	
36.	Among the alkaline e	arth metals, the elemer	nt forming predominan	tly covalent compound is	
	1) Be	2) Mg	3) Sr	4) Ca	
37.	Which of the following	ng substances has cova	alent bonding?		
	1) Sodium chloride	2) Solid neon	3) Copper metal	4) Germanium	
38.	The molecule that dev	iates from octet rule is			
	1) CCl ₄	2) BF ₃	3) MgO	4) NCl ₃	
39.	Most important conce	ept of valence bond the	eory is		
	1) Overlap of atomic of	orbitals results in the bo	nd		
		nber of electrons for bo	-		
	3) Sharing of electron	s follow the octet rule	4) Transfer of electron	ns follow the octet rule.	
40.	In N ₂ molecule the ato	oms are bonded by the	bonds		
	$1)$ 1σ , 2π	$2) 1 \sigma$, 1π	$3) 2\sigma$, 1π	$4)3\sigma$, 2π	
41.	Bond present in iodir	nemonochloride is			
	1) Coordinate	2) Electrovalent	3) Covalent	4) Metallic	
42.	Two carbon atoms in	which of the following	g have more number of	shared electrons	
	1) Benzene	2) Acetylene	3) Ethane	4) Ethylene	
43.	Which of the following	ng has homoatomic ove	erlap?		
	1) H-Cl	2) Li-Cl	3) C-Cl	4) Cl-Cl	
44.	The total number of e	lectrons that take part	in forming bonds in a C	C ₂ H ₄ molecule are	
	1) 12	2) 14	3) 6	4) 10	
45.	Which of the following	ng molecules contain o	ne lone pair of electrons	s on the central atom?	
	1) CH ₄	2) PH ₃	3) CCl ₄	4) H ₂ S	
46.	The type of overlap p	resent in the bonds of l	hydrogen sulphide mol	ecule is	
	1) σs-p	2) σ s-s	3) σ p-p	4) $\sigma sp^3 - s$	
47.	Hydrogen chloride m	olecule contains			
	1) Covalent bond	2) Double bond	3) Co-ordinate bond	4) Electrovalent bond	
48.	Iodine monochloride	molecule is formed by	the overalap of		
	1) s-s orbitals		2) s-p orbitals		
	3) p-p orbitals end to	end	4) p-p orbitals sidewa	ays	
49.	Which is true regardi	ng a sigma bond			
	1) It has lateral overla	ıp	2) It has two electron pairs in the bond		
	3) It has electron trans	3) It has electron transfer 4) It has head – to – head overlap			
50.	In solid argon, the ato	oms are held together b	y		
	1) Ionic bonds	2) Hydrogen bonds	•	s 4) Hydrophobic forces	
51.	Which of the followin	ng boils at higher tempe	erature.		
	1) CCl ₄	2) CO ₂	3) $C_6H_{12}O_6$	4) KCl	

CHI	EMICAL BONDING	₩		→ CHEMISTRY		
52.	Anhydrous AlCl ₃ is c	ovalent while AlF ₃ is i	onic. This is justified by	7		
	1) Crystal structure	2) VB theory	3) Fajan's rules	4) Lattice energy		
53.	CCl ₄ is insoluble in w	ater because				
	1) H ₂ O is non-polar		2) CCl ₄ is non-polar			
	3)They do not form in	ter molecular H-bondi	ng			
	4) They do not form in	ntra molecular H-bond	ling			
54.	Which of the following central atom.	ng molecule does not c	bey the octet rule and	also has lone pair on the		
	1) CCl ₄	2) PCl ₃	3) NH ₃	4) SCl ₄		
55.	Which of the followir	ng overlap is the strong	est?			
	1) 2p – 2p	2) 3p - 3p	3) 5p – 5p	4) π (5p-5p)		
56.	The ion that is iso - el	ectronic with CO				
	1) O ₂ +	2) CN-	3) O ₂ -	4) N ₂ ⁺		
57.	Which is a covalent c	,	, 2	, 2		
01.	1) RbF	2) MgCl ₂	3) CaC ₂	4) NH ₃		
58.	Double bonds are pre	, 3 2	, 2	, 3		
00.	1) CO ₂	2) BeCl,	3) HgCl ₂	4) MgO		
59.	Six electrons are mut	,	-7 8-2) · 8 -		
0).	1) F ₂	2) Cl ₂	3) O ₂	4) N ₂		
60.	Octet rule is not follow	, 2	5) 52	-) - 12		
00.	1) SF ₆	2) PF ₅	3) BeCl ₂	4) All the three		
61.	ŭ	. 0	t. In forming the bonds	1) 1 111 1110 1211 00		
01.	1) It gains electrons	2) It loses electrons	3) It shares electrons	4) None of the above		
62.	,	,	•	1) I voice of the above		
02.	1) Only ionic and dat	The type of bonds present in ammonium chloride are 1) Only ionic and dative 2) Only covalent and electrovalent				
	3) Only covalent and		4) Ionic, covalent and			
63.	,	adduct readily because	•	coordinate		
03.	1) A coordinate bond	•	3) An ionic bond	4) A hydrogen bond		
61	•	·	o) in ione bond	1) Tilly diogen bolid		
64.	Dative bond is preser 1) NH ₃	2) CO ₂	3) CO	4) PCl ₅		
6E	. 3	, 2	,	4) 1 Cl ₅		
65.	1) Two dative bonds	bond theory, water mo	2) Two covalent bond	ls and hond angle 90°		
	•	and bond angle 104.5°	,	ls and bond angle 104.5°		
66.	•	_	ne are formed due to the	•		
00.	_	•	3) $2\sigma s - s, 2\sigma s - p$			
	•		,	, 1		
67.	-	-	lent bond character follo			
	1) LiCl < BeCl ₂ > BCl ₃		2) LiCl > BeCl ₂ < BCl ₃			
	3) LiCl < BeCl ₂ < BCl ₃		4) LiCl > BeCl ₂ > BCl ₃	, -		
68.		C .	ordinate covalent bond			
	1) NH ₄ ⁺	2) H ₃ O ⁺	3) CH ⁻ ₃	$4) \left[Ag(CN)_2 \right]^+$		

CHI	EMICAL BONDING	G ≪		* CHEMISTRY		
	1) H ₂ O	2) CO ₂	3) NH ₃	4) CH ₄		
88.	The shape of ClO ₃	is				
	1) Linear	2) Angular	3) Tetrahedral	4) Pyramidal		
89.	Angular molecule	among the following is				
	1) C ₂ H ₂	2) H ₂ O	3) HCN	4) NH ₃		
90.	Octahedral molecu	le among the following	gis			
	1) SO ₃	2) CHCl ₃	3) SF ₆	4) PCl ₅		
91.	Bond angle (H-O-H	H) in H ₂ O is				
	1) 90°	2) 104°30'	3) 107°18'	4) 109°28'		
92.	In PCl ₅ Bond angle	in plane is				
	1) 90°	2) 120°	3) 180°	4) 109°28'		
93.	The orientation of 6	electron pairs and the sl	hape of molecule are dif	ferent in		
	1) BeCl ₂	2) H ₂ O	3) BCl ₃	4) CCl ₄		
94.	Largest bond angle	e is present in				
	1) CH ₄	2) C_2H_6	3) C_2H_4	$4) C_2 H_2$		
95.	A molecule AX ₂ ha	s two lone pairs over A	a. Its shape is			
	1) Tetrahedral	2) Pyramidal	3) Angular	4) Linear		
96.	The geometry of H	3O ⁺ ion is				
	1) Planar	2) Triangular	3) Pyramidal	4) Tetrahedral		
97.	The shape of AB ₃ E	is				
	1) Pyramidal	2) Tetrahedral	3) Angular	4) Linear		
98.	As the s-character of a hybrid orbital increases the bond angle					
	1) Increases	2) Decreases	3) does not change	4) Becomes zero		
99.	In the formation of	SF ₆ molecule, the sulph	nur atom is in			
	1) 1st excited state	2) second excited st	tate 3) third excited state	4) fourth excited state		
100.	Regarding hybridisation the correct statement is					
	1) Orbitals of different atoms hybridize					
	2) The angle between any two hybrid orbitals is not the same3) Hybrid orbitals always form sigma bonds					
	•	ndergo hybridisation a				
101.	Which of the follow	ving is a correct pair?				
	1) BeCl ₂ , linear	2) NH ₃ , linear	3) CO ₂ , tetrahedral	4) BF ₃ , octahedral		
102.	What is the hybrid		ral atom in the conjugate	•		
	1) sp	2) sp3	$3) \operatorname{sp}^2$	4) dsp ²		
103.		llowing is the correct set I shape of the molecule		ılar formula, hybridisation		
	1) CO_2 , sp^2 , bent	2) H_2O , sp^2 , bent	3) BeCl ₂ , sp, linear	4) H ₂ O, sp ³ , linear		

118. Maximum number of electrons that can be present in any molecular orbital is

CHE	EMICAL BONDIN	G ≪		→ CHEMISTRY
	1) 3	2) 6	3) 8	4) 2
119.	While filling electr	ons in $\pi 2px$ and $\pi 2p$	y the electronic config	uration rules that one to be
	 Paulis exclusion Both Paulis and 	-	2) Aufbau principle4) All the above	e
120.	Number of bondin	g electrons in N ₂ molec	cule are	
	1) 4	2) 5	3) 6	4) 10
121.	Bond order is maxi	mum among the follow	ving	
	1) N ₂	2) He ₂	3) H ₂	4) O ₂
122.	The shape of molecation 1) Size of the molecation 3) Shape of the atom		ipon 2) Size of the atoms 4) All the above	sinvolved
123.	Number of anti bo	nding electrons in O_2 m	nolecule are	
	1) 10	2) 6	3) 4	4) 2
124.	Which of the follow 1) CN ⁻ and CN ⁺	ving species have the s 2) O_2^- and CN ⁻	ame bond order 3) NO ⁺ and CN ⁻	4) CN ⁻ and NO ⁻
125.	In which pair, the	stronger bond found in	the first species	
	a) O ₂ ,O ₂ 1) a only	b) N ₂ .N ₂ ⁺ 2) b only	c) NO ⁺ ,NO ⁻ 3) a and c only	4) b and c only
126.	1) bond order three	e and isoelctronic	CN ⁻¹ , CO and NO ⁺ are 2) bond order three are 2) isoelectronic and	e and weak field ligands I weak field ligands
127.	Which of the follow	wing species in not dia	magnetic?	
	1) N ₂	2) F ₂	3) Li ₂	4) O ₂
128.	Bond energy is ma	ximum in		
	1) F ₂	2) N ₂	3) O ₂	4) Br ₂
129.	The bond order	, 2	, 2	, 2
	1) Can have negati	ve value	2) Is any number of	ther than zero
	3) Is any integer		, ,	alue including zero
130.		cular orbital theory as	molecule of H ₂ has two	_
100.	1) σ_{1s}	2) σ* _{2s}	3) σ_{2s}	4) σ* _{1s}
131.	Higher the bond or		5) 5 2s	1) 0 1s
131.	1) Bond dissociation	•	2) Rond longth	
	3) Paramagnetism	menergy	2) Bond length4) Ionic character	
100		. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•	0 1 1
132.		_	has the lowest energy fo	-
	1) σ _{2pz}	2) π _{2py}	3) π* _{2pz}	4) σ* _{2px}
133.	Molecular orbitals 1) Monocentric	are 2) Bicentric	3) Polycentric	4) None

EXERCISE - II

1.	The charge on a catio	on 'M' is +2 and anion 'A	A' is -3 . The compound	formed has the formula
	1) MA ₂	2) $M_3 A_2$	3) M_2A_3	4) M ₂ A
2.	Two elements 'X' and	d 'Y' have the following	configuration	
	$X = 1s^2 2s^2 2p^6 3s^2 3p^6$	$6^6 4s^2$	$Y = 1s^2 2s^2 2p^6 3s^2 3p$	5
	The compound form	ed by the combination o	of 'X' and 'Y' will be	
	1) XY ₂	2) X ₅ Y ₂	3) X ₂ Y ₅	4) XY ₅
3.	Which of the following	ng reaction involves the	liberation of energy?	
	1) $\operatorname{Na}_{(s)} \to \operatorname{Na}_{(g)}^+$		2) $\operatorname{Cl}_{2(g)} \to 2\operatorname{Cl}_{(g)}$	
	3) $Na_{(g)}^+ + Cl_{(g)}^- \rightarrow Na$	$\mathrm{Cl}_{(\mathrm{s})}$	4) $\operatorname{NaCl}_{(s)} \to \operatorname{Na}_{(g)}^+ +$	$-Cl_{(g)}^-$
4.		ngly electropositive and mpound formed would		ngly electronegative both
	1) X+Y-	2) X-Y+	3) X-Y	$4) X \longrightarrow Y$
5.		ure of four elements a,b,		
	1) $1s^2$	2) $1s^2$, $2s^2$, $2p^2$	· -	4) $1s^2$, $2s^2$, $2p^6$.
	1) a	n electrovalent bond is g 2) b	greatest in 3) c	4) d
6.				ell and that of 'B' has six rmed between these two
	1) A_3B_4	2) A_2B_3	3) A_3B_2	4) A ₂ B
7.	If Na ⁺ ion is larger the be least soluble in wa		is larger than Cl ⁻ ion, W	hich of the following will
	1) NaCl	2) Na ₂ S	3) MgCl ₂	4) MgS
8.	In which of the follovalue)	wing solvents should K	CCl be soluble at 25°C	?(D = Dielectric constant
	1) $C_6H_6[D=0]$	2) CH ₃ COCH ₃ [D=2]	3) CCl ₄ [D=0]	4) CH ₃ OH[D=32]
9.	The following has m 1) Na ⁺		3) F-	4) Cl ⁻
10.	The mass of one unit	cell of NaCl is		
	1) 234amu	2) 234gm	3) 58.5amu	4) 58.5gm
11.		ne bond formed between	n 'A' and C predominer	+2 respectively. If 'B' has ntly is
	1) Covalent bond	2) Ionic bond	3) Dative bond	4) Hydrogen bond
12.	Cl ⁻ , then lattice energ	gy associated with the c	-	of Na ⁺ and B ⁻² is equal to
	1) X	2) 2X	3) 4X	4) 8X
13.	The number of unit of 1) 6. 023×10^{23}	tells present in 1 mole of 2) 1. 5×10^{23}	f NaCl crystal are 3) 4	4) 1
14.	The order of relative	case of formation of var	rious ions is	

	T- 0-2 N-3		0-2 31-3 5-	T- N-3 C-2				
	1) $F^- > O^{-2} > N^{-3}$	2) $N^{-3} > O^{-2} > F^{-1}$	3) $O^{-2} > N^{-3} > F^{-}$	4) $F^- > N^{-3} > O^{-2}$				
15.	The incorrect statement regarding the formation of ionic bond							
	1) It involves electrostatic attraction 2) It is a redox process							
	3) It is an exothermic	process	4) It involves the absre	option of energy				
16.	What is the total number of ions present in one unit cell of sodium chloride lattice (2006)							
10	1) 2	2) 6	3) 12	4) 8				
17.	= -	soluble in water while i f Na ₂ SO ₄ is greater thar	-					
			rect explanation of (A)					
			correct explanation of	(A)				
	3) (A) is true but (R) is							
10	4) (A) is false but (R) i		1 .					
18.	1) Neon	bits neither electrovale 2) Sodium	ancy nor covalency is 3) Barium	4) Chlorine				
10	,	•	•	,				
19.	1) Van der Waal's ford	_	e for each other is prima 2) Difference in electro	•				
	3) Hydrogen bonding		4) High ionisation end	· ·				
20.	The compound which	n contains both ionic ar	nd covalent bonds is					
	1) CH ₄	2) C ₂ H ₂	3) KCN	4) KCl				
21.	Which of the following	ng ion has maximum po	olarising power					
	1) Mg^{+2}	2) Al ³⁺	3) Na ⁺	4) Ca ⁺²				
22.	The bond between ch	lorine and bromine in l	BrCl is					
	1) ionic		2) non-polar					
	3) polar with negative	e end on Br	4) polar with negative	e end on Cl				
23.	• •	•	avalency like sulphur.					
	1) Oxygen has two un	=	2) Oxygen can form d					
	3) Oxygen lacks valen		4) Oxygen nas only 2	electrons in valence shell				
24.	The covalency of nitro		0) 0	4) 5				
	1) 0	•	3) 3	4) 5				
25.		are maximum in the fo	•					
	1) HBr	2) LiBr	3) LiCl	4) AgBr				
26.	-	e e	white precipitate with					
	1) C_2H_5Cl	2) CHCl ₃	3) HCl	4) None of the above				
27.	Which of the followin	g is very much volatile	?					
	1) Diamond	2) Sodium chlorde	3) Calcium	4) Dry ice				
28.	Which of the followin	g is truely covalent?						
	1) AgCl	2) KCl	3) BaCl ₂	4) COCl ₂				
29.	Which of the followin	g is covalent?						
	1) H ₂	2) CaO	3) KCl	4) Na ₂ S				
30.	If the electronegativity	y of two atoms are low	then expected bond bet	ween the elements is				

- 1) Ionic Bond
- 2) Covalent Bond
- 3) Dative bond
- 4) Metallic Bond

- 31. Direct overlap leads
 - 1) σ bond bond
- 2) π bond
- 3) Both $\sigma \& \pi$ Bonds 4) Neither σ nor π

- 32. The bonds present in N_2O_5 are
 - 1) Ionic
- 2) Covalent
- 3) Ionic and covalent 4) Covalent and dative
- 33. In which type of bond fomation, can a proton participate?
 - 1) Hydrogen bond
- 2) Electrovalent
- 3) Dative
- 4) Covalent
- The bonds present in $[Cu(NH_3)_4]SO_4$ between copper and ammonia are 34.
 - 1) ionic
- 2) covalent
- 3) co-ordinate
- 4) hydrogen

- 35. The types of bonds present in CuSO₄.5H₂O are
 - 1) electrovalent and covalent
 - 2) electrovalent, covalent, co-ordinate and hydrogen bond
 - 3) covalent and co-ordinate covalent
 - 4) electrovalent
- 36. The bonds present in HCl molecule are
 - 1) Non-polar Covalent 2) Polar Covalent
- 3) Ionic
- 4) dative

- 37. (A): BeF_2 is predominantly a covalent compound.
 - (R): Electronegativity difference between Be and F is too small
 - 1) Both (A) and (R) are true and (R) is the correct explanation of (A)
 - 2) Both (A) and (R) are true and (R) is not the correct explanation of (A)
 - 3) (A) is true but (R) is false
 - 4) (A) is false but (R) is true
- 38. (A): SiF₄ has octet configuration, but acts as an electron pair acceptor
 - (R): Central atom of Si has vacant d-orbitals is its valence shell
 - 1) Both (A) and (R) are true and (R) is the correct explanation of (A)
 - 2) Both (A) and (R) are true and (R) is not the correct explanation of (A)
 - 3) (A) is true but (R) is false
- 4) (A) is false but (R) is true
- 39. Increasing order of size of hybrid orbitals is
 - 1) sp, sp 2 , sp 3
- 2) sp^3 , sp^2 , sp
- 3) sp^2 , sp^3 , sp
- 4) sp^2 , sp, sp^3
- The type of hybridisation present on "S" in SO₂ and SO₃ molecules respectively 40.
 - 1) sp, sp^2
- 2) sp^2 , sp^2
- 3) sp, sp³
- 4) sp^2 , sp^3
- The hybridisation of Ag in the complex $[Ag(NH_3)_2]^+$ is 41.
 - 1) sp
- 2) sp²
- 4) dsp^2
- Atomic number of the centrtal atom in MCl_2 is 50. The shape of gaseous MCl_2 is given as Cl 42.

43.	An element M react M	s with chlorine to from a	compound X. The	bond angle in X is 120^0 . What is
	1) Be	2) B	3) Mg	4) N
44.	When the hybridisa angle between the h		om changes from s	p^3 to sp^2 and finally to sp , the
	1) Decreases gradua	ally	2) Decreased cor	•
	3) No change		4) Increases prog	gressively
45.	Hybridisation of on	ie 's' and one 'p' orbitals	we get	
	• •	rpendicular orbitals	2) Two orbitals a	
	3) Four orbitals dire	cted tetrahedrally	4) Three orbitals	in plane
46.	Which orbital is used	d by oxygen atom to forr	ma σ bond with oth	er oxygen atom in O_2 molecule?
	1) pure p-orbital	2) sp-hybrid orbital	3) sp ² -hybrid orl	oital 4) sp ³ -hybrid orbital
47.	The hybrid state of	carbon in acetylene is tl	ne same as that of ca	arbon in
	1) Benzene	2) Carbondioxide	3) Graphite	4) Ethylene
48.	Regarding hybridis	ation which is incoreec	t?	
	0 = 1 0 0			O_2 involves sp hybridisation $_2$ H $_2$ involves sp 2 hybridisation
49.	sp ² hybrid orbitals	are not present in		
	1) SO ₂	2) BF ₃	3) B_2H_6	4) SO ₃
50.	Which hybridisatio	n is found in HClO ₄ and	d HClO ₃	
	$1) \mathrm{sp}^3$	2) sp^2	3) sp	$4) dsp^2$
51.	The ratio of pure or	bitals to hybridized orb	itals in ethylene is	
	1) 2:3	2) 3:1	3) 1:1	4) 1:3
52.	The ratio of hybrid	and unhybrid orbitals i	nvolved in the bond	ling of a benzene molecule is
	1) 3:2	2) 1:1	3) 3:1	4) 1:3
53.	The pair having sim	nilar geometry is		
	1) BF ₃ , NH ₃	2) H_2O , C_2H_2	3) CO ₂ , SO ₂	4) NH ₃ , PH ₃
54.	The correct increasi	ng order of bond angle	is	
	1) CO ₂ , SO ₂ , BF ₃ , CH	I_4 2) $CH_{4'}SO_{2'}BF_{3'}CO_{2'}$	3) BF ₃ , CH ₄ , CO ₂	$_{2}$ SO ₂ 4)CO ₂ ,CH ₄ ,BF ₃ ,SO ₂
55.	The molecule with	maximum number of lo	ne pairs on central a	atom is
	1) XeO ₃	2) SF ₄	3) PCl ₃	4) lCl ₃
56.	The type of overlap	ing not observed in the	formation of ethyler	ne molecule is
	$1) \sigma sp^2 - sp^2$	$2) \sigma sp^2 - p$	3) $\sigma sp^2 - s$	4) $p^{\pi} - p^{\pi}$
57.	The hybrid orbitals is	have a bond angle of 109	$0^{0}28^{\dagger}$. The ratio of pe	ercentage of 's' and 'p' characters
	1) 1:1	2) 1:2	3) 1:3	4) 2:3
58.	LIST - 1		LIST - 2	
	A) NH ₄ +		1) sp³ hybridisati	on, two lone pairs
	B) H ₃ O ⁺		2) sp ² hybridisati	ion, one lone pair
	C) XeO ₃		3) sp ³ hybridisat	tion, no lone pairs

 $D)SO_3$

- 4) sp³ hybridisation, one lone pair
- 5) sp² hybridisation, no lone pairs

The correct match is

	A	В	C	D		A	В	C	D
1)	1	2	4	5	2)	2	2	3	5
3)	3	4	4	5	4)	4	4	3	5

- 59. LIST-1
 - A) CH₄
 - B) C_2H_4
 - $C) C_2 H_6$
 - $D)C_2H_2$

- LIST-2
- 1) sp²-sp² overlap, sp²-s overlap
- 2) sp-sp overlap, sp-s overlap
- 3) sp³-s overlap only
- 4) sp³-sp³ overlap, sp³-sp² overlap
- 5) sp³-sp³ overlap, sp³-s overlap

The correct match is

	A	В	C	D		A	В	C	D
1)	5	2	1	3	2)	3	5	1	2
3)	3	4	1	2	4)	3	1	5	2

- 60. Which of the following statements is not correct from the viewpoint of molecular orbital?
 - 1) Be₂ is not a stable molecule
 - 2) He, is not stable but He⁺ is expected to exist
 - 3) Bond strength of N₂ is maximum amongest the homonuclear diatomic molecules
 - 4) The order of energies of molecular orbitals in F₂ molecule is

$$E(\sigma 2s) < E(\sigma^* 2s) < E(\pi 2p_x)$$

$$= E(\pi 2p_v) < E(\sigma 2p_z) < E(\pi^* 2p_x)$$

$$= E(\pi^* 2p_y) < E(\sigma^* 2p_z)$$

- Which of the following orders regarding the bond order is correct? 61.
 - 1) $O_2^- > O_2 > O_2^+$ 2) $O_2^- < O_2 < O_2^+$ 3) $O_2^- > O_2 < O_2^+$
- 4) $O_2^- < O_2 > O_2^+$
- Which of the following orders regarding the bond length is correct? 62.

- 1) $O_2^- > O_2 > O_2^+$ 2) $O_2^- < O_2 < O_2^+$ 3) $O_2^- > O_2 < O_2^+$ 4) $O_2^- < O_2 > O_2^+$
- The molecular electronic configuration of B₂ is 63.
 - 1) $KK(\sigma 2s)^2(\sigma^* 2s)^2(\pi 2p)_x^1(\pi 2p)_y^1$
 - 2) KK $(\sigma 2s)^2 (\sigma^* 2s)^2 (\pi 2p)_x^2$
 - 3) $KK(\sigma 2s)^2(\sigma^* 2s)^2(\pi 2p)^2$
- 4) $KK(\sigma 2s)^2(\sigma^* 2s)^2(\sigma 2p)^1(\pi 2p)^1$
- When N_2 goes to N_2^+ , the N-N bond distance and when O_2 goes to O_2^+ , the O-O bond 64. distance:
 - 1) increases, decreases

2) decreases, increases

3) increases, increases

4) decreases, decreases

65.		of a molecular orbital for tal A and B is represente		eve functions of $\Psi_{_{ m A}}$ and
	1) $\Psi_A + \Psi_B$	2) Ψ_A - Ψ_B	3) $\Psi_A \pm \Psi_B$	4) $2\Psi_A + \Psi_B$
66.	1) Equal to the way 2) Less than the wa	the wave function of a bove function of atomic orbitive function of atomic orbitive function of atomic orbitivave function of atomic orbition.	ital bital	al formed by LCAO is
	,	e function of atomic orbit		
67.	The molecular orb	ital electronic configurati	ion is $(\sigma_{1e})^2$, $(\sigma^*_{1e})^1$. It	corresponds to
	1) He ₂	2) He ₂ ⁺	3) H ₂ -	4) Both 2 & 3
68.	A bonding molecu	lar orbital is produced by	7	
		rference of wave function ons with opposite spins	•	erence of wave functions e and -ve wave functions
69.		π^*_{2py} molecular orbital al planes 2) Energy	in which of the followin 3) Symmetry	ng 4) Shape
70.	The bond order of 1) one	individual carbon bonds 2) two 3) Betweer		e and two alternately
71.		a homo diatomic neutral nding molecular orbital fo 2) N		orbitals combine, then the $4)~\mathrm{N}~/4$
72.	1) around one aton	g molecular orbital, elect n of the molecule from nuclei of the molecu	2) between 2 nuclei	n
73.	The correct order of	of the energy of molecular	r orbitals in a molecules	having 4 electrons.
	1) $\sigma^*_{2s} > \sigma_{2pz} > \tau$	α_{2px} 2) $\sigma_{2s}^* < \pi_{2p}^* < \sigma_{2pz}^*$	3) $\sigma^*_{2s} < \sigma_{2pz} = \pi_{2pz}$	$_{x}$ 4) $\sigma_{2pz} < \sigma^{*}_{2s} < \pi_{2px}$
74.	Maximum number 1) 1	of hydrogen bonds that 2) 2	one water molecule is c 3) 3	1
75.	Which of the follow 1) HCl	ving compounds has Hy 2) C_2H_6	drogen bonding? 3) RCH ₂ NHCH ₃	4) RCH ₂ CHO
76.	Acetic acid exists	as a dimer in benzene du	e to	
	1) Condensation re		2) Hydrogen bonding	~
	3) presence of pher	, , ,	4) presence of hydrog	gen atom at α -carbon
77.	 Two hydrogen a H-atom and elect 	ronegative atom with smal	lsize	nd electropositive atom
70	·	tronegative atom with larg		
78.	1) Water < Alcohol 3) Alcohol < Water		2) Ether < Alcohol < 4) Ether < Water < A	

CHEN 79.	MICAL BONDING Which of the following	ig hydrogen bond is rel	ativoly woaker?	
7).	1) NH-N	2) FH-F	3) NH-O	4) OH-O
80.	Boiling point is highe	,	-,	,
	1) HF	2) H ₂ O	3) NH ₃	4) CH₄
81.	Which of the following	ng is soluble in water	, 3	, 1
	$1) C_2H_5OC_2H_5$	2) C ₂ H ₅ OH	3) C ₂ H ₅ Cl	4) C_6H_6
82.	Among the three ison	ners of nitro phenol, w	hich is least soluble in v	vater
	1) ortho isomer	2) para isomer	3) meta isomer	4) all are insoluble
83.	Strongest hydrogen b	onds can be formed by		
	1) HF	2) H ₂ O	3) NH ₃	4) HCl
84.	Hydrogen bonds are	present even in vapour	state of	
	1) H ₂ O		2) HF	
	3) p-hydroxy benzald	ehyde	4) C ₂ H ₅ OH	
85.	(A): Water is a liquid	whereas sulphurdi-ox	ide is a gas at room tem	np
	(R): Molecular mass	of SO ₂ is more than tha	t of H ₂ O	
		-	rrect explanation of (A)	
	2) Both (A) and (R) ar	e true and (R) is not the	e correct explanation of	f (A)
	3) (A) is true but (R) i	s false		
	4) (A) is false but (R)	is true		
86.	(A): O-Hydroxy benz	zaldehyde is steam vol	atile but not P–hydroxy	benzaldehyde
	(R) : Intramolecular	r hydrogen bond is ₁	present in orthohydr	oxy benzaldehyde but
	intermolecular hydro	gen bond in parahydro	oxy benzaldehyde	•
	1) Both (A) and (R) ar	e true and (R) is the co	rrect explanation of (A)	
	2) Both (A) and (R) ar	e true and (R) is not the	e correct explanation of	f (A)
	3) (A) is true but (R) i	s false		
	4) (A) is false but (R)	is true		
87.	Between any two of th	he following molecules	, hydrogen bonding is 1	not possible
	1) Two primary amin		2) Two secondary am	
	3) Two tertiary amine	molecules	4) Two ammonia mol	ecules
88.	For which of the follo	wing sets, all the comp	ounds are ionic	
	1) NaF, BF ₃ , MgF ₂ 2)	NaBr, MgBr ₂ , MgO	3) Al ₂ O ₃ , MgO, SO ₃ 4) NCl ₃ , BeCl ₂ , AlCl ₃
89.	o o		e crystal lattice structure	
	•		· ·	occupied by sodium ions
	,	radii of Na ⁺ and Cl ⁻ ion	ns 1s 0.93 ⁺ , face centered ion in it	ic C1-
	The correct combinat		, face centered for in it	is Ci.
	1) only iii is correct	2) only ii is wrong	3) only i is wrong	4) all are wrong
90.	•	ng pairs will form the m	, ,	
	1) Na and F	2) Fe and Cl	3) N and O	4) Li and I

91.	The following are some statements about the characteristics of covalent compounds							
	i) The combination of a metal and non-metal must give a covalent compound.							
	ii) All covalent subst	ii) All covalent substances are bad conductors of electricity.						
	iii) All covalent substances are gases at room temperature.							
	The correct combination is							
	1) all are correct		2) only i and ii are co	orrect				
	3) only ii and iii are	correct	4) all are wrong					
92.	Coordination numb	er of cation is minimu	m in					
	1) NaCl	2) CsCl	3) ZnO	4) KCl				
93.	Some statements about valence bond theory are given below							
	i)The strength of bor	nd depends upon exter	nt of overlapping.					
	ii) The theory explains the directional nature of covalent bond.							
	iii) According to this theory oxygen molecule is paramagnetic in nature.							
	1) all are correct		2) only i and iii are o	correct				
	3) only i and ii are co	orrect	4) all are wrong					
94.	The following are s compound	ome statements abou	t the type of chemical	bond present in a given				
	i) All complex compounds contain ionic, covalent and dative bonds.							
	ii)The compound having monoatomic cation and monoatomic anion contains ionic bond.							
	iii) The compound having dative bond must possess covalent bond also.							
	The correct combina	_	-					
	1) all are correct		2) only i and ii are co	orrect				
	3) only ii and iii are	correct	4) only i and iii are o	correct				
95.	Consider the follow	ing statements. The co	mmon features of the m	olecules BF ₃ , SF ₆ and NO				
	i) all contain odd ele	ctron bond	ii) all are gases at room temperature					
	iii) all contain unpai	red electrons	iv) all do not confirm	n to the octet rule				
	1) i and ii	2) iii and iv	3) i and iii	4) ii and iv				
96.	Which of the follow	ing contains unshared	electrons.					
	1) NO ₂	2) CO ₂	3) NO ₂ -	4) CN-				
97.	The formal charges	on the three oxygen ato	oms in O ₃ molecule are					
	1) 0, 0, 0	2) 0, 0, –1	3) 0, 0 + 1	4) 0, +1, -1				
98.	Which of the follow	ng when dissolved in	water forms a solution	which is non-conducting				
	1) Chile salt petre	2) Green vitrol	3) Potash alum	4) Alcohol				
99.	i)The formation of a	cation from a neutral a	atom is favoured by sma	all size of the atom				
	ii) π -bond does not	exist between two ator	ns without σ -bond					
	,			in potential energy.				
	•	iii) The formation of chemical bond is associated with an increase in potential energy. The correct combination of the above statements is						

	1) only i and ii are	correct	2) only ii is correct				
	3) only ii and iii ar	e correct	4) only i and iii are	correct			
100.	How many unit ce masses : Na = 23, G	•	e-shped ideal crystal of	NaCl of mass 1g? (atomic			
	1) 1.7×10^{21} unit co	ells	2) 2.57 × 10 ²¹ unit	cells			
	3) 5.14×10^{21} unit	cells	4) 1.28×10^{21} unit	cells			
101.	In the electronic st	ructure of acetic acid the	ere are				
	1) 16 shared and 8	unshared valence electro	ons				
	2) 8 shared and 16	unshared valence electro	ons				
	3) 12 shared and 12	2 unshared valence elect	rons				
	4) 18 shared and 6	unshared valence electro	ons				
102.	Octet rule is mostly	y violated in the compo	ands formed by				
	1) Alkali metals		2) Alkaline earth m	netals			
	3) p-block element	:s	4) Transition eleme	ents			
103.	The following are	following are some statements about hybridisation					
	i) Pure orbitals of same atom of an element will participate.						
	ii) The number of h in hybridisation.	nybrid orbitals formed is	s twice the number of p	ure orbitals that participate			
	iii) Completely fille	ed (or) half-filled (or) va	ncant orbitals may part	icipate in this process.			
	The correct combin	nation is					
	1) all are correct		2) only i and ii are	correct			
	3) only iii is correct	t	4) only i and iii are	correct			
104.	The nodal plane in	the π -bond of ethene	is located in				
	1) The molecular p	olane					
	2) A plane parallel to the molecular plane						
	3) A plane perpend at right angle.	licular to the molecular	plane which bisects the	carbon-carbon sigma bond			
	4) A plane perpend	dicular to the molecular	plane which contains	the carbon-carbon σ -bond.			
105.	A square planar co	mplex is formed by hybi	ridisation of which of th	e following atomic orbitals?			
	$1)s,p_{x'}p_{y'}d_{yz}$	2) $s, p_x, p_y, d_{x^2-y^2}$	3) s, p_x, p_y, d_{z^2}	$4) s, p_y, p_z, d_{xy}$			
106.	Which of the follow	wing statements are inco	orrect for PCl ₅				
	1) Its all P-Cl bond	d lengths are equal	2) It involves sp ³ d	hybridisation			
	3) It has irregular g	geometry	4) Its shape is trigo	onal bipyramid			
107.	Using MO theory 1	predict which of the foll	owing species has the	shortest bond length?			
	1) O ₂ ²⁻	2) O ₂ ²⁺	3) O ₂ ⁺	4) O ₂ ⁻			
108.	Some statements a	re given below with res	pect to				

OH
$$NO_2$$
 NO_2
 NO_2

- i) 'A' contains intermolecular hydrogen bond and 'B' contains intramolecular hydrogen bond
- ii) Boiling point of 'A' is higher than that of 'B'.
- iii) 'A' is more volatile than 'B'.

The correct combination is

- 1) all are correct statements 2) only iii is correct statement
- 3) only i is correct statement 4) Both i and iii are correct statements
- 109. From the following given statements
 - i) O -----H hydrogen bond length is more than covalent "O-H" bond length.
 - ii) The ionic bond strength of CsF is more than that of NaF.
 - iii) The number of electrons present in all inner shells of sodium atom is 10.

The correct combination is

only i is correct
 only i and ii are correct
 only i and iii are correct
 only i and iii are correct

WORK SHEET - III

Comprehension - I

Ionic bond is defined as the electrostatic force of attraction holding the oppositely charged ions. Ionic compounds are mostly crystalline solids having high melting and boiling points, electrical conductivity in molten state, solubility in water etc. Covalent bond is defined as the force which binds atoms of same or different elements by mutual sharing of electrons in a covalent bond. Covalent compounds are solids, liquids or gases. They are low melting and boiling point compounds. They are more soluble in non polar solvents.

- 1. The valence electrons not involved in formation of covalent bonds are called.
 - 1) non bonding electrons

2) lone pairs

3) unshared pairs

- 4) none of these
- 2. The amount of energy released when one mole of ionic solid is formed by close packing of gaseous ions is called.
 - 1) Ionisation energy 2) Solvation energy
- 3) Lattic energy
- 4) Hydration energy

- 3. Examples of covalent compounds are
 - 1) Urea
- 2) Sugar
- 3) Sodium chloride
- 4) Calcium fluoride

WORK SHEET - IV

Comprehension - I

- 1. Total number of electron pairs = $\frac{1}{2}$ (number of valence electrons \pm electrons (for ionic charge)
- 2. Number of bond electron pairs = number of atoms 1
- 3. Number of electron pairs around central atom = total number of electron pairs 3 [number atoms (except H)]
- 4. Number lone pair = (number of central electron pairs number bond pairs)
- 1. Pair of species with same shape and same state of hybridisation of the central atom is:
 - 1) PCl₅, ICl -₄
- 2) NH₂, H₂O
- 3) NH_3 , ClO_3^-
- 4) ICl₄, ClO₃

- 2. Square planar shape is predicted for:
 - 1) ICl_4^- , ClO_3^-
- 2) PCl_{4}^{+} , PCl_{6}^{-}
- 3) ICl₄⁻, PCl₄⁺
- 4) ICl_4^- , XeF_4
- 3. Based on above method, structure of the some of the molecules have been matched. Which is the incorrect matching?
 - 1) PCl₅ trigonal bipyramidal
- 2) ClO₃ square planar

3) ICl_{4}^{-} - square planar

4) PCl₄ - tetrahedral

4. Column-I

Column-II

1) I_3^-

p) Linear

2) NH₄

q) T-shape

3) ClF₃

r) Sea-saw

4) SF₄

- s) Tetrahedral
- EXERCISE I / ANSWERS

WORK SHEET - I

1) 1	2) 3	3) 3	4) 3	5) 3	6) 3	7) 3	8) 3	9) 3	10) 4
11) 4	12) 4	13) 2	14) 2	15) 3	16) 2	17) 4	18) 1	19) 3	20) 1
21) 3	22) 3	23) 4	24) 3	25) 2	26) 1	27) 4	28) 4	29) 2	30) 3
31) 4	32) 1	33) 2	34) 3	35) 3	36) 1	37) 4	38) 2	39) 1	40) 1
41) 3	42) 2	43) 4	44) 1	45) 2	46) 1	47) 1	48) 3	49) 4	50) 3
51) 4	52) 3	53) 2	54) 4	55) 1	56) 2	57) 4	58) 1	59) 4	60) 4
61) 3	62) 4	63) 1	64) 3	65) 2	66) 1	67) 3	68) 3	69) 2	70) 1
71) 2	72) 2	73) 1	74) 3	75) 3	76) 3	77) 1	78) 1	79) 2	80) 3
81) 4	82) 1	83) 3	84) 2	85) 3	86) 1	87) 1	88) 4	89) 2	90) 3
91) 2	92) 2	93) 2	94) 4	95) 3	96) 3	97) 1	98) 1	99) 2	100) 3
101) 1	102) 2	103) 3	104) 1	105) 1	106) 2	107) 4	108) 2	109) 3	110) 1

```
111) 2 112) 3 113) 1 114) 1 115) 3 116) 2 117) 3 118) 4 119) 3 120) 4
```

131) 1 132) 1 133) 3

WORK SHEET - II

WORK SHEET - III

1) 13 4) 3 3) 12

WORK SHEET-IV

1) 3 2) 4 3) 2 4) 1-P; 2-S; 3-Q; 4-R

EXERCISE - I

- Thermodynamic terms 1. Which of the following come under the view of thermodynamics? 1) Predicting the feasibility of chemical change 2) Predicting the extent of completion of the chemical change 3) Rate at which chemical change occurs at particular set of conditions 4) Effect of temperature on the rate of reaction 2. An isolated system is that in which: 1) There is no exchange of energy with the surroundings 2) There is exchange of mass and energy with the surroundings 3) There is no exchange of mass and energy with the surroundings 4) There is exchange of mass with the sounroundings 3. A well stoppered thermos flask contains some ice cubes. This is an example of 1) Closed system 2) Open system 3) Isolated system 4) Non-thermodynamic system 4. A system which can exchange energy with the surroundings but no matter is called 1) A heterogeneous system 2) An open system 3) A closed system 4) An isolated system An intensive property of thermodynamics means a property which depends 5. 1) On the amount of the substance only 2) On the nature of the substance only 3) Both on the amount as well as nature of the substance 4) Neither on the amount nor on the nature 6. The intensive property among these quantities is 2) Density 3) Enthalpy 1) Mass 4) Volume 7. Which is an extensive property of the system? 1) Volume 2) Viscosity 3) Temperature 4) Refractive index 8. In which of the following sets, all the properties belong to same category (all extensive or all intensive) 1) Mass, volume, specific heat 2) Temperature, Pressure, Volume 3) Heat capacity, density, entropy 4) Enthalpy, Internal energy, volume 9. Which of the following statements is corect? 1) Only internal energy is a state function but not work 2) Only work is a state function but not internal energy 3) Both internal energy and work are state functions 4) Neither internal energy nor work is a state function 10. Which of the following statement is false? 1) Work is a state function 2) Temperature is a state function 3) Change of state is completely defined when initial and final states are specified 4) Work appears at the boundary of the system
- A process in which no heat change takes place is called 11.
 - 1) An isothermal process

- 2) An adiabatic process
- 3) An isobaric process 4) An isochoric process
- A gaseous system changes from state $A(P_1, V_1, T_1)$ to $B(P_2, V_2, T_2)$, B to $C(P_3, V_3, T_3)$ and finally 12.

from C to A. The whole process may be called

1) Reversible process

2) Cyclic process

3) Isobaric process

4) Spontaneous process

E, H, heat changes, first law

- 13. On which of the following factors the internal energy depends
 - 1) Mass of the system

2) Temperature of the system

3) Nature of the system

- 4) All the above
- 14. For a substance more internal energy is observed in [same quantity]
 - 1) Solid state
- 2) Liquid state
- 3) Gaseous state
- 4) All have same
- 15. The total heat content of a system at constant pressure is
 - 1) Enthalpy
- 2) Interanl energy
- 3) Entropy
- 4) Free energy

- 16. Enthalpy "H" can be given as
 - 1) H = E PV
- 2) H = E + PV
- 3) H = E + P + V
- 4) H = E TS

- 17. The enthalpy is maximum for
 - 1) 10 gms of water
- 2) 10 gms of ice
- 3) 10 gms of steam
- 4) Same for all

- 18. The expression $[\Delta E/\Delta T]_v$ represent
 - 1) Heat capacity at constant volume
- 2) Heat capacity at constant pressure

3) Enthalpy change

- 4) Eantropy change
- 19. The heat of reaction at constant volume and temperature is represented by
 - 1) DE
- 2) DH
- 3) DP
- 4) DV
- 20. Which of the following relationship is correct for a reaction involving both reactants and products are in either solid or liquid state?
 - 1) $\Delta H > \Delta E$
- 2) $\Delta H = \Delta E$
- 3) $\Delta H < \Delta E$
- 4) $\Delta H \Delta E = \infty$
- 21. The difference between Δ H and Δ E for the reaction

 $BaCl_2(aq)+K_2SO_4(aq) \rightarrow BaSO_4(s) \downarrow + 2KCl(aq)$

- 1) RT
- 2) 2RT
- 3) (1/2)RT
- 4) Zero

- 22. For which one of the following system DE<DH
 - 1) $2SO_{2(g)} + O_{2(g)} \rightarrow 2SO_{3(g)}$
- 2) $N_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$
- 3) $2NH_{3(g)} \rightarrow N_{2(g)} + 3H_{2(g)}$
- 4) $H_{2(g)} + I_{2(g)} \rightarrow 2HI_{(g)}$
- 23. When a reaction is conducted in an open vessel, the heat of reaction is represented as
 - 1) ∆ H
- 2) ΔE
- 3) P Δ V
- 4) Δ nRT
- 24. Which of the following holds good to the laws of thermodynamics for the reaction $C_2H_4(g)+3O_2(g) \rightarrow 2CO_2(g)+2H_2O(l)$
 - 1) $\Delta H = \Delta E + RT$
- 2) $\Delta H = \Delta E RT$
- 3) $\Delta H = \Delta E + 2RT$
- 4) $\Delta H = \Delta E 2RT$
- 25. For which of the following reaction $\Delta H = \Delta E + 2RT$
 - 1) $2SO_{2(g)} + O_{2(g)} \rightarrow 2SO_{3(g)}$
- 2) $NH_4HS_{(s)} \rightarrow NH_{3(g)} + H_2S_{(g)}$
- 3) $N_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$
- 4) $PCl_{5(g)} \to PCl_{3(g)} + Cl_{2(g)}$
- 26. For $N_2+3H_2 \rightarrow 2NH_3$, enthalpy and internal energy changes respectively are, $\Delta H \& \Delta U$

CHEMISTRY

▶ THERMODYNAMICS

- 1) $\Delta H = O$
- 2) ΔH ΛU
- 3) $\Delta H < \Delta U$
- 27. According to IUPAC conventions, which one of the following is not correct?
 - 1) The heat absorbed by a system is taken as positive
 - 2) If a system is accompained by decrease in energy, ΔE is negative
 - 3) The work done by the system is taken as negative
 - 4) All the above three statements are correct
- 28. During expansion of a gas into vaccum ($P_{ext} = 0$), Work done is zero if the process is
 - 1) Reversible
- 2) Irreversible
- 3) Isothermal

- 1) A, B & C are true
- 2) A, B & C are false 3) A & C are true
- 4) B & C are false

- 29. Mathematical from of 1st law
 - 1) $C_{y} = aT^3$
- 2) $\Delta S_{total} = \Delta S_{sys} + \Delta S_{sur}$
- 3) $q = \Delta U + \Delta W$ 4) $\Delta S_{sys} = \frac{qrev}{T}$
- A system absorbs 'xJ' heat and does "yJ" work. Its Δ E is +Ve when 30.
 - 1) y > x
- 2) x > y
- 3) y = 2x
- 4) x = y

- In an adiabatic expansion of ideal gas: 31.
 - 1) $W = -\Delta E$
- 2) $W = \Delta E$
- 3) $\Delta E = 0$
- 4) W = 0
- 32. During isothermal expansion of an ideal gas, its internal energy
 - 1) Decreases

- 2) Increases
- 3) May increase or decrease
- 4) Remains unchanged
- 33. For the gaseous reaction involving the complete combustion of isobutane
 - 1) $\Delta H = \Delta E$
- 2) $\Delta H > \Delta E$
- 3) $\Delta H = \Delta E = 0$
- 4) $\Delta H < \Delta E$

Exothermic and endothermic reactions

- 34. Which are of the following is an exothemic reaction?
 - 1) $N_{2(g)} + O_{2(g)} + 180.8 \text{ k.J} \rightarrow 2 \text{ NO}_{(g)}$
- 2) $N_{2(g)} + 3H_{2(g)} 92 \text{ k.J} \rightarrow 2 \text{ NH}_{3(g)}$
- 3) $C_{\text{(graphite)}} + H_2O_{\text{(g)}} \rightarrow CO_{\text{(g)}} + H_{2(g)} 131.3 \,\text{kJ}$ 4) $C_{\text{(graphite)}} + 2S_{\text{(s)}} \rightarrow CS_{2(1)} 91.9 \,\text{k.J}$
- 35. Which of the following is an endothemic reaction?
 - 1) $N_{2(g)} + 3H_{2(g)} 92KJ \rightarrow 2NH_{3(g)}$
- 2) $N_{2(g)} + O_{2(g)} + 180.8 \text{KJ} \rightarrow 2 \text{NO}_{(g)}$
- 3) $H_{2(g)} + Cl_{2(g)} \rightarrow 2HCl_{(g)}; \Delta H = -184.6 \text{ kJ}$
- 4) $C_{\text{(graphite)}} + 2H_{2(s)} \rightarrow CH_{4(g)} + 74.8 \text{ k.J}$
- 36. Which of the following is an exothermic reaction?
 - 1) $H_2(g)+Cl_2(g) \rightarrow 2HCl(g); \Lambda H = -184.6KJ$ 2) $N_2(g)+O_2(g) \rightarrow 2NO(g); \Lambda H = +180.8KJ$
 - 3) C (graphite) + $H_2O(g) \rightarrow CO_2 + H_2(g)-131.4KJ$
 - 4) C(graphite) +2S(g)+91.9KJ \rightarrow CS₂₍₁₎
- 37. Which of the following reaction do you think will result in the absorption of heat?
 - 1) Carbon burning in air
 - 2) Iron reacting with sulphur to from iron sulphide

CHEMISTRY ←

→ THERMODYNAMICS

- 3) Formation of water gas from steam and coke
- 4) Formation of producer gas
- 38. The formation of water from $H_{2(g)}$ and $O_{2(g)}$ is an exothermic reaction because
 - 1) $H_{2(g)}$ and $O_{2\,(g)}$ have a higher chemical energy that water
 - 2) $H_{2(g)}$ and $O_{2(g)}$ have a lower chemical energy that water
 - 3) $H_{2(g)}$ and $O_{2(g)}$ have a higher temperature than water
 - 4) Energy considerations do not arise
- 39. When a solid melts there is
 - 1) An increase in enthalpy
- 2) A decrease in enthalpy

3) No change in enthalpy

4) A decrease in internal energy

Heat of formation

- 40. The enthalpies of elements under the following conditions are assumed to be
 - 1) Zero at 298K and 1 atm

2) Unity at 298K and 1 atm

3) Zero at 273K and 1 atm

- 4) Unity at 273K and 1 atm
- 41. For which of the following elements, the standard enthalpy is not zero?
 - 1) C (Diamond)
- 2) C (Graphite)
- 3) Liquid mercury
- 4) Rhombic sulphur
- 42. The enthalpy of elements in their standard states are taken as zero. Hence the enthalpy of formation of a compound is
 - 1) always negative
- 2) always positive
- 3) positive (or) negative 4) equal to zero
- 43. In which of the following reactions, heat liberated is known as standard heat of formation of CO₂
 - 1) $2CO_{(g)} + O_{2(g)} \rightarrow 2CO_{2(g)} + 135.6$ kcals
 - 2) $C_{(diamond)} + O_{2(g)} \rightarrow 2CO_{2(g)} + 94.5 \text{ kcals}$
 - 3) $C_{\text{(graphite)}} + O_{2(g)} \rightarrow CO_{2(g)} + 94.05 \text{ kcals}$
 - 4) $CH_{4(g)} + 2O_{2(g)} \rightarrow 2CO_{2(g)} + 2H_2O_{(l)} + 2128 \text{ kcals}$
- 44. Identify the reaction in which the heat liberated corresponds to the heat of formation (ΔH)
 - 1) $C(diamon4) + O_2(g) \rightarrow CO_2(g) + heat$
- 2) $2H_2(g) + O_2(g) \rightarrow 2H_2O(g) + heat$
- 3) C(diamon4) + $2H_2(g) \rightarrow CH_4(g)$ + heat
- 4) $S(rhombi3) + O_2(g) \rightarrow SO_2(g) + heat$
- 45. The heat change for the following reaction $C_{(s)} + 2S_{(s)} \rightarrow CS_{2(1)}$ is known as
 - 1) Heat of formation of CS₂
- 2) Heat of fusion of CS₂
- 3) Heat of vapourisation of CS₂
- 4) Heat of transition of Carbon
- 46. Which of the following reactions represents ΔH_f^0 ?
 - 1) $C(diamon4) + O_2(g) \rightarrow CO_2(g)$
- 2) $\frac{1}{2}H_{2(g)} + \frac{1}{2}F_2(g) \rightarrow HF(g)$
- $3) \, \mathrm{N_2(g)} + 3\mathrm{H_2(g)} \longrightarrow 2\mathrm{NH_3(g)}$
- 4) $CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$
- 47. Which of the following equation represents standard heat of formation of ethanol?

- 1) $CH_3CHO_{(1)} + \frac{1}{2}H_{2(g)} \xrightarrow{Ni} C_2H_5OH_{(1)}$ 2) $2C_{graphite} + 3H_{2_{(g)}} + \frac{1}{2}O_{2_{(g)}} \rightarrow C_2H_5OH_{(g)}$
- 3) $2C_{\text{diamond}} + 3H_{2_{(g)}} + \frac{1}{2}O_{2_{(g)}} \rightarrow C_2H_5OH_{(g)}$
- 4) $2C_{\text{graphite}} + 3H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow C_2H_5OH_{(1)}$
- The reaction which shows standard heat of formation of water correctly is 48.
 - 1) $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(1); \Delta H = -68.3 \text{ kcal}$
 - 2) $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(s); \Delta H = -68.3 \text{ kcal}$
 - 3) $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g); \Delta H = -68.3 \text{ kcal}$
 - 4) $2H_2(g) + \frac{1}{2}O_2(g) \rightarrow 2H_2O(1); \Delta H = -136.6 \text{ kcal}$
- The enthalpy of the reaction $H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(g)}$ is DH_1 and that of $H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow$ 49. $H_2O_{(1)}$ is DH₂. Then

 - 1) $\Delta H_1 < \Delta H_2$ 2) $\Delta H_1 + \Delta H_2 = 0$ 3) $\Delta H_1 > \Delta H_2$ 4) $\Delta H_1 = \Delta H_2$

Heat of combustion

- The chemical process involved in the combustion reaction is 50.
 - 1) Oxidation

2) Reduction

3) Redox reaction

- 4) Disproportionation reaction
- 51. The following is not a combustion reaction
 - 1) CO + $\frac{1}{2}$ O₂ \rightarrow CO₂

2) CO + O₂ \rightarrow CO₂

3) C + $\frac{1}{2}$ O₂ \rightarrow CO

- 4) $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O_1$
- $C_{graphite} + O_{2(g)} \rightarrow CO_{2(g)}$; $\Delta H = -393.5 \text{kJ} \Delta H$ of the above reaction cannot be 52.
 - 1) Heat of formation of CO₂
- 2) Heat of combustion of C

3) Heat of reaction

4) Heat of transition

Heat of neutralization

- For the following reaction $H_{(aq)}^+ + OH_{(aq)}^- \to H_2O_{(1)}$; $\Delta H = -Q$, Where ΔH represents 53.
 - 1) Heat of formation

2) Heat of combustion

3) Heat of neutralisation

- 4) Heat of dilution
- 54. Enthalpy of neutralisation of all strong acids and strong bases has the same value because
 - 1) Neutralisation leads to the formation of a salt and water
 - 2) Strong acid and bases are ionic substances
 - 3) Acids always furnish H⁺ ions and bases always furnish OH⁻ ions
 - 4) the net chemical change involes the combination of 1 mol of H⁺ ions and 1 mol OH⁻ ions to from water.
- 55. The heat of neutralisation is maximum when

- 1) Sodium hydroxide is neutralised by acetic acid
- 2) Ammonium hydroxide is neutralised by acetic acid
- 3) Ammonium hydroxide is neutralized by hydrochloric acid
- 4) Sodium hydroxide is neutralized by hydrochloric acid.

Other heats of reactions

- 56. $MgSO_{4(s)} + aq. \rightarrow MgSO_{4(aq)} \Delta H = -84 \text{ K.cals}, \Delta H \text{ of the reaction is known as}$
 - 1) Heat of dilution
- 2) Heat of solution
- 3) Heat of fusion
- 4) Heat of transition
- 57. Dissolution of which of the following in water is endothermic
 - 1) NaOH
- 2) Na₂CO₃
- 3) MgSO₄
- 4) NH₄Cl
- 58. The enthalpy change for the process $C_{\text{(graphite)}} \rightarrow C(g)$; $\Delta H = +xKJ$ represents enthalpy of
 - 1) Fusion
- 2) Sublima1sation
- 3) Combustion
- 4) Vapourisation
- 59. The standard enthalpy of formation (ΔH^0) at 298 K for methane, CH₄(g), is 74.8 KJmol¹. The additional information required to determine the average energy for C-H bond formation would be
 - 1) The dissociation energy of hydrogen molecule, H₂
 - 2) The dissociation energy of H₂ and enthalpy of sublimation of carbon
 - 3) Latent heat of vaporisation of methane.
 - 4) The first four ionisation energies of carbon and electron gain enthalpy of hydrogen
- 60. For the transition $C_{(diamond)} \rightarrow C_{(graphite)}$; $\Delta H = -1.5 \text{KJ}$. It follows that
 - 1) Graphite is stabler than diamond
- 2) Diamond is stabler than graphite
- 3) Graphite is endothermic substance
- 4) Diamond is exothermic substance
- 61. Which of the following is not correct
 - 1) Dissolution of NH₄Cl in excess of water is an endothermic process
 - 2) Neutralisation proces is always exothermic
 - 3) The absolute value of enthalpy (H) can be determined experimentally
 - 4) The heat of reaction at constant volume is denoted by ΔE

Hess law

- 62. Hess's law states that
 - 1) The standard enthalpy of an overall reaction is the sum of the enthalpy chages in individual reaction
 - 2) enthalpy of formation of compoud is same as the enthalpy of decomposition of the compound into constituent elements, but with opposite sign
 - 3) at constant temperature the pressure of a gas in inversely proportional to its volume.
 - 4) the mass of a gas dissolved per lit of a solvent is proportional to the pressure of the gas in equilibrium with the solution
- 63. Heat of reaction (DH) is given by
 - 1) DH = Activation energy of forward reaction Activation energy of backward reaction

- 2) DH = Sum of bond energy of reactants Sum of bond energy of products
- 3) DH = Sum of enthalpy of products Sum of enthalpy of reactants
- 4) All the above
- 64. The factor which does not influence the heat of the reaction is
 - 1) Pressure

- 2) Temperature
- 3) Physical state of substance
- 4) Number of steps involved in the reaction

- 65. Hess's law is based on
 - 1) Law of conservation of mass
- 2) Gibb's equation
- 3) First law of thermodynamics
- 4) Kirchoff's equation
- 66. In which of the following equations ΔH^0 reaction equals to ΔH^0_f for the product?

1)
$$2CO_{2(g)} + O_2 \rightarrow 2CO_2$$

2)
$$N_{2(g)} + O_{3(g)} \rightarrow N_2 O_{3(g)}$$

3)
$$CH_{4(g)} + 2CI_{2(g)} \rightarrow CH_2Cl_{2(l)} + 2HCl_{(g)}$$

4)
$$Xe_{(g)} + 2F_{2(g)} \rightarrow XeF_{4(g)}$$

Second, Third laws, S and G

- 67. 1st law does not tell about
 - 1) Law of conservation of energy
- 2) Workdone whether +Ve (or) Ve

3) Feasibility of a process

- 4) Δ E at const T
- 68. For change in entropy units are
 - 1) mol/lit
- 2) Mol. lit⁻¹ sec⁻¹
- 3) J. mol⁻¹ K⁻¹
- 4) s⁻¹

- 69. In standard state the non spontaneous reaction is
 - 1) Melting of ice
- 2) Natural radioactivity
- 3) Freezing of water
- 4) Rusting of iron
- 70. The incorrect statment according to second law of themodynamics is
 - 1) Heat can not flow from colder body to a hotter body of its own
 - 2) All spontaneous processes are themody-namically irreversible
 - 3) Heat can be converted into work completely without casusing some permanent change in the system (or) surroundings
 - 4) Perpetual motion machine of second kind is not possible
- 71. Incorrect statement related to an irreversible process is
 - 1) Entropy of the universe goes on increasing
 - 2) Gibbs energy of the system goes on decreasing
 - 3) Total energy of the universe goes on decreasing
 - 4) Total energy of the universe remain constant
- 72. False statement regarding second law of thermodynamics
 - 1) It is impossible to construct a machine working in cycles which transforms heat from a lower temperature region to higher temperature region with out intervention of any external agency.
 - 2) Heat can not flow from a colder body to a hotter body on its own
 - 3) Any spontaneous process taking place in isolated system $\Delta S < O$
 - 4) All spontaneous processes are thermo-dynamically irreversible & entropy of the system increases in all spontaneous processes.

- 73. Entropy of a system depends upon
 - 1) Volume only
- 2) Temperature only 3) Pressure only
- 4) Pressure, Volume and temperature
- One of the following reaction involves in decrease of entropy 74.
 - 1) Sublimation of dry ice

2) Crystallisation of salt from brine (aq)

3) Burning of rocket fuel

- 4) Decomposition of gaseous N₂O₄.
- 75. The least random state of H₂O system is
 - 1) Ice

2) Liquid water

3) Steam

- 4) Randomness is same all.
- 76. Which of the following process has negative value of ΔS ?
 - 1) Dissolution of sugar in water
- 2) Stretching of rubber band
- 3) Decomposition of lime stone
- 4) Evaporation of water
- 77. For the reaction $I_{2(g)} \rightleftharpoons I_{2(s)}$; $\Delta H = -ve$. Then choose the correct statement/s from the following
 - 1) The process is spontaneous at all temperatures
 - 2) The process is accompained by an increase entropy
 - 3) The process is accompained by a decrease in entropy
 - 4) The process is accompained by a decrease in enthalpy

The correct statements are

- 1) Only a, b and c
- 2) Only b and d
- 3) Only c and d
- 4) Only a, c and d

- 78. For a spontaneous process in a reaction
 - 1) $\Delta S_{total} = (\Delta S_{system} + \Delta S_{surroundings}) < O$ 2) $\Delta S_{total} = (\Delta S_{system} + \Delta S_{surroundings}) = O$
 - 3) $\Delta S_{\text{total}} = (\Delta S_{\text{system}} + \Delta S_{\text{surroundings}}) > O$
- 4) $\Delta S_{\text{sys}} > O$ only
- 79. Some statements are given with regard to entropy. The incorrect statements are
 - 1) The absolute entropy of substances cannot be determined
 - 2) In standard state entropy of elements is always positive
 - 3) The entropy of universe always decreases
 - 4) In a spontaneous process, for Isolated system the entropy of a system generally increases
 - 1) A, B
- 2) B, C
- 3) A, C
- 4) Only C
- For an irreversible process, the value of $\left[\Delta S_{(system)} + \Delta S_{(surroundings)}\right]$ is (J & K PMT 2004) 80.
 - 1) > 0
- 2) < 0
- 3) 0

- 4) $2\Delta S_{(surr)}$
- A process is spontaneous at all temperatures when 81.
 - 1) $\Delta H = -ve, \Delta S = -ve$

2) $\Delta H = +ve, \Delta S = -ve$

3) $\Delta H = -ve$, $\Delta S = +ve$

- 4) $\Delta H = +ve, \Delta S = +ve$
- $2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(1)}$; $\Delta H = -ve$ and $\Delta G = -ve$ Then the reaction is 82.

- 1) Spontaneous and instantaneous
- 3) Spontaneous and slow
- 2) Spontaneous and endothermic
- 4) Non spontaneous and slow
- $H_{(aa)}^+ + OH_{(aa)}^- \rightarrow H_2O_{(1)}$; $\Delta H = -ve$ and $\Delta G = -ve$ then the reaction is 83.
 - 1) Spontaneous and instantaneous
- 2) Spontaneous and endothermic

3) Spontaneous and slow

- 4) Non spontaneous and slow
- 84. What is necessary condition for spontanity of a process?
 - 1) $\Delta S > O$
- 2) $\Delta E < O$
- 3) $\Delta H < O$
- 4) $\Delta G < O$
- Which of the following is the condition for a non spontaneous reaction at high temperature 85. but spontaneous at low temperature
 - ΔS ΔH
- ΔH
- ΔH ΔS
- ΔS ΔH

+

- 1)
- 2)
- 3)
- 4)
- Based on the third law of themodynamics, the entropy can be obtained using the equation. 86.
 - 1) $\Delta S = \frac{\Delta H}{T}$
- 2) $\int T \cdot C_p^{-1} dT = S$ 3) $\Delta G = T \Delta S$ 4) $\int_0^T C_p T^{-1} dT = S$

- 87. A chemical reaction cannot occur at all if its:
 - 1) Δ H is (+)ve and Δ S is (-)ve
- 2) Δ H is (-)ve and Δ S is (+)ve
- 3) \triangle H and \triangle S are (+)ve but \triangle H>T \triangle S
- 4) \triangle H and \triangle S are (-)ve but \triangle H>T \triangle S
- An equilibrium reaction $X + Y \rightleftharpoons W + Z$ $\wedge H = +ve$ is spontaneous in the forward direction. 88. Then corresponding sign of ΔG and ΔS should be respectively
 - 1) +ve, -ve
- 2) -ve, +ve
- 3) +ve, +ve
- 4) -ve, -ve

- For the process Dry ice \rightarrow CO₂(g) 89.
 - 1) ΔH is positive and ΔS are negative
- 2) Both ΔH and ΔS are negative
- 3) Both ΔH and ΔS are positive
- 4) ΔH is negative whereas ΔS is positive
- For which of the process, ΔS is negative? 90.
 - 1) $H_{2(g)} \to 2H_{(g)}$

- 2) $N_{2(g)}(1 \text{ atm}) \to N_{2(g)}(8 \text{ atm})$
- 3) $2SO_{3(g)} \rightarrow 2SO_{2(g)} + O_{2(g)}$
- 4) $C_{\text{(diamon)}} \rightarrow 4) C_{\text{(graphite)}}$
- 91. The process of evaporation of a liquid is accompanied by
 - 1) Increase in enthalpy energy

- 2) Increase in entropy 3) Decrease in Gibbs
- The correct statement (s) is or are
- 1) Only a and c
- 2) Only b and c
- 3) Only a and b
- 4) All
- 92. The favourable conditions for a spontaeous reaction are
 - 1) T $\Delta S > \Delta H$, $\Delta H = +ve$, $\Delta S = +ve$
- 2) T Δ S > Δ H, Δ H = +ve, Δ S = -ve
- 3) T Δ S = Δ H , Δ H = +ve, Δ S = -ve
- 4) T Δ S = Δ H, Δ H = +ve, Δ S = +ve
- A reaction has both DH and DS negative. The rate of reaction 93.
 - 1) Increase with increase of temperature
- 2) Increase with decrease of temperature
- 3) Remains unaffected by change of temperature
- 4) Cannot be predicted for change in temperature
- At 27°C the reaction, $C_6H_{6(1)} + \frac{15}{2}O_{2(g)} \rightarrow 6CO_{2(g)} + 3H_2O_{(1)}$. proceeds spontaneously 94.

because the magnitude of

- 1) $\Delta H = T\Delta S$
- 2) $\Delta H > T\Delta S$
- 3) $\Delta H < T\Delta S$
- 4) $\Delta H > 0$ and $T\Delta S < 0$
- 95. Although the dissolution of ammonium chloride in water is an endothermic reaction, even then it is spontaneous because:
 - 1) ΔH is positive, ΔS is -ve
- 2) ΔH is +ve, ΔS is zero
- 3) ΔH is positive, $T\Delta S < \Delta H$
- 4) ΔH is +ve, ΔS is positive and $\Delta H < T\Delta S$
- 96. For the precipitation reaction of Ag^+ ions with NaCl which of the following statements is correct ?
 - 1) ΔH for the reaction is zero
- 2) ΔG for the reaction is zero
- 3) ΔG for the reaction is negative
- 4) $\Delta G = \Delta H$
- 97. If an endothermic reaction is non-spontaneous at freezing point of water and becomes feasible at its boiling point, then
 - 1) ΔH is -ve, ΔS is +ve

- 2) ΔH and ΔS both are +ve
- 3) ΔH and ΔS both are -ve
- 4) ΔH is +ve and ΔS is -ve
- 98. If an irreversible process taking place at constant T and P and in which only pressure volume work is being done, the change on Gibb's free energy (dG) and change in entropy (dS), satisfy the criteria
 - 1) $(dS)_{V,S} < 0, (dG)_{T,P} < 0$
- 2) $(dS)_{V,E} > 0, (dG)_{T,P} < 0$
- 3) $(dS)_{VE} = 0, (dG)_{TP} = 0$
- 4) $(dS)_{V,E} = 0, (dG)_{T,P} > 0$
- 99. Which one of the following has ΔS^0 greater than zero?
 - 1) $CaO(s) + CO_2(g) \rightleftharpoons CaCO_3(s)$
- 2) NaCl(aq) NaCl(s)
- 3) $NaNO_3(s) \longrightarrow Na^+(aq) + NO_3^-(aq)$
- 4) $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$
- 100. For a spontaneous reaction, the DG, equilibrium constant, K and $E_{\rm cell}^0$ will be respectively
 - 1) -Ve, >1, +Ve
- 2) +Ve, > 1, -Ve
- 3) -Ve, < 1, -Ve
- 4) -Ve, > 1, -Ve

- 101. Which of the following relationship is correct?
 - 1) $DG^0 = -RT$ in K
- $2) K = e^{-\Delta G^0/RT}$
- 3) $K = 10^{-\Delta G^0/2.303RT}$ 4) All are correct
- 102. For a reaction R_{1} , $DG = x KJ mol^{-1}$. For a reaction R_{2} , $DG = y KJ mol^{-1}$. Reaction R_{1} is non-spontaneous but along with R_{2} it is spontaneous. This means that
 - 1) x is -ve , y is +ve but in magnitude x > y
- 2) x is +ve, y is -ve but in magnitude y > x
- 3) Both x and y are -ve but not equal
- 4) Both x and y are +ve but not equal.

Here T_1 and T_2 are

1) M.P, B.P

2) B. P. B. P

3) B. P. M. P

4) M.P, M.P

Assertion - Reason Type:

1) A and R are true, R explains A

2) A and R are true, R does not explain A

3) A is true, but R is false

4) A is false, but R is true

104. Assertion: The reaction $C + O_2 \rightarrow CO_2$ is an exothermic reaction

Reason : In this reaction the total enthalpy of the product is less than the total enthalpy of the product

is less than the total enthalpy of the reactants.

105. Assertion: The enthalpies of elements in their standard states are taken as zero.

Reason: It is impossible to determine the absolute enthalpy of any substance.

106. Assertion: Internal energy change in a cyclic process is zero

Reason: Internal energy is a state function.

107. Assertion: The enthalpy of neutration of a strong acid by a strong base is a constant.

Reason: The net reaction that takes place is the same.

108. Assertion: Heat of neutralization of HClO₄ with NaOH is same as that of HCl with

NaOH.

Reason: Both HCl and $HClO_4$ are strong acids

109. Assertion: The enthalpy of formation of $H_2O(l)$ is greater than that of $H_2O(g)$

Reason: Enthalpy change is negative for the condensation reaction $H_2O(g) \rightarrow H_2O(l)$

110. Assertion: Entropy of a perfect crystalline substance at absolute zero is zero.

Reason: At absolute zero translational kinetic energy of a system is zero.

111. Assertion: Absolute values of internal energy cannot be determined.

Reason: It is impossible to determine the exact values of constituent energies of the

substance.

112. Assertion: Mass and volume are extensive properties.

Reason: Mass / volume is also an extensive property.

Assertion: The heat absorbed during isothermal expansion of an ideal gas against

vacuum is zero.

Reason: The volume occupied by the molecules is zero.

Match the following Type

- 114. LIST - 1
- LIST 2
- A) $H_P > H_R$
- 1) Exothermic
- B) $P\Delta V$
- 2) Total heat content
- C) E + PV
- 3) Δ H is positive
- $D)H_R>H_P$
- 4) Zero at constant volume

2

The correct match is

В

4

- Α 1) 3
- C D 2 1
- 2)
- В 3

3

 C 1

4

D

4

2

- 3) 1
- 3 4
- 4)
- LIST 2

Α

2

1

- 115. LIST - 1
 - A) HNO₃ + KOH

1) -55. 22 KJ

B) NH₄OH + CH₃COOH

2) -58.7 KJ

C) CH₃COOH + NaOH

3) -57.3 KJ

D) HCl + NaOH

- 4) -49.3 KJ
- 5) -51.46 KJ

The correct match is

Α 1

3

C D

1

- A
- В
- C D

2

1

- 1) 3)
- В 2 4
- 3 4 3
- 2) 4)
- 4 3
- 3 2
- 1 4

- 116.
- List I List - II

(Freezing of water)

- A) Water at -10° C
- I) $\Delta G = O$
- B) Water at 0⁰ C
- II) $\Delta G + Ve$
- C) Water at +10^oC
- III) $\Delta G Ve$

The correct match is

Α 2

1

C 3

Α 3

3

В

C

- 1) 3)
- 1 2

В

- 2) 4)
- 2 1 2 1

117.

List - II

3

- 1) Work
- 1) Extensive propety
- 2) Enthalpy

List - I

- 2) Intensive property
- 3) Temperature
- 3) State variable
- 4) P, V, T and n
- 4) Path function

The correct match is

- Α 4
- В
- D
- Α 1
- В
- C

3

1

- 2) 4)
- 2
- 3
 - 4 2

D

- 1) 3)
- 4
- 1 3
- 2 2

C

- 4
- 3
- 1

E, H, heat capacities

1) Zero

9. Latent heat of vapourisation of a liquid at 500k and 1atm pressure is 10K.Cal/mole. What is the change is enthalpy when 3 mole liquid vapourised at the same temperature $(HINT : \Delta H = \Delta E + \Delta nRT)$

CHEMISTRY ◄ THERMODYNAMICS 1) 27K.Cal 2) 7K.Cal 3) 33K.Cal The molar heat capacity of waterat constant pressure, C, is 75 JK⁻¹ mol⁻¹. When 1.0KJ of heat 10. is supplied to 100g of water which is free to expand, the increase in temperature of water is: 1) 1.2K 4) 6.6K 2) 2.4K 3) 4.8K 11. Which statements is correct; $(1) \left(\frac{\delta H}{\delta T} \right)_{R} - \left(\frac{\delta U}{\delta T} \right)_{U} = R$ $_{2)}\left(\frac{\delta H}{\delta T}\right)_{R} > \left(\frac{\delta U}{\delta T}\right)_{V}$ 3) $\left(\frac{\delta H}{\delta V}\right)_T$ for ideal gas is zero 4) All of these 12. For a gas having molar mass M, specific heat at constant pressure can be given as: 3) $\frac{M}{R(\gamma - 1)}$ 4) $\frac{\gamma RM}{\gamma + 1}$ 2) $\frac{\gamma}{RM}$ Molar heat capacity of water in equilibrium with the ice at constant pressure is: 13. 3) 40.45 KJK⁻¹ mol⁻¹ 4) 5.48 JK⁻¹ mol⁻¹ 1) Zero 2) Infinity (∞) Heat of formation and combustion $N_2 + 3H_2 \rightarrow 2NH_3$; $\Delta H = -46$ K.Cals. From the above reaction, heat of formation of ammonia 14. 1) 46 K.Cals 2) -46 K.Cals 3) -23 K.Cals 4) 23 K.Cals Given that $\frac{1}{2}S_8(s)+6O_2(g)\to 4SO_3(g); \Delta H^0=-1590 \, kJ$. The standard enthalpy of formation 15. of SO₃ is 3) -3.975 KJ mol⁻¹ 1) -1590 KJ mol⁻¹ 2) -397.5 KJ mol⁻¹ 4) +397.5 KJ mol⁻¹ The amount of heat evolved on combustion of 10 grams of benzoic acid is 10 K.Cals. The heat 16. of combustion of Benzoic acid is 1) -122 K.Cals 2) -112 K.Cals 3) -132 K.Cals 4) -92 K.Cals 17. Heat of combustion of C_2H_4 is -337 K.Cal. If 5.6 lit O_2 is used at STP, in the combustion heat liberated is K.Cal 1) 28.08 2) 14.04 3) 42.06 4) 56.16 Human body requires 2370 K. Cal of energy daily. The heat of combustion of glucose is 18. -790 K.cal/mole. The amount of glucose required for daily consumption is 2) 540g 3) 327g The heats of combustion of ethane, ethene and acetylene are -341.1KJ, -330 and 19.

-310.9K.Calmol⁻¹ respectively. The best fuel among them is 2) Ethene 3) Acetylene 4) All are equal

The heat of combustion of benzene at 27°C found by bomb calorimeter i.e. for the reaction 20.

$$\mathrm{C_6H_{6(I)}} + 7\tfrac{1}{2}\mathrm{O_{2(g)}} \rightarrow 6\mathrm{CO_{2(g)}} + 3\mathrm{H_2O_{(I)}}$$

is 780 K.Cal mol⁻¹. The heat evolved on burning 39g of benzene in an open vessel wil be

1) 390 K.Cal 2) 780.9 K.Cal 3) 390.45 K.Cal

4) 780 K.Cal

Heat of neutralization:

 $H_2SO_{4(aq)} + 2KOH_{(aq)} \rightarrow K_2SO_{4(aq)} + 2H_2O_{(l)}$; Δ H for the above reaction is 21.

1) -13.7 K.Cal

2) +57.3 K.J

3) -27.4 K.Cal

4) -137 K.J

For the reaction $2H_2O(1) \rightarrow H_2O^+(aq) + OH^-(aq)$, the value of DH is 22.

1) 114.6 KJ

2) -114.6 KJ

3) 57.3 KI

4) -57.3 KJ

23. Equal volumes of equi molar HCl and H₂SO₄ are separately neutralised by dilute NaOH solution, then heat liberated are 'X" K.Cal and "Y" K.Cal respectively. Which of the following is true

1) x = y

2) x = v/2

3) x = 2y

4) x = v/3

When 50cm³ of 0.2 N H₂SO₄ is mixed with 50 cm³ of 1 N KOH, the heat liberated is 24.

1) 11.45 KJ

2) 57.3 KJ

3) 573 KJ

4) 573 KI

25. Heat of neutralisation for the reaction NaOH+HCl → NaCl+H₂O is -57.1 K.J. mole⁻¹. The heat released when 0.25 moles of NaOH is treated with 0.25 moles of HCl is

1) 22.5 K.J/mole

2) 57.1 K.J/mole

3) 14.3 K.J/mole

4) 28.6 K.J/mole

26. Given that the data for neutralization of a weak acid (H1) and strong acid with a strong base is

 $HA + OH^{-} \rightarrow A^{-} + H_{2}O; \Delta H = -41.80kJ$ $H^{+} + OH^{-} \rightarrow H_{2}O; \Delta H = -55.90kJ$ The enthalpy of dissociation of weak acid would be

1) -97.20 KJ

2) +97.70 KJ

3) -14.10 KJ

4) 14.10 KJ

27. The heats of neutralisation of HCl with NH,OH and that of NaOH with CH2COOH are repectively -51.4 and -50.6 KJ eq⁻¹. The heat of neutralisation of acetic acid with NH₄OH will be

1) -44.6 KJ eq⁻¹

2) -50.6 KJ eq⁻¹

3) -51.4 KJ eq⁻¹

4) -57.4 KJ eq⁻¹

Heat liberated in the neutralisation of 500 ml of 1N HCl and 500 ml of 1N NH₄OH is 28. -1.36 K.Cals. The heat of ionisation of NH₄OH is

1) 10.98 K.Cals

2) -12.34 K.Cals

3) -10.98 K.Cals

4) 12.34 K.Cals

29. In which of the following combinations of HCl and NaOH, the heat energy liberated is maximum

1) 10ml of 0.1M HCl+40 ml of 0.1 M NaOH 2) 30ml of 0.1M HCl+20 ml of 0.1 M NaOH

3) 25ml of 0.1M HCl+25 ml of 0.1 M NaOH 4) 35ml of 0.1M HCl+15 ml of 0.1 M NaOH

Under the same conditions how many mL of 1MKOH and 0.5MH, SO₄ solutions, respectively 30. when mixed for a total volume of 100 mL produce the highest rise in temperature:

1) 67:33

2) 33:67

3) 40:60

4) 50:50

31. Heat of neutralisation of HF with NaOH is:

1)57.32KJ

2) > 57.32KJ

3) < 57.32KJ

4) None of these

32. When 1 litre of 1M HCl is mixed with 1 lite of 1M NaOH, the rise in temperature was found to be T_1 . In another experiment 1 litre of 0.5 M NaOH is mixed with 1 lit. of 0.5 M HCl. The rise in temperature was found to be T_2 . Then

1) $T_1 = T_2$

2) $T_1 < T_2$

3) $T_1 = 2T_2$

4) $T_2 = 2T_1$

Other heats of reactions, determination of $\Delta H \& \Delta E$

33. $H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(\ell)}$; $\Delta H = -286.2KJ$

 $H_2O_{(\ell)} \to H_{(aq)}^+ + OH_{(aq)}^-; \Delta H = +57.3KJ$

Enthalpy of ionization OH- in aqueons solution is

(AIEEE - 2009)

1) -228.5KJ

2) +228.5KJ

3) -343.5KJ

34. Among the following ions, for which one standard anthalpy of ionisation is zero 1) $OH_{(aq)}^{-}$

2) Cl_(aq)

3) $H_{(aq)}^{-}$

4) $H_{(aq)}^{+}$

35. $\frac{1}{2} H_{2(g)} + \frac{1}{2} \text{Cl}_{2(g)} \rightarrow \text{HCl}_{(g)}; \Delta H^0 = -92.4 \text{KJ/mole};$

 $HCl_{(g)} + nH_2O \rightarrow H^+_{(aq)} + Cl^-_{(aq)}; \Delta H^0 = -74.8KJ/mole$

 $\Delta H^0 f$ for $Cl_{(aq)}^-is$

1) -17.6KJ/mole

2) -167.2 KJ/mole

3) +17.6KJ/mole

4) -35.2KJ/mole

36. Triple point pressures of four solids A,B,C and D are 10mm, 100mm, 200mm and 800mm ressectively. Which solid undergo sublimation on heating at atmospheric pressure

1) A

2) B

3) C

4) D

37. Work done during the combustion of one mole of CH₄ in bomb calorimeter is

1) zero

2) -101 J

3) -24.2J

4) -1

38. A sample of CH_4 of 0.08g was subjected to combustion at $27^{0}C$ in a bomb calorimeter. The temperature of the calorimeter system was found to be raised by 0.25 ^{0}C . If heat capacity of calorimeter is 18KJ, ΛH for combustion of CH_4 at $27^{0}C$ is

1) -900KJ/mole

2) -905KJ/mole

3) -895KJ/mole

4) -890KJ/mole

39. For the reaction of one mole zinc dust with one mole sulphuric acid in a bomb calorimeter, ΔU and w correspond to:

1) $\Delta U < 0, w = 0$

2) $\Delta U < 0, w < 0$

3) $\Delta U > 0, w = 0$

4) $\Delta U > 0, w > 0$

40. 100ml of water at 20°C and 100ml of water at 40°C are mixed in calorimeter untill constant temperature reached. Now temperature of the mixture is 28°C. Water equivalent of calorimeter is

1) 50J

2) 104.5J

3) -24.2J

4) 209]

41. Heat of combustion of benzoic acid (C_6H_5 COOH) at Constant volume at 25°C is -3233KJ/mole. When 0.5g of benzoic acid is burned in bomb calorimeter, the temperature of calorimeter increased by 0.53°C. Now in the same bomb calorimeter 1g of C_2H_6 burned then temperature increased by 2.04°C. ΔH for combustion of C_2H_6 is

1) -1530KJ/mole

2) -1536.2KJ/mole

3) -1522.8KJ/mole

4) +1536.2KJ/mole.

42. The dissociation energy fo CH_4 is 400K.Cal mol⁻¹ and that of ethane is 670 K.Cal mol⁻¹. The C-C bond energy is:

1) 270K.Cal

2) 70K.Cal

3) 200K.Cal

4) 240K.Cal

43. The heat of atomisation of $PH_{3(g)}$ is 228 K.Cal mol⁻¹ and that of $P_2H_{4(g)}$ is 355 K.Cal mol⁻¹ The energy of the P-P bond is (in K.Cal);

1) 102

2) 51

3) 26

4) 204

Hess law

44. The enthalpies of HCl, NaOH, NaCl and H_2O are -120, -82, -148 and -68 K.Cals. respectively. Δ H of the following reaction is HCl + NaOH \rightarrow NaCl + H_2O

1) -28.7 K.Cals

2) -18 K.Cals

3) -57.3 K.Cals

4) -14 K.Cals

45. ΔH_f^0 for a reaction $F_2 + 2HCl \rightarrow 2HF + Cl_2$ is given as -352.8 KJ. ΔH_f^0 for HF is -268.3 KJ mol⁻¹, then ΔH_f^0 of HCl would be

1) -22 KJmol^{-1}

2) 880 KJmol⁻¹

3) -91.9 KJmol⁻¹

4) -183.8 KJmol⁻¹

46. What is the heat of formation of C_sH_s, given that the heats of combustion of benzene, carbon and hydrogen are 782, 94 and 68K. Cal respectively.

1) +14 K.Cal

2) -14 K.Cal

3) +28 K.Cal

4) - 28 K.Cal

The heats of combustion of carbon, hydrogen and acetylene are -394K.J, -286K.J and 47. -1301 K.J respectively. Calculate heat of formation of C₂H₃

1) 621 K.J

2) 454 K.J

3) -227 K.I

4) 227 K.J

The standard enthalpies of formation of $H_2O_2(l)$ and $H_2O(l)$ are -187.8K.J.mole⁻¹ and -285.8 48.

K.J. mole⁻¹ respectively. The ΔH^0 for the decomposition of one mole of $H_2O_2(l)$ to $H_2O(l)$ and $O_2(g)$ is

1) -473.6 K.J. mole⁻¹

2) -98.0 K.J. mole⁻¹

3) +473.6 K.J. mole

4) +187.8 K.J. mole⁻¹

The enthalpies of combustion of carbon and carbon monoxide are -390 KJ mol⁻¹ and 49. -278 KJ mol⁻¹ respectively. The enthalpy of formation of carbon monoxide is

1) 668 KJ mol⁻¹

2) 112 KJ mol⁻¹

3) -112 KJ mol⁻¹

4) -668 KJ mol⁻¹

Calculate the heat of formation of KOH from the following data 50.

$$K_{(S)} + H_2O + aq \rightarrow KOH_{(aq)} + \frac{1}{2}H_2$$
; $\Delta H = -48.4$ K. Cal

$$\rm H_{2(g)} + \frac{1}{2}\rm O_{2(g)} \rightarrow \rm H_2O_{(\ell)}$$
 ; $\Delta \rm H = -68.44~K.~Cal$

$$KOH_{(s)} + aq \rightarrow KOH_{(aq)}$$
; $\Delta H = -14.01$ K. Cal

1) +102.83

2) +130.85

3) - 102.83

4) - 130.85

If $S + O_2 \rightarrow SO_2$; $\Delta H = -398.2 \text{kJ}$; 51.

$$SO_2 + \frac{1}{2}O_2 \rightarrow SO_3; \Delta H = -98.7 \text{kJ}$$

$$SO_3 + H_2O \rightarrow H_2SO_4; \Delta H = -130.2 \text{kJ}; \qquad H_2 + \frac{1}{2}O_2 \rightarrow H_2O; \Delta H = -227.3 \text{kJ}$$

$$H_2 + \frac{1}{2}O_2 \rightarrow H_2O; \Delta H = -227.3 \text{kJ}$$

The enthalpy of formation of sulphuric acid at 298 K will be

1) -854.4 K.J

2) -754.4 K.J

3) -650.3 K.J

4) -433.7 K.J

52.
$$N_{2(g)} + 2O_{2(g)} \rightarrow 2NO_2 + X kJ$$
; $2NO_{(g)} + O_{2(g)} \rightarrow 2NO_{2(g)} + Y kJ$

The enthalpy of formation of NO is

1)(2X - 2Y)

2) X - Y

3) 1/2 (Y-X)

4) 1/2 (X-Y)

Given that $S_{(s)} + \frac{3}{2}O_{2(g)} \rightarrow SO_{3(g)} + 2x K.Cal$; $SO_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow SO_{3(g)} + y K.Cal$ Which 53. would be the enthalpy of formation SO₂?

1) (2x - y)

(2x + y)

3) (y - 2x)

Given $C_{(s)} + O_{2(g)} \to CO_{2(g)}$; $\Delta H = -395kJ$; $S_{(s)} + O_{2(g)} \to SO_{2(g)}$; $\Delta H = -295kJ$; 54.

 $CS_{2(1)} + 3O_{2(g)} \rightarrow CO_{2(g)} + 2SO_{2(g)}; \Delta H = -1110kJ$, The heat of foramation of $CS_2(1)$ is

1) + 125 KJ mol⁻¹

2) 31.25 KJ mol⁻¹

3) 62.5 KJ mol⁻¹

4) 250 KJ mol⁻¹

1) $C_{Graphite} + O_{2(g)} \rightarrow CO_{2(g)}; \Delta H = -94K.Cals$ 55.

2)
$$C_{Diamond} + O_{2(g)} \rightarrow CO_{2(g)}; \Delta H = -94.5K.Cals$$

From the above data the heat of transition of $C_{Diamond} \rightarrow C_{Graphite}$

- 1) -50 Cal
- 2) -100 Cal
- 3) -500 Cal
- 4) 100 Cal
- 56. DH of combustion of yellow P and Red P are -11 K.J and -9.78 K.J respectively DH of transition of yellow P to Red P is
 - 1) -20.78 K.J
- 2) -1.22 K.J
- 3) +1.22 K.J
- 4) +20.78 K.J
- 57. How much energy is released when 6 mole of octane is burnt in air? Given ΔH_f^0 for $CO_2(g)$, $H_2O(g)$ and $C_8H_{18}(I)$ respectively are -390, -240 and +160 KJ/mol
 - 1) -32.6 MJ
- 2) -37.4 MJ
- 3) -35.5 MJ
- 4) -20.0 MJ
- 58. Given $C + 2S \rightarrow CS_2$, $\Delta Hf^0 = +117.0 \text{KJ mol}^{-1}$;

$$C + O_2 \rightarrow CO_2$$
, $\Delta H f^0 = -393.0 \text{KJ mol}^{-1}$ $S + O_2 \rightarrow SO_2$, $\Delta H f^0 = -297.0 \text{KJ mol}^{-1}$.

The heat of combustion of $CS_2 + 3O_2 \rightarrow CO_2 + 2SO_2$ is

- 1) -807 KJ mol⁻¹
- 2) -1104KJ mol⁻¹
- 3) +1104KJ mol⁻¹
- 4) +807 KJ mol⁻¹
- 59. The standard heat of formation of sodium ions in aqueous solution from the following data: Heat of formation of NaOH(aq) at 25° C = -470.7KJ;

Heat of formation of OH $^{-}$ (aq) at 25 $^{\circ}$ C = -228.8KJ is:

- 1) -251.9KJ
- 2) 241.9KJ
- 3) -241.9KJ
- 4) 300KJmol⁻¹
- 60. The lattice energy of solid NaCl is 180 K.Cal per mol. The dissolution of the solid in water in the form of ions is endothermic to the extent of 1K.Cal per mol. If the solvation energyies of Na⁺ and Cl⁻ ions are in ratio 6:5, what is the enthalpy of hydration of sodium ion?
 - 1) -85.6K.Cal/ mol

2) -97.5K.Cal/ mol

3) 82.6K.Cal /mol

- 4) +100K.Cal/ mol
- 61. The enthalpy of solution of $BaCl_2$ (s) and $BaCl_2$. $2H_2O(s)$ are -20.6 and 8.8KJ mol^{-1} , respectively, The enthalpy change for the reaction $BaCl_{2(s)} + 2H_2O \rightarrow BaCl_2$. $2H_2O_{(s)}$ is:
 - 1) 29.8KJ
- 2) -11.8KJ
- 3) -20.6KJ
- 4) -29.4KJ

Second and third laws Entropy - Gibb's Energy

- 62. Enthalpy of vapourisation for water is 186.5KJmole⁻¹. The entropy change during vapourisation is __ KJmole⁻¹
 - 1) 0.5
- 2)1.0
- 3) 1.5
- 4) 2.0
- 63. $S_{H_{2(g)}}^{o}$ =130.6 J K⁻¹ mol⁻¹; $S_{H_{2}o_{(I)}}^{o}$ =69.9 J K⁻¹ mol⁻¹ $S_{o_{2(g)}}^{o}$ =205 J K⁻¹ mol⁻¹, Then the absolute entropy change of $H_{2_{(g)}}$ + $\frac{1}{2}O_{2(g)}$ \rightarrow $H_{2}O_{(l)}$ is
 - 1) -163.2 J mol⁻¹K⁻¹

2) +163.2 J mol⁻¹K⁻¹

3) -303 J mol⁻¹K⁻¹

- 4) +303J mol⁻¹K⁻¹
- 64. At 0° C ice and water are in equilibrium and $\Delta H = 6.0$ KJ then ΔS will be
 - 1) $22 \text{ J K}^{-1} \text{mol}^{-1}$
- 2) $35 \text{ J K}^{-1} \text{mol}^{-1}$
- 3) $48 \text{ J K}^{-1} \text{mol}^{-1}$
- 4) 100 J K⁻¹mol⁻¹
- 65. One mole of ice is converted into water at 273 K. The entropies of $H_2O(s)$ and $H_2O(l)$ are 38.20

and 60.01 J mol⁻¹ K⁻¹ respectively. The enthalpy change for the conversion is:

- 2) 5954 J mol⁻¹
- 3) 595.4J mol⁻¹
- Melting & boiling point of NaCl respectively are 1080 K & 1600 K. DS for stage -I & II in 66.

$$\begin{split} NaCl_{(s)} & \xrightarrow{I} NaCl_{(l)} \xrightarrow{II} NaCl_{(g)} \\ \Delta H_{fus} &= 30 KJ \quad \Delta H_{vap} = 160 KJ \end{split}$$

- DS (I) DS (II) (KJ/mol/K) (KJ/mol/K)
- DS(I) DS(II) (KJ/mol/K) (KJ/mol/K)

- 1) 3)
- 1/36
- 1/10
- 100 36 1/10 36
- DS for vapousization of 900 g water (in KJ/K) is [DH $_{\rm vap}$ =40KJ/mol] 67.
 - 1) (900×40)
- 2) $\frac{50 \times 40}{373}$ 3) $\frac{900 \times 40}{373}$ 4) $\frac{18 \times 40}{373}$
- DS_{sys} for 4Fe(s) $+3O_2 \rightarrow 2Fe_2O_3(s)$ is -550 J/K/mol at 298 K. If enthalpy change for same 68. process is -1600 KJ/mol, DS_{total} (in J/mol/K)
 - 1) $\left| \frac{1600}{298} \times 10^3 \right| + 550 > 0$
- $|2| 550 \left| \frac{1600}{298} \right| < 0$
- 3) $\left[\frac{1600}{298} \times 10^3 \right] 550 > 0$

- 4) $\left[\frac{1600 + 550}{298} \right] > 0$
- 69. DS_{sur} for $H_2+1/2O_2 \rightarrow H_2O$, DH - 280 KJ at 400 K is
 - 1) 700 J/g/K
- 2) 700 KJ / mol / K
- 3) 700 J/mol/K
- 4) 0.7 J / mol / K
- 70. For a certain reaction, DH⁰ & DS⁰ respectively are 400 KJ & 200 J/mol/K. The process is nonspontaneous at
 - 1) 2100 K
- 2) 2010 K
- 3) 1990 K
- 4) 2020 K
- At 27°C for the reaction $A_{(g)} \rightleftharpoons B_{(g)}$, the value of ΔG^0 is zero. Then the value of the 71. equilibrium constant is
 - 1) 2.5×10^{-3}
- $2) 10^{-2}$
- 3) 1

- 4) 100
- 72. The direct conversion of A to B is difficult, hence it is carried out by the following shown path $A \rightarrow C \rightarrow D \rightarrow B$. Given $\Delta S_{A\rightarrow C} = 50eu$;

$$\Delta S_{C \rightarrow D} = 30 \text{eu}$$
; $\Delta S_{B \rightarrow D} = 20 \text{eu}$

Where eu is entropy unit, then $\Delta S_{A\rightarrow B}$ is

- 1) +100eu
- 2) +60eu
- 3) -100eu
- 4) -60eu

EXERCISE - I ANSWERS

WORK SHEET - I

1) 1	2) 3	3) 3	4) 3	5) 2	6) 2	7) 1	8) 4	9) 1	10) 1
11) 2	12) 2	13) 4	14) 3	15) 1	16) 2	17) 3	18) 1	19)1	20) 2
21) 4	22) 3	23) 1	24) 4	25) 2	26) 3	27) 4	28) 1	29) 3	30) 2
31) 1	32) 4	33) 4	34) 2	35) 2	36) 1	37) 3	38) 1	39) 1	40) 1
41) 1	42) 3	43) 3	44) 4	45)1	46) 2	47) 4	48) 1	49) 1	50) 3
51) 3	52) 4	53) 3	54) 4	55) 4	56) 2	57) 4	58) 2	59) 2	60) 1
61) 3	62) 1	63) 4	64) 4	65) 3	66) 4	67) 3	68) 3	69) 3	70) 3
71) 3	72) 3	73) 4	74) 2	75)1	76) 2	77) 3	78) 3	79) 3	80) 1
81) 3	82) 3	83) 1	84) 4	85) 1	86) 4	87) 1, 3	88) 2	89) 3	90) 2
91) 4	92) 1	93) 1	94) 2	95) 4	96) 3	97) 2	98) 2	99) 3	100) 1
101) 4	102) 2	103) 1	104) 1	105) 2	106) 1	107) 1	108) 1	109) 1	110) 1
111) 1	112) 3	113) 3	114) 1	115) 3	116) 2	117) 1	118) 3		

WORK SHEET - II

1) 2	2) 3	3) 2	4) 2	5) 3	6) 2	7) 1	8) 1	9) 1	10) 2
11) 4	12) 1	13) 2	14) 3	15) 2	16) 1	17) 1	18) 2	19) 3	20)3
21) 3	22) 3	23) 2	24) 4	25) 3	26) 4	27) 1	28) 1	29) 3	30) 4
31) 2	32) 3	33) 1	34) 4	35) 2	36) 4	37) 1	38) 2	39) 1	40) 4
41) 2	42) 2	43) 2	44) 4	45) 3	46) 1	47) 4	48) 2	49) 3	50) 3
51) 1	52) 3	53) 3	54) 1	55) 3	56) 2	57) 1	58) 2	59) 3	60) 2
61) 4	62) 1	63) 1	64) 1	65) 2	66) 1	67) 2	68) 3	69) 3	70) 3
71) 3	72) 2								

EXERCISE - I

Introduction - Characteristics of Chemical Equilibrium

- 1. Attainment of "equilibrium state" with the help of "constancy in intensity of colour" is noticed in the case of ... in a closed vessel
 - 1) Decomposition of CaCO₂
- 2) Reaction between N, & O,
- 3) Reaction between H₂ & I₃
- 4) Decomposition of PCl₅
- 2. At low temperature, Nitrogen dioxide, a reddish brown gas gets associated to form the colourless dinitrogen tetroxide as in the reaction $2NO_{2(e)} \longrightarrow N_2O_{4(e)}$. Then at equilibrium
 - 1) There would be an increase in colour intensity
 - 2) The mixture would become colourless
 - 3) There would be a decrease in colour intensity
 - 4) There would be no change in colour intensity
- 3. In the case of $CaCO_3 \rightleftharpoons CaO + CO_{2'}$ attainment of equilibrium state is noticed with the help of constancy in
 - 1) [CaCO₃]
- 2) [CaO]
- 3) Pressure
- 4) Colour
- 4. Which of the following is correct for $N_2+3H_2 \rightleftharpoons 2NH_3$

- 5. $Fe^{+3}(aq)+SCN^{-}(aq) \longrightarrow [Fe(SCN)]^{+2}(aq)$ is an example of
 - 1) Heterogeneous equilibrium
 - 2) Homogeneous equilibrium
 - 3) Reversible process that never attains equilibrium state
 - 4) Irreversible process that attains equilibrium state
- 6. Which of the following is an irreversible reaction
 - 1) $PCl_5 \rightarrow PCl_3 + Cl_2$

2) 2SO₂ + O₂ \rightarrow 2SO₃

3) $N_2 + 3H_2 \rightarrow 2NH_3$

- 4) $2KClO_3 \rightarrow 2KCl + 3O_7$
- 7. An example of an irreversible reaction
 - 1) $CH_1COOC_1H_2+H_1O \rightarrow CH_1COOH+C_1H_2OH$
 - 2) N₂ + O₂ \rightarrow 2NO
 - 3) $NH_4HS \rightarrow NH_3 + H_2S$

- 4) $BaCl_{2(aq)} + K_2SO_{4(aq)} \rightarrow BaSO_{4(s)} + 2KCl_{(aq)}$
- 8. Which of the following is a characteristic property of equilibrium?
 - 1) Number of moles of reactants and products is always equal
 - 2) Catalyst affects the equilibrium state
 - 3) It never proceeds to completion
 - 4) Rate of forward and backward reactions are not equal

- 9. When a system is in equilibrium state
 - 1) The concentration of products is equal to the concentration of the reactants
 - 2) The ratio of the product of active masses of products and reactants is constant
 - 3) Number of moles of reactants and products is the same
 - 4) The ratio of rate constants of the forward and backward reaction is always unity
- 10. Attainment of equilibrium can be noticed with the help of constancy of which of the following physical properties?
 - 1) Intensity of colour 2) Density
- 3) Pressure
- 4) All the above
- 11. Change in volume of the system does not alter the number of moles in which of the following equilibrium?
 - 1) $N_2(g)+O_2(g) \rightleftharpoons 2NO(g)$
- 2) $PCl_{5}(g) \rightleftharpoons PCl_{3}(g)+Cl_{2}(g)$
- 3) $N_2(g)+3H_2(g) \rightleftharpoons 2NH_3(g)$
- 4) SO₂Cl₂(g) \Longrightarrow SO₂(g)+Cl₂(g)

- 12. At equilibrium state
 - 1) ΔH =negative
- 2) ΔG =negative
- 3) $\Delta G = zero$
- 4) ΔG is positive

- 13. A catalyst
 - 1) Alters the equilibrium constant
 - 2) Increases the equilibrium concentration of products
 - 3) helps establishing the equilibrium quickly
 - 4) Supplies energy to the reactants
- 14. Gas phase homogeneous equilibrium is involved in one of the following
 - 1) Esterification
 - 2) Haber's process
 - 3) Dissociation of lime stone in a closed vessel
 - 4) Cell reaction of Daniel cell
- 15. The following are some statements about chemical equilibrium.
 - 1) The rate of forward reaction is equal to the rate of backward reation.
 - 2) The chemical equilibrium can be established from reactant side only.
 - 3) The concentration of the reactants and products remain same with time.

The correct statements are

- 1) A and B
- 2) A and (
- 3) B and C
- 4) All A, B, C
- 16. The reaction $3Fe_{(s)} + 4H_2O_{(1)} \rightleftharpoons Fe_3O_{4(s)} + 4H_{2(g)}$ is reversible if it is carried out
 - 1) At constant pressure

2) At constant temperature

3) In an open vessel

- 4) In a closed vessel
- 17. In the lime-kiln; the reaction $CaCO_3 \Leftrightarrow CaO_{(s)} + CO_{2(g)}$
 - 1) Attains a state of equilibrium after some time
 - 2) Stops after some time
 - 3) Does not take place at all
 - 4) Goes to completion eventually
- 18. When H, and I, are mixed and equilibrium is attained, then
 - 1) Amount of HI formed is equal to the amount of H, dissociated
 - 2) HI dissociation stops

3) the reaction stops completely

4) Both forward and backward reactions proceed with same rate

- 19. $CaCO_3 \rightleftharpoons CaO + CO_2$ reaction in a lime kiln goes to completion because
 - 1) It is a heterogeneous reaction
- 2) Backward reaction is very slow

3) CO₂ formed escapes out

- 4) K_C (or) K_P has no unit
- 20. When the rate of formation of reactants is equal to the rate of formation of products, this is known as
 - 1) Chemical reaction

2) Chemical equilibrium

3) Chemical kinetics

4) Chemical energetics

Law of mass action - K_C , K_P - units - expressions & Characteristics of Equilibrium constant

- According to law of mass action, for $CaCO_3 \rightleftharpoons CaO + CO_2(R_f = Rate \text{ of forward and } R_h = Rate$ 21. of backward reactions)

 - 1) $R_f = K_b[CO_2]$ 2) $R_b = K_b[CaCO_3]^2$ 3) $R_f = K_f[CaO]^2$ 4) $\frac{R_f}{R_h} = [CO_2]^1$
- As per law of mass action, for $NH_4HS(s) \rightleftharpoons NH_3(g) + H_2S(g)$ ratio of rate constants of forward 22. (K_i) & backword (K_i) reactions at equilibrium equals to
 - 1) $[NH_4HS]$
- 2) $P_{NH_2} + P_{H_2S}$
- 3) $[H_2S] + [NH_3]$
- 4) [NH₂] [H₂S]
- Law of mass action is not applicable to $C_{\text{(graphite)}} \longrightarrow C_{\text{(diamon4)}}$ because 23.
 - 1) it is a physical equilibrium
- 2) The process is not spontaneous
- 3) The process spontaneous
- 4) Both forms are crystalline
- Units of K_C for $xA(g) \longrightarrow yB(g)$ is lit^2 -mol⁻², then the values of x & y cannot be 24.
- 2) 3, 2

- Unit of K_P for $NH_4COONH_2(s) \longrightarrow 2NH_{3(g)} + CO_{2(g)}$ is 25.
 - 1) No units
- 2) atm²
- 4) atm⁻³
- K_c for $N_2+O_2 \Longrightarrow 2NO$ is 'X', then for $NO \Longrightarrow 1/2N_2+1/2O_2$, it is 26.
 - 1) X^2
- 2) \sqrt{X}
- 3) $\frac{1}{\sqrt{Y}}$ 4) $\frac{1}{V^2}$

- 27. Law of mass action can not be applied to
 - 1) $2HI_{(g)} \rightleftharpoons H_{2(g)} + I_{2(g)}$

2) $PCl_{5(g)} \longrightarrow PCl_{3(g)} + Cl_{2(g)}$

3) $S_{Rhombic} \Longrightarrow S_{Monoclinic}$

- 4) $CaCO_{3(s)} \longrightarrow CaO_{(s)} + CO_{2(s)}$
- 28. Law of mass action is applicable to
 - 1) Homogeneous chemical equilibrium only 2) Heterogeneous chemical equilibrium only
 - 3) Both homogeneous and Heterogeneous chemical equilibria
 - 4) Physical equilibrium
- 29. At a given temperature, for a reversible reaction, if the concentration of reactants is doubled then the equilibrium constant will
 - 1) be doubled
- 2) be halved
- 3) change to 1/3
- 4) remain same
- If $N_2+3H_2 \longrightarrow 2NH_3...(I) \& N_2+3H_2 \xrightarrow{Fe} 2NH_3....(II)$ are in equilibrium at same 30.

temperature, then

1) K_C of $I = K_C$ of II

2) K_C of $I = K_P$ of II

3) K_c of $I < K_c$ of II

- 4) K_p of $II > K_p$ of I
- 31. A vessel (1) contains 1 mole each of N₂ & O₂ and another vesser (2) contains 2 mole each of N₃ & O_2 . Both vessels are heated to same temperature till equilibrium established in both cases. Then, correct statement is
 - 1) K_c for $N_2 + O_2 \longrightarrow 2NO$ in A & B are in the ratio 1:2
 - 2) K_p for $N_2 + O_2 \longrightarrow 2NO$ in A & B are in the ratio 1:2
 - 3) K_c for $N_2 + O_2 \longrightarrow 2NO$ in A & B are equal
 - 4) K_p for $N_2 + O_2 \longrightarrow 2NO$ in A & B are in the ratio 2:1
- 32. The reaction $H_2(g) + I_2(g) \Longrightarrow 2HI(g)$ is carried out in a 1 litre flask. If the same reaction is carried out in a 2 litre flask at the same temperature, the equilibrium constant will be
 - 1) same
- 2) doubled
- 3) halved
- 4) decreased

- The relationship between Kp and Kc is given by 33.
 - 1) $K_{c} = K_{p}(RT)^{Dn}$

2) $K_p = K_c (RT)^{Dn}$

3) $K_C = K_p + (RT)^{Dn}$

- 4) $K_p = K_C + (RT)^{Dn}$
- For the equilibrium reaction, $3Fe_{(s)} + 4H_2O(g) \Leftrightarrow Fe_3O_{4(s)} + 4H_{2(g)}$ the relation between 34. K_n and K_c is
 - 1) $K_p > K_c$
- 2) $K_p < K_c$
- 3) $K_p = K_C x (RT)^{-2}$ 4) $K_p = K_C$
- 35. For which of the following reactions, $Kp (RT)^2 = Kc$
 - 1) $PCl_{5(g)} \Leftrightarrow PCl_{3(g)} + Cl_{2(g)}$
- 2) $N_{2(g)} + 3H_{2(g)} \Leftrightarrow 2NH_{3(g)}$
- 3) $2SO_{2(g)} + O_{2(g)} \Leftrightarrow 2SO_{3(g)}$
- 4) $H_{2(g)} + I_{2(g)} \Leftrightarrow 2HI_{(g)}$
- 1) $N_2 + 2O_2 \Leftrightarrow 2NO_2 K_c = 2 \times 10^{-31}$ 36.
- 2) $2NO \Leftrightarrow 2N_2 + O_2 K_2 = 2.2 \times 10^{-33}$
- 3) $2N_2O_5 \Leftrightarrow 2N_2 + 5O_2K_6 = 3.8 \times 10^{-32}$
- 4) $2N_2 + O_2 \Leftrightarrow 2N_2O K_c = 4 \times 10^{-32}$

From the above data, the most stable oxide is

- 1) NO,
- 2) NO
- 3) $N_{2}O_{5}$
- The ionisation constant of H₂CO₂ as an acid in aqueous solution at room temperature is X. If 37. the first and second ionisation constants of H₂CO₃ are X₁ and X₂ respectively then
 - 1) $X = \frac{X_1}{X_2}$ 2) $X = \frac{X_2}{X_1}$ 3) $X = X_1 X_2$

- 4) $X = \frac{X_1 X_2}{2}$
- 38. In which of the following cases, does the reaction go farthest to completion
- 2) $K = 10^{-2}$
- 3) K = 10
- The units of equilibrium constant Kc for the following system $H_{2(g)} + I_{2(g)} \Leftrightarrow 2HI_{(g)}$ is 39.
 - 1) mole-1 lit
- 2) mol⁻² litre
- 3) mole lit-1

40. $H_2 + I_2 \Leftrightarrow 2HI$, In this reaction,

2)
$$K_p = K_c$$

3)
$$K_p > K_c$$

4)
$$K_p < K_c$$

- 41. For the Chemical reaction $A_2(g) + B_2(g) \Longrightarrow 2AB(g)$ the amount of AB at equilibrium is affected
 - 1) Temperature and pressure
- 2) Temperature only

3) Pressure only

- 4) Temperature, pressure and Catalyst
- 42. The following are some statements about equilibrium constant.
 - 1) The value of K is affected by temperature
 - 2) The equilibrium constant gives idea about the extent of completion of reaction
 - 3) The equilibrium constant is affected by volume and pressure

The correct combination is.

- 1) A and B
- 2) B and C
- 3) C and A
- 4) all
- 43. The following are some statements about active masses.
 - 1) Active mass of pure liquids and solids are taken as unity.
 - 2) Active mass of electrolytes is taken as molality.
 - 3) For 'dilute solutions of non-electrolytes, the active mass can be taken as molarity. The correct combination is.
 - 1) A and B
- 2) B and C
- 3) A and C
- 4) A, B, C
- 44. In which reaction, the concentration of product is higher than the concentration of reactant at equilibrium
 - 1) $A \rightleftharpoons B$ k = 0.01 2) $M \rightleftharpoons N$ k = 10 3) $X \rightleftharpoons Y$ k = 0.05 4) $K \rightleftharpoons P$ k = 0.01Which one of the following has greater active mass
 - 1) 200 gm of lime stone in 2 lit vessel
- 2) 90 gm of CS₂ liquid in 100 ml vessel
- 3) 56 gm of N, gas in 0.5 lit vessel
- 4) 1 mole of O₂ gas at STP
- Which of the following expression is true for the system $2SO_{2(g)} + O_{2(g)} \Leftrightarrow 2SO_{3(g)}$ 46.
 - 1) $K_n(K_c)^{-1} < 1$ 2) $K_n(K_c)^{-1} > 1$ 3) $K_n(K_c)^{-1} = 1$ 4) $K_n = K_c$

- For the reaction $CO_{(g)}$ + $\frac{1}{2}$ $O_{2(g)}$ \Longrightarrow $CO_{2(g)'}$ K_P / K_C is 47.
 - 1) RT

45.

- 2) (RT)-1
- 3) $(RT)^{-1/2}$
- 4) $(RT)^{1/2}$
- The following are some statements about units of Kc and Kp. 48.
 - 1) Kp has always units.

- 2) Kc has no units at all times.
- 3) If Δ n = 0, then Kp and Kc have no units.

The correct set is.

- 1) A and B
- 2) Conly
- 3) C and A
- 4) A, B, C
- If K₁ and K₂ are the equilibrium constants of equilibria A and B respectively, then the 49. relationship between the two constants is
 - 1) $SO_{2(g)} + \frac{1}{2} O_{2(g)} \Leftrightarrow SO_{3(g)} \rightarrow K_1$
- 2) $2SO_{3(g)} \Leftrightarrow 2SO_{2(g)} + O_{2(g)} \rightarrow K_2$
- 1) $K_1 = K_2$

- 2) $K_1 = \frac{1}{K_2}$ 3) $K_2 = K_1^2$ 4) $K_1^2 = \frac{1}{K_2}$
- 50. Starting from 'a' moles of H, and 'b' moles of I, an equilibrium $H_2 + I_2 \Leftrightarrow 2HI$ is established

with 2x moles of HI. The equilibrium constant K_c is

1)
$$\frac{4x^2}{ab}$$

2)
$$\frac{4x^2}{(a-x)(b-x)}$$

3)
$$\frac{2x^2}{(a-x)(b-x)}$$

2)
$$\frac{4x^2}{(a-x)(b-x)}$$
 3) $\frac{2x^2}{(a-x)(b-x)}$ 4) $\frac{4x^2}{(a-2x)(b-2x)}$

- The equilibrium constants for the reactions $Zn_{(s)} + Cu^{2+}{}_{(aq)} \Leftrightarrow Zn^{2+}{}_{(aq)} + Cu_{(s)} \ ;$ 51. $Cu_{\left(s\right)}^{+}+2Ag_{\left(aq\right)}^{+}\Leftrightarrow Cu_{\left(aq\right)}^{2+}+2Ag_{\left(s\right)}^{-}\text{ are }K_{_{1}}\text{ and }K_{_{2}}\text{ respectively then the equilibrium}$ constant for the reaction $Zn_{(s)} + 2Ag_{(aq)}^+ \rightleftharpoons Zn_{(aq)}^{+2} + 2Ag_{(s)}$ will be
 - 1) $K_1 + K_2$
- 2) $K_1 \cdot K_2$
- 4) $K_1 K_2$
- The equilibrium constant, Kp for the reaction $A \Leftrightarrow 2B$ is related to degree of dissociation α 52. of A and total pressure P as

$$1) \frac{4\alpha^2 P}{1-\alpha^2}$$

2)
$$\frac{4\alpha^2 P^2}{1-\alpha^2}$$
 3) $\frac{4\alpha^2 P^2}{1-\alpha}$ 4) $\frac{4\alpha^2 P}{1-\alpha}$

3)
$$\frac{4\alpha^2 P^2}{1-\alpha}$$

4)
$$\frac{4\alpha^2 P}{1-\alpha}$$

The following equilibria are given 53.

$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$
; $K_c = K_1$; $N_2 + O_2 \rightleftharpoons 2NO$; $K_c = K_2$;

$$H_2 + \frac{1}{2}O_2 \rightleftharpoons H_2O; K_C = K_3$$

The equilibrium constant of the reaction. $2NH_3 + \frac{5}{2}O_2 \rightleftharpoons 2NO + 3H_2O$ in terms of K_{1}/K_2 and K, is

1)
$$K_1 K_2 K_3$$

2)
$$K_1 K_2 / K_3$$

3)
$$K_1 K_3^2 K_2$$

4)
$$K_2 K_3^3 / K_1$$

For which of the following reactions, the degree of dissociation (α) and equilibrium constant 54.

$$(K_p)$$
 are related as $K_p = \frac{4\alpha^2 p}{(1-\alpha^2)}$

1)
$$N_2O_{4(g)} \rightleftharpoons 2NO_{2(g)}$$

2)
$$H_{2(g)} + I_{2(g)} \rightleftharpoons 2HI_{(g)}$$

3)
$$N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$$

4)
$$PCl_{3(g)} + Cl_{2(g)} \rightleftharpoons PCl_{5(g)}$$

The equilibrium constants for the stepwise formation of MCl, MCl₂ and MCl₃ are a, b and c 55. respectively. If the equilibrium contant of formation of MCl₃ is K, which of the following is correct?

2)
$$\frac{1}{K} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$$

3)
$$\log K = \log a + \log b + \log c$$

4)
$$K = \frac{1}{a} \times \frac{1}{b} \times \frac{1}{c}$$

What is the equilibrium expression for the reaction, $P_{4(s)} + 5O_{2(g)} \rightleftharpoons P_4O_{10(s)}$? (AIEEE, 2004) 56.

1)
$$K_c = \frac{[P_4O_{10}]}{[P_4][O_2]^5}$$
 2) $K_c = \frac{1}{[O_2]^5}$ 3) $K_c = [O_2]^5$ 4) $K_c = \frac{[P_4O_{10}]}{5[P_4][O_2]}$

$$(2) K_c = \frac{1}{\left[O_2\right]^5}$$

$$3) K_c = \left[O_2\right]^5$$

$$4) K_c = \frac{[P_4 O_{10}]}{5[P_4][O_2]}$$

For the reaction $CO_{(g)} + Cl_{2(g)} \rightleftharpoons COCl_{2(g)}$. The K_p / K_c is equal to 57.

1)
$$\frac{1}{RT}$$

4) RT

 PCl_5 dissociates as follows in a closed reaction vessel $PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$. If total 58. pressure at equilibrium of the rea-ction mixture is P and degree of disso-ciation of PCl_s is x, the partial pressure of PCl, will be

1)
$$\left[\frac{x}{x-1}\right]P$$

1)
$$\left[\frac{x}{x-1}\right]P$$
 2) $\left[\frac{x}{1-x}\right]P$ 3) $\left[\frac{x}{x+1}\right]P$ 4) $\left[\frac{2x}{1-x}\right]P$

3)
$$\left[\frac{x}{x+1}\right]P$$

4)
$$\left[\frac{2x}{1-x}\right]$$
I

Lechatelier Principle - applications - Miscellaneous

High temperature and high pressure (as per Lechatelier principle) favour 59.

1)
$$N_2 + 3H_2 \longrightarrow 2NH_3$$
, DH = - Q_1

2)
$$CaCO_3 \longrightarrow CaO + CO_{2'}DH = +Q_2$$

3)
$$3O_2 \rightleftharpoons 2O_3$$
, DH = $+Q_3$

4)
$$N_2+O_2 \longrightarrow 2NO$$
, DH= $+Q_4$

For $CaCO_3(s) \longrightarrow CaO(s) + CO_2(g)$, $\bigwedge H = +Q$ at equilibrium, to shift equilibrium towards 60. right,

- 1) [CO₂] should be increased
- 2) [CO₂] should be decreased
- 3) Pressure should be increased
- 4) Temperature should be decreased

As per Braun's principle, yield of Ammonia will be more in Haber's process under 61. conditions (L=Low; H = high, T = Temp, P = Pressure)

- 1) LT; LP
- 2) LT; HP
- 3) HT; HP
- 4) HT; LP

62. For $2SO_2 + O_2 \rightleftharpoons 2SO_3$, $\Delta H = -QKJ$, as per Lechatelier's principle which of the following changes favours forward reaction yielding more SO3

- 1) Adding more O₂
- 2) Removing SO₃
- 3) Applying high P
- 4) Change of catalyst

- 1) A, B, C, & D
- 2) A. B & D
- 3) A & D
- 4) A, B & C

63. I) $H_2O(l) \longrightarrow H_2O(g)$ II) $I_2(s) \longrightarrow I_2(vap)$ III) $H_2O(l) \longrightarrow H_2O(s)$ IV) $CO_2(g) \longrightarrow CO_2(aq)$ Rise of T shifts equilibrium towards right in the case of

- 1) I & IV
- 2) II, III & IV
- 3) I & II
- 4) I, II & III

 K_c for $H_2+1/2$ $O_2 \Longrightarrow H_2O$ at 500 K is 2.4×10^{47} , Now backward reaction is fovoured by 64.

- 1) High P
- 2) High T
- 3) Presence of Pt
- 4) Addition of He(g)

With increase in temperature, the value of equilibrium constant 65.

1) Increases

- 2) Decreases
- 3) May increase or decrease
- 4) Remains constant

66. With increase in temperature generally the value of the equilibrium constant of endothermic reversible reaction

1) Increases

- 2) Decreases
- 3) Change can not be predicated
- 4) Does not change
- 67. For a given reaction Kp < Kc. Increase of pressure favours
 - 1) the backward reaction

2) no reaction

- 3) the forward reaction
- 4) both forward and backward reaction equally
- 68. Le chatelier's principle is applicable to
 - 1) Chemical equilibria only
- 2) Physical equilibria only
- 3) Both physical and chemical equilibria
- 4) Gaseous systems only
- 69. Increase of pressure favours the forward reaction in the following equilibrium
 - 1) $H_{2(g)} + I_{2(g)} \rightleftharpoons 2HI_{(g)}$

- 2) $2NO_{2(g)} \rightleftharpoons N_2O_{4(g)}$
- 3) $PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$
- 4) $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$
- 70. In the equilibrium $NH_4HS_{(s)} \Leftrightarrow NH_{3(g)} + H_2S_{(g)}$ The forward reaction can be favoured by
 - 1) Adding some more NH₄HS
- 2) Adding some more NH₃
- 3) Removing some Ammonia from the reaction mixture
- 4) Adding some more H₂S
- 71. In the dissociation of CaCO₃ in a closed vessel, the forward reaction is favoured by
 - 1) adding some more CaCO₃
- 2) removing some CaO

3) increasing the pressure

- 4) removing CO,
- 72. The following are some statements regarding dissociation of lime stone according to the equation $CaCO_{3(s)} \rightleftharpoons CaO_{(s)} + CO_{2(g)}$; $\Delta H = 110 \, k.J.$ the reaction is carried in a closed vessel.
 - A)The pressure of CO₂ increases when temperature is increased.
 - B)The pressure of CO, increases when temperature is decreased.
 - 3) The pressure of CO₂ increases when amount of CaCO₃ is decreased.

The incorrect statements are.

- 1) A and B
- 2) B and C
- 3) A and C
- 4) All A, B, C
- 73. Acetic acid dissociates as $CH_3COOH \Leftrightarrow CH_3COO^- + H^+$. If a little amount of sodium acetate is added to its aqueous solution
 - 1) The acid dissociates further
- 2) The H⁺ ion concentration increases
- 3) The acid dissocitaion is suppressed
- 4) The equilibrium is unaffected
- 74. $N_{2(g)} + 3H_{2(g)} \Leftrightarrow 2NH_{3(g)}$. If some HCl gas is passed into the reaction mixture at the equilibrium of this reaction,
 - 1) Equilibrium shifts towards left
- 2) Equilibrium shifts towards right
- 3) Concentration of H₂ increases
- 4) The equilibrium is not affected
- 75. K_c value of a gaseous reaction is 5mole / lit. If pressure is increased
 - 1) Forward reaction is favoured
- 2) Backward reaction is favoured

3) Reaction is uneffected

4) K_c value increases

In a reversible reaction $K_c > K_p$ and $\Delta H = +40$ K.Cal. The product will be obtained in less 76. amount on 1) Increasing both pressure & temperature 2) Decreasing both pressure & temperature 3) Decreasing pressure & increasing temperature 4) Increasing pressure & decreasing temperature 77. For the physical equilibrium ice \Leftrightarrow water, the forward reaction is not favoured by 1) Increasing pressure 2) Increasing temperature 3) Keeping in contact with hot water 4) Taking more ice 78. If CO_2 is made to escape from the system $CO_2 + H_2O \rightleftharpoons H_2CO_3 \rightleftharpoons H^+ + HCO_3^-$ then for the system 1) p^H decreases 2) p^H increases 3) [H⁺] increases 4) p^{OH} increases 79. A reaction $N_2 + 3H_2 \rightleftharpoons 2NH_3 + 92$ k.j is at equilibrium. If the concentration of N_2 is increased the temperature of the system 3) remains constant 4) becomes half 1) decreases 2) increases 80. In the reversible reaction $CaF_{2(s)} \rightleftharpoons Ca^{+2}_{(aq)} + 2F^{-}_{(aq)'}$ the concentration of fluoride ions was made halved, then equilibrium concentration of Ca⁺² 1) increases by 2 times 2) decreases by 2 times 3) increases by 4 times 4) decreases by 4 times $A_{(s)} + B_{(s)} + heat \rightleftharpoons 2C_{(s)} + 2D_{(g)}$. At equilibrium the pressure of 'B' is doubled. By what 81. factor the concentration of 'D' should change to reattain the equilibrium 1) $\sqrt{2}$ 4) $\sqrt{3}$ 2) 2 3)3 For the reaction $PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$ the forward reaction at constant temperature is 82. favoured by 1) Introduction of an inert gas at constant volume 2) Introduction of PCl_{3(g)} at constant volume 3) Introduction of $PCl_{5(g)}$ at constant volume 4) Introduction of $Cl_{2(g)}$ at constant volume In the reaction $N_{2(g)} + O_{2(g)} \rightleftharpoons 2NO_{(g)}$; $\Delta H = +180 \text{ kJ}$. 83. On increasing the temperature the production of NO 1) Increases 2) Decreases 3) Remains constant 4) Cannot be predicted Consider the reaction equilibrium, $2SO_{2(g)} + O_{2(g)} \rightleftharpoons 2SO_{3(g)}; \Delta H^o = -198kJ$. On the 84. basis of Le Chatelier's principle, the condition favourable for the forward reaction is 1) Lowering of temperature as well as pressure 2) Increasing of temperature as well as pressure 3) Lowering of temperature and increasing of pressure 4) Any value of temperature and pressure 85. The gaseous reaction $A + B \rightleftharpoons 2C + D + q$ KJ most favoured at: 1) High temperature and low pressure 2) Low temperature and low pressure

4) High temperature and high pressure

3) Low temperature and high pressure

86. Exothermic formation represented by equation $Cl_2(g) + 3F_2(g) \rightleftharpoons 2ClF_3(g)$, $\Delta H = -339$ KJ.

Which of the following will increase the quantity of CIF₃in equilibrium mixture?

1) Increasing temperature

- 2) Removing Cl,
- 3) Increasing volume of vessel
- 4) Adding F,

Assertion and Reason Type Questions

Choose the correct option as:

- 1) both A & R are true, R is the correct explanation of A
- 2) both A & R are true, R is not correct explanation of A
- 3) A is true, R is false

- 4) A is false, R is true
- 87. Assertion: Introduction of catalyst does not affect position of equlibrium

Reason: For a reversible reaction, presence of a catalyst influences both forward & backward reaction reacts to same extent

88. Assertion: For Zn(s) + Cu⁺²(aq) \Longrightarrow Zn⁺²(aq) +Cu(s), DG = 0, but K_C =10³⁷

Reason : For a process under equilibrium Gibb energy change is zero, but as this process proceeds more towards right if $K_C>1$

89. Assertion: For $N_2+3H_2 \rightleftharpoons 2NH_4$, DH = -Q KJ, high pressure yields more Ammonia

Reason: According to Lechatlier's principle, increase of pressure shifts equilibrium in a direction that proceeds in decrease in number of moles.

90. Assertion: The degree of decomposition of PCl₅ is more at low pressures.

Reason: In a reversible reaction, on increasing the pressure the equilibrium shifts in the direction in which decrease in volume takes place.

91. Assertion: $N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$ In this equilibrium system, the yield of ammonia is not altered in the presence of a catalyst.

Reason: A catalyst does not change the position of equilibrium.

92. A:The hydrolysis of an ester in acidic medium does not change with pressure.

Reason: Pressure does not show effect on equilibrium reactions taking place in solution.

- 93. A gas bulb is filled with NO₂ gas and immersed in an ice bath at 0°C which becomes colourless after sometime. This colourless gas will be
 - 1) NO₂
- 2) $N_{2}O$
- 3) N_2O_4
- 4) N_2O_5
- 94. In the case of gaseous homogeneous reaction, the active mass of the reactant is obtained by the expression [TN-2002]
 - 1) $\frac{PV}{RT}$
- 2) $\frac{P}{RT}$
- 3) $\frac{RT}{P}$
- 4) $\frac{n}{V}RT$
- 95. Under what conditions of temperature and pressure the formation of atomic hydrogen from molecular hydrogen will be favoured.
 - 1) High temperature and high pressure
- 2) Low temperature and low pressure
- 3) High temperature and low pressure
- 4) Low temperature and high pressure
- 96. Of the following, which change will shift the reaction towards the product

$$I_2(g) \rightleftharpoons 2I(g) \Delta H^o_f(298K) = +150kJ$$

- 1) Increase in concentration of I
- 2) Decrease in concentration of I₂

3) Increase in temperature

- 4) Increase in total pressure
- 97. At constant temperature, the equilibrium constant (Kp) for the decomposition reaction $N_2O_4 \longrightarrow 2NO_2$ is expressed by $K_p=4x^2 P/(1-x^2)$ where P is pressure, x is extent of decomposition. Which of the following statement is true?
 - 1) K_n increases with increase of P

2) K_p increases with increase of x

3) K_p increases with decrease of x

4) K_p remains constant with change in P or x

- 98. Consider the following equilibrium $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ in a closed container. At a fixed temperature, the volume of the reaction container is halved. For this change, which of the following statements holds true regarding the equilibrium constant (K_n) and degree of dissociation(α)?
 - 1) Neither K_n nor α changes

2) Both K_p and α change [IIT -2002]

3) K_p changes, but α does not change

4) K_p does not change, but α changes

WORK SHEET - II

Active mass - K_C , K_p relationship

1. What is the equation for the equilibrium constant (K_2) for the following reaction?

$$\frac{1}{2}A(g) + \frac{1}{3}B(g) \xrightarrow{T(K)} \frac{2}{3}C_{(g)}$$

1)
$$K_{C} = \frac{\left[A\right]^{\frac{1}{2}}\left[B\right]^{\frac{1}{3}}}{\left[C\right]^{\frac{3}{2}}}$$
 2) $K_{C} = \frac{\left[C\right]^{\frac{3}{2}}}{\left[A\right]^{2}\left[B\right]^{3}}$ 3) $K_{C} = \frac{\left[C\right]^{\frac{2}{3}}}{\left[A\right]^{\frac{1}{2}}\left[B\right]^{\frac{1}{3}}}$ 4) $K_{C} = \frac{\left[C\right]^{\frac{2}{3}}}{\left[A\right]^{\frac{1}{2}}+\left[B\right]^{\frac{1}{3}}}$

3)
$$K_C = \frac{\left[C\right]^{\frac{2}{3}}}{\left[A\right]^{\frac{1}{2}}\left[B\right]^{\frac{1}{3}}}$$

4)
$$K_{C} = \frac{\left[C\right]^{\frac{2}{3}}}{\left[A\right]^{\frac{1}{2}} + \left[B\right]^{\frac{1}{3}}}$$

- Active mass of 5.6 lit N, at STP 2.
 - 1) 22.4M
- 2) 0.25M
- 3) $\frac{1}{22.4}$ M
- 4) 4M

- 3. Active mass of 0.64 g SO₂ in 10 lit vessel is
 - 1) 10^{-2} M
- $2) 10^{-3} M$
- $3) 10^{-1} M$
- 4)0.64g
- K_p/K_c for $N_2+3H_2 \rightleftharpoons 2NH_3$ (gaseous phase) at 400 K is 4.
 - 1) 400 R
- $2) (400R)^2$
- 3) (400R)⁻²
- 4) (127)-2
- K_c for $N_2+O_2 \rightleftharpoons 2NO$ at certain temperature is 1.6×10^{-3} , then K_p for $NO \rightleftharpoons 1/2N_2+1/2O_2$ 5. at same temperature will be
 - 1) 25
- 2) 25 atm
- 3) 5 atm
- 4) 1.6x10⁻³ atm⁻¹
- The equilibrium constant for the given reaction $N_{2(g)} + 2O_{2(g)} \rightleftharpoons 2NO_{2(g)}$ is 100. 6. What is the equilibrium constant for the reaction given below:

$$NO_{2(g)} \longrightarrow \frac{1}{2}N_{2(g)} + O_{2(g)}$$

- 3) 0.1
- Equilibrium constant for the gaseous reaction $N_2+O_2 \rightleftharpoons 2NO$ is $4x10^{-4}$. Now K_C for 7.

СНЕ	MISTRY			⇒ EQUILIBRIUM
		amanatuna tha daanaa	of dissociation of DC1	
30.		f 15 atm. The value of I		was found to be 0.25 under a
	1) 1	2) 0.25	3) 0.5	4) 0.75
31.	*	,	,	to that of B. The equilibrium
	•	of A and C are equal. K		111111111111111111111111111111111111111
	1) 0.08	2) 8	3) 1/8	4) 80
32.	At constant tem	nperature 80% AB disso	ociates into A_2 and $B_{2'}$	then the equilibrium constant
	for $2AB_{(g)} \rightleftharpoons A$	$E_{2(g)} + B_{2(g)}$ is		
	1) 1	2) 0.25	3) 16	4) 4
33.				as reached. HI was found to be tion of HI is $[2HI \rightleftharpoons H_2 + I_2]$
	1) 0.282	2) 0.0796	3) 0.0199	4) 1.99
34.	N ₂ O ₄ at an initia	al pressure of 2atm. ar	nd 300K dissociates to	an extent of 20% at the same
	2 1	_		ne reaction $2NO_2 \rightleftharpoons N_2O_4$ is
	1) 0.4	2) 0.8	3) 2.5	4) 1.6
35.		s heated in a one litre nstant for the dissociat	9	iates to the extent of 80%, the
	1) 2 ´ 10-2	2) 6.4	3) 0.67	4) 0.32
36.		entrations of A and B of B and C are same th		⇒ 3C and when equilibrium
	1) 0.25	2) 0.75	3) 0.5	4) 1
37.	For the reaction Then Kp will be	* *	ne degree of dissociatio	on at equilibrium is 0.2 at 1 atm.
	1) 1/2	2) 1/4	3) 1/6	4) 1/8
38.				me of CO_2 is converted into CO total pressure is 0.8 atm will be
	1) 0.18 atm	2) 1.8 atm	3) 2 atm	4) 1 atm
39.	1.2 moles of SO_3 $O_{2(g)}$ and the cor of moles at equi	ncent ration of oxygen a	ate in a 2 litre vessel the at equilibrium is 0.1 m	e reaction is $2SO_{3(g)} \Leftrightarrow 2SO_{2(g)} +$ ole per litre. The total number
	1) 2	2) 1.4	3) 0.8	4) 1.6
40.	when 0.5 mole of		certain temperature.	sel. Equilibrium is established If equilibrium constant is 4 lit² at equilibrium.
	1) 0.5	2) 1	3) 1.5	4) 2
41.	•	l alcohol and 1.0 mole o The value of equilibriu		. At equilibrium, 0.666 mole of
	1) 1/4	2) 1/2	3) 4	4) 3
42.		$SO_{2(g)} + O_{2(g)} \Leftrightarrow 2SO_{2(g)}$ f the equilibrium press	` '	
	1) 0.2	2) 0.3	3) 0.4	4) 0.1 atm
43.	For the following is 30 atm. The v		\rightarrow NH _{3(g)} + H ₂ S _(g) , the	e total pressure at equilibrium

1) 15 atm²

2) 225 atm²

3) 30 atm^2

4) 15 atm

44. A vessel contains N₂O₄ & NO₂ in 2:3 molar ratio at 10 atm under equilibrium. Now, K_P for $N_2O_4 \rightleftharpoons 2NO_2$ is

1) 9 atm

2) 9 atm⁻¹

3) 4.5 atm²

4) 10 atm

45. A vessel contains 1 mole PCl_z (g) at 4 atm and 0.5 mole PCl_z formed at equilibrium. Now, equilibrium pressure of mixture is (assume ideal behavior)

1) 16 atm

2) 6 atm

3) 2 atm

4) 4.5 atm

 P_{eq} for NH₄COONH₂(s) \rightleftharpoons 2NH₃(g) + CO₂(g) at certain temperature is 0.9 atm. Then, partial 46. pressure of Ammonia at equilibrium (in atm)

1)0.9

2) 0.81

3) 0.03

4) 0.6

47. 28 gms of N, and 6 gms of H, were heated in a closed 1 litre vessel. At equilibrium, 25.5 gms of NH₃ is present. The approximate value of K_c is

1) 5.55

2) 21.33

4) 3.16

For the following three reactions a,b and c equilibrium constant are given (AIEEE - 2008) 48

1) $CO_{(g)} + H_2O_{(g)} \rightleftharpoons CO_{2(g)} + H_{2(g)}; K_1$

2) $CH_{4(g)} + H_2O_{(g)} \rightleftharpoons CO_{(g)} + 3H_{2(g)}, K_2$

3) $CH_{4(g)} + 2H_2O_{(g)} \rightleftharpoons CO_{2(g)} + 4H_{2(g)}$, K_3 Which of the following relations is correct?

1) $K_2 K_3 = K_1$ 2) $K_3 = K_1 K_2$ 3) $K_3 \cdot K_2^3 = K_1^2$ 4) $K_1 \sqrt{K_2} = K_3$

49. In a 500 ml flask, the degree of dissociation of PCl₅ at equilibrium is 40% and the initial amount is 5 moles. The value of equilibrium constant in mole lit-1 for the decomposition of PCl₅ is(E-08)

1) 3.33

2) 2.66

3) 5.32

4) 4.66

EXERCISE - I ANSWERS

WORK SHEET - I

			V	VOKK	SHEE	1 - 1			
1) 3	2) 4	3) 3	4) 2	5) 2	6) 4	7) 4	8) 3	9) 2	10) 4
11) 1	12) 3	13) 3	14) 2	15) 2	16) 4	17) 4	18) 4	19) 3	20) 2
21) 1	22) 4	23) 1	24) 4	25) 3	26) 3	27) 3	28) 3	29) 4	30) 1
31) 3	32) 1	33) 2	34) 4	35) 2	36) 2	37) 3	38) 1	39) 4	40) 2
41) 2	42) 1	43) 3	44) 2	45) 3	46) 1	47) 3	48) 2	49) 4	50) 2
51) 2	52) 1	53) 4	54) 1	55) 3	56) 2	57) 1	58) 3	59) 3	60) 2
61) 2	62) 4	63) 3	64) 2	65) 3	66) 1	67) 3	68) 3	69) 2	70) 3
71) 4	72) 2	73) 3	74) 2	75) 2	76) 2	77) 4	78) 2	79) 2	80) 3
81) 1	82) 3	83) 1	84) 3	85) 2	86) 4	87) 1	88) 1	89) 1	90) 1
91) 1	92) 1	93) 3	94) 2	95) 3	96) 3	97) 4	98) 4		
			14	ODK	спеет	г тт			

WORK SHEET - II

1) 3	2) 3	3) 2	4) 3	5)1	6) 3	7) 4	8) 3	9) 2	10) 2
11) 1	12) 3	13) 3	14) 4	15) 1	16) 1	17) 4	18) 3	19) 3	20) 4
21) 2	22) 1	23) 3	24) 4	25) 3	26) 1	27) 1	28) 2	29) 4	30) 1
31) 2	32) 4	33) 3	34) 3	35) 2	36) 2	37) 3	38) 2	39) 2	40) 2
41) 3	42) 1	43) 2	44) 1	45) 2	46) 4	47) 2	48) 2	49) 2	

EXERCISE - I

Theories of acids and bases

1.	Which of the following is an Arrhenius acid?							
	1) NH ₃	2) SO ₂	3) AlCl ₃	$4) \mathrm{HNO}_3$				
2.	Which of the fol	lowing is relatively stro	onger acid?					
	1) H ₂ S	2) HCN	3) HF	4) CH ₃ COOH				
3.	Arrhenius theor	y could not explain the	e acidic nature of					
	1) HCl	2) HCOOH	3) H ₂ S	4) CO ₂				
4.	Which of the fol	lowing is only Bronsted	d - Lowry acid but not a	n Arrhenius acid?				
	1) HCl	2) NH ₄ ⁺	3) BF ₃	4) CH ₃ COOH				
5.	Which of the fol	lowing species acts as l	Bronsted base but not a	as acid ?				
	1) CH ₃ COOH	2) HCO ₃ -	3) H ₂ PO ₂ -	4) H ₂ PO ₃ -				
6.	Which of the fol	lowing can act as Lowi	ry-Bronsted acid as we	ell as base?				
	1) HCl	2) SO ₄ ²⁻	3) HPO ₄ ²⁻	4) Br-				
7.	Which of the following is neither Bronsted acid nor Bronsted base?							
	1) HI	2) ${\rm HSO_4}^-$	3) Cl ⁻	4) BF ₃				
8.	Which of the following is a Bronsted acid but not a Bronsted base?							
	1) H ₂ O	2) NH ₃	3) H ₂ S	4) HCO ₃ -				
9.	The conjugate base of hydrazoic acid is							
	1) N ³⁻	2) N ₃ -	3) NH ₂ -	4) NH_4^{+}				
10.	Identify Bronste	ed - Lowry acids in the r	eaction given below?					
	$[Al(H_2O)_6]^{3+} +$	$\text{HCO}_3^- \rightleftharpoons [\text{Al}(\text{H}_2\text{O})_5]$	$(OH)]^{2+} + H_2 CO_3$ The	correct answer is				
	1) A, C	2) A, D	3) B, D	4) B, C				
11.	Conjugate acid	of HPO ₄ ²⁻ is						
	1) H_3PO_4	2) H ₂ PO ₄ -	3) PO ₄ ³⁻	$4) H_3 PO_4$				
12.	Conjugate base of HSO ₄ ⁻ is							
	$1)H_2SO_4$	2) H ₂ SO ₄ ²⁻	3) SO ₄ ²⁻	4) H ⁺				
13.	Of the given anions, the strongest Bronsted base is							
	1) ClO-	2) ClO ₃ -	3) ClO ₂ -	4) ClO ₄ -				
14.	Among the follo	wing, relatively weak l	pase is					
	1) F-	2) Cl ⁻	3) Br ⁻	4) I ⁻				
15.	Among the follo	Among the following relatively strong base is						
	1) HSO ₄ -	2) NO ₃ -	3) CH ₃ COO-	4) Cl ⁻				
16.	O_2^{2-} is the conju	gate base of						
	1) OH-	2) H ₂ O	3) H ₂ O ₂	4) HO ₂ -				
17.	,	ate base is obtained from		, 4				
	1) HNO ₃	2) CH ₃ COOH	3) HCN	4) H ₂ S				

1) HPO₃²-, PO₃³-

2) $H_2PO_4^-$, HPO_4^{2-}

3) $H_2PO_4^-$, H_3PO_4

4) $H_2PO_4^-$, PO_3^{3-} .

19. In aqueous solution, HCl and HNO₃ are equally strong. This is because

1) Their basicities are same

2) Both are oxy acids of non-metals

3) Both have lower molecular weights

4) Levelling effect of water

20. Which of the following acts as Lewis acid?

1) H

2) He

3) S

4) B

21. Which of the following is a Lewis acid?

1) CCl₄

2) BF₂

3) H₂O

4) SO₄²⁻

22. Which of the following acts as a Lewis acid in the following reaction $SnCl_4+2Cl^- \rightarrow [SnCl_6]^{2-}$

1) Cl-

2) [SnCl₆]²⁻

3) SnCl₄

4) 2Cl-

23. Which of the following is relatively strong Lewis acid?

1) BF

2) BCl₃

3) BBr₃

 $4)BI_3$

24. Which of the following is not a Lewis acid?

1) SnCl₂

2) NH_4^+

3) NH₃

4) both NH₃ and NH₄⁺

25. Which of the following is a Lewis acid?

1) HCOO-

2) H₂SO₄

3) SiF_4

4) H₂S

26. In a complex compound ligand acts as

1) Lewis acid

2) Lewis base

3) Lowry-Bronsted acid

4) Arrhenius base

27. Al^{3+} is a Lewis acid, because

1) It has vacant orbital

2) It has completely filled orbitals

3) It can give H+

4) It can add with OH-

28. Nitrogen trihalides are

1) Lewis acids

2) Arrhenius bases

3) Lewis bases

4) Bronsted and Lowry acids

29. Which of the following species acts as a Lewis acid and also as a Lewis base?

1) SO₂

2) SCl₄

3) both SO_2 and SCl_4 4) SO_3

30. Strength of an weak acid or a weak base depends upon its

1) Temperature

2) Nature of solvent

3) Degree of dissociation

4) All the above

31. Conjugate base of $[Al(H_2O)_6]^{3+}$ is

1) $[Al(H_2O)_6]^{2+}$

2) $[Al(H_2O)_5OH]^{2+}$

3) $[Al(H_2O)_4OH]^2$

4) $[Al(H_2O)_4(OH)_2]^{2+}$

32. Conjugate base of $[Cu(NH_3)_6]^{2+}$ is

1) $[Cu (NH_3)_3 NH_2^{-1}]$

2) $[Cu (NH_3)_5 NH_2]^+$

3) $[Cu (NH_3)_4 NH_2]^+$

4) $[Cu(NH_3)_4 NH_2]^{2+}$

33. In the reaction, $CH_3COOH + H_2O \rightleftharpoons H_3O^+ + CH_3COO^-$, H_3O^+ acts as

1) Weak acid

2) Weak base

3) Strong acid

4) Strong base

34. Which of the following is relatively strong base?

CHEM	IISTRY		*	IONIC EQUILIBRIUM
022237	1) CH ₃ O-	2) C ₆ H ⁻ ₅	3) CH ₃ -	4) C ₂ H ⁻
35.	Conjugate bas	0 0	, 3	. 2
	1) Electron	2) Hydride ion	3) Proton	4) Neutron
36.	•	• •	,	NH_2^- , $H-C \equiv C^-$ and CH_3 - CH_2^-
		$> NH2- > H - C \equiv C^- > OH^-$		_
		2 > H - C = C ⁻ > CH ₃ - CH ₂ ⁻	•	v = =
37.	-	ugate base among the follow		3 2
	1) NH ₂ -	2) F-	3) OH-	4) ClO ₄ -
38.	,	ollowing is an acidic salt?	,	, 4
	1) Na_3PO_4	2) Na ₂ H PO ₃	3) NaH ₂ PO ₂	4) NaH ₂ PO ₄
39.	, , ,	ollowing is normal salt?	2 2	, 2 - 4
	1) Na ₃ PO ₄	2) CaSO ₄	3) Na_2CO_3	4) all the above
40.	, , ,	lowing, the stronger acid in	, 2 3	•
	1) Aniline	2) Phenol	3) Ammonia	4) Benzene
41.	,	ollowing does not turn blue	,	*
	1) 1M HCl	2) Pure and dry HCl		4) Conc.HCl
42.	Aniline is a str	,	<i>3)</i> u iii.121	i) concinci
12.	1) H ₂ O	2) NaOH	3) CS ₂	4) HCl
43.	, 2	or conductor in	o) 20 ₂	1) 1101
10.	1) Water	2) dil.NH ₃	3) Acetic acid	4) NaOH solution
44.	,	ollowing has least tendency	,	,
11.	1) I ⁻	2) I ⁺	3) SnCl ₂	4) AlCl ₃
45.	,	ollowing relatively more str	, 2	, 3
45.	1) HClO ₄	2) H_2SO_4	3) HI	4) All are equally
	strong	2)11 ₂ 50 ₄	3)111	4) All are equally
46.	_	ollowing is relatively strong	base in aqueou	s solution ?
			_	4) All are equally
	strong	,	, , , , , ,	, 1 ,
47.	Which of the fo	ollowing is strong Lewis bas	se?	
	1) NF ₃	2) NCl ₃	3) NBr ₃	4) NI ₃
48.	Which of the fo	ollowing is strong Lewis aci		
	1) Na ⁺	2) Mg^{2+}	3) Al ³⁺	
	4) All show eq	•		
49.		lic strength of SO ₃ when cor	_	
ΕO	1) Less	2) More	3) Equal	4) Can not be predicted
50.	1) Arrhenius th	ollowing failed to explain th neory 2) Bronsted theory	e relative streng 3) Lowry theo	
51.	,	ollowing acts as Lewis acid	•	1y 4) Lewis theory
J1.	1) Zn^{2+}	2) FeCl ₃	3) CO ₂	4) All the above
52.	•	ollowing acts as Lewis base	, <u>-</u>	,
	1) SCN-	2) R ₂ O	3) RNH ₂	4) All the above

53.	Which of the follow	ing acts as Lewis base	?				
	1) C_2H_2	2) C_2H_4	3) Pyridine	4) All the above			
54.	Which of the follow	ing is wrong?					
	1) All Bronsted base	es are Lewis bases	2) All Lewis acids ar	e Bronsted acids			
	3) All Arrhenius aci	ds are Bronsted acids	4) All Arhenius base	es are Bronsted bases			
55.	In the reaction, AIC	$l_3 + Cl^- \rightarrow AlCl_4^-$, Cl act	sas				
	1) Bronsted acid	2) Bronsted base	3) Lewis base	4) Lewis acid			
56.	The no.of conjugate	acid-base pairs preser	nt in the aqueous soluti	on of H ₃ PO ₃ is			
	1) 2	2) 3	3) 4	4) 5			
57.	Glycine exists as the zwitter ion , $\stackrel{+}{N}H_3$ CH_2COO^- . Its conjugate base is						
	1) NH ₂ CH ₂ COOH	2) NH ₂ CH ₂ COO-	3) NH ₃ CH ₂ COOH	4) NH ₃ CH ₂ COOH			
58.	CH ₂ COOH ₂ ⁺ is pres	sent in the solution of a	cetic acid in				
	1) NH ₃	2) Water	3) Benzene	4) HCl			
59.	, 3	ic acid in benzene cont	•	,			
	1) CH ₃ COO-	2) H ⁺	3) H ₃ O ⁺	4) (CH ₃ COOH) ₂			
60.	. 0	loes not have a conjuga	. 0	/\ 3 /2			
	1) H₃PO₄	2) H ₂ PO ₃ -	3) H ₂ PO ₂ -	4) HPO ₄ ²⁻			
61.	Which of the following is a Bronsted nutralisation reaction?						
	1) $H^+ + OH^- \rightarrow H_2$	_	2) $HC1 + NH_3 \rightarrow NI$	$H_4^+ + C1^-$			
	3) $NH_3 + BF_3 \rightarrow [H$		4) NaOH + HCl \rightarrow N	•			
62.		H_2CO_3 ionises in two stages as represented below					
	$H_2CO_3 + H_2O \rightleftharpoons H_3O^+ + HCO_3^ HCO_3^- + H_2O \rightleftharpoons H_3O^+ + CO_3^2^-$						
	the no.of conjugate acid-base pairs in the above reaction are						
	1) 2	2) 3	3) 4	4) 5			
63.	,	$+CN^{-} \rightleftharpoons HCN (aq) + 1$,	1) 0			
03.	-		3				
	1) Forward direction	1	2) Backward direction				
<i>(</i>	3) In both sides	:	4) Can not be predict	tea			
64.		ing statements is true?		acid than U.CO			
	1) HNO ₃ is a stronger acid than HNO ₂ 2) H ₃ PO ₃ is stronger acid than H ₂ SO ₃						
	3) In aqueous solution HF is stronger acid than HCl 4) $HClO_4$ is a weaker acid than $HClO_3$						
6 E	-		atuan ath Dut thair atua	matha in agatic acid and			
65.	different.	na mno ₃ nave same s	strength. Dut their stre	engths in acetic acid are			
	R : Acetic acid is stre	onger acid than water.					
	1) Both (1) and (R) a	1) Both (1) and (R) are true and (R) is the correct explanation of (A)					
			ne correct explanation o	of (A)			
	3) (1) is true but (R)	is false	4) (1) is false but (R)	is true			
66.	Assertion: HCl is no	ot acidic in benzene					
	Reason: Benzene do	oes not accept protons					
67.	Assertion: H_3O^+ is	the strongest acid in aq	ueous solution				
	Reason: water level	s the strength of hydro	nium ion.				

CHEMISTRY

IONIC EQUILIBRIUM

68. Assertion: ClO₄⁻ is the weakest base

Reason: In ClO₄-, chlorine atom is SP³ hybridised.

69. Assertion: All Bronsted bases are Lewis bases

Reason: A species that accepts a proton necessarily should donate a lone pair of electrons.

70. Assertion: HNO₃ is not a Bronsted acid in CHCl₃

Reason: CHCl₃ is an example of aprotic solvent.

71. Assertion: Ethoxide ion acts as a strong base.

Reason: Ethyl alcohol is a week acid.

72. Assertion: $H_2PO_3^-$ is a Lowry - Bronsted acid and base

Reason: $H_2PO_3^-$ is a proton donor as well as proton acceptor.

Species acting as both Bronsted acid and base is 73.

HSO⁻₄

2) Na₂CO₃

3) NH₂

4) OH-

74. The conjugat base of H₂PO₄⁻ is

 $1) H_3PO_4$

3) PO₄³-

4) HPO₄²⁻

Ionic product of water

75. The units of ionic product of water is

1) Mole/lit

2) Mole / kg

3) Mole².lit⁻²

4) No units

76. At 100° C, the value of $\mathbf{P}^{\mathbf{K}_{\mathbf{w}}}$ is

1) 14

2) < 14

3) > 14

4) p^H – p^{OH}

77. At 25⁰C, for an acid

1) $[H^+] > 10^{-7}M$

2) $[OH^{-}] < 10^{-7}M$

3) pH < 7

4) All the above

78. At 298 K, the $[H_3O^+]$ of a solution is 2×10^{-9} M. The nature of the solution is

1) Acidic

2) Basic

3) Neutral

4) Can not be predicted

79. Ionic product of water depends on

1) Volume of the water

2) Amout of salt in water

3) Temperature

4) All the above

80. At a given temperature, When an acid is added to water then the value of K_{w}

1) Decreases

2) Increases

3) Remains same

4) First decreases then increases.

81. At any temperature, the proton concentration of water is

1) 10⁻⁷M

 $2) < 10^{-7} M$

 $3) > 10^{-7} M$

4) $\sqrt{K_w}$

82. The value of ionic product of water increases with increase in

1) Acidic nature of solution

2) Basic nature of solution

3) Temperature

4) Volume of the solution

If the ionic product of water is 1.96×10^{-14} at 35° C, What is its value at 10° C 83.

 $1)1.96 \times 10^{-14}$

2) 3.92×10^{-14}

3) 2.95×10^{-15}

4) 1.96×10^{-13}

P^{H} , P^{OH} and ionization constants:

P^H of a solution is given by 84.

1) $P^{H} = -\log [H^{+}]$

2) $P^{H} = \log \frac{1}{[H^{+}]}$ 3) $P^{H} = P^{K_{w}} - P^{OH}$

4) All the above

PH of a solution is independent of

1) Temperature

- 2) Nature of the solution
- 3) Degree of dissociation of acid (or) base
- 4) Volume of the solution

86. Which of the following is wrong?

- 1) At any temperature P^H of water is exactly equal to 7
- 2) At 25°C, the PH of an acid is less than 7
- 3) At 25° C, the PH of a base is greater than 7
- 4) At 25° C, the POH of water is equal to 7

The P^H of an aqueous solution is zero. Then the nature of the solution is 87.

- 1) Slightly acidic
- 2) Strongly acidic
- 3) Neutral
- 4) Basic

88. Among the following

- 1) PH of water decreases with increase in temperature
- 2) PH of water decreases by the addition of base
- 3) PH of water increases by the addition of acid
- 4) At any temperature P^H of water is equal to $\,{}_{{\bf P}^{{\bf K}_{w/2}}}$
- 1) All are correct

2) b,c,d are correct

3) a and d are correct

- 4) a,b and c are correct
- 89. Assertion :PH of an aqueous solution of acetic acid remains unchanged on the addition of sodium acetate.

Dissociation of acetic acid is supressed by the addition of sodium acetate due to common ion effect.

Assertion: At 90°C, the PHof pure water is less than 7 90.

Reason

Ionic product of water increases with increase

in temperature.

- At any temperature, PH+ POH is equal to 91.
- 2) 0

3) 14

4) P^{KW}

The PH of 40 ml of an 0.02 M HCl will not be changed by adding 92.

1) 1 ml of 1M HCl

2) 2 ml of 1M NaOH

3) 20 ml of 0.1 M NaCl

4) 36 ml of same concentrated HCl solution

- 93. Among the following
 - 1) On dilution, the PH of an acid increases
 - 2) A solution with $P^H = 5$ is 100 times more basic than a solution with $P^H = 3$
 - 3) A solution with $P^H = 8$ is 1000 times more acidic than a solution with $P^H = 11$
 - 4) The PH of 10-9M KOH is slightly greater than 7
 - 1) All are correct

2) a,d are only correct

3) a,b,c are only correct

- 4) All are wrong
- 94. Each 10⁻³M of following four acids are taken. Their PH values are given in brackets. Which of the following is relatively strong acid?
 - 1) A (3.6)
- 2) B (4.2)
- 3) C (5.4)
- 4) D (6.8)

95. Which of the following is not correct?

1)
$$P^{H} = \frac{1}{\log[H^{+}]}$$
 2) $P^{H} = \log\left(\frac{1}{H^{+}}\right)$ 3) $[H^{+}] = 10^{-P^{H}}$ 4) $P^{H} = -\log[H^{+}]$

$$P^{H} = \log\left(\frac{1}{H^{+}}\right)$$

3)
$$[H^+] = 10^{-P^+}$$

4)
$$P^{H} = -\log[H^{+}]$$

- 96. For a strong acid,
 - 1) K₂ is very high
- 2) $\mathbf{p}^{\mathbf{K}_a}$ is very low
- 3) α is very high
- 4) All the above
- For a conjugate acid-base pair , K_a and K_b are related as 97.
 - 1) $K_a \cdot K_b = 1$
- 2) $K_a \cdot K_b = K_w$
- 3) $K_a \cdot K_b = 14$
- 4) $K_a \cdot K_b = 7$
- $\mbox{dibasic} \qquad \mbox{acid,} \ \mbox{H}_2 \mbox{A} \rightleftharpoons \mbox{HA}^- + \mbox{H}^+ \ \ (\mbox{K}_1) \, , \qquad \mbox{HA}^- \rightleftharpoons \mbox{A}^{2-} + \mbox{H}^+ (\mbox{K}_2) \, ,$ 98. For a

 $H_2A \rightleftharpoons 2H^+ + A^{2-}(K)$ then

- 1) $K = K_1 + K_2$
- 2) $K = K_2/K_1$ 3) $K = K_1/K_2$ 4) $K = K_1.K_2$
- H_3PO_4 , $H_3PO_4 \rightleftharpoons H_2PO_4^- + H^+(K_1)$, $H_2PO_4^- \rightleftharpoons HPO_4^{2^-} + H^+(K_2)$, 99.

 $HPO_4^{2-} \rightleftharpoons PO_4^{3-} + H^+(K_3)$ then

- 1) $K_1 > K_2 > K_3$
- 2) $K_1 < K_2 < K_3$
- 3) $K_1 < K_2 > K_3$
- 4) $K_1.K_2.K_3 = K_w$
- Which of the following is relatively stronger acid? K_a values are given in brackets 100.
 - 1) HA (2×10^{-4})
- 2) HB (3×10^{-5})
- 3) HC (1.8×10^{-3})
- 4) HD (9.6×10^{-10})
- Which of the following is relatively stronger base? Pkb values are given in brackets. 101.
 - 1) AOH (5.8)
- 2) BOH (6.8)
- 3) COH (2.4)
- 4) DOH (10.9)

- 102. For a weak acid (α is very small)
 - 1) $K_2 = C. \alpha^2$
- 2) $\alpha = \sqrt{\frac{K_a}{C}}$
- 3) $[H^+] = C. \alpha$
- 4) all the above
- 103. Which of the following statement is not correct?
 - 1) Cl⁻ is a Lewis acid
 - 2) The P^H of 10^{-8} M HCl solution is less than 7
 - 3) The ionic product of water at 25° C is 10^{-14} M²
 - 4) Bronsted Lowry theory could not explain the acidic nature of AlCl₃
- 104. Which of the following statement is correct?
 - 1) Bronsted lowry theory could not explain the acidic nature of BCl₃
 - 2) The PH of 0.01M NaOH solution is 2
 - 3) The ionic product of water at 25° C is 10^{-10} M²
 - 4) The P^H of a solution can be calculated using the equation $P^H = +\log[H^+]$
- The P^H of a solution of H₂O₂ is 6.0. Some Cl₂ gas is bubbled into this solution. Which of the 105. following is correct?
 - 1) The P^H of the resultant solution becomes 82) H₂ gas is liberated
 - 3) The P^H of the resultant solution becomes less than 6.0 and O_2 gas is liberated.
 - 4) Cl₂O is formed in the resultant solution.
- Which of the following is correct. 106.
 - 1) The P^H of one liter solution containing 0.49g of H_2SO_4 is 2.0
 - 2) The conjugate base of H₂S is S²-
- 3) BF₃ is a Lewis base
- 4) Phenophthalein is colourless in basic medium
- Which on of the following statements is not correct? 107.
 - 1) $P^H + P^{OH} = 14$ for all aqueous solutions
 - 2) The P^H of 10^{-8} M HCl is 8

- 3) 96, 500 coulombs of electricity diposits one gram equivelant weight of copper from CuSO₄ solution
- 4) The conjugate base of $H_2PO_4^-$ is HPO_4^{2-}

Strong and weak electrolytes

- Which of the following is a weak electrolyte? 108.
 - 1) CH₂COONa
- 2) CH₂COOH
- 3) KOH
- 4) H₂SO₄

- 109. Which of the following is a strong electrolyte
 - 1) NH₄OH
- 2) $Mg(OH)_2$
- 3) BaCl₂
- 4) H₃PO₄
- Which of the following is the best conductor of electricity? 110.
 - 1) 1M HNO₂
- 2) 1M H₂CO₂
- 3) $1M H_3PO_4$
- 4) 1M H₂SO₄

- Ostwald dilution law is applicable to 111.
 - 1) Strong electrolytes

2) Weak electrolytes

3) Non - electrolytes

- 4) All types of electrolytes
- 112. The correct expression for Ostwald's dilution law is
 - 1) $K_a = \frac{\alpha^2}{(1-\alpha)V}$ 2) $K_a = \alpha^2 \cdot V$ 3) $K_a = \frac{\alpha^2}{1-V}$ 4) $K_a = \frac{\alpha^2}{C(1-\alpha)}$

- 113. For a weak acid, the concentration of H⁺ ions is given by
 - 1) $\sqrt{K_a.C}$
- $2) K_{a}/C$
- 3) $\sqrt{K_a/C}$
- 4) $\sqrt{C/K_a}$

- 114. Which of the following is wrong?
 - 1) Degree of dissociation of a weak electrolyte increases with dilution.
 - 2) Increase in temperature increases the ionisation.
 - 3) Strong electrolytes are ionised completely even at moderate concentrations.
 - 4) Addition of NH₄Cl to NH₄OH increases the ionisation of the latter.
- 115. Which of the following does not affect the degree of ionisation?
 - 1) Temperature
- 2) Current
- 3) Nature of solvent
- 4) Concentration
- 116. At infinite dilution, the percentage ionisation of both strong and weak electrolytes is
 - 1) 1 %
- 2) 20 %
- 3) 50 %
- 4) 100 %

Buffer Solutions

- 117. A solution that has reserve acidity (or) alkalinity is called
 - 1) Standard solution 2) Ideal solution
- 3) Non ideal solution4) Buffer solution

- 118. An acidic buffer contains
 - 1) Excess of H⁺ ions, few anions and excess of undissociated molecules of weak acid
 - 2) Excess of cations, few OH ions and some undissociated molecules of weak acid.
 - 3) Excess of anions, few H⁺ ions and some undissociated molecules of weak acid
 - 4) Strong acid and its salt with a weak base
- 119. Which of the following is correct for buffer [Salt = S acid = A]

CHEMISTRY

IONIC EQUILIBRIUM

1)
$$p^{K_a} = P^H + \log \frac{[s]}{[A]}$$

2)
$$P^{H} = p^{K_a} + \log \frac{[s]}{[A]}$$

3)
$$[H^+] = 10^{-P^{K_s}}$$

3)
$$[H^+] = 10^{-P^{K_a}}$$
 4) $P^H = -log \frac{[s]}{[A]}$

120. Buffer capacity of acidic buffer solution is maximum when

1)
$$P^H = \mathbf{p} \mathbf{K_a}$$

3)
$$P^{K_a} = 7$$

4)
$$[H^+] = P^{K_a}$$

3) a and b are correct 4) c and b are correct

To a buffer solution of CH₃COOH and CH₃COONa , some HCl is added . Then the 121. reaction involved is

1)
$$CH_3COOH+OH^- \rightarrow CH_3COO^-+H_2O$$

2)
$$CH_3COO^- + H^+ \rightarrow CH_3COOH$$

3)
$$Na^++OH^- \rightarrow NaOH$$

4)
$$CH_3COO^-+Na^+ \rightarrow CH_3COONa$$

- 122. For acetic acid and sodium acetate buffer, addition of which of the following increases the P^{H} ?
 - 1) CH₃COONa
- 2) H₂O
- 3) CH₃COOH
- 4) None of these
- 123. A basic buffer solution contains a weak base B and its conjugate acid BH⁺. On adding some HCl, which of the following reactions takes place to maintain constant PH?

1)
$$BH^+ \rightarrow B+H^+$$

2) B +
$$H_2O \rightarrow BH^+ + OH^-$$

3)
$$H^+ + OH^- \rightarrow H_2O$$

4)
$$BH^+ + OH^- \rightarrow B+H_2O$$

- 124. For the buffer solution containing NH₄OH and NH₄Cl , PH of the buffer solution can be increased by
 - 1) Adding some more NH₄Cl
- 2) Adding some more NH₄OH

3) Removing NH₄Cl

- 4) Both 2 and 3
- 125. A buffer solution contains a weak acid HA and A⁻. When small quantity of NaOH is added , to keep PH as constant, which of the following reaction takes place?

1)
$$HA \rightarrow H^+ + A^-$$

2)
$$H^+ + A^- \rightarrow HA$$

3) HA+OH
$$\rightarrow$$
 H₂O + A \rightarrow

4)
$$A^- + H_2O \rightarrow HA + OH^-$$

- 126. 1M NaCl and 1M HCl are present in an aqueous solution. The solution is (AIEEE -02)
 - 1) Not a buffer solution with $P^H < 7$
- 2) Not a buffer solution with $P^H > 7$
- 3) A buffer solution with $P^H < 7$
- 4) A buffer solution with $P^H = 7$
- 127. Which of the following pair of solutions does not form a buffer solution?
 - 1) NaH₂PO₄ and Na₂HPO₄

2) H₂CO₃ and NaHCO₃

3) NH₄OH and NH₄Cl

4) KOH and K₂SO₄

128. From the following table

Buffer	Vol.of 0.1M	Vol.of 0.1M
solution	weak acid	sodium saltof weak
	(in ml)	acid (in ml)
I.	4.0	4.0
II.	4.0	40.0
III.	40.0	4.0
IV.	0.1	10

Which of the two sets of buffer solutions have least pH?

- 1) I & II
- 2) I & III
- 3) II & III
- 4) II & IV
- 129. Few drops of HCl is added to acetic buffer. The PH is maintained constant by
 - 1) CH₃COOH
- 2) CH₃COO-
- 3) Na+
- 4) CH₃COONa
- 130. A physician wishes to prepare a buffer solution at $P^H = 3.58$ that efficiently resists a change in P^H yet contains only small conc. of the buffering agents. Which one of the following weak acid together with its sodium salt would be best to use?
 - 1) m-chloro benzoic acid ($\mathbf{p}^{K_a} = 3.98$)
- 2) p-chlorocinnamic acid ($p^{K_a} = 4.41$)
- 3) 2,5 dihydroxy benzoic acid (p^{K_a} = 2.97) 4) Acetoacetic acid (p^{K_a} = 3.58)
- 131. Which of the following mixture acts as buffer solution?
 - 1) 100 ml 0.2 M CH₂COOH +100 ml 0.1M NaOH
 - 2) 100 ml 0.1M CH₃COOH + 100 ml 0.2M NaOH
 - 3) 100 ml 0.2M CH₃COOH + 100 ml 0.2 M NaOH
 - 4) None of the above acts as buffer solution due to the presence of strong base, NaOH

Hydrolysis of salts

- 132. Aqueous solution of salt of strong acid and weak base
 - 1) Undergoes cationic hydrolysis
- 2) Is acidic in nature

3) Has PH less than 7

- 4) All the above
- 133. A salt of weak acid and weak base undergoes
 - 1) Only cationic hydrolysis
- 2) Only anionic hydrolysis
- 3) Both cationic and anionic hydrolysis
- 4) No hydrolysis
- 134. The compound whose 0.1 M solution is basic is
 - 1) Ammonium acetate2) Ammonium chloride
 - 3) Ammonium sulphate

- 4) Sodium acetate
- 135. Which of the following salts, does not undergo hydrolysis?
 - 1) KCN
- 2) ZnSO₄
- 3) CH₃COONa
- 4) NaClO₄

- 136. The nature of aqueous solution of CuSO₄ is
 - 1) Acidic
- 2) Basic
- 3) Neutral
- 4) Amphoteric
- 137. Aqueous solution of which of the following shows lower PH?
 - 1) K₂SO₄
- 2) ZnCl₂
- 3) KCN
- 4) CH₃COONH₄
- 138. The hydrolysis constant of CH₃COONa is given by

$$1) K_h = \frac{K_w}{K_a}$$

$$2) K_h = \frac{K_w}{K_h}$$

$$3) K_h = \frac{K_W}{K_a \cdot K_h}$$

$$4) K_h = K_a / K_b$$

- 139. Which of the following salts undergoes anionic hydrolysis?
- (IIT 1983)

- 1) CuSO₄
- 2) NH₄Cl
- 3) FeCl₃
- 4) Na₂CO₃
- 140. Which of the following shows relatively higher P^H?
 - 1) Aq. NaCl
- 2) Aq. NH₄Cl
- 3) $Aq \cdot Na_3PO_4$
- 4) Aq.KOH
- 141. Aqueous solution of salt of weak acid and strong base
 - 1) $Has[H^+] < [OH^-]$

2) Is basic in nature

3) Has PH grater than 7

4) All the above

CHEN	//ISTR*		» IC	ONIC EQUILIBRIUM		
142.		of weak base, MOH and we	eak acid, HX. Aqueou	as solution of MX is		
	1) Acidic, if K	$K_a < K_b$ 2) Basic, if $K_a > K_b$	3) Neutral, if $K_a =$	K _b 4) All the above		
143.	The P ^H of an a	equeous solution of a salt is	10. The salt is			
	1) NaCl	2) NH ₄ Cl	3) CH ₃ COONa	4) $(NH_4)_2SO_4$		
144.	_	tion of potash alum is acidic				
145.	1) K ⁺ The bydrolye	2) Al ³⁺ is constant of ammonium ac	3) SO_4^{2-}	4) Mg^{2+}		
140.						
	1) $\frac{K_{\rm w}}{K_{\rm a}}$	$2) \frac{K_{\rm w}}{K_{\rm b}}$	$3) \frac{K_{w}}{K_{a} \cdot K_{b}}$	4) $K_a . K_b$		
146.	Aqueous solu	tion of KCl is neutral becaus	se			
	1) K ⁺ undergoes hydrolysis		2) Cl ⁻ undergoes l	2) Cl ⁻ undergoes hydrolysis		
	3) Both K ⁺ and	d Cl ⁻ undergo hydrolysis	4) No hydrolysis	takes place		
147.	The P^{H} of 0.1M solution of the following compounds increases in the order					
	1) NaCl < NH	₄ Cl < NaCN < HCl	2) HCl < NH ₄ Cl <	NaCl < NaCN		
	3) NaCN < N	H ₄ Cl < NaCl < HCl	4) HCl < NaCl < N	NH ₄ Cl < NaCN		
148.	Nature of 0.11	M solution of sodium bisulp	hate is			
	1) Acidic	2) Alkaline	3) Neutral	4) Amphoteric		
149.	The no.of hyd	roxyl ions produced by one	molecule of Na ₂ CO ₃	on hydrolysis is		
	1) 4	2) 2	3) 3	4) 0		
150.	Assertion:	The aqueous solution of C	CH ₃ COONa is alkalir	ne in nature		
	Reason:	Acetate ion undergoes anionic hydrolysis.				
151.	Assertion:	Aqueous solution of ZnSo	${\sf O}_4$ is neutral			
	Reason:	Salt of strong acid and str	ong base does not un	dergo hydrolysis.		
152.	Assertion:	Aqueous solution of amm	nonium acetate is neu	tral		
	Reason:	Dissociation constants of N equal.	$\mathrm{NH_4OH}\left(\mathrm{K_2}\right)$ and that C	of $CH_3COOH(K_1)$ are nearly		
153.	Assertion:	Aqueous solution of Na ₂ O	CO_3 shows $P^H > 7$.			
	Reason:	Salt of strong base and we	eak acid undergoes a	nionic hydrolysis.		

Common ion effect and solubility product

154. Dissociation of CH₃COOH is supressed by adding

- 1) HCl
- 2) H₂SO₄
- 3) CH₃COONa
- 4) Any of the above

155. Ionisation of $\mathrm{NH_4OH}$ is supressed by the addition of $\mathrm{NH_4Cl}$, because

- 1) NH₄Cl is a salt of WB and SA
- 2) NH₄Cl is a salt of strong base and weak acid

3) Of the common ion effect of NH_4^+ ion

4) None of the above

156. The solubility product of the electrolyte of the type, A_2B_3 is (S is the solubility in mol/lit)

1) 108 S⁵

 $2)72S^{5}$

3) $108 S^2$

For the electrolyte of type , $\rm A_2B$, $\rm K_{sp}$ is given. Then its solubility is calculated by 157.

1) $K_{sp}/4$

2) $\sqrt[3]{\frac{K_{SP}}{4}}$

3) $\sqrt[3]{K_{sp}}$ 4) $\sqrt{K_{sp}}/4$

The solubility of calcium phosphate in water is x mol L⁻¹ at 25°C. Its solubility product is 158. equal to

1) $108 x^2$

2) $36x^3$

3) $36 x^5$

4) $108 x^5$

159. At a certain temperature , the solubility of the salt $M_m \, A_n$ in water is 's' moles per litre. The solubility product of the salt is

1) $M^m A^n$

2) $(m + n) s^{m+n}$

3) $m^m n^n s^{m+n}$

Why only As⁺³ gets precipitated as As₂S₃ and not Zn²⁺ as ZnS when H₂S is passed through 160. an acidic solution containing As⁺³ and Zn⁺²?

1) Solubility product of As₂S₃ is less than that of ZnS

2) Enough As⁺³ are present in acidic medium

3) Zinc salt does not ionise in acidic medium

4) Solubility product changes in presence of an acid.

161. In $\mbox{qualitative analysis}$, to identify the $\mbox{II}_{\mbox{\scriptsize A}}$ group sulphides , HCl is added to salt solution before the addition of H₂S. Because

1) Low S²- ion concentration is required to get ppt

2) High S²⁻ ion concentration is required to get ppt

3) II_A group metal sulphides have higher values of $K_{\rm sp}$ than that of IV_A group metal sulphides

4) P^H value increases.

How do we differentiate between Fe³⁺ and Cr³⁺ in group III? 162.

1) By taking excess of NH₄OH

2) By increasing NH₄⁺ ion concentration

3) By decreasing OH⁻ ion concentration

4) Both 2 and 3

163. The addition of NaCl to AgCl decreases the solubility of AgCl, because

1) K_{sp} of AgCl decreases

2) K_{sp} of AgCl increases

3) Solution becomes unsaturated

4) Ionic product exceeds the K_{sp} value

164. Out of Ca²⁺, Al³⁺, Bi³⁺, Mg²⁺ and Zn²⁺ the reagents NH₄Cl and aqueous NH₃ will precipitate

1) Ca^{2+} , Al^{3+}

2) $A1^{3+}$, Bi^{3+}

3) Bi^{3+} , Mg^{2+}

4) Mg^{2+} , Zn^{2+}

165. Which pair will show common ion effect?

1) $BaCl_2 + Ba(NO_3)_2$ 2) NaCl + HCl

3) $NH_4OH + NH_4Cl$ 4) AgCN + KCN

The correct representation for solubility product of SnS₂ is 166.

IONIC EQUILIBRIUM **CHEMISTRY** 2) $[Sn^{4+}][S^{2-}]$ 3) $[Sn^{4+}][2S^{2-}]$ Which of the following has the lowest value of K_{sp} at 25 0 C? 167. $1) Mg (OH)_{2}$ 2) Ca (OH), 3) Ba (OH), 4) Be (OH)₂ 168. Which of the following is most soluble? 1) Bi_2S_3 ($K_{sp} = 1 \times 10^{-17}$) 2) MnS ($K_{sp} = 7 \times 10^{-16}$) 3) CuS ($K_{sp} = 8 \times 10^{-37}$) 4) $Ag_2S(K_{sp} = 6 \times 10^{-51})$ 169. In the following reaction, AgCl +KI \rightleftharpoons KCl + Ag I . As KI is added, the equilibrium is shifted towards right giving more Ag I precipitate, because 1) Both AgCl and AgI are sparingly soluble. 2) The K_{sp} of AgI is lower than K_{sp} of AgCl 3) The K_{sp} of Ag I is higher than K_{sp} of AgCl 4) Both AgCl and AgI have same solubility product. At 298 K , the $K_{\rm sp}$ value of ${\rm Fe}({\rm OH})_3$ in aqueous solution is 3.8×10^{-38} . The solubility of ${\rm Fe}^{3+}$ ions 170. will increase when 1) PH is increased 3) PH is decreased $2) P^{H} is 7$ 4) Saturated solution is exposed to sun light 171. In which of the following, the solubility of AgCl will be maximum? (CBSE PMT 1993) 1) 0.1 M AgNO₃ 3) 0.1 M NaCl 2) Water 4) 0.1 M NaBr.

172. Among the following statements

a) If two salts have equal solubility then their solubility products are equal.

- 2) $BaSO_4$ in more soluble in water than in $dil.H_2SO_4$.
- 3) When KI is added to PbI₂, then the [Pb²⁺] decreases
- 4) In any solution containing AgCl, the value of $[Ag^+]$ $[Cl^-]$ is constant at constant temperature.
- 1) All are correct

2) a, b and d are correct

3) a, c and d are correct

4) b, c and d are correct

173. The molar solubility in mol.lit $^{-1}$ of a sparingly soluble salt MX $_4$ is S. The corresponding solubility product K $_{\rm sp}$ is given by the relation.

1)
$$S = (K_{sp}/128)^{1/4}$$
 2) $S = (218 K_{sp})^{1/4}$

3)
$$S = (256 K_{sp})^{1/5}$$

4) $S = (K_{sp}/256)^{1/5}$

174. Let the solubility of an aqueous solution of $Mg(OH)_2$ be 'X' then its K_{sp} is

1)
$$4x^3$$

2)
$$108 x^5$$

3)
$$27 \times^4$$

4) 9x

- 175. When HCl gas is passed through a saturated solution of common salt, pure NaCl is precipitated because
 - 1) HCl is highly ionised in solution
 - 2)HCl is highly soluble in water
 - 3) The solubility product of NaCl is lowered by HCl
 - 4) The ionic product of [Na⁺] [Cl⁻] exceeds the solubility product of NaCl
- 176. To Ag₂CrO₄ solution over its own precipitate, CrO₄²⁻ ions are added. This results in
 - 1) increase in Ag⁺ concentration

2) decrease in Ag⁺ concentration

3) increase in solubiity product

4) shifting of Ag⁺ ions from the precipitate into the solution.

- 177. The least soluble compound (salt) of the following is
 - 1) CsCl ($K_{sp} = 10^{-12}$)

2) HgS ($K_{sp} = 1 \times 10^{-52}$)

3) $PbCl_2(K_{sp} = 1.7 \times 10^{-5})$

4) ZnS ($K_{sp} = 1.2 \times 10^{-23}$)

WORK SHEET - II

Ionic product of water and P^H

- 1. The H^+ ion concentration of a solution is 4×10^{-5} M. Then the OH^- ion concentration of the same solution is
 - 1) $4 \times 10^{-5} \,\mathrm{M}$
- 2) 2.5×10^{-9} M
- 3) 1.0×10^{-7} M
- 4) $2.5 \times 10^{-10} \,\mathrm{M}$

- 2. The $[OH^-]$ of 0.005 M H_2SO_4 is
 - 1) $2 \times 10^{-12} \,\mathrm{M}$
- 2) $5 \times 10^{-3} \,\mathrm{M}$
- $3) 10^{-2} M$
- 4) 10⁻¹² M
- 3. At 25 $^{\circ}$ C , the hydroxyl ion concentration of a basic solution is 6.75 × 10 $^{-3}$ M .Then the value of K $_{\rm w}$ is
 - 1) $13.5 \times 10^{-6} M^2$
- 2) $13.5 \times 10^{-12} M^2$
- 3) $13.5 \times 10^{-8} M^2$
- 4) $10^{-14}M^2$
- 4. At certain temperature, the H^+ ion concentration of water is $4 \times 10^{-7} M$ then the value of K_w at the same temperature is
 - 1) $10^{-14} \,\mathrm{M}^2$
- 2) $4 \times 10^{-14} \,\mathrm{M}^2$
- 3) $1.6 \times 10^{-13} \,\mathrm{M}^2$
- 4) $4 \times 10^{-7} \,\mathrm{M}^2$
- 5. The ionic product of water is 10^{-14} . The H⁺ ion concentration in 0.1M NaOH solution is
 - 1) 10⁻¹¹ M
- $2) 10^{-13} M$
- 3) 10⁻¹ M

- 4) 10^{-4} M
- 6. The no. of H_3O^+ ions present in 10 ml of water at 25°C is
 - 1) 6.023×10^{-14}
- 2) 6.023×10^{14}
- 3) 6.023×10^{-19}
- 4) 6.023×10^{19}

- 7. Dissociation constant of water at 25°C is
 - 1) 1.0×10^{-14}
- 2) 1×10^{14}
- 3) 14

- 4) 1.8×10^{-16}
- 8. One litre of water contains 10^{-7} moles of H^+ ions. Degree of ionisation of water (in percentage) is
 - 1) 1.8×10^{-7}
- 2) 1.8×10^{-9}
- 3) 3.6×10^{-7}
- 4) 3.6×10^{-9}

Problems on PH concept

- 9. At some high temperature, K_w of water is 10^{-13} . Then the P^H of the water at the same temperature is
 - 1) 7.0
- 2) 6.5
- 3) 7.5
- 4) 7.23

- 10. The P^{H} of 0.005 M Ba(OH), is
 - 1) 2.301
- 2) 11.699
- 3) 12
- 4) 7

4) 7

- 11. The P^H of 0.001 M CH₂COOH is
 - 1)3
- 2) 11
- 3) Between 3 and 7

- 12. The P^H of 10^{-8} M HCl is
 - 1)8
- 2) 6

3) 7

4) 6.98

- 13. The $[OH^-]$ of a solution is 10^{-10} . Its P^H is
 - 1) 4
- 2) 10
- 3) 7
- 4) 9
- 14. Four grams of NaOH solid are dissolved in just enough water to make 1 litre of solution. What is the $[H^+]$ of the solution?
 - 1) 10⁻² moles/litre
- 2) 10⁻¹ moles/litre
- 3) 10^{-12} moles/litre
- 4) 10⁻¹³ moles/litre.
- 15. The P^H of a solution is 3.602. Its H^+ ion concentration is
 - 1) 4×10^{-14}
- 2) 2.5×10^{-11}
- 3) 2.5×10^{-4}
- 4) 5.0×10^{-4}

CHI	EMISTRY		→ I	ONIC EQUILIBRIUM
16.	The P ^H of HCl is	s 3. Then the P^H of NaO	H solution having same	e molar concentration is
	1) 3	2) 6	3) 9	4) 11
17.	When 100 ml of	N/10 NaOH are added	to 50 ml of N/5 HCl, th	${\sf neP^H}$ of the resulting solution
	is			
	1) 7	2) greater than 7	3) less than 7	4) Zero
18.				the strong electrolyte, calcium s)? $(K_w = 1.0 \times 10^{-14} \text{ mole}^2 \text{litre}$
	1) 9.8	2) 11.7	3) 12.0	4) 3.0
19.	Equal volumes solution is	of two solutions with P ^I	$H=3$ and $P^H=11$ are mix	xed. Then the P ^H of resulting
	1) 8	2) 7	3) 6	4) 0
20.	The P ^H of a solu solution is	tion is 3.0. This solution	is diluted by 100 times	. Then the P^{H} of the resulting
	1) 5	2) 7	3) 1	4) 11
21.	Equal volumes or resulting solution		oxide and 0.1 M sulphu	aric acid are mixed. The P^{H} o
	1) 7	2) 0	3) less than 7	4) greater than 7
22.	The dissociation	n constant of a weak aci	d is 10^{-6} . Then the P^H o	f 0.01 N of that acid is
	1) 2	2) 7	3) 8	4) 4
23.	The P^H of $0.1M$	NaCl solution is		
	1) 1	2) 13	3) 7	4) Zero
24.	At 100^{0} C, the P	^H of pure water is		
	1) 7	2) Greater than 7	3) Less than 7	4) Zero
25.	The P ^H of HCl is	s 5. It is diluted by 1000	times. Its P ^H will be	
	1) 5	2) 8	3) 2	4) 6-7
26.	The P ^H of a solu	tion is 6. Its $[H_3O^+]$ is de	ecreased by 1000 times.	Its PH will be
	1) 9	2) 6.96	3) 7.04	4) 8
27.	The P^H of $10^{-3}M$	I mono acidic base, if it	is 1% ionised is	
	1) 5	2) 8	3) 3	4) 9
28.	The P ^H of soluti	on is 9. It is tim	nes more basic than a so	olution with $P^H = 6$.
	1) 3	2) 100	3) 1000	4) 15
29.	The P ^H of a wea	k mono basic acid is 5.	The degree of ionisation	n of acid in 0.1 M solution is
	1) 10-4	2) 10 ⁻³	3) 10 ⁻²	4) 10 ⁻¹
30.	The P ^H of a 1 lit of water is adde		ed with water till its P ^H	becomes 4. How many litres
	1) 99	2) 9	3) 999	4) 9.9
31.	The P^H of HCl is P^H of 7 is	s 1. The amount of NaOI	H to be added to 100 ml	of such a HCl solution to ge
	1) 4g	2) 0.4g	3) 4 mg	4) 0.4 mg
32.	To change the P	oH of a solution from 1 to	1.301 Which of the fol	llowing should be adopted ?
	1) 1 lit of water i		2) 1 kg of water is	
	,	of the solution should be	, 0	

CHI	EMISTRY			IONIC EQUILIBRIUM			
	4) The wt of the	solute present in the sol	ution should be do	ıbled			
33.	The PH of a solu	tion is 11. It is diluted b	y 1000 times. Then t	he P ^H of resulting solution is			
	1) 8	2) 14	3) 7	4) 7.04			
34.	$A: The P^H of a s$	olution changes from 5	to 8 when the soluti	on is diluted by 1000 times.			
	R: When the conunit.	ac.of H ⁺ ion decreases b	y 10 times , then $\mathrm{P^{H}}$ (of the solution increases by one			
35.	The P^H of a diba	sic acid is 3.699. Its mo	larity is				
	1) $2 \times 10^{-4} \mathrm{M}$	2) $4 \times 10^{-4} \mathrm{M}$	3) $2 \times 10^{-3} \text{ M}$	4) $1 \times 10^{-4} \mathrm{M}$			
36.	At certain tempe is	rature the K_w of D_2O is 1	$0^{-16}\mathrm{M}$. Then the pD	of pure D ₂ O at that temperature			
	1) 7	2) 16	3) 8	4) 6			
37.	$50 \mathrm{ml}$ of $\mathrm{H}_2\mathrm{O}$ is a resulting solution		M barium hydroxid	e solution. What is the P^H of the			
	1) 3.0	2) 3.3	3) 11.7	4) 11.0			
38.	20 ml of 0.4 M F solution is	H_2SO_4 and 80 ml of 0.2	M NaOH are mixed	I . Then the P^H of the resulting			
	1) 7	2) 1.097	3) 12.903	4) 11.903			
39.	The first and second dissociation constants of an acid $\rm H_2A$ are 1.0 × 10 ⁻⁵ and 5.0 × 10 ⁻¹⁰ respectively. The overall dissociation constant of the acid will be						
	1) 5×10^{15}	2) 5.0×10^{-15}	3) 0.2×10^5	4) 5.0×10^{-5}			
40.	A 0.2M solution	of formic acid is 3.2% i	onised. Its ionisation	n constant is			
	1) 9.6×10^{-3}	2) 2.1×10^{-4}	3) 1.25×10^{-6}	4) 4.8×10^{-5}			
41.	The hydrogen ion concentration of $0.2 \mathrm{M}$ CH $_3$ COOH which is 4% ionised is						
	1) 0.008 N	2) 0.12 N	3) 0.8 N	4) 0.08 N			
42.	Degree of dissociation of 0.1 N CH $_3$ COOH is (K $_a$ = 1.0 × 10 ⁻⁵)						
	1) 10 ⁻⁵	2) 10 ⁻⁴	3) 10 ⁻⁴	4) 10 ⁻²			
Buffeı	Solutions						
43.	An acidic buffer 4 . The $\mathrm{P^H}$ of the b		d 0.02 M acid. The di	ssociation constant of acid is 10			
	1) 4	2) 10	3) 4.48	4) 9.52			
44.		An acidic buffer contains equal concentrations of acid and salt. The dissociation constant of acid is 10^{-5} . The P^H of the buffer solution is					
	1) 5	2) 9	3) 4.49	4) 5.5			
45.	Solution of 0.1 N	I NH ₄ OH and 0.1 N NF	H_4Cl has P^H 9.25. The	en $\mathbf{P}^{\mathbf{K_b}}$ of NH ₄ OH is			
	1) 9.25	2) 4.75	3) 3.75	4) 8.25			
46.		lution of sodium acetate $.76$. The P^H of the buffe		acetic acid are mixed. The pKa			
	1) 3.76	2) 4.76	3) 5.76	4) 9.24			
47.		of an acid is added to 2 li r capacity of the solutio		n, the P ^H of the buffer decreases			
	1) 0.6	2) 0.4	3) 0.2	4) 0.1			

IONIC EQUILIBRIUM $\overline{\text{A solution}}$ consists of 0.2 M NH₄OH and 0.2 M NH₄Cl. If K_b of NH₄OH is 1.8 × 10⁻⁵, the [OH-] of the resulting solution is 1) 0.9×10^{-5} M 2) 1.8×10^{-5} M 3) 3.2×10^{-5} M 4) 3.6×10^{-5} M 49. (1): The PH of a buffer solution containing equal moles of acetic acid and sodium acetate is 4.8 ($\mathbf{p}^{\mathbf{K_a}}$ of acetic acid is 4.8) (R): The ionic product of water at 25° C is 10^{-14} mol² lit⁻² Salt hydrolysis The P^H of aqueous solution of NH₄CN (K_a of HCN is 9.2×10^{-10} & K_b of NH₄OH is 1.8×10^{-10} 50. 1) > 72) < 73)7 4) 14 51. The hydrolysis constant of NaX (K_a of HX is 2×10^{-6}) is 1) 5×10^{-9} 2) 2×10^{-10} 4) 10^{-7} 3) 2×10^{-6} 52. Hydrolysis constant of salt derived from strong acid and weak base is 2×10^{-5} . The dissociation constant of the weak base is 2) 5×10^{-9} 3) 5×10^{-10} 1) 5×10^{-8} 4) 2×10^{-19} Solubility Product 53. The solubility product of BaSO₄ at 18° C is 1.5×10^{-9} . Its solubility (mole lit⁻¹) at the same temperature is 2) 1.5×10^{-5} 3) 3.9×10^{-9} 4) 3.9×10^{-5} 1) 1.5×10^{-9} 54. The solubility of CaF₂ is 2×10^{-4} mole/litre. Its solubility product is 1) 2.0×10^{-4} $2) 4.0 \times 10^{-8}$ 3) $4 \times 8.0 \times 10^{-12}$ 4) 3.2×10^{-4} The solubility of AgCl in 0.1M NaCl is $(K_{sp} \text{ of AgCl} = 1.2 \times 10^{-10})$ 55. 3) 1.095×10^{-5} 2) 1.2×10^{-5} 1) 0.1M 4) 1.2×10^{-9} If the solubility product of MOH is 1×10^{-10} mol². Then the P^H of its aqueous solution 56. will be 1) 12 2)9 3)6 The molar solubility of PbI₂ in 0.2M Pb(NO₃)₂ solution in terms of solubility product, K_{sp} 57. 2) $(K_{sp}/0.4)^{1/2}$ 3) $(K_{sp}/0.8)^{1/2}$ 4) $(K_{sp}/0.8)^{1/3}$ 1) $(K_{sp}/0.2)^{1/2}$ 58. The solubility product of a rare earth metal hydroxide M (OH)₂ at room temperature is 4.32×10^{-14} . Its solubility is 2) $2.0 \times 10^{-4} \,\mathrm{M}$ 1) 2×10^{-3} M 3) 2×10^{-5} M 4) $2.0 \times 10^{-6} \,\mathrm{M}$ The solubility of PbSO₄ in 0.01M Na₂SO₄ solution is (K $_{\rm sp}$ of PbSO₄ is 1.25 \times 10-9) 59. 3) $1.25 \times 10^{-10} \,\mathrm{M}$ 1) 1.25×10^{-7} M 2) 1.25×10^{-9} M

WORK SHEET - III

The K_{sn} of a salt, having the general formula MX_2 , in water is 4×10^{-12} . The concentration of

Single or more than one option questions

1. In which of the following solution the AgCl is least soluble?

M²⁺ ions in the aqueous solution of the salt is

1) Water

1) $2 \times 10^{-6} \,\mathrm{M}$

60.

2) 0.1M NaCl

2) $1 \times 10^{-4} \,\mathrm{M}$

3) 0.05 M CaCl₂

3) $1.6 \times 10^{-4} \,\mathrm{M}$

4) 0.2 M KCl

4) $4 \times 10^{-10} \,\mathrm{M}$

2. Which of the following sulphides has maximum solubility in water?

1) CdS($K_{sp} = 36 \times 10^{-30}$)

2) FeS $(K_{sp} = 11 \times 10^{-20})$

3) $HgS(K_{sp} = 36 \times 10^{-54})$

4) $ZnS(K_{sp} = 11x \ 10^{-22})$

3. The volume of water needed to dissolve 1g of BaSO₄ (K_{sp} = 1.1 x 10⁻¹⁰) at 25⁰ C is { M.W of BaSO₄ is 283 }

- 1) 820L
- 2) 450L
- 3) 205L
- 4) None of these

4. K_{sp} of $A_2B_{3(s)}$ in water at 25⁰C is 1.1 x 10⁻²³. Concentration of A⁺ ions is

- 1) 1 x 10⁻⁵
- 2) 2 x 10⁻⁵
- 3) $3 \times 10^{-5} M$
- 4) 5×10^{-17}

5. Number of moles of Cul ($K_{Sp} = 5 \times 10^{-12}$) that will dissolve in 1 L of 0.1 M Nal solution is

- 1) 2.2 x 10⁻⁶
- 2) 5 x 10⁻¹¹
- 3) 5×10^{-10}
- 4) 2.2 x 10⁻⁵

6. K_{sp} of MX = K_{sp} of MX₂. Which is more soluble?

- 1) Mx
- 2) MX₂
- 3) Equal
- 4) K_{sp} value is required

7. Solubility of AgCl ($K_{sp} = 1 \times 10^{-10}$) in 0.1M BaCl₂ is

- 1) 10⁻⁹M
- 2) $5 \times 10^{-9} M$
- 3) $5 \times 10^{-10} M$
- 4) 0.05 M

8. 100mL each of 0.25 M NaF and 0.015M Ba(NO₃)₂ are mixed. K_{sp} of BaF₂ = 1.7 x 10⁻⁶

- 1) A ppt is formed
- 2) No ppt is formed
- 3) Cannot say
- 4) Some more data are needed

9. A saturated solution 0 - nitrophenol has a p^H equal to 4.53, then its solubility in water is $(P^{K_a} = 7.23)$

- 1) 2.085g/lit
- 2) 20.85g/lit
- 3) 10.425g/lit
- 4) 1.0425g/lit

10. $K_{sp}(BaSO_4)$ is 1.1×10^{-10} . In which case is $BaSO_4$ precipitated?

- 1) 100 mL of 4 x 10⁻³M of BaC l_2 + 300 mL of 6.0 x 10⁻⁴ M of Na₂SO₄
- 2) 100 mL of 4 x 10-4M of BaCl $_2$ + 300 mL of 6 x 10-8 M of Na $_2\mathrm{SO}_4$
- 3) 300mL of 4×10^{-4} M of BaC l_2 +100mL of 6.0×10^{-8} M of Na₂SO₄
- 4) in all cases.

More than one correct answers

11. $A(OH)_2$ is partially soluble substance and its Ksp value is $4x \cdot 10^{-12}$ which of the following statement is / are correct?

- 1) The solubility is unaffected by pH of the medium
- 2) Its solubility has been increased in a buffered medium at pH at 2
- 3) Its solubility has been decreased in a buffered medium having pH at 9
- 4) Its saturated solution has pH is equal to 10.3

12. A solution contains 0.05 M of each of NaCl and Na_2CrO_4 . Solid $AgNO_3$ is gradually added to it. Which of the following facts is true?

Given : $K_{sp}(AgCl) = 1.7 \times 10^{-10} M^2$ and $K_{sp}(Ag_2CrO_4) = 1.9 \times 10^{-12} M^3$.

CHEMISTRY

- 1) *Cl*⁻ ions are precipitated first
- 2) CrO₄²⁻ ions are precipitated first
- 3) Both Cl^{-} and CrO_{4}^{2-} ions are precipitated together
- 4) The second ion starts precipitating when $[Cl^{-}] = 2.758 \times 10^{-5}$
- Which of the following are correct about the solubility? 13.
 - 1) Solubility of CaF, is more in buffer solution of pH = 3 than in pure water
 - 2) Solubility of ZnS in water depends upon the pH of solution
 - 3) Solubility of AgCl increases in presence of sodium thiosulphate
 - 4) Solubility of ZnS in presence of H⁺ ion can be derived by K = $\frac{\left[Zn^{2+}\right]\left[H_2S\right]}{\left[H^+\right]^2}$ where K is equilibrium constant for the reaction, $ZnS_{(s)} + 2H^{+}_{(aq)} \rightleftharpoons Zn^{2+}_{(aq)} + H_{2}S_{(aq)}$
- Acetic acid and aq. NH₂ are weak monobasic acid and weak monoacidic base respectively 14. and Ka of acetic acid is equal to K_b of aq. NH₃ Which of the following statements are correct?
 - 1) All the above mixing would result in neutral solution having pH = 7 at 25°C
 - 2) If aq. NH₃ is exactly half neutralized by HCl, then pOH of resulting solution is equal to pK_b
 - 3) If acetic acid is exactly half neutralized by NaOH, then pH of resulting solution is equal to pK_a
 - 4) If acetic acid is exactly neutralized by aq. NH₂ then pH of resulting solution is equal 1/2pkW.
- 15. Equal volumes of following solution are mixed, in which case the pH of resulting solution will be average value of pH of two solutions?
 - 1) pH = $3(HNO_3)$ and pH = $5(HNO_3)$
- 2) $pH = 2(HNO_3)$ and pH = 12(KOH)
- 3) pH = 4.5 (CH₃COOH) and pH = 9.5 (NH₃) (aq) K_a (CH₃COOH)= K_b (NH₄OH)
- 4) pH = 3 (HCN) and pH = 11 (NaOH) K_a of (HCN = 10^{-10})
- Which of the following solution will have no effect on pH on dilution? 16.
 - 1) 0.3 M CH₃COOK

- 2) 2.4 M CH₃COONH₄
- 3) $0.2 \text{ M NH}_4\text{OH} + 0.2 \text{ M NH}_4\text{Cl}$
- 4) 0.3 H₂CO₃ + 0.3 M NaHCO₃

Linked Comprehension type questions

Passage -I

The pH of pure water at 25° C and 60° C are 7 and 6.5 respectively. HCl gas is passed through water at 25° C till the resulting 11 itre solution which acquires a pH of 3. Now 4×10^{-3} mole of NaCN are added into this solution and also a fresh 0.1M HCN solution has pH = 5.1936.

- The volume of HCl passed through the solution at 25^oC and 1 atm is: 17.
 - 1) 24.46mL
- 2) 2.446mL
- 3) 244.6mL
- 4) 0.244 mL
- 18. The degree of dissociation of 0.1M HCN solution is:
 - 1) 6.4×10^{-5}
- 2) 6.4×10^{-3}
- 3) 6.4×10^{-2}
- 4) 6.4×10^{-6}

- 19. The pH of solution contain $4x10^{-3}$ mol of NaCN and 10^{-3} mol of HCN is nearly
 - 1) 10
- 2) 11
- 3)9

4) 8

Passage: II

The solubility product of a soluble salt $A_x B_y$ is given by : $K_{sp} = [A^{y+}]^x [B^{x-}]^y$. As soon as the product of concentration of A^{y+} and B^{x-} increases the n its K_{sp} , the salt starts precipitation. It may practically be noticed that AgCl is more soluble in water and its solubility decreases dramatically in 0.1 M Nacl or 0.1M AgNO₃ solution. It may therefore be concluded that in presence of a common ion, the solubility of salt decreases.

- 20. The salting out action of RCOONa in presence of NaCl is based on:
 - 1) Common ion effect

2) Hydrolysis of salt

3) Solubility product

- 4) Complex formation.
- 21. The pH of a saturated solution of $Mg(OH)_2$ is $(K_{sp} Mg(OH)_2 = 1 \times 10^{-11})$.
 - 1)0
- 2) 3.87
- 3) 10.43
- 4) 5
- 22. The volume of water needed to dissolve 1g BaSO₄ ($K_{sp} = 1 \times 10^{-10}$) is:
 - 1) 230 litre
- 2) 429 litre
- 3) 500 litre
- 4) 320 litre

Match the following questions

23. Match the Column-I with Column-II:

Column - I

Column - II

- 1) pH of a basic buffer mixture
- p) $pK_a + log \frac{[salt]}{[Acid]}$
- 2) pH of an acidic buffer mixture
- $\mathbf{q}) \left(pK_a \right)_{C.Acid} + log \frac{\left[Base \right]}{\left[salt \right]}$
- 3) pH of a salt solution of weak acid+strong base r) $\frac{1}{2} [pK_w + pK_a + \log c]$
- 4) pH of a salt solution of strong acid+ weak base s) $\frac{1}{2}[pK_w pK_b \log c]$
- 24. Column-I

Column-II

(salt solution in water)

(Nature of hydrolysis)

1) NaCl

(Ivature of Hydrory 515)

2) CH₃COONa

p) Cationic hydrolysis only

3) NH₄CN

q) Anionic hydrolysis only

4) CH, COONH,

r) Both cationic and anionic hydrolysis

s) Does not undergo hydrolysis

- Integer answer type Questions
- 25. K_a for HCN is 5.0×10^{10} at 25^{0} C. For maintaining a constant pH of 9. Calculate the volume of 5.0M KCN is 5.0×10^{-10} at 25^{0} C. For maintaining a constant the pH of solution.
- 26. Calculate the pH at which an acid indicator with $K_a = 1.0 \times 10^{-5}$ changes colour when the

indicator concentrationi is $1.0 \times 10^{-3} M$.

- 27. K_{sp} Of M (OH)_x is 27 x 10⁻¹² and its solubility in water is 10⁻³ mol litre⁻¹. Find the value of X.
- 28. If the equilibrium constant for the reaction of weak acid HA with strong base is 10⁹, then calculate the pH of 0.1 M NaA.
- 29. If pK_a of acetic acid and pK_b of ammonium hydroxide are 4.76 each. Find the pH of ammonium acetate.
- 30. The solubility product of a springly soluble metal hydroxide $[M(OH)_2]$ is 5×10^{-16} mol³ dm⁻⁹ at 298 K. Find the pH of its saturated aqueous solution.
 - 3) pH is 5.00 when indicator is 75% red
- 4) pH is 4.05 when indicator is 75% blue

EXERCISE - I /ANSWERS

WORK SHEET - I

1) 4	2) 3	3) 4	4) 2	5) 3	6) 3	7) 4	8) 3	9) 2	10) 2
11) 2	12) 3	13) 1	14) 4	15) 3	16) 4	17) 1	18) 4	19) 4	20) 3
21) 2	22) 3	23) 4	24) 4	25) 3	26) 2	27) 1	28) 3	29) 3	30) 4
31) 2	32) 2	33) 3	34) 3	35) 2	36) 1	37) 1	38) 4	39) 4	40) 2
41) 2	42) 4	43) 3	44) 1	45) 4	46) 4	47) 4	48) 3	49) 2	50) 4
51) 4	52) 4	53) 4	54) 2	55) 3	56) 2	57) 2	58) 4	59) 4	60) 3
61) 2	62) 2	63) 1	64) 1	65) 1	66) 1	67) 1	68) 2	69) 1	70) 1
71) 1	72) 1	73) 1	74) 4	75) 3	76) 2	77) 4	78) 2	79) 3	80) 3
81) 4	82) 3	83) 3	84) 4	85) 4	86) 1	87) 2	88) 3	89) 4	90) 1
91) 4	92) 4	93) 1	94) 1	95) 1	96) 4	97) 2	98) 4	99) 1	100) 3
101) 3	102) 4	103) 1	104) 1	105) 3	106) 1	107) 2	108) 2	109) 3	110) 4
111) 2	112) 1	113) 1	114) 4	115) 2	116) 4	117) 4	118) 3	119) 2	120) 3
121) 2	122) 1	123) 3	124) 4	125) 3	126) 1	127) 4	128) 2	129) 2	130) 4
131) 1	132) 4	133) 3	134) 4	135) 4	136) 1	137) 2	138) 1	139) 4	140) 4
141) 4	142) 3	143) 3	144) 2	145) 3	146) 4	147) 2	148) 1	149) 2	150) 1
151) 4	152) 1	153) 1	154) 4	155) 3	156) 1	157) 2	158) 4	159) 3	160) 1
161) 1	162) 3	163) 4	164) 2	165) 3	166) 1	167) 4	168) 2	169) 2	170) 3
171) 2	172) 4	173) 4	174) 1	175) 4	176) 2	177) 2			

WORK SHEET - II

1) 4	2) 4	3) 4	4) 3	5) 2	6) 2	7) 4	8) 1	9) 2	10) 3
11) 3	12) 4	13) 1	14) 4	15) 3	16) 4	17) 1	18) 3	19) 2	20) 1
21) 3	22) 4	23) 3	24) 3	25) 4	26) 1	27) 4	28) 3	29) 1	30) 1
31) 2	32) 3	33) 1	34) 4	35) 4	36) 3	37) 4	38) 1	39) 2	40) 2
41) 1	42) 4	43) 3	44) 1	45) 2	46) 3	47) 4	48) 2	49) 2	50) 1
51) 1	52) 3	53) 4	54) 3	55) 4	56) 2	57) 3	58) 2	59) 1	60) 2

CHEMISTRY

WORK SHEET - III

1) 4 2) 2 3) 2 4) 2 5) 2 6) 2 7) 3 8) 1 9) 1 10) 1

11) 234 12) 14 13) 1234 14) 1234 15) 23 16) 234

17) 1 18) 1 19) 1 20) 3 21) 3 22) 2 23) 1-q; 2-p; 3-r; 4-s

24) 1-s; 2-q; 3-r; 4-r 25) 2 26) 5 27) 3 28) 9 29) 7 30) 9

EXERCISE - I

Laws of Chemical Combinations

1.	Chemical equation is balanced according to the law of							
	1) Multiple proportio	n	2) Reciprocal proportion					
	3) Conservation of m	ass	4) Definite proportions					
2.	The law of multiple p	roportions was propos	sed by					
	1) Lavoisier	2) Dalton	3) Proust	4) Gay Lussac				
3.	An unbalanced chem	ical equation is agains	t the law of					
	1) The law of gaseous	-	2) The law of constar	nt proportions				
	3) The law of mass a	ction	4) The law of conserv	vation of mass				
4.	Which of the following proportion?	ng pairs can be cited a	as an example to illust	trate the law of multiple				
	1) Na ₂ O, K ₂ O	2) CaO,MgO	3) Al_2O_3 , Cr_2O_3	4) CO,CO ₂				
5.		and oxygen in sampl This proves the law of		different methods were				
	1) Constant proportion	ons	2) Reciprocal propor	tions				
	3) Multiple proportio	ns	4) Conservation of m	ass				
6.	The law of conservat	ion of mass holds good	for all of the following	except				
	1) All chemical reacti		2) Nuclear reactions					
	3) Endothermic react	ions	4) Exothermic reaction	ons				
7.	Law of combining vo	lumes was proposed b	y					
	1) Lavoisier	2) Gay Lussac	3) Avogadro	4) Dalton				
8.	"The total mass of reaction." This states		al to the total mass of	products in a chemical				
	1) Law of conservation	on of mass	2) Law of definite pro	pportions				
	3) Law of equivalent	weights	4) Law of combining	masses				
9.	In the reaction Hydro illustrates the law of	$gen (g)+Oxygen(g) \rightarrow$	water vapour, the ratio	o of volumes is 2:1:2. This				
	1) conservation of ma 4) all the above	ass	2) combining weights	s 3) combining volumes				
10.		oxygen. In compound		mpound B, 2.00g nitrogen bines with 5.11 g oxygen.				
	1) Law of constant pr	oportion	2) Law of multiple pr	roportion				
	3) Law of reciprocal p	proportion	4) Dalton's law of pa	rtial pressure				
11.	The law of multiple p	roportions is ilustrated	l by the two compound	ds				
	1) Sodium chloride ar	nd sodium bromide	2) Ordinary water an	d heavy water				
	3) Caustic soda and o	caustic potash	4) Sulphur dioxide ar	nd sulphur trioxide.				
12.	_	nt of lead from oneoxid		by heating in a current of of lead obtained from the				
	1) Law of reciprocal p	proportions	2) Law of constant pr	roportions				

CHEMISTRY

REDOX REACTIONS

3) Law of multiple proportions

A) Law of conservation of Mass

4) Law of equivalent proportions

13. **LIST - 1**

LIST - 2 1) $\frac{V_1}{V_2} = \frac{n_1}{n_2}$

B) Avogadro's Law

2) $2H_{2(s)} + O_{2(g)} \rightarrow 2H_2O_{(s)}$

C) Gay-Lussac's Law of combining volumes 3) 12g of C + 32g of O_2 = 44g CO_2

D) Law of conservation of Energy

4) $H_{2(g)} + Cl_{2(g)} \rightarrow 2HCl_{(g)}$

5) $H_{2(g)} + Cl_{2(g)} \rightarrow 2HCl_{(g)'} \Delta H = -184.6k.J$

The correct match is

Α В C D Α В C D 1) 1 5 3 4 2) 3 1 5 4 3) 3 1 2 5 4) 1 2 4 5

- 14. A sample of pure carbon dioxide, irrespective of its source contains 27.27% carbon and 72.73% oxygen. The data support
 - 1) Law of constant composition
- 2) Law of conservtion of mass
- 3) Law of reciprocal proportions
- 4) Law of multiple proportions
- 15. Carbon and oxygen combine to form two oxides, carbon monoxide and carbon dioxide in which the ratio of the weights of carbon and oxygen is respectively 12:16 and 12:32 These figures illustrate the
 - 1) Law of multiple proportions
- 2) Law of reciprocal proportions
- 3) Law of conservation of mass
- 4) Law of constant proportions
- 16. Two gaseous samples were analysed. One contained 1.2 g of carbon and 3.2 g of oxygen. The other contained 27.3% carbon and 72.7% oxygen. The experimental data are in accordance with
 - 1) Law of conservation of mass
- 2) Law of definite proportions
- 3) Law of reciprocal proportions
- 4) Law of multiple proportions

Mole concept

- 17. The molar volume of any gas at STP is
 - 1) 1 litre
- 2) 22.414 lit
- 3) 6.02×10²³ lit
- 4) 22.414 ml

- 18. 1 gram atom of oxygen is
 - 1) 1 g of oxygen
- 2) 16g of oxygen
- 3) 22.4 g of oxygen
- 4) 8g of oxygen

- 19. One gram molecule of oxygen is
 - 1) 16 gms of oxygen 2) 32 gms
 - 2) 32 gms of oxygen
- 3) 8gms of oxygen
- 4) 1gm of oxygen

- 20. Avogadro number is
 - 1) The number of atoms in one gram-atomic-weight
 - 2) The number of molecules in one gram-molecular-weight
 - 3) The number of atoms in 0.012 kg of C-12
 - 4) all of these
- 21. A mole is
 - 1) The amount of substance containing the same number of chemical units as the number of atoms in exactly 12g of C^{12} .

CHEMISTRY

REDOX REACTIONS

	•	of substance containing Avo expressing amount of a subs		emical units.		
22.	The mass of a m	ole of hydrogen atoms is				
	1) 1.008 g	2) 2.016g	3) 6.02×10 ²³ g	4) 1.008 amu		
23.	The molar mass	of hydrogen is				
	1) 1.008 g	2) 2.016 g	3) 6.02×10 ²³ g	4) 2.016 amu		
24.	One mole of ato:	ms of oxygen represents				
	1) 6.02×10 ²³ ato	ms of oxygen	2) 32 g of oxygen			
	3) 22.4L of O ₂ at	STP	4) 8g of oxygen			
25.	One mole of mo	lecules of oxygen represents	3			
	1) 6.02×10 ²³ mo	lecules of oxygen	2) 8 gms of oxygen			
	3) 16g of O ₂		4) 11.2L of O ₂ at ST	P		
26.	One mole of sod	ium represents				
	1) 6.02×10 ²³ ato	ms of sodium	2) 46 gms of sodiun	n		
	3) 11g of sodiun	า	4) 34.5g of sodium			
27.	The charge pres	ent on 1 mole electrons is				
	1) 96500 Coulor	nbs	2) Coulomb			
	3) 1.60×10 ⁻¹⁹ C		4) 0.1 Faraday			
28.	The weight of 0.	1 mole of Na ₂ CO ₃ is				
	1) 106 g	2) 10.6 g	3) 5.3 g	4) 6.02×10 ²² g		
29.	The molar mass	of a substance is 20g. The n	nolecular mass of the	substance is		
	1) 20g	2) 20 a.m.u	3) 10g	4) 10 a.m.u		
30.	Avogadro num	ber of helium atoms have a r	mass of			
	1) 2g	2) 4g	3) 8g	4) 4×6.02×10 ²³ g		
31.	The volume of t	wo moles of oxygen at STP is				
	1) 22.4 L	2) 11.2 L	3) 40 L	4) 44.8 L		
32.	The following p	roperty of a gas does not var	ry with pressure and t	emperature.		
	1) density	2) volume of a mole	3) volume	4) vapour density.		
33.	The ratio between	en the number of molecules	in equal masses of nit	rogen and oxygen is		
	1) 7:8	2) 1:9	3) 9:1	4) 8:7		
34.	The gas which i	s twice as dense as oxygen	under the same condi	tions is		
	1) Ozone		2) Sulphur trioxide			
	3) Sulphur diox	ide	4) Carbon dioxide			
35.	1 mole of water	vapour is condensed to liqu	ıid at 25°C. Now this	water contains		
	i) 3 moles of ato	oms	ii) 1 mole of hydrogen molecules			

REDOX REACTIONS

iii) 10 moles of electrons iv) 16 g of oxygen The correct combination is 1) (i) & (ii) are correct 2) (i) & (iii) are correct 3) (i) & (iv) are correct 4) All are correct A chemical equation is always balanced with respect which one of the following 36. i) Number of atoms ii) Number of molecules iii) Number of moles iv) Mass 1) Only i is correct 2) Only iii correct 3) Only iv Correct 4) Both i & iv correct Assertion & reason type questions **Note:**1) Both (A) and (R) are true and (R) is the correct explanation of (A) 2) Both (A) and (R) are true and (R) is not the correct explanation of (A) 3) (A) is true but (R) is false 4) (A) is false but (R) is true 37. (A): 2 g of hydrogen contains Avogadro number of molecules (R): One mole of an ideal gas at STP occupies 22.4 lt. 38. (A): One litre of water at 4°C contains 55.5 N molecules (R): Density of water at 4°C is 1 g/ml and 18g. of water represents one mole. 39. (A): 2 g of Hydrogen contains Avogadro number of atoms (R): One mole of any gas contains Avogadro number of molecules 40. (A): In Haber's process, N₂ and H₂ combine in 1:3 volume ratio **(R)**: Gases combine in simple volume ratio (A): 1 c.c. of Nitrogen at STP contains 2.69×10^{19} molecules 41. (R): Molar volume of an ideal gas at STP contains Avogadro number of molecules 42. (A): 28 g of nitrogen occupies 22.4 lt. at STP **(R)**: Vapour density of nitrogen is 14 at all temperatures and pressures. 43. (A): 8 g CH₄ and 14 gr. nitrogen together occupy 11.2 lt. of volume at STP. (R): Equal volumes of all gases under the same conditions contain equal number of molecules. (A): 58.5 g of solid NaCl contains Avogadro number of Cl-ions 44. (R): Chlorine is a diatomic gas 45. Which of the following has highest mass? 1) One gram atom of Iron 2) 5 moles of N_2 3) 10^{24} carbon atoms 4) 44.8 lit of He at STP 1 gram of hydrogen contains 6×10²³ atoms. Then 4 grams of He contains 46. 1) 6×10^{23} atoms 2) 12×10^{23} atoms 3) 24×10^{23} atoms 4) 1.5×10^{23} atoms Elements 'A' and 'B' combine in the ratio of their 47. 1) Atomic weights 2) Molecular weights 3) Equivalent weights 4) Mass numbers

Equivalent weights

48. Molecular weight of orthophosphoric acid is M. Its equivalent weight is

	1) 3M	2) M	3) $\frac{M}{2}$	4) $\frac{M}{3}$
49.	Which of the following	g acid has the same mo	olecular weight and equ	ıivalent weight
	1) H ₃ PO ₂	2) H ₃ PO ₃	3) H ₃ PO ₄	4) H_2SO_4
50.	The equivalent weigh	t of CaCO ₃		
	1) 100	2) 50	3) 33.3	4) 25
51.	The following is not a	fixed quantity		
	1) atomic weight of an compound	n element	2) equivalent weig	ht of an element (or)
	3) molecular weight o	of a compound	4) formula weight of	a substance
52.	Equivalent weight of	$f K_2 Cr_2 O_7$ in acidic me	edium is	
	1) 24.5	2) 49	3) 147	4)296
53.	The equivalent weigh	t of Bayer's reagent is		
	1) 31.6	2) 52.6	3) 79	4) 158
54.	Molecular weight of equivalent weight of	_	reaction $KMnO_4$ is red	duced to K ₂ MnO ₄ . The
	1) M	2) $\frac{M}{2}$	3) $\frac{M}{3}$	4) $\frac{M}{5}$
55.	When Ferrous sulpha	te acts as reductant, its	equivalent weight is	
	1) twice that of its mo	lecular weight	2) equal to its molecul	lar weight
	3) one-half of its mole	cular weight	4) one-third of its mol	ecular weight
56.	$2H_2O \rightarrow 4e^- + O_2 + 4$	H ⁺ . The equivalent we	ight of molecular oxyge	en is
	1) 32	2) 16	3) 8	4) 4
57.	(R): Molarity is in no The correct answer is 1) Both (A) and (R) ar	e true and (R) is not the s false	•	
58.	, , ,		nd crystalline oxalic acid	d are came
50.	(R): The basicity is sa	ě.	id crystainne oxane act	a are same
	The correct answer is			
		e true and (R) is the cor	rrect explanation of (A)	
	, , , , , ,	, ,	e correct explanation of	
	3) (A) is true but (R) is		•	,
	4) (A) is false but (R) i	s true		
59.	(A): The basicity of H	I ₃ PO ₃ is 2		

CHEMISTRY

REDOX REACTIONS

(R): Three hydrogen atoms are attached to phosphorus through oxygen atoms The correct answer is 1) Both (A) and (R) are true and (R) is the correct explanation of (A) 2) Both (A) and (R) are true and (R) is not the correct explanation of (A) 3) (A) is true but (R) is false 4) (A) is false but (R) is true 60. In acidic medium Dichromate ion oxidises Ferrous ion to Ferric ion. If the gram-molecular weight of potassium dichromate is 294 gm, its equivalent weight is 1) 294 2) 147 3) 49 4) 24.5 61. The equivalent weight of Hypo in the reaction [M = molecular weight] $2Na_2S_2O_3 + I_2 \rightarrow 2NaI + Na_2S_4O_6$ is 1) M 62. The equivalent weight of CuSO₄ when it is converted to Cu₂I₂ [M=mol.wt] $1)\frac{M}{1}$ $2)\frac{M}{2}$ $3)\frac{M}{3}$ 4) 2 M The equivalent weight of Iodine in the reaction $2Na_2S_2O_3 + I_2 \rightarrow 2NaI + Na_2S_4O_6$ is [M=mol. 63. wt] 2) $\frac{M}{2}$ 3) $\frac{M}{3}$ 4) 2M 1) M 64. The equivalent weight of glucose in the reaction $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$ is [M=mol. wt] 3) $\frac{M}{24}$ 65. Medium Equivalent weight of KMnO₄ A) Acidic a) 158 B) Neutral b) 79 C) Strongly basic c) 52.6 D) Weakly basic d) 31.6 The correct match is 2) A - d, B - c, C - a, D - b 1) A - d, B - c, C - a, D - c 3) A - d, B - b, C - a, D - c 4) A - d, B - c, C - a, D - a E.F & M.F, % calculations LIST-1 LIST - 2 66. (Empirical formula) (Molecules) A) Glucose 1) BNH₂ B) Oxalic acid 2) CH₂O C) Inorganic Benzene 3) CH D) Oxygenated water 4) CHO, 5) HO The correct match is В \mathbf{C} Α \mathbf{D} Α В \mathbf{C} D 5 2 1) 3 4 2) 2 4 1 5 2 3) 1 3 4) 4 2 1 3 4

67. (A): Empirical formula of ethane is CH₃ (R): Empirical formula of all alkenes is CH₂ The correct answer is 1) Both (A) and (R) are true and (R) is the correct explanation of (A) 2) Both (A) and (R) are true and (R) is not the correct explanation of (A) 3) (A) is true but (R) is false 4) (A) is false but (R) is true 68. (A): Empirical formula of glucose and acetic acid is CH₂O (R): If percentage composition is same, then empirical formula is same The correct answer is 1) Both (A) and (R) are true and (R) is the correct explanation of (A) 2) Both (A) and (R) are true and (R) is not the correct explanation of (A) 3) (A) is true but (R) is false 4) (A) is false but (R) is true 69. (A): Acetylene on additional polymerization gives benzene (R): The empirical formulae of acetylene and benzene are same The correct answer is 1) Both (A) and (R) are true and (R) is the correct explanation of (A) 2) Both (A) and (R) are true and (R) is not the correct explanation of (A) 3) (A) is true but (R) is false 4) (A) is false but (R) is true Oxidation states & balancing equations 70. Oxidation state of 'S' in S₈ molecule is 1) 0 2) + 23) + 44) + 671. Oxidation state of N in N₃H is 1) + 1/33) -1/34) -1 72. Oxidation number of C in CH₂O is 1) -23) 0 2) + 24) 4 73. Oxidation state of Ni in Ni(CO), is 2) 4 3)8 4) 2 74. Oxidation state of Fe in $K_4[Fe(CN)_6]$ 1) +62) + 43) + 24) +5Oxidation number and valency of oxygen in OF2 are 75. 1) + 1,22) + 2, 23) + 1, 14) + 2, 1In which of the following the oxidation state of chlorine is +5? 76. 1) HClO₄ 2) HClO₂ 3) HClO₂ 4) HCl 77. All elements commonly exhibit an oxidation state of 1) + 12) -13) zero 4) + 2The maximum oxidation state that fluorine exhibits is 78. 1) -12) zero 3) +14) + 2

79.	The e	element	that alw	ays exhi	bits a neg	gative o	kidation	state in i	ts comp	ounds is	
	1) Ni	trogen		2) Oxy	gen		3) Fluori	ne EQU	4)	Chlorine	
80.	The r	ninimur	n oxida	tion state	that nitr	ogen ex	hibits is				
	1) -2			2) -3			3) -4		4)	- 5	
81.	In the	e conver	sion of I	K ₂ Cr ₂ O ₇ t	o K ₂ CrO	4 the oxi	dation n	umber o	f the foll	owing cha	nges
	1) K			2) Cr			3) Oxyge	en		4) Non	e
82.	The	oxidation	n numbe	er of 'Mn	' in potas	sium pe	ermanga	nate is			
	1) +6			2) +7		(3) +5		4)	+8	
83.	The o	oxidatio	n numb	er of 'N'	in HN ₃ is	1					
	1) +1	/3		2) 0		,	3) -1/3		4)	1	
84.	Wha	t is the o	xidation	n state of	carbon ir	n carbor	ndioxide	?			
	1) +2			2) +4		(3) +6		4)	+1	
85.	In wl	nich of tl	he follov	wing com	npounds	oxygen	exhibits	an oxida	itions sta	ate of +2?	
	1) H ₂			2) H ₂ C	_		3) OF ₂			H ₂ SO ₄	
86.	The o	oxidatio	n numb	er of sul	phur in S	₈ , S ₂ F ₂ a	nd H ₂ S a	are			
		+ 1 and -					_		4)	-2, + 1 and	- 2
87.	In the	e conver	sion of	CrO_4^{-2} –	$\rightarrow Cr_2O_7^2$	the o	kidation	number	of chron	nium	
		creases		2) decr			3) becom			remains ur	nchanged
88.	Oxid	ation nu	ımber of	carbon i	s zero in	the com	pound				
	1) me	ethyl chlo	oride	2) chlo	roform	(3) glucos	se	4)	carbon tetr	achloride
89.	LIST	Γ -1					LIST -	2			
							(Oxidati	ion state)		
	A) + 1	3					1) Nitrog	gen			
	B) + 1	1				2	2) Nitrou	ıs oxide			
	C) 0					(3) Nitrate ion				
	D) +	5				4	4) Hydroxylamine				
						Į	5) Nitrite	e ion			
	The	orrect m		_	_			_	_	_	
	1)	A 1	B 4	C	D 2	2)	A 5	В	C 4	D 2	
	3)	4	4 5	3	1	2) 4)	5	2 2	4 1	3 3	
90.	,				In ⁺³ , its fi	,				9	
	1) 0			2) +6	,		3) +2		4)	+4	
91.	,	ation nu	ımber aı	nd Coval	ency of si	ulphur i	nS ₈ mol	ecule are	respect	ively	
	1) 6 a			2) 0 an			3) 0 and			6 and 2	
92.	The o	oxidatio	n state o	f phosph	orus in E	Ba(H ₂ PC	$(2)_2$ is				
	1) +3 2) +2					(3) +1 4) -1				

93.	The number of el	ectrons involved in th	e half-reaction $\operatorname{Cr_2O_7^{2-}}$	$\rightarrow 2Cr^{3+}$ is
	1) 3	2) 6	3) 5	4) 10
94.	Sum of the oxida	tion numbers of carbo	n in acetaldehyde is	
	1) – 2	2) +2	3) – 4	4) –1
95.	In bleaching pow	der oxidation states o	f Cl are	
	1) -1, +2	2) -2, +1	3) -1, +1	4) -2,+1
96.	Oxidation number	er of sulphur in oleum	$(H_2S_2O_7)$ is	
	1) +4	2) +2	3) –2	4) +6
97.	The compound fo state of iron in it:		g test has the formula [Fe	$e(H_2O)_5NO]SO_4$. The oxidation
	1) +1	2) +2	3) +3	4) zero
98.	In the reaction of	chlorine with dry slal	ked lime, the oxidation	number of chlorine changes
	i) from -1 to +1		ii) from + 1 to -1	Į.
	iii) from zero to –	1	iv) from zero to	+1
	The correct comb	ination is		
	1) Only ii & iii are	correct	2) iii & iv are co	rrect
	3) i & ii are correc	et	4) All are correc	t
99.	When copper is a	dded to a solution of	silver nitrate, silver is p	precipitated. This is due to
	i) oxidation of silv	ver	ii) oxidation of o	copper
	iii) oxidation of si	ilver	iv) reduction of	silver ion
	The correct comb			
	1) Only iii & iv ar		2) i & ii are corre	
	3) ii, iv are correc	t	4) All are correc	t
100.	(A): Oxidation st	tate of carbon in C_6H_{12}	₂ O ₆ is zero	
	(R): Oxidation st	ate of carbon in all org	ganic compounds is zei	ro
	1) Both (A) and (I	R) are true and (R) is t	he correct explanation	of (A)
	2) Both (A) and (I	R) are true and (R) is r	not the correct explanat	tion of (A)
	3) (A) is true but			
	4) (A) is false but	(R) is true		
101.	(A): Oxidion num	nber of fluorine is alway	ys-1	
	, ,	ne most electronegativ		
	1) Both (A) and (l	R) are true and (R) is t	he correct explanation	of (A)
	, , , , ,	, , ,	not the correct explanat	tion of (A)
	3) (A) is true but	` ′		
	4) (A) is false but	(R) is true		
102.	Oxidation number	ers of sodium, mercur	y in sodium amalgam a	re
	1) zero, zero	2) +1, -1	3) -2, +2	4) 0, +1
103.	Chlorine is passed in the products for		I solution. What are the	oxidation numbers of chlorine
	1) -1, +5	2) -1, +3	3) +1, +7	4) +1, -1
104.	The oxidation sta	ite of sulphur in Na ₂ S	$_{4}O_{6}$ is	
	1) 3/2	2) 2/3	3) 5/2	4) 2/5

- The oxidation number of sulphur in $S_2O_8^{2-}$ is 105.
 - 1) +7
- 2) +6
- 3) +4
- 4) + 5

- 106. Phosphorous exhibits highest oxidation state in
 - 1) PH₃
- 2) H₃PO₃
- 3) $Ca_3(PO_4)_2$
- 4) H₃PO₂

- 107. Iron has the lowest oxidation state in
 - 1) FeSO₄
- 2) K_4 [Fe(CN)₆]
- 3) $Fe(CO)_5$
- 4) FeO

- 108. The oxidation number of Cr in CrO₅ is
 - 1) + 10
- 2) + 6
- 3) + 4
- 4) + 5

- 109. LIST-1
 - A) NH₃
 - B) KMnO₄
 - C) SO,
 - D) He

- LIST-2
- 1) Oxidant
- 2) Both oxidant and reductant
- 3) Neither oxidant nor reductant
- 4) Reductant
- 5) Dehydrating agent

The correct match is

	Α	В	C	D		\mathbf{A}	В	C	D
1)	4	3	1	5	2)	2	4	1	3
3)	4	1	2	3	4)	3	2	1	4

- 110. In the reaction, $I_2 + 2KClO_3 \rightarrow 2KIO_3 + Cl_2$
 - i) Iodine is oxidised
 - iii) Iodine displaces chlorine
 - The correct combination is
 - 1) Only i & iv are correct

- ii) Chlorine is reduced
- iv) KClO₃ is decomposed

2) Only iii & iv are correct

- 3) i, ii, iii are correct
- 4) All are correct
- 111. Oxidation number of iron in Na₂[Fe(CN)₅NO]
 - 1) + 2
- 2) +3
- 3) +1
- 4) 0
- The oxidation number of phosphorus in sodium hypophosphite is 112.
 - 1) + 3
- 2) + 2
- 3) +1
- 4) -1
- 113. (A): In bleaching powder average oxidation no. of chlorine is zero
 - (R): Oxidation no. of chlorine is always zero
- 114. (A): In CrO_5 the oxidation number of chromium is +6
 - (R): CrO₅ posses two peroxy bonds in its structure
- 115. Which of the following reactions does not involve the change in oxidation state of metal?
 - 1) $VO^{-2} \rightarrow V_2O_3$
- 2) Na \rightarrow Na⁺
- 3) $CrO_4^{2-} \rightarrow Cr_2O_7^{2-}$ 4) $Zn^{2+} \rightarrow Zn$
- 116. Oxidation state of oxygen in potassium superoxide is
 - 1) -1/2
- 2) -1
- 3) -2
- 4) 0

- Average oxidation number of iodine in KI₃ 117.
 - 1) + 1/3
- 2) -1/3
- 3) + 3
- 4) -1

- 118. The oxidation number of nitrogen in NCl₃ is
 - 1) +3
- 2) -3
- 3) zero
- 4) -1/3

- What are the oxidation numbers of 'N' in NH₄NO₃? 119.
 - 1) +3, -5
- 2) -3, +5
- 3) + 3, + 6
- 4) -2, +2
- 120. The oxidation number of phosphorus in Ba (H₂PO₂), is
 - 1) + 3
- 2) + 2
- 3) +1
- 4) -1
- 121. In which one of the following compounds the oxidation number of Iodine is fractional?
- 2) IF₅
- 3) IF₇
- 4) KI₃

Types of redox reactions

- 122. K+Cl \rightarrow KCl. This is an example of
 - 1) oxidation
- 2) reduction
- 3) a redox reaction
- 4) none of these
- 123. The conversion $KMnO_4 \rightarrow K_2MnO_4$ is an example of
 - 1) oxidation half reaction

- 2) reduction half reaction
- 3) oxidation and reduction
- 4) neither oxidation nor reduction
- 124. $PbS+H_2O_2 \rightarrow PbSO_4+4H_2O$. In this reaction PbS undergoes
- 2) reduction
- 4) None
- In the reaction MnO₂ + 4HCl \rightarrow MnCl₂ + Cl₂ + 2H₂O, MnO₂ acts as 125.
 - 1) oxidant
- 2) reductant
- 3) both
- 4) None

- 126. In the reaction
 - $P_4 + 3OH^- + 3H_2O \rightarrow 3H_2PO_2^- + PH_3$ phosphorus is undergoing
 - 1) oxidation
- 2) reduction
- 3) disproportionation 4) hydrolysis
- 127. Decomposition of H_2O_2 is an example of
 - 1) neutralisation
- 2) precipitation
- 3) disproportionation 4) hydrolysis
- 128. Which of the following is an oxidation and reduction reaction?
 - 1) $BaO_2+H_2SO_4 \rightarrow BaSO_4+H_2O_2$
- 2) $N_2O_5+H_2O \rightarrow 2HNO_3$
- 3) $AgNO_3+KI \rightarrow AgI+KNO_3$
- 4) $SnCl_2+HgCl_2 \rightarrow SnCl_4+Hg$
- Which of the following is not a redox reaction? 129.
 - 1) $2BaO+O_2 \rightarrow 2BaO_2$

2) $BaO_2+H_2SO_4 \rightarrow BaSO_4+H_2O_2$

3) $2KClO_3 \rightarrow 2KCl+3O_2$

- 4) $SO_2+2H_2S \rightarrow 2H_2O+3S$
- (A): Reaction of NaOH with chlorine is a disproportionation reaction 130.
 - (R): All redox reactions are disproportion-ation reactions
- 131. $2CuI \rightarrow Cu+CuI_2$, the reaction is
 - 1) disproportionation 2) Neutralisation
- 3) Oxidation
- 4) Reduction
- 132. In a reaction between zinc and iodine, in which zinc iodide is formed, what is being oxidised
 - 1) Zinc ions
- 2) Iodide ions
- 3) Zinc atom
- 4) Iodine
- 133. Which one of the following reactions does not involve either oxidation or reduction
 - 1) $VO_2^+ \to V_2O_3$
- 2) $Na \rightarrow Na^+$
- 3) $CrO_4^{2-} \rightarrow Cr_2O_7^{2-}$ 4) $Zn^{2+} \rightarrow Zn$

- 134. Which of the following is redox reaction
 - 1) H₂SO₄ with NaOH
 - 2) In atmosphere, O_3 from O_2 by lightning
- 3) Evaporation of H₂O
- 4) Nitrogen oxide from nitrogen and oxygen by lightning

- 135. $C+O_2 \rightarrow CO_2$ the reaction is
 - 1) Chemical combination

2) Decomposition reactions

3) Displacement reactions

- 4) Disproportionation reactions
- 136. Which of the following is not chemical combinations
 - 1) C+O₂ \rightarrow CO₂
- 2) S+O₂ \rightarrow SO₂
- 3) $2Al+N_2 \rightarrow 2AlN$ 4) $2H_2O \rightarrow 2H_2+O_2$
- 137. Which of the following is decomposition reaction
 - 1) $2HgO \rightarrow 2Hg + O_2$

2) $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

3) S + $O_2 \rightarrow SO_2$

- 4) $Cl_2 + 2KBr \rightarrow 2KCl + Br_2$
- 138. Which of the following is not Decomposition reactions
 - 1) $2HgO \rightarrow 2Hg + O_2$

2) $2H_2O \rightarrow 2H_2+O_2$

3) $2KClO_3 \rightarrow 2KCl+3O_7$

- 4) $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(1)$
- Following reaction describes the rusting of iron 4Fe + $3O_2 \rightarrow 4Fe^{3+} + 6O^{2-}$. Which one of the 139. following statement is incorrect
 - 1) This is an example of a redox reaction
- 2) Metallic iron is reduced to Fe³⁺
- 3) Fe³⁺ is an oxidising agent
- 4) Metallic iron is a reducing agent
- 140. Which one of the following is not prepared from halide by chemical oxidation process
 - 1) F₂
- 2) Cl₂
- 3) Br₂

4) I₂

- 141. The reaction Br₂, Cl₂, I₂, P₄ with NaOH involves
 - 1) Decomposition
- 2) Displacement
- 3) Combination
- 4) Disproportionation
- Which of the following is metal displacement reaction 142.
 - 1) $Zn + CuSO_4 \rightarrow ZnSO_4 + Cu$
- 2) $2Na + 2H_2O \rightarrow 2NaOH + H_2$
- 3) Ca + 2H₂O \rightarrow Ca(OH)₂ + H₂
- 4) $2HgO \rightarrow 2Hg + O_2$
- $Zn + CuSO_4 \rightarrow ZnSO_4 + Cu$, Zn can act as 143.
 - 1) Oxidising agent
- 2) Reducing agent
- 3) Reduced
- 4) Oxidant

- 144. Which of the following is a redox reaction?
 - 1) NaCl+KNO₃ \rightarrow NaNO₃+KCl
- 2) $CaC_2O_4+2HCl \rightarrow CaCl_2+H_2C_2O_4$
- 3) $Mg(OH)_2+2NH_4Cl \rightarrow MgCl_2+2NH_4OH$
- 4) $Zn+2AgCN \rightarrow 2Ag + Zn(CN)_2$
- 145. Which of the following is not an example of disproportionation reaction?
 - 1) $Cl_2 + 2NaOH \rightarrow NaCl + NaOCl + H_2O$
- 2) P_4 +3NaOH+3H₂O \rightarrow PH₃+3NaH₂PO₂
- 3) $2NaOH+2F_2 \rightarrow 2NaF+OF_2+H_2O$
- 4) $2H_2O_2 \rightarrow 2H_2O + O_2$
- 146. In the reaction $3Mg+N_2 \rightarrow Mg_3N_2$
 - 1) Magnesium is reduced

2) Magnesium is oxidized

3) Nitrogen is oxidized

- 4) None of these
- 147. Which one of the halogn is prepared by only electrolysis method
 - 1) Cl₂
- 2) Br₂
- 3) F₂
- 4) I₂
- Which of the following disproportionation reaction 148.
 - 1) $2H_2O_2 \rightarrow 2H_2O + O_2$

2) $2H_2O \rightarrow 2H_2 + O_2$

3) $2HgO \rightarrow 2Hg + O_2$

4) Mg CO₂ \rightarrow MgO + CO₂

149.	Layer test is used for	determination of		
	1) Chalogens	2) Pnicogens	3) Halogens	4) Noble gases
150.	Br _{2′} I ₂ dissolve in			
	1) C_6H_6	2) CO ₂	3) CCl ₄	4) NH ₃
151.	Which of the follow:	ing is not metal displace	ement	
	1) $Zn + CuSO_4 \rightarrow Z$	$\text{CnSO}_4 + \text{Cu}$	2) $2Na + 2H_2O \rightarrow 2$	NaOH + H ₂
	3) $TiCl_4 + 2Mg \rightarrow T$	i + 2MgCl ₂	4) $3\text{Fe}_3\text{O}_4 + 8\text{Al} \rightarrow 4$	1Al ₂ O ₃ + 9Fe
152.	In the reaction 2A1 +	$-N_2 \rightarrow 2$ AlN, Al is		
	1) Reduced	2) Oxidised	3) Oxidising agent	4) None of the above
153.	When P reacts with example of	caustic soda. The prod	lucts are PH ₃ and NaH	I_2PO_2 . This reaction is an
	1) Oxidation		2) Reduction	
	3) Oxidation and red	, ,	4) Neutralization	
154.	-	g ion the one that canno		
	1) ClO-	2) ClO ₂	3) ClO ₃	4) ClO ₄
155.	_	NaCl + NaClO ₃ + 3H ₂ O	•	0.27
	1) Oxidised	2) Reduced	3) Both 1& 2	4) None of the above
156.		useful to prepare Hydr	•	1) D:
	1) Decomposition	2) Displacement	3) Combination	4) Disproportionation
157.	In which of the follo	wing reaction there is r	o change in valency	
	1) $CaCO_3 \rightarrow CaO +$	CO_2	$2) 2H_2O_2 \rightarrow 2H_2O +$	$-O_2$
	$3) 2H_2O \rightarrow 2H_2 + C$	O_2	4) $2HgO \rightarrow 2Hg + C$	\mathcal{O}_2
158.	In C+H ₂ O \rightarrow CO + I	H_2 , H_2 O acts as		
	1) Oxidising agent	2) Reducing agent	3) (1) and (2) both	4) None of these
159.	The reaction is Deco	mposition but it's not re	edox reaction	
	1) $2HgO \rightarrow 2H_2 + C$	\mathcal{O}_2	2) $2H_2O \rightarrow 2H_2 + C$	2
	3) $Mg CO_3 \rightarrow MgO$	+CO ₂	4) 2 KClO ₃ \rightarrow 2KCl	+3O ₂
160.	Which one of the formatten on the formatten of the format		s displaced by more ϵ	lectro positive metals in
	1) H ₂	2) N ₂	3) F ₂	4) Cl ₂
161.	Which of the follow:	ing statement is correct	for a galvanic cell?	
	1) Reduction occurs	at cathode	2) Oxidation occurs	at anode
	3) Electrons flow fro	m anode to cathode	4) All the statements	are correct
162.		ndergo disproportionati		
	•	s exhibit -1 oxidation st		
	·	only two oxidaion numb		
		hree oxidation numbers	s 4) None of the above	
163.	$2\text{HgO} \rightarrow 2\text{Hg} + \text{O}_2$	-	2) Ovidinad	1) nana of the above
	1) Oxidising agent	Reducing agent	3) Oxidised	4) none of the above

 $2H_2O_2 \rightarrow 2H_2O + O_2$ the reaction is 164.

1) Decomposition

Combination

3) Disproportionation reactions

4) 1 and 3

Correct order of tendency to loss of electrons 165.

1) Zn>Cu>Ag

2) Zn<Cu<Ag

3) Zn>Cu<Ag

4) Cu>Zn>Ag

Redox titrations

166. The strength of an aqueous solution of I₂ can be determined by titrating the solution with standard solution of:

1) Oxalic acid

2) Sodium thiosulphate

3) Sodium hydroxide

4) Mohr's salt

Equivalent weight of As₂O₃ in the following equation As₂O₃ + 2I₂ + 2H₂O \rightarrow As₂O₅+ 4HI 167. [arsenic at.wt = 75]

1) 49. 5

2) 156.6

3) 94

4) None

Excess of KI reacts with CuSO₄ solution and then Na₂S₂O₃ solution is added to it. Which of 168. the statements is incorrect for this reaction?

1) $Na_2S_2O_3$ is oxidised 2) CuI₂ is formed

3) Cu₂I₂ is formed

4) Evolved I, is reduced

Redox reactions and electrode processes

169. In Cu - Zn cell

1) Reduction occurs at the copper cathode

2) Oxidation occurs at the copper cathode

3) Reduction occurs at the anode

4) Chemical energy is converted to light energy

170. In a electrochemical cell

1) Potential energy changes into kinetic energy

2) Kinetic energy changes into potential energy

3) Chemical energy changes into electrical energy

4) Electrical energy changes into chemical energy

171. Which one of the following is different from others?

1) Daniell cell

2) Voltaic cell

3) Galvanic cell

4) Electrolytic cell.

172. The electrode potential of an electrode is

1) The potential applied to the electrode

2) The ionization potential of the material of the electrode

3) The tendency of the electrode to loose or gain electrons when it is in contact with its ions

4) The potential energy of the electrons in an electrode.

173. Which of the following may not be present in all galvanic cells

1) Electrolyte

2) Cathode

3) Anode

4) Saltbridge

174. Daniel cell is shown as

1) $Zn(s)/Zn^{2+}(aq)//Cu(s)/Cu^{2+}(aq)$

2) $Zn(s)/Zn^{2+}(aq)/(Cu^{2+}(aq)/Cu(s))$

3) $Cu(s)/Cu^{2+}(aq)//Zn^{2+}(aq)/Cu(s)$

4) $Cu^{2+}(aq)/Cu(s)/(Zn^{2+}(aq)/Zn(s))$

175. Which of the following metals will not react with solution of CuSO₄?

	1) Fe	2) Zn	3) Mg	4) Ag
176.	The primary re	eference electrode for the m	easurement of electro	ode potential is:
	1) SHE (Standa	ard hydrogen electrode)	2) Normal calon	nel electrode
	3) Glass electro	ode	4) none of these	
177.	Equal quantitie acid. Then	es of zinc are separately trea	ated with caustic soda	a solution and dilute sulphurio
	1) more hydro	gen is liberated in the first	case	
	2) more hydro	gen is liberated in the seco	nd case	
	3) equal amou	nt of hydrogen is liberated	in both cases.	
	4) no reaction	takes places		
		WORK S	HEET - II	
Topic	: Mole Concept			
			ON - A ver Type Questions	
1.	7.5 gm of a gas	occupies 5.6 litres at STP.	The gas is	
	1) NO	2) NO ₂	3) CO	4) CO ₂
02.	Which of the fo	ollowing pair contain same	number of molecule	es
	1) 44 gm CO ₂ , 3		2) 32 gm SO ₂ , 80	9
	3) 32 gm SO ₂ , 4	9	4) 44 gm CO ₂ , 40	9
03.	The density of	a gas at STP is 2.5 gm / lit.	Its molecular weigh	t is
	1) 22.4	2) 33.6	3) 2.5	4) 56
04.	Which of the fo	ollowing contain more num	ber of molecules	
	1) 1 gm H ₂	2) 1 gm CO ₂	3) 1 gm SO ₃	4) 1 gm N_2
05.	The ratio of nu	mber of molecules in equal	masses of nitrogen t	to oxygen is
	1) 7:8	2) 8 : 7	3) 1 : 1	4) 2:1.
06.	weight of 0.05	A' and 'B' combine togethe moles of B_2A_3 is 9 gm and the nd B are respectively		unds B_2A_3 and B_2A . The e of B_2A is 10 gm. The atomic
	1) 30, 40	2) 50, 50	3) 80, 20	4) 40, 30.
07.	The weight of oxygen in the r	600 ml of a mixture of ozon mixture is	e and oxygen is 1 gm	at STP. The volume of
	1) 200 ml	2) 500 ml	3) 400 ml	4) 300 ml.
08.	Which of the fo	ollowing is heaviest?		
	1) 50 gm of Iron	n	2) 5 moles of nit	rogen
	3) 0.1 gram ato		4) 10^{23} atoms of	
09.	valency of the	element is		pour density 59.25. Then the
10.	1) 1 There are as ma	2) 2 anv notes as number of oxv	3) 3 gen atoms in 24.8 gm	4) 4 n Na ₂ S ₂ O ₃ .5 H ₂ O (Mw = 248). A
		nachine counts 48 million n 2) 10 ¹⁶		

SECTION - B

Matching Type Questions

11.	Column I	Column II
	1) 16g of O ₂	p) 1gm atom of O
	2) Gram equivalent volume of H ₂	q) 22.4 lit at STP
	3) 18 g of H ₂ O	r) 18 ml
	4) $1/2$ mole $O_2 + 1$ gm atm of H_2	s) 11.2 lit at STP
12.	Column - I	Column - II
12.	Column - I 1) One gram molecules of oxygen gas	Column - II p) 11.2 lit at STP
12.		
12.	1) One gram molecules of oxygen gas	p) 11.2 lit at STP
12.	1) One gram molecules of oxygen gas2) Gram equivalent volume of H₂	p) 11.2 lit at STP q) one mole of O_2

EXERCISE - I

WORK SHEET - I

1) 3	2) 2	3) 4	4) 4	5) 1	6) 2	7) 2	8) 1	9) 3	10) 2
11) 4	12) 3	13) 1	14) 1	15) 1	16) 2	17) 2	18) 2	19) 2	20) 4
21) 4	22) 1	23) 2	24) 1	25) 1	26) 1	27) 1	28) 2	29) 2	30) 2
31) 4	32) 4	33) 4	34) 3	35) 4	36) 4	37) 2	38) 1	39) 4	40) 1
41) 1	42) 2	43) 4	44) 2	45) 2	46) 1	47) 3	48) 4	49) 1	50) 2
51) 2	52) 2	53) 2	54) 1	55) 2	56) 3	57) 3	58) 3	59) 3	60) 3
61) 1	62) 1	63) 2	64) 3	65) 1	66) 2	67) 2	68) 1	69) 2	70) 1
71) 3	72) 3	73) 1	74) 3	75) 2	76) 2	77) 3	78) 2	79) 3	80) 2
81) 4	82) 2	83) 3	84) 2	85) 3	86) 1	87) 4	88) 3	89) 4	90) 2
91) 3	92) 3	93) 2	94) 1	95) 3	96) 4	97) 1	98) 2	99) 3	100) 3
101) 4	102) 1	103) 4	104) 3	105) 2	106) 3	107) 3	108) 2	109) 3	110) 3
111) 1	112) 3	113) 3	114) 1	115) 3	116) 1	117) 2	118) 2	119) 2	120) 3
121) 4	122) 3	123) 2	124) 1	125) 1	126) 3	127) 3	128) 4	129) 2	130) 3
131) 1	132) 3	133) 3	134) 4	135) 1	136) 4	137) 1	138) 4	139) 2	140) 1
141) 4	142) 1	143) 2	144) 4	145) 3	146) 2	147) 3	148) 1	149) 3	150) 3
151) 2	152) 2	153) 3	154) 4	155) 3	156) 1	157) 2	158) 1	159) 3	160) 1
161) 4	162) 2	163) 1	164) 4	165) 1	166) 2	167) 1	168) 3	169) 1	170) 3
171) 4	172) 3	173) 4	174) 2	175) 3	176) 1	177) 3			
			W	ORK S	HEET	- II			
1) 1	2) 3	3) 4	4) 1	5) 2	6) 4	7) 3	8) 2	9) 3	10) 2
3) 1-PS;	;2-S;3-PF	R;4-PQ	24) 1-Q	R; 2-P; 3	3-QRS; 4	-S			

p-Block Elements (Group - III Elements)

EXERCISE - I

IIIA GROUP ELEMENTS

Gen	meral introduction and variation of properties:	
1	Loget basic among the following are	

- 1. Least basic among the following are
 - 1) In OH 2) TIOH
- 3) B(OH)₃
- 4) Al(OH)₃

- 2. IIIA group element with highest density is
 - 1) B 2) A1
- 3) In
- 4) Tl

- 3. Electronegativity is least for
 - 1) Tl
- 2) Al
- 3) Ga
- 4) B

- 4. (1): Ga is used as a thermometric liquid
 - (R): The liquid range of Ga is very wide
 - 1) Both (1) and (R) are true and (R) is the correct explanation of (A)
 - 2) Both (1) and (R) are true and (R) is not the correct explanation of (A)
 - 3) (1) is true but (R) is false

- 4) (1) is false but (R) is true
- 5. The most abundant metal in earth's crust is
 - 1) Oxygen
- 2) Aluminium
- 3) Iron
- 4) Silicon

- 6. Among the following most metallic element is
 - 1) Al
- 2) Ga
- 3) In
- 4) Tl

- 7. Al_2O_3 is
 - 1) Neutral
- 2) Amphoteric
- 3) Basic
- 4) Acidic
- 8. The correct order of ionization potential [IP₁] among the IIIA group elements is:
 - 1) B > Ga > Al > Tl > In

2) B > Tl > Al > Ga > In

3) B > Tl > Al > Ga = In

- 4) B > Tl > Ga > Al > In
- 9. The incorrect statement among the following is
 - 1) Among IIIA group elements the densities increases from B to Tl
 - 2) TICl is more stable than TICl₃
 - 3) Boron has 2 penultimate electrons where as Aluminium has 18 penultimate electrons
 - 4) Boron exhibit allotropy
- 10. Al and Ga have nearly the same covalent radii, because of
 - 1) Greater shielding effect of 's' electrons of 'Ga' atoms
 - 2) Poor shielding effect of 's' electrons of 'Ga' atoms
 - 3) Poor shielding effect of 'd' electrons of 'Ga' atoms
 - 4) Greater shielding effect of 'd' electrons of 'Ga' atoms
- 11. The ionisation energies from Ga to Tl do not decrease due to
 - 1) Shielding effect

2) Improper shielding effect

3) Increase in atomic size

- 4) Decrease in nuclear charge
- 12. The corect statement among the following is
 - 1) Tl⁺ is a powerfull reducing agent
- 2) Al³⁺ is a powerfull oxidising agent

3) Al³⁺ is a reducing agent

- 4) Tl³⁺ is an oxidisng agent
- 13. The maximum covalency of aluminium is '6' where as that of boron is '4' because
 - 1) Aluminium is more electropositive thant boron

p-Block Elements (Group - III Elements)

- 2) 'Al' can form a cation where as boron can not
- 3) 'Al' contains vacant 'd' orbitals in its valence shell where as boron does not
- 4) 'Al' is a metal where as boron is a non metal
- 14. (1): The atomic size of gallium is less than expected
 - (R): In gallium the 3d10 electrons do not shield effectively
 - 1) A and R are true, R explains A
- 2) A and R are true, R does not explains A

3) A is true, but R is false

- 4) A is false, but R is true
- 15. Indium and thallium of IIIrd group have nearly similar atomic radii due to screening effect shown by f-electrons in the
 - 1) Penultimate shell of thallium
- 2) Anti penultimate shell of indium
- 3) Anti penultimate shell of thallium
- 4) Penultimate shell of indium
- 16. Which one of the following has the lowest melting point
 - 1) B
- 2) Al
- 3) Ga
- 4) T1

EXERCISE - I WORK SHEET - I

- 1) 3 2) 4 3) 2 4) 1 5) 2 6) 1 7) 2 8) 4 9) 3 10) 3
- 11) 2 12) 4 13) 3 14) 1 15) 3 16) 3

p-Block Elements (Group IV Elements) EXERCISE - I

Introduction and Variation of Properties

1.	The most abundant 1) Germanium	t IVA group element in t 2) Carbon	he earth's crust is 3) Silicon	4) Tin
2.	Among the following 1) C	ng amphoteric is 2) S	3) Ge	4) Pb
3.	Which of the follow 1) C	ving is a semi conductor 2) Si	3) Ge	4) both Si and Ge
4.	The following bond 1) Si-Si	d has highest energy 2) C-C	3) Sn-Sn	4) Pb-Pb
5.	Which has the high 1) Si	nest melting point 2) Pb	3) Sn	4) C
6.	Carbon has the hig	hest catenation characte	er because	
	1) C is more electron	negative	2) C has higher ioni	sation potential value
	3) C has only one st	table isotope	4) C-C bond is stror	ng
7.	(R) : Carbon has n valence shell.	undergo hydrolysis, who o d-orbitals in its valer are true and (R) is the co	nce shell, but silicon h	as vacant d-orbitals in its
		are true and (R) is not the		
	3) (1) is true but (R)		4) (1) is false but (R)	
8.		ving is a reducing agent	, , ,	
0.	1) CH ₄	2) C_2H_6	3) C_3H_8	4) SiH ₄
9.	atomic number. 1) The tendency to 2) The tendency to 3) The metallic char	wards catenation increaseshow +2 oxidation state	ses increases	hows that, with the rise in
10.	The least abundant	IV A group element in	earths crust is	
	1) C	2) Ge	3) Pb	4) Sn
11.	Cassiterite is the na	itural source of		
	1) C	2) Si	3) Sn	4) Pb
12.	Reducing capacity	is highest for		
•	1) CH ₄	2) SiH ₄	3) SnH_4	4) PbH_4
13.	Which of the IVA g	roup element do not exh	iibit allotropy	
	1) C	2) Si	3) Sn	4) Pb
Carbo	on:			
14.	Which is not an allo	otrope of carbon?		
	1) Graphite	2) Diamond	3) Carborundum	4) Coke

<i>p</i> -Blo 15.	ock Ele When	ements diamon	s (Gro od is heat	up IV E	lemer	nts) 2000°C, t	he subst	ance for	med is		
	1) Am	orphous	carbon	2) Coal		3)	Graphit	e	4) Ca	arbon monoxide	e
16.	All ato	oms are s	sp³ hybr	idised in	the follo	wing su	bstsance	<u>)</u>			
	1) Met	hane		2) Ethan	e	3)	Diamon	.d	4) G	raphite	
17.	Graph	ite and {	gas carb	on are a p	oair of						
	1) Isos	ters		2) Allotr	opes	3)	Isomers		4) Co	ompounds	
18.	Layer	structur	e is pres	ent in							
	1) Gra	phite		2) Coal		3)	Diamon	ıd	4) Co	oke	
19.	The al	lotrope o	of Carbo	n not use	ed in the	making	of electro	odes is			
	1) Gas	Carbon		2) Petrolo	eum Cok	ke 3)	Graphit	e	4) Di	iamond	
20.	Diamond $\xrightarrow{1800-2000^{\circ}\text{C}}$ X. The product, X is used as 1) lubricant 2) in the manufacture of lead pencils 3) in electrotyping and electroplating 4) all the above					d pencils					
21.	The correct statement regarding Graphite is 1) Graphite is not a conductor because, it does not contain free electrons 2) Graphite is a three dimensional conductor because, the p-electrons are delocalised three dimensionally 3) Graphite is a two dimensional conductor because p-electrons are delocalised two dimensionally 4) In graphite all the carbon atoms under go sp³ hybridization										
22.	Regar	ding dia	mond								
	I) C-C	bond le	ngth is 1	.54A°		II)	It has le	ast refra	ctive ind	ex among solid	s
	III) It has a 3-dimensional structure. The correct combination is 1) all are correct 2) I & III are correct 3) I & II are correct 4) II & III are correct					:					
					EXER	CISE	- I				
				V	VORK	SHEE	Г-І				
	1) 3	2) 3	3) 4	4) 2	5) 4	6) 4	7) 1	8) 4	9) 2	10) 2	
	11) 3	12) 4	13) 4	14) 3	15) 3	16) 3	17) 2	18) 1	19) 4	20) 4	
	21) 3	22) 2	,	•	ŕ	•	,	,	,	,	

WORK SHEET - I

V A Group Elements:

1.	The valence shell electronic configuration of VA group elements is:									
	1) ns ² np ² 2) ns ² np ¹			3) ns^2np^3			4) ns ² np ⁵			
2.	The mo	ost abur	ndant e	lement in	the atmo	osphere	eis			
	1) O ₂			2) N ₂			3) F ₂			Ar
3.	The m	ost abuı	ndant V	A group	elemen	t in the	earth's cr	ust is		
	1) Nitrogen 2) Phosphoro			sphorous	S	3) Arsen	ic	4)]	Bismuth	
4.	LIST -	1		L	IST - 2					
	A) Pho	sphorit	e	1) KNC	\mathcal{O}_3					
	B) Ben	galsalt	petre	2) Ba(N	IO_3					
	C) Fluo	oroapat	ite	3) NaN	IO_3					
	D) Chi	li salt p	etre	4) 3Ca ₃	$(PO_4)_2$.C	aF_2				
				5) Ca ₃ (1	$PO_4)_2$					
	The co	rrect ma	atch is							
		A	В	C	D		A	В	C	D
	1) 3)	$\frac{1}{4}$	2 3	3 5	5 2	2) 4)	2 5	4 1	3 4	1 3
5.	•			ist as a di		,		•	1	9
	1) N		Court Con	2) P				4) Bi		
6.	•	llowing	VA gro	,	ent occu	rs even	in free sta	ate	,	
	1) Bi			2) As			3) Sb		4)]	N
7.	The V	A group	eleme	ent havir	ng more	numb	er of allot	ropes is		
	1) N			2) P			3) Bi		4) 9	Sb
8.	The fo	llowing	eleme	ent doesr	n't have a	allotrop	oes			
	1) N			2) P			3) As		4)	Bi
9.	Mostr	eactive a	allotrop	ic form o	of Phosp	horous	is			
	1) Yell	ow		2) Red			3) Black		4) 9	Scarlet
10.	(A): P	is more	e reacti	ve than N	I_2					
	` ,			latively w						
	•						ect explai			
	•				id (R) is r	not the	correct ex	_		
11	, , ,	is true b	` '	s false			4) (A) is i	talse but	(K) is tru	e
11.	-	sphine	15	2) D H			3) PH ₄ ⁺		4) .	рЦ
12.	1) PH ₃	ogen m	olecule	2) P_2H_6	,	f nitrog	o) Pn ₄ en are joi:	ned by	4).	P_2H_4
12,		_		nd one pi		rintiog	,	-	nds and o	one pi bond
		_		nd two p			4) Three	_		1
13.	The ch	emical i	nertnes	s of nitrog	gen is du	e to				
	1) half	-filled '2	2p′ orb	itals of N	litrogen		2) high bond dissociation energy			energy
	,	- ,		-orbitals			4) its gaseous nature			
14.		aximun	n covale	ency of ni	itrogen is	S	2) 4		48.0	_
	1) 2			2) 3			3) 4		4) \)

155

p-BLOCK ELEMENTS

- The VA group element which exhibits wide range of oxidation states is 15.
 - 1) P

- 2) As
- 3) Bi
- 4) N

- The oxidation state of nitrogen in hydrazine is 16.
- 2) -2
- 3) +1
- 4) + 2

- 17. The stable oxidation state of Bismuth is
 - 1) +1
- 2) + 5
- 3) 3
- 4) + 3

- 18. Substance Oxidation state of N
 - A) HNO₂
- 1) -3, +5
- B) NH₄NO₃
- 2) -1/3
- C) N₃H

19.

- 3) + 5
- D) H₃PO₃
- 4) + 3
- 5) + 1/3

The correct match is

- Α 3 1 2
- C 2
- D 4
- 2) 5 4
- 2 3
- D 3 4 2

- - 1) 3) 1
- - 4)
- The atomicity of white Phosphorous is 'x' and the P P P bond angle in the molecule
- 1) x = 4; $y = 90^{\circ}$

is 'y'. What are 'x' and 'y'?

- 2) x = 4; $y = 60^{\circ}$
- 3) x = 3; $y = 120^{\circ}$
- 4) x = 2; $y = 180^{\circ}$

5

EXERCISE- I / ANSWERS

WORK SHEET-I

- 1)3 2) 2
- 3) 2
- 4) 4
- 6) 4
- 7) 2
- 8) 4
- 10) 1

9) 1

19) 2

- 11) 4
- 12) 3
- 13) 2
 - 14) 3
- 5) 1 15) 4
- 16) 2 17) 4
- 18) 1

156

EXERCISE - I WORK SHEET - I

VIA-Group Elements:

1.	Which of the follow	wing set of atomic number	rs belongs to group 16 e	elements
	1) 56, 37, 20	2) 52, 8, 84	3) 14, 32, 50	4) 36, 9, 17
2.	Oxygen and Sulph	nur have same		
	1) outer electronic	configuration	2) Atomic size	
	3) electronic config	guration	4) electron affir	nity
3.	Element with the l	owest atomicity		
	1) Te	2) S	3) Se	4) O
4.	The number of ato	ms present in one molecul	le of rhombic sulphur is	S
	1) 2	2) 4	3) 6	4) 8
5.	The total number of	of covalent bonds present	in one S ₈ molecule is	
	1) 4	2) 6	3) 8	4) 10
6.	The S - S - S bond a	angle in S ₈ molecule is		
	1) 109.50	2) 105°	3) 120°	4) 60°
7.	The decreasing ter	ndency to exist in puckered	d 8 - membered ring str	ucture is
	1) S > Se > Te > Po		2) Se > S > Te >	Po
	3) S > Te > Se > Po		4) Te > Se > S >	Po
8.		wing form of sulphur can	be prepared by pourin	g liquid sulphur into cold
	water			
	1) Monoclinic	2) Rhombic	3) Plastic	4) Colloidal
9.	· · · · · · · · · · · · · · · · · · ·	s of sulphur differ in		
	1) Overal packing	of rings	2) Molecular w	· ·
	3) Atomicities		4) Their ring str	ructure
10.		e of oxygen is zero in		
	1) CO	2) O ₃	3) SO ₂	4) H2O2
11.		ollowing compounds, oxy	~	
	1) H ₂ O	2) H_2O_2	3) OF ₂	4) H ₂ SO ₄
12.		wing element does not sho		
	1) Oxygen	2) Sulphur	3) Selenium	4) Tellurium
13.	Generally oxygen	is converted into its ion by	7	
	1) Losing electrons	S	2) Increasing or	xidation number
	3) Decreasing ator		4) Gaining elec	
14.		f chalcogen family, the hig	•	xhibited by
	1) Oxygen	2) Selenium	3) Tellurium	4) Sulphur
15.	, ,	ivalent while sulphur can		because
	, , , ,	electronegative than sulpl		
	2) Sulphur has vac	cant d-orbitas while oxyge	n does not	
	· =	ge atomic radius than oxy	~	
		electronegative than oxyg		
16.	In sulphate ion the	e oxidation state of sulphu	ır is +6 and the hybridi	zation state of sulphur is

p-BLOCK ELEMENTS

1) sp $2) sp^2$

3) sp³

4) sp^2 or sp^3d^2

17. The second most electronegative element in periodic table is

1) F

2) O

3) Cl

4) N

18. Which of the following has higher IP₁?

1) Oxygen

2) Sulphur

3) Selenium

4) Tellurium

19. Element with higher catenation capacity is

1) S

2) Se

3) Te

4) Po

20. The order of abundance of VI A group elements is

1) O > S > Se > Te > Po

2) S > Se > Te > o > Po

3) O > Se > S > Te > Po

4) O > Te > Se > S > Po

21. The most common oxidation state of VI A group elements is

1) - 2

2) + 2

3) + 4

4) +6

22. Chair form of S₆ rings are present in

1) α - sulphur

2) β - sulphur

3) Engle's sulphur 4) γ - sulphur

EXERCISE - I / ANSWERS

WORK SHEET - I

1) 2

2) 1

3) 4

4) 4

5) 3 6) 2

7) 1

8) 3

9) 1

19) 1

11)3

12) 1

13) 4

14) 1 15) 2 16) 3

17) 2

18) 1

10) 2

20) 1

21) 1 22) 3

EXERCISE - I

WORK SHEET - I

VIIA Group Elements:

1.	The number of unp	The number of unpaired electrons present in the first excited state of chlorine atom is						
	1) 1	2) 3	3) 5	4) 2				
2.	Which of the follow	Which of the following halogens has metallic character?						
	1) F ₂	2) CI ₂	3) Br ₂	4) I ₂ .				
3.	The name of the rac	lioactive VII A group el	ement and its atomic r	number are respectively				
	1) Astatine, 84	2) Astatine, 86	3) Astatine, 85	4) Astatine, 87				
4.	Super halogen is							
	1) F ₂	2) Cl ₂	3) Br ₂	4) I ₂				
5.	The element which	never acts as reducing	agent in a chemical re	action is				
	1) O	2) Li	3) F	4) C				
6.	The high reactivity	of fluorine is mainly du	ie to					
	1) high heat of hydr	ation	2) small size					
	3) low bond dissocia	3) low bond dissociation energy of the F-F bond 4) high ionisation potential						
7.	According to mulliken, there is no possibility of multiple bonding in							
	1) Cl ₂	2) F ₂	3) Br ₂	4) I ₂ .				
8.	In the reaction of l	In the reaction of I ₂ with water, change in free energy is						
	1) Negative		2) Positive					
	3) zero		4) cannot be predic	ted				
9.	The type of forces p	resent among halogen i	nolecules					
	1) H-bonds	2) Covalent bonds	3) Vander waal's for	rces 4) Ionic bond				
10.	The correct order of Vander Waals radius of F, Cl and Br is:							
	1) Cl > F > Br	2) $Br > C1 > F$	3) F > Cl > Br	4) $Br > F > Cl$				
11.	Liquid and solid halogens are							
	1) Br_2 and Cl_2	2) I_2 and Br_2	3) Br_2 and I_2	4) Cl_2 and I_2				
12.	The halogen that undergoes sublimation is							
	1) F ₂	2) Cl ₂	3) Br ₂	4) I ₂				
13.	Ionisation potential	Ionisation potential of fluorine is abnormally high. It is due to						
	1) Its high EN value	2) Its high EA value	3) Its small size	4) Its big size				
14.	The elements with th	e highest electron affinit	y and electronegativity	respectively are				
	1) Cl and Cl	2) F and F	3) F and Cl	4) Cl and F				
15.	An element M has a	n atomic mass 19 and a	tomic number 9. Its io	n is represented by				
	1) M ⁺	2) M ²⁺	3) M ⁻	4) M ²⁻				
16.	General oxidation s	tates of halogens are						

p BLOCK ELEMENTS

- 1) -1, +1
- 2) -1, +1, +3
- 3) -1, +1, +3, +5
- 4) -1, +1, +3, +5, +7
- 17. Which one of the following elements can show both positive and negative oxidation state?
 - 1) F
- 2) I

- 3) Li
- 4) He.
- The maximum oxidation state that can be exhibited by a halogen in its second excited state 18.
- 2) + 3
- 3) +5
- 4) +7
- 19. Which one of the following elements show different oxidation states?
 - 1) Sodium
- 2) Fluorine
- 3) Chlorine
- 4) Potassium

- 20. Enthalpy of dissociation is low for
 - 1) F_{2}
- 2) Cl,
- 3) Br₂
- 4) I₂
- 21. F, absorbs portion of light and appear yellow and I, absorbs portion of light and appears violet
 - 1) Red and Green
- 2) Violet and Yellow 3) Blue and Orange
- 4) Green and Red

EXERCISE - I / ANSWERS

WORK SHEET - I

- 1) 2 2) 4 3)3
 - 4) 1
- 5)3
- 6) 3
- 7) 2
- 8) 2
- 9) 3 10) 2

- 11) 3
- 12) 4
- 13) 3
- 14) 4
- 15) 3
 - - 16) 4 17) 2
- 18) 3
- 19) 3 20) 4

21) 2

EXERCISE - I

WORK SHEET - I

NOBLE GASES:

1.	The chemistry of zero 1) They are less abund 3) They have octet cor	dant	le known because 2) They have low ionisation potential 4) They have low boiling points		
2.	The gaseous mixture 1) Ar,Kr,Xe	present in the 'sun' at 2) Ne, Kr	mosphere 3) Kr,Xe	4) He, H,	
3.	,	•	orange light which is si 3) Li	, <u>z</u>	
4.	The forces that make to 1) Dipolar forces 3) Van der waal's force		ole gas in liquid state 2) Dipole - induced o 4) Repulsive forces	dipole forces	
5.	The correct answer is 1) Both (1) and (R) are	ed along with D_1 and I true and (R) is the contrue and (R) is not the	ere of the sun D_2 in the solar spectrum erect explanation of (A) e correct explanation of 4) (1) is false but (R)	f (A)	
6.	The first ionization er may be 1) 2080.7 KJ/mole	nergy of neon is 2080.7 2) 2372.3 KJ/mole	7 KJ/mole. The first ion 3) 1520.5 KJ/mole	nisatioin energy of helium 4) 1800.4 KJ/mole	
7.	The noble gas which l 1) Xe	,	,	4) Ar	
8	Solubility of noble gas 1) He > Ne > Ar > Kr > 3) Xe > Kr > Ar > Ne >	> Xe	e order 2) He > Ne > Kr > Aı 4) None	r>Xe	
		WORK SH	IEET - II		
1.	When a Radioactive s 1) He	ubstance is kept in a v 2) Ne	vessel, the atmosphere 3) Ar	around it is rich with 4) Xe	
2.	Which element disinto 1) Ra	egrates to give two no 2) Th	oble gases 3) Rn	4) He	
3.		g lit-1. This is because		rogen obtained from the heric nitrogen contains	
4.	The percentage by vol 1) 1%	ume of Argon in atmo 2) 2%	osphere 3) 10%	4) 0.2%	
5.	Noble gases exists only in monoatomic state. This is due to 1) Non availability of unpaired electrons 2) high ionization energy 3) large size 4) zero electron affinity				
6.	If one litre of air is passed repeatedly over heated copper and magnesium till no further reduction in volume takes place, the volume finally obtained is				

p BLOCK ELEMENTS 1) 800ml 2) 990 ml 3) 10 ml 4) 100 ml 7. When 1 lit of air is burnt with a mixture calcium carbide and anhydrous calcium chloride, the reduction in volume of air is about 1) 10ml 2) 990ml 3) 100ml 4) 900ml 8. The incorrect statement regarding to Noble gases is 1) Their Electron affinity and Electronegetive are zero 2) They are held together by Van der waals forces 3) They occupy the Peaks in the graphs of ionisation potential and atomic number 4) Their boiling points decrease from He to Xe 9. The maximum valency (=8) is shown by 1) Xe, Os 2) Xe, Ru 3) Xe,Os,Ru 4) Xe,Os, Ru,Mn Which of the following is diamagnetic in nature? 10. 4) Fe^{2+} 2) NO, 3) He 1) O, EXERCISE - I / ANSWERS WORK SHEET - I 1)3 2) 4 3) 1 4) 3 5) 1 6) 2 7) 3 8) 3

WORK SHEET - II

6) 2

7) 1

5) 1

9) 3

8) 4

10) 3

1) 1

2) 1

3) 1

4) 1

Organic Chemistry - Nomenclature

Nomenclature

EXERCISE - I

- 1. Secondary butyl group is
 - 1) CH₃ CH₂ CH₂ CH₂ -
- 2) $CH_3 CH CH_2 CH_3$

3) CH₃ - C - CH₃

- 4) CH₃ CH CH₂ CH₃
- The correct IUPAC name of $CH_3-CH_2-CH(CH_3)-CH(C_2H_5)_2$ is 2.
 - 1) 4-Ethyl -3-methyl hexane
- 2) 3-Ethyl-4-methyl hexane
- 3) 4-Methyl-3-ethyl hexane
- 4) 2, 4, -Diethyl pentane
- Which of the following respresents 2,2,3– Trimethyl hexane? 3.

 - 1) CH₃-C(CH₃)₂-CH₂-CH₂-CH(CH₃)₂ 2) CH₃-CH(CH₃)-CH₂-CH(CH₃)-CH₂-CH₃
 - 3) CH₃-C(CH₃)₂-CH(CH₃)-CH₂-CH₂-CH₃ 4) CH₃-C(CH₃)₂-CH₂-C(CH₃)₂-CH₃
- The IUPAC name of the compund $~C_2H_5-C-CH_2OH$ $~~\parallel~~CH_2$ 4.
 - 1) 2-Ethyl prop-2-en-1-ol

2) 2-Hydroxy methyl butan-1-ol

3) 2-Methylene butan-1-ol

- 4) 2-Ethyl -3-hydroxy prop-1-ene
- The correct IUPAC name of H-C-CHO is 5.
 - 1) Formyl methanal 2) 1,2-Ethanedione
- 3) 2-Oxoethanal
- The IUPAC name of the following compound is $CH_3 CH CH_2 CH = CH_2$ 6.
 - 1) 2- Methylpentane

2) 4- Methyl pentene -1

3) 1- Hexene

- 4) 3- Methyl pentene
- 7. The IUPAC name of the compound is $CH_3-CH(C_2H_5)$ - $CH_2-CH(OH)$ - CH_3
 - 1) 4-Ethyl pentanol-2

2) 4-Methyl hexanol-2

3) 2-Ethyl pentanol -2

- 4) 3-Methylhexanol-2
- 8. The structure of 4-methyl pentene-2 is
 - 1) (CH₃)₂CH-CH₂CH=CH₂
- 2) $(CH_3)_2CH-CH = CH-CH_3$
- 3) (CH₃)₂CH-CH₂-CH=CH-CH₃
- 4) $(CH_3)_2C = CH CH_2 CH_3$
- 9. The IUPAC name of $CH_3 - C \equiv C - CH(CH_3)_2$ is
 - 1) 4 Methyl-2-pentyne

- 2) 4,4, -Dimethyl -2- butyne
- 3) Isopropylmethyl acetylene
- 4) 2-Methyl-4-pentyne
- 10. The IUPAC name of (CH₃), CH-COOH is
 - 1) 2- propanoic acid

- 2) Isobutanoic acid
- 3) 2-Methyl propanoic acid
- 4) 2-Methyl butanoic acid

Organic Chemistry - Nomenclature

CH₃ O

- 11. The IUPAC name of $CH_3 CH C CH_2 CH_2OH$ is
 - 1) 1-Hydroxy-4-methyl-3-pentanone
- 2) 2-Methyl -5-hydroxy-3-pentanone
- 3) 4-Methyl -3-oxo-1-pentanol
- 4) Hexanol-1-one-3

 $\label{eq:ch3H} \begin{array}{c} CH_3\,H \\ \end{array}$ The IUPAC name of the formula $CH_3-C=C-COOH$ is

- 1) 2- Methyl-2-butenoic acid
- 2) 3- Methyl-3- butenoic acid
- 3) 3- Methyl -2-butenoic acid
- 4) 2-Methyl-3- butenoic acid

13. The correct IUPAC name of Cl₃C- CH₂CHO

- 1) 3,3,3-Trichloro propanal
- 2) 1,1,1-Trichloro propanal
- 3) 2,2,2-Trichloro propanal
- 4) Chloral

14. IUPAC name of $CH_2 = CH-CH = CH_2$ is

- 1) 1, 2-Butadiene
- 2) 1,3-Butadiene
- 3) 1, 4-Butadiene
- 4) Butadiene

15. IUPAC name of $CH_2 = C = CH_2$ is

1) Propadiene

12.

- 2) 1, 1-propadiene
- 3) 2, 2-propadiene
- 4) 1, 3-propadiene

16. IUPAC name of $CH_2 = CH - CH(CH_3)_2$ is

- 1) 1,1-Dimethyl-2-propane
- 2) 3-Methyl -1- butene
- 3) 2-vinyl propane
- 4) 1-Isopropyl ethylene

17. IUPAC name of $CH_3 - C - CH = CH_2$ is CH_3

- 1) 3,3,3 Trimethyl -1- propene
- 2) 1,1,1- Trimethyl -3- propene
- 3) 3,3 -Dimethyl -1- butene
- 4) 1,1- Dimethyl -3 butene

18. IUPAC name of $(CH_3)_3$ CCH₃ is

1) 1,1,1-Trimethyl ethane

2) 2,2,2 - Trimethyl propane

3) 2,2,2- Trimethyl ethane

4) Dimethyl propane

19. The IUPAC name of $CH_3 - CH_2 - CH - C - CH_3$ CH_3 O

- 1) Isohexanone
- 2) 3-methyl 2-pentanone
- 3) either (1) or 2
- 4) 3- Methyl -4- pentanone

20. IUPAC name of CH₃ -CHCl-CH₂-CHO is

- 1) 2-chloro-4-butanol 2) 3-chloro butane
- 3) 2-chloro-4-butanal 4) 3-chloro butanal

21. The structural formula of 3 - ethyl - 2 - methyl hexane is

- 1) CH₃-CH(CH₃)-CH(C₂H₅)-CH₂-CH₂-CH₂-CH₃ 2) CH₃-CH₂-CH(C₂H₅)-CH (CH₃) -CH₂-CH₃
- 3) either (1) or (2)

4) None of these

22. The systematic name of the organic compound having the structure

$$\begin{picture}(20,10) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){10$$

1) 4 - Isopropyl hexane

2) 2-methyl-3-propyl hexane

3) Isodecane

23.

IUPAC name of $CH = C-CH = CH_2$ is

1) But-1-yne-3-ene

2) But-1-en-3-yne

3) But-1-yne -2-ene

4) None of the above

24. The IUPAC name of $(CH_3)_3C$ -CH=CH₂ is

1) 2,2-dimethyl but -3-ene

3) 3,3-dimethyl but-1-ene

2) 2,2-dimethyl pent-4-ene

4) 4-(1-Methyl ethyl)heptane

4) 3,3-dimethyl pent-1-ene

25. The compound $CH_3 - C = CH - CH_3$ is $CH_2 - CH_3$

1) 2-ethyl-2-butene

2) 3-methyl-3-pentene 3) 3-methyl-2-pentene 4) 3-ethyl-2-butene

26. IUPAC name of $CH_3 - C - CH_2 - CH_2 - CH_3$ $CH_2 - CH_3$

1) 3-methyl-3-hexanol

2) 2-ethyl-2-pentanol

3) 2-ethyl-2-hydroxy pentane

4) Any of these

27. $CH_3 - CH_2 - CH - (CH_2)_3 - CH_3$ The IUPAC name CH_3

1) 3-methyl hexane

2) 4-methyl hexane

3) 5-methyl heptane

4) 3-methyl heptane

28. IUPAC name of (CH₃)₂CH-CHBr₂

1) 1,1-dibromo -2-methyl propane

2) 2-methyl-3-Bromo propane

3) iso propyl Bromide

4) 3° butyl bromide

29. $\begin{array}{c} C_2H_5 \\ CH_3-C-CH_3 \quad \text{IUPAC name is} \\ C_2H_5 \end{array}$

1) 2, 2-Diethyl propane

2) 3, 3-Dimethyl pentane

3) 3-ethyl-3-methyl butane

4) 3-ethyl-2-methyl butane

30.
$$CH_3 - CH_2 - C - C = CH - CH_3$$
 The IUPAC name is $CH_3 C_2H_5$

1) 3-ethyl-4, 4-dimethyl-2-hexene

2) 4-ethyl-3, 3-dimethyl-2-hexene

3) 4 - ethyl - 3,3 - dimethyl - 4 - hexene

4) all of these

31. $CH_3 - CH - CH_2 - CH - CH_3$ IUPAC name is C_2H_5 C_2H_5

1) 2, 4 - diethyl pentane

2) 3, 5- dimethyl heptane

3) 3 - methyl 5 -ethyl hexane

4) 5 - ethyl -3- methyl hexane

- 32. $CH_3 C CH_2 C CH_3$ IUPAC name is $CH_2 CH_2$
 - 1) 2, 4-pentadiene

2) 2, 4-dimethyl-1, 4-pentadiene

3) 2, 4, - butadine

- 4) None of the above
- 33. The IUPAC name of isobutanol is
 - 1) 2-methyl propanol

2) 2-methyl-2-propanol

3) 2-butanol

- 4) 2-methyl-1-propanol
- 34. IUPAC name of $CH_3 O CH CH_3$ CH_3
 - 1) methyl propyl ether ether

2) methyl isopropyl

- 3) 2-methoxy propane
 - enioxy propane

- 4) all the above
- 35. IUPAC name of n-amyl alcohol is
 - 1) butanol 1
- 2) pentanol 2
- 3) pentanol 3
- 4) pentanol -1
- 36. IUPAC name of $CH_3 CH_2 CH_2 CH CH_3$ is

$$CH_3 - \dot{C}H - CH_3$$

1) 2, 3 - dimethyl hexane

2) 2 - methyl - 3 - propyl butane

3) 2 - isopropyl pentane

- 4) Nonane
- 37. IUPAC name of $CH_3 C(OH) CH_3$ CH_3
 - CH₃
 1) sec- butyl alcohol 2) pri-butyl alcohol
- 3) 2-methyl propanal 4) 2-methyl propanol-
- 38. The compound in which C uses only sp³ hybrid orbitals for bond formation is
 - 1) HCOOH
- 2) (NH₂)₂CO
- 3) (CH₃)₃COH
- 4) CH₃ CHO
- 39. The compound having only one type of hybrid obitals in all carbon atoms is
 - 1) Ethane dial
- 2) 2, 4 pentadine
- 3) Propene
- 4) Butyne
- 40. The maximum number of linear atoms in propyne molecule are
 - 1)3
- 2) 4
- 3) 2
- 4) 6
- 41. 2, 3– dimethyl hexane contains tertiary..... secondary and primary carbon atoms, respectively.

(2003)

- 1) 2,2,4
- 2) 2,4,3
- 3) 4,3,2
- 4) 3,2,4

- 42. IUPAC name of Allyl chloride
 - 1) 1-chloro -1 propene

2) 1 - chloro - 2 - propene

3) 3 – chloro – 2 – propene

- 4) 3 chloro 1 propene
- 43. Among the following which one represent the correct name of the compound
 - 1) methyl pentane
- 2) 2 propene
- 3) 1 pentanone
- 4) none

44. The IUPAC name of is CH = CH

1) 1-Amino prop-2-enal

- 2) 3-Amino prop -2-enal
- 3) 1-Amino-2-formyl ethene
- 4) 3-Amino-1-oxoprop-2-ene

The IUPAC name of $CH_2 \longrightarrow CH_2 \longrightarrow CH_3$ is 45.

- 1) 2-Ethyl-3-methyl butene-1
- 3) 2-Methyl-3-ethyl butene-3
- 2) 2-Isopropyl butene-2
- 4) Ethyl isopropyl ethane

 H_5C_2

- The IUPAC name of 46.
 - 1) 3- Cyclopropyl -3- ethyl -2- propene
 - 3) 3-Cyclo propyl -2- pentene
- 2) 1-Cyclopropyl -1- ethyl propene
- 4) (1-ethyl -1- propenyl) cyclo propane
- 47. IUPAC name is
 - 1) 4-one -2- pentenol
 - 3) Pentane-4-ol-2-one

- 2) 4-hydroxy-2-pentanone
- 4) Pentane-2-one-4-ol
- 48.
 - 1) N -ethyl N,2 di methyl 4- hexanamine 2) N, 4-di ethyl-N-2-dimethyl 4 butananine
 - 3) N-ethyl-N-methyl-5-methyl -3-Hexanamine 4) 3- (ethyl methyl amino) -5-methyl hexane
- 49. The correct IUPAC name of the compound

- 1) Pent-4-en-2-one
- 2) 3-Buten-1-al
- 3) 3-Acetyl propene-1 4) Formyl propene
- OH IUPAC name of the compound CH_3CH_2 $C - CH_2 - \langle$ is 50.
 - 1) tert-pentanol cyclo propane
 - 3) 1-cyclopropyl-2-methyl butan-2-ol
- 2) 2-cyclobutyl butan-2-ol
- 4) 2-cyclobutyl butan-2-ol
- 51. The correct IUPAC name of

1) ethanedial

- 2) 2-ketopropanal
- 3) 2,3-Butane dione 4) ethane dione
- 52. Correct IUPAC name of
 - 1) 1-Methyl-3-cyclohexanol
- 2) 3-Methy-1-cyclohexanol

- 3) 1-Methyl-3-hydroxy cyclohexane
- 4) 1-Hydroxy-3-methyl cyclo hexane

53.

Correct IUPAC name of this compound is

- 1) 5-Hydroxy-2,3,4-trimethyl-3-hexenoicacid 2) 2-Hydroxy-2,3,4-trimethyl-3-hexene-1-oic acid
- 3) 2-Hydroxy-2,,3,4-trimethyl-3-hexene-5-oic acid trimethyl-3-hexene-1-oic acid

4) 2-Hydroxy-2,3,4-

54. IUPAC name of

- 1) 4-Bromo-2-hydroxy benzoic acid
- 2) 1-Bromo-3-hydroxy benzoic acid
- 3) 1-Bromo-3-hydroxy-4-benzoic acid
- 4) 1-Carboxy -2-bromo phenol

WORK SHEET - II

Bonding-Hybridization

- 1. The bond between carbon atom (1) and carbon atom (2) in compound $N = C^1 C^2H = CH_2$ involves the hybridization
 - 1) sp^2 and sp^2
- 2) sp^3 and sp
- 3) sp and sp^2
- 4) sp and sp
- 2. The ratio of the number of sp, sp^2 and sp^3 carbons in the compound given below is

$$H_2C = C = CH - CH_3$$

- 1) 1:2:1
- 2) 2:1:1
- 3) 1:1:2
- 4)1:2:3
- 3. The ratio of the number of sp, sp² and sp³ orbitals in the compound is $CH_3 CH = C = CH C = C CH_3$
 - 1) 1:1:1
- 2) 2:2:1
- 3) 3:2:1
- 4)3:3:4
- 4. Which compound given below has sp^3 , sp^2 and sp orbitals in the ratio of 6:3:2
 - 1) $CH_3 CH = CH CH_2 C = C CH_3$
- 2) $CH_3 CH = CH CH_2 C \equiv CH$
- 3) $CH_3 CH_2 C \equiv C CH = CH_2$
- 4) $CH_3 CH = CH C \equiv CH$
- 5. How many "methyl groups" are present in 2, 3-dimethyl-4-ethyl heptane
 - 1) 2
- 2) 8
- 3) 4
- 4) 5
- 6. In which of the following species is the underlined carbon having sp³ hybridisation?
 - 1) CH₂ C OOH
- 2) CH₂ CH₂OH
- 3) CH₃ C OCH₃
- 4) $CH_2 = CH CH_3$

Nomenclature:

- 7. Give the IUPAC name of
- CI is
 - 1) iso prene

- 2) chloroprene
- 3) 2-methyl-1,3-butadiene

- 4) 2-chloro-1,3-butadiene
- 8. IUPAC name of the compound having the formula C_6H_5 CH = CH COOH
 - 1) 3-benzyl propanoic acid
- 2) 3-phenyl propanoic acid
- 3) 3-benzyl-2-propenoic acid
- 4) 3-phenyl prop-2-enoic acid

- IUPAC name of the compound having the formula $\mathrm{CH_3} \mathrm{CH_2} \mathrm{N(CH_3)} \mathrm{CH_2'}$ 9.
 - 1) N-ethyl, N-methyl isopropane
- 2) N-ethyl, N-methyl amino propane
- 3) N-ethyl, N-methyl-1-amino propane
- 4) N-ethyl, N-methyl-2-propanamine

- IUPAC name of the compound having the formula CH_3 -CH-CH-CH-OH is OH CH_3 OH CH_3 10.

 - 2) 3 amino 4 hydroxy -2- pentanol
 - 3) 3 amino –1– methyl, 1, 3 butanediol
- 4) 3 amino 2, 4- pentanediol

- CH₃ CH₂ CO CH COOH The IUPAC name of the compund is 11.
 - 1) 3 Ketonic -2- cyano pentanoic acid
- 2) cyanoketohexanoic acid
- 3) 3 oxo -2 cyano pentanoic acid
- 4) 2 cyano -3 -oxo pentanoic acid
- The IUPAC name of the compound CH₂ (OH) CH(NH₂)COOH isA 12.
 - 1) 2-Amine-3-hydroxy propanoic acid
- 2) 1-Hydroxy-2-amino propan-3-oic acid
- 3) 2-Amino-3-hydroxy propanoic acid
- 4) 1-Amino-2-hydroxy propanoic acid
- The IUPAC name of CH₃ CH₂O CH₂C-H is 13.
 - 1) Formyl methyl ethyl ether
- 2) Ethyl aldo methyl ether

3) 2-Ethoxy formate

- 4) 2- Ethoxy ethanal
- The correct IUPAC name of CH_3CH_2 CH_2 is 14.
 - 1) 1-Chloro -2-butyl cyclo propane
- 2) 1-Chloro-2-cyclopropyl butane
- 3) 1-Chloro methyl-1-ethyl cyclo propane
- 4) 3-Chloro methyl-1,2-methylene pentane
- 15. The correct IUPAC name of $CH_3 - C - O - C - H$ is

O

1) Acetyl methanoate

2) Keto ethanoate

3) Ethoxy methanoate

- 4) Ethanoic methanoic anhydride
- The IUPAC name of C = 016.
 - 1) Ethoxy methanone

- 2) Ethoxy propanone
- 3) Ethyl-2-methyl propanoate
- 4) 2-methyl ethoxy propanone

17. Correct IUPAC name of
$$\begin{array}{c} \operatorname{CH_3} - \operatorname{CH_2} - \operatorname{C} = \operatorname{CH} - \operatorname{CH} - \operatorname{CH_2} - \operatorname{CH_3} \\ | & | & | \\ \operatorname{CH_3} - \operatorname{CH_2} - \operatorname{CH} - \operatorname{CH_2} - \operatorname{CH_2} - \operatorname{CH_3} \\ | & | & | & | \\ \end{array}$$
 is

- 1) 5,6-Diethyl-3-methyl dec-4-ene
- 2) 5,6-Diethyl-8-methyl dec-6-ene
- 3) 6-Butyl-5-ethyl-3-methyl oct-4-ene
- 4) 2,4,5-triethyl-3-nonene

- 1) 2-Methoxy-4-ethoxy-3-pentanone
- 2) 2-Ethoxy-4-methoxy-3-pentanone
- 3) 2,4-Dimethoxy hexanone
- 4) 2-Ethoxy-3-methoxy-3-pentanone

19. IUPAC name of
$$CH_2 = CH - C - CH_2 - CH = CH_2$$

$$H_3C - C - CH_3$$

$$H_3C - C - H$$

$$CH_3$$

- 1) 3-(1,1,2-trimethyl) propyl-1,5 hexadiene 2) 3-methyl-3-(1,1,2-trimethyl) propyl) -1,5 hexadiene
- 3) 4-methyl-4-vinyl-5,5,6-trimethyl hept-1-ene 4-vinyl hept-1-ene

4) 4,5,5,6-tetra methyl-

20. The correct IUPAC name of

$$\begin{array}{c} CH_3 \\ | \\ CH_2 \\ | \\ CH_3 - CH - C \equiv C - CH_2 - C \equiv C - CH - CH_3 \end{array}$$

- 1) 2,8-Diethyl-3,6-nonadiyne
- 2) 1,5-secondary butyl-1,4-pentadiyne
- 3) 1,8-dimethyl-4,7-undecadiyne
- 4) 3,9-dimethyl-4,7-undecadiyne

1) 5 - formyl Pentaneal

2) Hexanedial

3) Hexanol

4) 2 Methyl Hexeneal

- 1) 4 Corboxy 5 methyl heptanoic acid.
- 2) 1, 3 dicarboxy4 methyl hexane
- 3) 4-(1- Methyl Propyl) pentane dioicacid
- 4) 2-(1- methyl propyl) -1,5- pentane dioic acid.

23. The IUPAC name of
$$Ph - C - CH_2 - CH_2 - CH_3$$
 is

- 1) Phenyl Propyl Ketone

- 2) 4 Phenyl 4-butanone
- 3) 1-Phenyl -1 butanone 4) 1-oxol butyl benzene

- 1) 3-hydroxy butanoic acid
- 2) 4-methyl -2- oxo-1,4 butane diol
- 3) 1,4 dihydroxy 2-Butanone
- 4) 1,4 dihydroxy 2- pentanone

25. The IUPAC name of

$$\begin{array}{c}
O \\
CH_3 - C - O - CH_2 - CH = CHCH_3
\end{array}$$

1) 1- acetyloxy -2- butane

2) 4-acetoxy 2-butane

3) 2-butenyl ethanoate

- 4) Methyl 2-butanoate
- 26. Which of the following structure is not correctly named according of IUPAC

- 1) 2-Ethoxy-2 methyl propane
- ŅΗ²
 - 2 Butanamine

- Methyl-3-Methyl Propanoate
- OH 1-Butanol

- $\begin{array}{c} {\rm CH_2\text{-}COOH} \\ {\rm The\ IUPAC\ name\ of\ \ \overset{1}{C}\text{-}(OH)\ COOH\ is} \end{array}$ 27.
 - 1) 2-hydroxy 1,2,3-propanetricarboxylic acid
 - 2) 3-hydroxy 1,2,3 Pentane trioic acid
 - 3) 3-Carboxy -3-hydroxy-1,5-pentandioic acid
 - 4) 1,2,3 tri carboxy 2- propanol

28. The IUPAC name of
$$\begin{array}{ccc} \text{CH} = \text{CH} \\ \text{I} & \text{is} \\ \text{CHO} & \text{NH}_2 \end{array}$$

1) 1- amino-2-propenol

2) 1- amino-2-formyl ethene

3) 3-amino propenal

4) 1-oxo-3-propen amine

29. IUPAC name of
$$CH_3$$
 — CH — CH — CH — CH_2 — CHO

WORK SHEET - I

1) 2	2) 2	3) 3	4) 1	5) 4	6) 2	7) 2	8) 2	9) 1	10) 3
11) 1	12) 3	13) 1	14)2	15) 1	16) 2	17) 3	18) 4	19) 2	20) 4
21) 1	22) 4	23) 2	24) 3	25) 3	26) 1	27) 4	28) 1	29) 2	30) 1
31) 2	32) 2	33) 4	34) 3	35) 4	36) 1	37) 4	38) 3	39) 1	40) 2
41) 1	42) 4	43) 4	44) 2	45) 1	46) 3	47) 2	48) 3	49) 1	50) 3
51) 2	52) 2	53) 1	54) 1						

WORK SHEET - II

1) 3	2) 1	3) 4	4) 1	5) 1	6) 2	7) 4	8) 4	9) 4	10) 4
11) 4	12) 3	13) 4	14) 2	15) 4	16) 3	17) 1	18) 2	19) 2	20) 4
21) 2	22) 4	23) 3	24) 4	25) 3	26) 3	27) 1	28) 3	29) 3	30) 1
31) 2									

ISOMERISM

EXERCISE - I

WORK SHEET - I

Isomerism

- 1. n-propyl amine and isopropyl amine are examples of
 - 1) Position isomerism 2) Chain isomerism
 - 3) Tautomerism
 - 4) Geometrical isomerism
- 2. The number of primary alcoholic isomers with the formula $C_4H_{10}O$ is 1) 1 2) 2 3)3 4) 4

3.	is			compound of the formula C_4H	₁₀ O	
	1) 7	2) 8	3) 4	4) 3		
4.	· · ·	nerism that is not found i				
	1) Metamerism	2) Chain isomerisr				
	3) Geometrical i		4) Position i			
5.	with another or	ganic compound of struct	tural formula	CH ₃ shows functional isomeri	sm	
	1) CH ₃ -CH ₂ -CO 3) CH ₃ -CH=CH	_ 0	4) 2 & 3	CH ₂ CH ₂ CHO		
6.		possible isomers for C ₃ H ₅				
	1) 2	2) 3	3) 4	4) 5		
7.		Aromatic isomers for C ₈ F		4) 4		
0	1) 1	2) 2	3) 3	4) 4		
8.		someric amines possible				
_	1) 4	2) 3	3) 5	4) 6		
9.		ctural isomers with the fo		4) [
40	1) 2	2) 8	3) 6	4) 5		
10.		$_{1}^{1}$ h C $_{4}$ H $_{11}$ N as molecular for $_{2}^{1}$		nula can exhibit 3) Functional isomerism4) All the three		
11.	Ortho, meta and 1) Chain isomer	l para dichlorobenzenes a s 2) Position isomers		al isomers 4) Tautomers		
12.	Primary, second 1) Chain isomer	ary and tertiary amines a s 2) Position isomers		al isomers 4) Tautomers		
13.	1) Propanal and	omers given below are po propanone ol and Isobutyl alcohol	2) 1º Butyl a	alcohol and Isobutyl alcohol alcohol and 3° Butyl alcohol		
14.	1) CH ₃ COOH at	not represent isomers? nd HCOOCH ₃ d CH ₃ -CO-CH ₃		O and CH ₂ =CH-OH CH ₃ and CH ₃ -CH ₂ -CHO		
15.	Number of isom	ers for the compound di	hydroxy benzen	e		
	1) 1	2) 2	3) 3	4) 4		
16.	Which of the fol 1) CH ₃ COCH ₃ . (3) C ₂ H ₅ CO ₂ H, C	9		H, CH ₃ CO ₂ CH ₃ H, CH ₃ CHO		
17.	Number of strue 2-methylbutane		be obtained the	oretically on monochlorination	ı of	
	1) 1	2) 2	3) 3	4) 4		
18.	How many cycl	ic isomers of C_5H_{10} are po	ossible ?			
	1) 4	2) 3	3) 6	4) 5		
Ontic	ral icomoricm :-					

Optical isomerism :-

Orga	anic Chemistry - N	omenclature		
19.		of specific rotation (0)	$\binom{2^{2s^0C}}{D}$, 'D' indicates 2) Configuration of - 4) Wave length of lig	0 1
20.	 Plane of symmetry Centre of symmetry 	•	-	
21.	(1): CH ₃ CH(OH) CO	OOH is optically active		
	3	OOH do not possess ar	y element of symmetr	y.
	explains A	true and R explains A	,	are true and R does not
22	3) A is true, R is false		4) A is false, R is true)
22.	 For an optically activ Concentration Nature of solvent Only a and b 	e compound ' αobs ' de αobs ' de αobs ' de αobs	2) Length of polarime 4) Temperature	eter tube 4) a, b, c and d
23.	For an optically activ	e compound specific ro	otation $([\alpha]_p^{25})$ depend	ds on
	1) Length of the polar 3) Temperature 1) All		2) Concentration of s 4) Nature of the com 3) Only a and c	olution pound
24.	Which will have enar 1) n - butyl chloride		3) sec - butyl chloride	e 4) iso - butyl chloride
25.	Optically active amount 1) Meso tartaric acid 3) Meso - 2, 3 - butan		2) dl - tartaric acid 4) Erythro - 2, 3 - dih	ydroxy butanoic acid
26.		id is optically inactive id has no asymmetric c	arbon	
27.		nnediol is optically inac anediol has plane of sy		
28.	The number of optica 1) 0	ally active forms of the 2) 1	compound CH ₃ CHBro	CHBrCOOH is 4) 4
29.	Which of the followir 1) 2 - chlorobutane	ng will have a meso iso	mer 2) 2, 3 - dichlorobuta	ne

4) 2 - hydroxypropanoic acid

2) External compensation

4) Absence of asymmetric carbon

30.

3) 2, 3 - dichloropentane

1) Internal compensation

3) Presence of plane of symmetry

 (\pm) lactic acid is optically inactive due to

31. The structure can exhibit H_3C C = C H H_3C C COOH

1) Geometrical isomerism

2) Optical isomerism

- 3) Geometrical and optical isomerism
- 4) Tautomerism
- 32. The molecule H_3C CH = CH COOH can exhibit
 - 1) Geometrical isomerism only
- 2) Optical isomerism only
- 3) Geometrical and optical isomerism
- 4) Tautomerism
- 33. If the racemic mixture of a carboxylic acid is treated with a dextro rotatory amino acid then the products formed are
 - 1) a mixture of enantiomers
- 2) a mixture of diastereomers
- 3) a mixture of optically inactive compounds
- 4) a mixture of compounds having same melting point and solubility

34.

If the specific rotation produced by the compound 'I' is +52°, then the specific rotation of compound 'II' is

CO₂H

- $1) -52^{0}$
- $2) + 52^{0}$
- 3) 0

4) Unpredictable

- 35. The incorrect statement about H——OF CH₃
 - 1) It is erythro diastereomer
- 2) It has 2R, 3R configuration

3) It is meso form

- 4) 1 and 2
- 36. Which statement is incorrect about diasteriomers
 - 1) Both are non super imposable non mirror images
 - 2) Physical properties are different
 - 3) Both are always chiral molecules
- 4) Both may or may not opticall acitve

- 38. In case of carbohydrates D,L indicates the
 - 1) Configuation of OH at last chiral carbon
 - 2) Configuration of OH at first chiral carbon
 - 3) Configuration of OH at second chiral carbon

- 4) Configuration of OH at at all chiral carbon
- 39. Among the following which has L - configuration.

- 40. If a compound has 'n' different types of asymmetric carbon atoms then the number of possible sterio isomers are
 - 1) 2^{n-1}
- 2) 2ⁿ
- 3) 3ⁿ
- 4) 2n
- 41. CH₃CH (OH) CH (OH)COOH. Total number of possible sterio isomers (configurational only) are
 - 1) 4
- 2) 3
- 3) 2
- 4)8
- For tartaric and total number of possible sterio isomers (configurations only) and total no.of 42. possible optically active isomers are
 - 1) 4,4
- 2) 3,3
- 3) 4,2
- 4) 3,2
- 43. Total number of possible isomers (configuration only) for 2,3,4 - trichlorohexane are
 - 1) 2
- 2) 4
- 3)8

- Maximum number of possible stereoisomers (configuration only) with the formula CH₂CH 44. = CHCH (CH₂) COOH
 - 1) 2
- 2) 3
- 3) 4
- 4) 6
- Maximum number of possible sterioisomers (configurational only) with the molecular 45. formula C₄H₁₀O are
 - 1) 1
- 2) 2
- 3) 4
- 4) 7
- Type of isomerism not possible with the molecular formula $C_4H_{10}O$ is 46.
 - 1) Chain
- 2) Optical
- 3) Functional group 4) Geometrical
- 47. The number of possible enantiomeric pairs that can be produced during the monochlroination of n - pentane is (are)
 - 1) 1

- 2) 2
- 3)3

- 4) 4
- 48. Number of possible geometrical isomers for 2, 4 - hexadine are
 - 1)8
- 2) 4
- 3)3
- 4) 2
- The number of optical isomers of the compound is? CH₃CHCl-CHBr-CH₃ 49.

- 2) 1
- 3) 3
- 4) 4

50. The pair of structures given below represent

- 1) Enantiomers
- 2) Diastereomers
- 3) Same molecule
- 4) Regiomers
- 51. Which of the following statements is not applicable to enantiomers?
 - 1) They have identical melting and boiling points
 - 2) They have identical chemical properties except towards optically active reagents
 - 3) They can be separted by fractional crystallization

- 4) They rotate the plane polarized light in opposite directions but to the same extent
- 52. Which of the following will show optical isomerism?

1)
$$\frac{\text{Cl}}{\text{H}}$$
 $C = C$ $\frac{\text{CHBr-CH}_3}{\text{Cl}}$

2)
$$CH_3$$
 $C = C$ CH_2CH_3

3)
$$\frac{\text{CH}_3}{\text{Br}}$$
 $\text{C} = \text{C} \frac{\text{CH}_3}{\text{CH}_2 \text{Br}}$

4)
$$CH_3$$
 $C = C$ CH_3 CH_3

- 53. 2, 3-Pentadiene shows enantiomorphism since it
 - 1) contains one chiral carbon atom
 - 2) contains two chiral atoms but the molecule as a whole is achiral
 - 3) does not contain any chiral carbon atom but the molecule as a whole is chiral
 - 4) none of the above
- 54. How many chiral carbon atoms are present in 2, 3, 4 trichoropentane?
 - 1) 3
- 2) 2
- 3) 1
- 4) 4
- 55. How many structural and isomers could be obtained by replacing one hydrogen of propene with chlorine?
 - 1) 2
- 2) 4
- 3) 3
- 4) 5

CONFORMATIONAL ISOMERISM:

- 56. The dihedral angle between the hydrogen atoms of two methyl groups in staggered conformation of ethane is
 - 1) 120°
- 2) 180°
- 3) 45°
- 4) 60°
- 57. The dihedral angle between the two methyl groups in gauche conformation of n-butane is
 - 1) 120°
- 2) 180°
- 3) 45°
- 4) 60°
- 58. The most stable conformation of ethylene glycol is
 - 1) Anti
- 2) Gauche
- 3) Partially eclipsed
- 4) Fully eclipsed
- 59. Which of the following does not show geometrical isomerism?
 - 1) 1, 2 dichloro -1- pentence
- 2) 1, 3 dichloro -2- pentence
- 3) 1, 1 dichloro -1- pentence
- 4) 1, 4 dichloro -2- pentence

WORK SHEET - II

- 1. The number of isomeric structures possible for a molecule having molecular formula C_5H_{12}
 - 1) 2
- 2) 3
- 3) 4
- 4) 5

- 2. A pair of functional isomers
 - 1) CH, CH, CH, CH, CH, CH(OH)CH,
 - 2) CH₂CH₂CH₂CH₂OH, (CH₂)₂CHCH₂OH
 - 3) CH₂CH₂CH₂OH, CH₂CH₂CH₂Cl
 - 4) CH₃CH₂CH₂OH, CH₃-O-CH₂CH₃

WORK SHEET - III

Topic: GEOMETRICAL ISOMERISM

SECTION - A

Single correct answer Type Questions

01. Geometrical isomerism is possible about which of the following multiple bonds?

1)
$$C = N$$

2)
$$N = N$$

3) both a and b

4) none of these

Which of these cycloalkenes will exhibit geometrical isomerism?

1) I

4) all of these

This compound can be named as

1) 3-chloro-6-methyl-(3E,5Z)-octadiene

2) 3-chloro-6-methyl-(3Z,5E)-octadiene

3) 3-chloro-6-methyl-(3Z,5Z)-octadiene

4) 3-chloro-6-methyl-(3E,5E)-octadiene

04.
$$CH_2 = CH - CH = CH - CH = CH - CH_3$$

How many geometrical isomers of this compound are possible?

1) 2

2) 3

3) 4

4) 8

How many grometrical isomers of this compound are possible?

1) 0

2) 2

3) 3

4) 4

06. I
$$\frac{\text{CH}_3}{\text{H}} \text{C} = \text{C} \frac{\text{CH}_3}{\text{H}}$$
(cis-2-butene
$$\frac{\text{CH}_3}{\text{II}} \text{C} = \text{C} \frac{\text{H}}{\text{CH}_3}$$

(trans-2-butene

Which of the following orders stability is correct among these two isomers?

1) I = II

2) I > II

3) II > I

4) not predictable

07. Which of following compound can show geometrical isomerism?

$$rac{F}{Cl} = C \frac{Et}{Et}$$

08.

How many geometrical isomers of this cylcodecene are possible?

- 1) 0
- 2) 2
- 3)3

4) 4

Which of the following orders of stability is correct among these two isomers?

- 2) I > II
- 3) II > I
- 4) not predictable
- 10. Difference in heat of hydrogenation of cis and trans isomers will be maximum in which of the follwoing cases?
 - 1) CH₃-CH=CH-CH₃

2) CH₃-CH=CH-CMe₃

3) Me₃C-CH=CH-CMe₃

4) Same difference in a, b and c

SECTION - B

More than one correct answer Type Questions

- Of the following compounds, which will have zero dipole moment? 11.
 - 1) 1,1- dichloroethylene

- 2) cis-1, 2,- dichloroethylene
- 3) trans-1,2-dichloroethylene
- 4) Benzene
- 12. The molecules that will have dipole moment are
 - 1) 2,2-dimethylpropane

- 2) cis-3-hexene 3) 2,2,3,3-tetramethylbatane

- 4) trans-2,2-pentene
- 13. An organic compound with molecular formula C₂H₅NO contains doubly linked atoms. It exhibits.
 - 1) tautomerism

2) optical isomerism

3) functional isomerism

- 4) geometrical isomerism
- 14. Which will show geometrical isomerism?
 - 1) CH₃CH=NOH
- 2)
- $_{3)}$ $_{\text{H}_3\text{C}}$ C=NOH 4) HO-N=N-OH

CHCOOH

|| CHCOOH (maleic aci4) can form : 15.

- 1) optical isomer
- 2) grometrical isomer 3) position isomer
- 4) functional isomer

16.

Which is/are correct statements about *P* and *Q*?

1) *P* is *cis*- and *Q* is *trans*-

2) P is Z and Q is E

3) P is R and Q is S

4) *P* and *Q* are same structure

WORK SHEET - IV

Topic: OPTICAL ISOMERISM

SECTION - A

Single correct answer Type Questions

- 01. A compound contains 2 dissimilar asymmetric carbon atoms. The number of optical isomers is
 - 1) 2

- 2) 3
- 3) 4

- 4) 5
- 02. How maby total isomers are possible by replacing one hydrogen atom of propane with chlorine
 - 1) 2

2) 3

- 3) 4
- 4) 5
- 03. Which of the following does not show stereoisomerism?

- 04. Cahn-Ingold-Prelog sequence rule states that
 - 1) that group will be of higher priority in which first atom is of higher atomic number (higher atomic weight in case of isotapes) and if first atom is same then this operation is done on second present.
 - 2) that group will be of higher priority in which maximum number of atoms are present.
 - 3) that group will be of higher priority in which minimum number of atoms are present.
 - 4) both a and b
- 05. Which of the following pairs of compounds is a pair of enantiomers?

Among the structure shown below, which has lowest potential energy? 06.

07. Which of the following compound is (meso) compounds?

 $\frac{Br}{Cl}$ CH – D 08.

> This molecule has one asymmetric centre. Which of the following presentations of this asymmetric centre is called wedge presentation?

09. $CH_3-CH-CH$

> Which of the following presentations is a fischer projection formula of this molecule containing two asymmetric centres is correct?

- 10. Which of the following compounds have plane of symmetry?

4) all of these

EXERCISE - I

WORK SHEET - I

1) 1	2) 2	3) 2	4) 1	5) 4	6) 4	7) 4	8) 1	9) 2	10) 4
11) 2	12) 3	13) 3	14) 3	15) 3	16) 2	17) 4	18) 4	19) 4	20) 4
21) 1	22) 4	23) 4	24) 4	25) 4	26) 3	27) 1	28) 4	29) 2	30) 2
31) 2	32) 3	33) 2	34) 1	35) 3	36) 3	37) 1	38) 1	39) 2	40) 2
41) 1	42) 4	43) 3	44) 3	45) 2	46) 4	47) 1	48) 3	49) 4	50) 3
51) 3	52) 1	53) 3	54) 2	55) 2	56) 2	57) 4	58) 1	59) 3	

WORK SHEET - II

1) 2 2) 4

WORK SHEET - III

1) 3	2) 2	3) 2	4) 3	5) 1	6) 3	7) 4	8) 2	9) 3	10) 3
11) 3	12) 24	13) 34	14) 124	15) 234	16) 12				

WORK SHEET - IV

1) 3 2) 1 3) 3 4) 1 5) 2 6) 1 7) 4 8) 1 9) 4 10) 4

Organic Chemistry (Bond Polarity & Types of Reactions) BOND POLARITY EFFECTS&TYPES OF REACTIONS

EXERCISE - I

1.	Electrophiles are 1) Electron loving sp 3) Necleus loving	pecies	Electron hating sp Nucleus hating	pecies
2.		trigonal planar shape is 2) :CH ₃ -	,	4) SiH₄
3.	. 9	ing is not an electrophil 2) AlCl ₃		4) NH ₃
4.	. 9	ing is not a nucleophile	, <u>_</u>	+) 1 111 3
	1) OH-	2) HSO ₃	3) NH ₃	4) BF ₃
5.	Which of the follow 1) Tertiary	ing free radical is most: 2) secondary	stable ? 3) Primary	4) Methyl
6.	Which of the follow	ing is a free radical?		
	1) NO ₂	2) Cl	3) Cl*	4) Cl+
7.	Heterolysis of a C-C 1) Carbanion	C covalent bond gives 2) Carbonium ion	3) Free radical	4) Both 1 and 2
8.	In carbonium ion, th 1) sp ² hybridised	ne carbon bearing the po 2) sp³ hybridised	ositive charge is 3) dsp³ hybridised	4) None
9.	Shape of carbanion 1) Planar	is 2) Pyramidal	3) Tetrahedral	4) Linear
10.	Shape of carbonium 1) Planar	i ion is 2) Linear	3) Octahedral	4) Tetrahedral
11.	Which of the following 1) Addition	ing types of reactions m 2) Substitution	ajarly occur when a rea 3) Elimination	actant has a double bond? 4) Photolysis
12.	The +I (inductive eff 1) CH $_3$ –	fect) is shown by 2) -OH	3) F	4) -C ₆ H ₅
13.	The -I effect is show 1) -COOH	n by ? 2) -CH ₃	3) -CH ₃ CH ₂	4) -CHR ₂
14.	Which of the follow 1) CH_3 -	ing groups has highest $2) CH_3 CH_2$ -	inductive effect? 3) $(CH_3)_2CH$ -	4) (CH ₃) ₃ C-
15.	Shifting of electrons 1) I-effect	of a multiple bond und 2) M-effect	ler the influence of a rea 3) E-effect	agent is called 4) T-effect
16.	The cleavage of cov. 1) Heterolytic fission 3) Carbanion format		+ B* is known as 2) Homolytic fission 4) Carbocation formation	
17.	The reaction of HBr 1) Polymerisation	with ethene is an exam 2) Substitution	ple of reaction 3) Addition	4) Condensation
18.		ing substituents has +M 2) -CHO	•	4) -NO ₂
19.	The C-C bond disso	ciation energy is		

Organ	ic Chemistry (Bond P 1) 103 K cals mole ⁻¹	olarity & Types of Rea 2) 83 K cals mole ⁻¹	actions) 3) 8.3 K cals mole ⁻¹	4) 83 cals mole ⁻¹
20.	Which of the following	ng show electromeric e	ffect?	
	1) Alkanes	2) Alkyl amines	3) Alkyl halides	4) Aldehydes
21.	Which of the following 1) NO ₃ —	ng ions does not show 2) CH ₃ COO	resonance ? 3) Cl	4) CO ² ₃
22.	The bond length is af 1) Hybridisation	fected by 2) Delocalisation	3) Electronegativity	4) All of the above
23.	Mesomeric effect is a 1) Multiple bond to a 3) Both 1 and 2	•	nich π electrons are trance 2) Multiple bond to a 4) None	nsferred from a single covalent bond
24.	Free radical reactions 1) Occur in gas phas 3) Are initiated by lig		2) Are often autocatal s 4) All are correct	lytic
25.	Which of the folowing	g occur as reaction inte	ermediate?	
	1) Free radicals	2) Carbocations	3) Carbanions	4) All
26.	Which of the following is a more stable carbocation? 1) Sec. pentyl carbocation 2) Isopentyl carbocation 3) Tert. Pentyl carbocation 4) Neopentyl carbocation			
27.	-CHO group is 1) +ME and +IE grou	p 2) -ME and -IE group	, - ,	o 4) -ME and +IE group
28.	Which one of the folloare attached to satura	owing alkyl groups is mated carbon	ore powerful electron d	onation group when they
	1) -CH(CH ₃) ₂	2) -CH(CH ₃)C ₂ H ₅	3) -CH ₃	4) -C(CH_3) ₃
29.	An example of electr 1) CN-	ophile is 2) OH ⁻	3) AlCl ₃	4) H ₂
30.	An example of nucle 1) C_2H_6	ophile is 2) C ₂ H ₂	3) H ⁺	4) R ⁺
31.	Which one of the foll 1) RNH ₂	owing is not an electro 2) ROR	phile? 3) R-OH	4) All
32.	$C_2H_5Br + NaOH \rightarrow 0$ 1) Free radical substi 3) Electrophilic substi		oove reaction is 2) Nucleophilic subst 4) Condensation	titution
33.	The hybridization of 1) sp	central carbon atom in 2) sp ²	trimethyl free radical is $3)$ sp ³	s 4) may be sp ² or sp
34.	· -	ich no dispersal of cha	, 1	4) may be sp of sp
<i>3</i> 4.	1) R_3C^{\oplus}	2) R ₂ CH [⊕]	3) RCH ₂ [⊕]	4) [⊕] CH ₃
35.	The most stable elect	rophile is	⊕	Φ.
	1) R ₃ C	2) $C_6H_5\overset{\oplus}{C}H_2$	$_{3)}\left(\mathrm{C_{6}H_{5}}\right) _{3}\overset{\oplus}{\mathrm{C}}$	$_{4)}\left(\mathrm{CH_{3}}\right) _{2}\overset{\oplus}{\mathrm{CH}}$
36.	Which of the following 1) Electrometic	ng effects can explain t 2) Inductive	he stability of tertiary bo 3) Hyper Conjugation	•

37.

The most stable methylated alkene is

Organic Chemistry (Bond Polarity & Types of Reactions)

$$H_3C ext{ } CH_3 ext{ } H_3C ext{ } CH_3 ext{ } H_3C ext{ } H ext{ } H$$

38. Which is least stable?

- 39. Which of the following statements about resonance is not correct?
 - 1) The different resonance structures of a molecule have fixed arrangement of atomic nuclei.
 - 2) The different resonance structures of a molecule should have same number of unpaired electrons
 - 3) The hybrid structure has equal contribution from all the resonating strctures
 - 4) None of the individual resonating structures explains the various characteristics of the molecule
- 40. Homolytic fission of C-C bond in ethane gives an intermediate in which carbon is
 - 1) sp^3 hybridized 2) sp^2 hybridized 3) sp hybridized 4) sp^3 d hybridized
- 41. The order of decreasing stability of the carbanions

$$(CH_3)_3 C^-(I); (CH_3)_2 CH^-(II); CH_3 CH_2^-(III); C_6 H_5 CH_2^-(IV)$$

1) I>II>III>IV

2) IV>III>II>I

3) IV>I>II>III

4) I>II>IV>III

WORK SHEET - II

- 1. Which of the following has highest bond disociation energy
 - 1) CH₃-F
- 2) CH₃-Cl
- 3) CH₂-Br
- 4) CH₃-I

- 2. The group which exhibits -M effect is
 - 1) >C=O
- 2) $-C \equiv N$
- 3)-NO₂
- 4) All
- 3. Which of the following statement about inductive effect is correct?
 - 1) It operate in saturated compounds
 - 2) It involves electrons in σ bond
 - 3) The electron pairs is only slightly displaced during the I-effect
 - 4) All are correct
- 4. Mark the true statement concerning mesomeric effect?
 - 1) It occurs in conjugaged compounds
- 2) It involves electrons in π bonds
- 3) Here electron pair is transferred completely 4) All are true
- 5. A series of alkyl groups CH₃, -CH₃CH₂-, (CH₃)₂CH-, (CH₃)₃C- represents
 - 1) Increasing hyperconjugation from left to right
 - 2) Decreasing hyperconjugation from left to right
 - 3) Decreasing inductive effect from L to R
 - 4) None
- 6. Pick up the incorrect statement
 - 1) Mesomeric effect occurs in conjugated compounds

Organi	c Chemistry (Bond Po 2) Inductive effect trar	nsmitted over only quit		
		ffect, electron pairs is tr	C	
	4) Inductive effect is a		1 ,	
7.	In benzylamine amino	o group is a		
	1) -IE group	2) +ME group	3) both	4) +IE group
8.	Which one of the follo	wing does not exhibit l	nyperconjugation?	
	1) Ethanal	2) Allylene		
	3) Isobutylene	4) Trifluro acetaldehy	de	
9.	Benzyl cation is stabil 1) Resonance	ized by 2) Hyperconjugation	3) Both	4) Inductive
10.	Which one of the follo	, ,,	,	,
20.	1) Isobutylene	•	3) 2,3-Dimethyl-2-buten	e 4) Ethylene
11.	Match List-1 (ion/rad codes given below the	,	isation) and select the o	correct answer using the
	List-1		List-2	
	A) ⁰ C(CH ₃) ₃ (Free radio	cal)	1) Inductive effect	
	B) PhO-		2) Hyperconjucation	
	C) +CH ₂ C(CH ₃) ₃		3) Resonance	
	1) A-1, B-2, C-3	2) A-2, B-1, C-3	3) A-3, B-1, C-2	4) A-2, B-3, C-1
12.	Which of the followin	g is the least stable carl	bonium ion?	
	⊕ 1) CF ₃	⊕ 2) CCl ₃	3) C(NO ₂) ₃	4) [⊕] CH ₃
13.	Which of the followin	g Carbonium ion is stal	bilised by HyperConju	gation ?
	1) $CH_2 = CH - \overset{\oplus}{CH_2}$	2) $CH_3 - CCl_2 - \overset{\oplus}{C}H_2$	$2 3) CH_2 = CH^{\oplus}$	4) $CH_3 - CH - CH_3$
14.	Which of the followin	g is stabilised by mesor	mesic effect?	⊕
	1) CH ₃ − CH ₂	2) $CH_2 = \overset{\oplus}{CH}$	3) $CH_2 = CH - \overset{\oplus}{CH_z}$	CH CH
15.	Which of the following	g has maximum numbe	er of Hyper Conjugation	n structures ?
	1) isopropyl carboniu	~	2) tertinary butyl carb	
	3) n-propyl carboniun	n ion	4) Benzyl carbonium i	
16.	Which of the following	g shows maximum-I ef	fect?	
	1) -CH ₃	2) -OCH ₃	3) -NO ₂	4) -Cl
17.	β - elimination reaction	on leads to formation of	:	
	1) carbene	2) π -bond	3) Sigmabond	4) Cyclic compound
18.	The substance stabiliz	ed by resonance		
	1) CH ₂ = CH – Cl	2) \Ō	3) Cl	4) All

Which of the following compounds will produce the most stable carbonium ion?

19.

Organic Chemistry (Bond Polarity & Types of Reactions)

4) $CH_3 - CH_2 - CH_2 - CH_2 - OH$

20. Which carbonium ion is most stable

2)
$$CH_2 = \overset{\bigoplus}{CH}$$

3)
$$(CH_3)_3 C^6$$

2)
$$CH_2 = \overset{\bigoplus}{C}H$$
 3) $(CH_3)_3 C^{\oplus}$ 4) $\overset{\bigoplus}{C}H_2$

EXERCISE - I / ANSWERS

WORK SHEET - I

1) 1	2) 1	3) 4	4) 4 5) 1 6) 3
7) 4	8) 1	9) 2	10) 1
11) 1	12) 1	13) 1	14) 4 15) 3 16) 2
17) 3	18) 3	19) 2	20) 4
21) 3	22) 4	23) 3	24) 4 25) 4 26) 3
27) 2	28) 4	29) 3	30) 2
31) 4	32) 2	33) 2	34) 4 35) 1 36) 4
37) 1	38) 1	39) 3	40) 2

41) 2

WORK SHEET - II

1) 1	2) 4	3) 4	4) 4 5) 2	6) 4
7) 2	8) 4	9) 1	10) 3	
11) 4	12) 3	13) 4	14) 3 15) 2	16) 3
17) 2	18) 4	19) 2	20) 2	

Organic Chemistry (Qualitative & Quantitative Analysis) QUALITATIVE & QUANTITATIVE ANALYSIS

EXERCISE - I

PURIFICATION

1.		-	ortho & Para nitropheno	, ,
	1) Steam distillation	•	3) Vapourisation	4) Colour spectrum
2.	Benzoic acid mixed v 1) Treating the mixtu	vith napthalene can be re with hot water	purified by 2) Sublimation	
	3) Treating the mixtu		4) Dissolving the mix	ture in benzene
3.	Turpentine oil can be	purified by this proces	SS	
	-		n3) Simple distilaltion	4) Fractional
4.	There are several cri considered to be the l		nic compounds. Out of	the following, which is
	1) Melting point		2) Mixed melting poin	nt
	3) Microscope exami	nation	4) Colour	
5.	Fractional crystalliza	tion is carried out to se	parate	
	, 0	ked with inorganic solid	ds	
	2) Organic solids hig	•		
	, 0	O	their solubilities in a su	
	, 0		their solubilities in a su	
6.	-		NO ₃ before testing for h	-
	1) Silver halides are i	· ·	, 2	e decomposed by HNO ₃
	3) Ag ₂ S is soluble in l	3	4) AgCN is soluble in	3
7.		0 1	Lassaigne's test of nitro	~
	1) H ₂ NCONH ₂	, 2 2	0 0 2	4) CH ₃ CONH ₂
8.	If 0.02 g of a volatile of weight of the compo	and is	lisplaces 11.2 ml of dry	air at STP, the molecular
	1) 20	2) 30	3) 40	4) 50
9.	,	nnot be used for the est	imation of nitrogen in	
	1) Pyridine	2) Nitro compounds	3) Azo compounds	4) All the three above
10.	Sugar containing an	mpurity of common sa	lt can be purified by cry	ystallisation from
	1) Benzene	2) Ether	3) Alcohol	4) Water
11.	Mixture of glucose ar	nd water can be separat	ed by:	
	1) Distillation	2) Crystallation	3) Steam distillation	4) All of these
12.	Water from the mixtu	are of alcohol and water	r can be separated by :	
	1) Simole distillation		2) Fractional distillat	ion
	3) Azeotropic distilla	tion	4) Steam distillation	
13.	Presence of nitrogen	in organic compound is	s tested as:	
	1) Nitrogen gas	2) NH ₂	3) NO	4) ©

Organic Chemistr	(Qualitative & Quantitative	Analysis`

14.	When $FeSO_4$ is added 1) Only Na_4 [Fe(CN	I in the sodium extract t $\left(\frac{\mathcal{S}}{\mathcal{S}} \right)_{\epsilon}$	the compound formed 2) Only Fe(OH),	las		
	3) Only Na ₂ SO ₄	76-	4) Mixture of these three			
15.	confirms the presence 1) Only nitrogen	e of 2) Only sulphur	J	mation of blood red colour		
	, .	4) Nitrogen and Sulp	hur both			
16.	Beilstein's test is used 1) Nitrogen	d for the detection of 2) Sulphur	3) Halogens	4) Phosphorus		
17.	In quantitative determ 1) Pyrogallol	mination of carbon the 0 2) KOH	CO_2 produced is absorbed 3) $Ca(OH)_2$	bed in the solution of 4) Any one of these		
18.	In Duma's method po 1) N_2 gas	ercentage of nitrogen in 2) NO	organic compound is 3) NH ₃	estimated in the form of 4) B_2O_5		
19.	by Kjeldathl's method	d?		ot be estimated accurately		
	1) Urea	2) Phenyl hydrazine	3) Nitrobenzene	4) Gaunidine		
20.	In Carius method hal	logens are estimated as 2) BaX,	3) PbX ₂	4) AgX		
21.	carbon in the given c	73 g of organic compound on oxidation gave 1.32 g of carbon dioxide. The percentage of arbon in the given compound will be				
	1) 49.32	2) 59.32	3) 29.32	4) 98.64		
22.	0	c compound containing in the given compound		of nitrogen at S.T.P. The		
	1) 19.18	2) 38.36	3) 9.18	4) 29.18		
23.	$0.303~{\rm g}$ of sample was analysed for nitrogen by Kjeldahl's method. The ammonia gas evolve was absorbed in 50 ml of $0.05~{\rm M}$ H $_2{\rm SO}_4$. The excess acid required 25 ml of $0.1~{\rm M}$ NaOH for neutralisation. The percentage of nitrogen in the given compound is					
	1) 11.5	2) 23	3) 12.5	4) 14.5		
24.	simple distillation		•	hem can be separated by		
	1) $A(b.p.80^{0}C) + B($ 3) $B(b.p.90^{0}C) + D($		2) $A(b.p.80^{0}C) + Co$ 4) $D(b.p.70^{0}C) + Eo$			
25.	fractional distillation	is used to separate liqu	iids which differ in the	eir b.p. by		
	1) 5°C	2) 10°C to 20°C	3) 30 – 80°C	4) 3°C		
26.	Two substances when separated on the basis of partition coefficient between two liquid phases, the technique is known as					
	1) Column chromatog3) GLC	graphy	2) Paper chromatogr4) TLC	raphy		
27.	Absolute alcohol is prepared from rectified spirit by					
	1) Fractional distillat	=	2) Steam distillation			
	3) Azeotropic distilla	tion	4) Vacuum distillation			

Organi 28.	An organic compoun	ive & Quantitative Ana id containing carbon, h ctively. Its empirical fo	ydrogen and nitroger	n have the percentage, 40,
	1) C ₂ H ₇ N	2) $C_2H_7N_2$	3) CH₄N	4) CH ₅ N
29.	The least technique us	ed for the purification o	f organic compounds o	containing minute amount
	1) Chromatography	2) Sublimation	3) Crystallisation	4) Distillation
30.				of hydrogen in presence of hyde as the only product.
	1) CH ₃ – CH ₂ – CH	$= CH_2$	$2) CH_3 - CH = CH$	$-CH_3$
	3) Cyclobutane		4) Cyclobutene	
31.		compound is soluble ir as reagent. Compound		ve test with 2, 4-DNP but
	1) -COOH group	2) -OH group	3) Keto group	4) Amide group
32.		f m-nitrochlorobenzen , the white precipitate f		. HNO ₃ and then treated
	1) AgCl	2) AgCN	3) both a and b	$4) Ag_2O$
33.				OH but not in NaHCO ₃ . It t gives a tribromo product.
	1) o-cresol	2) m-cresol	3) p-cresol	4) either of the three
Topic:	PURIFICATION ANI	WORK SHI		
		SECTION		
		Single correct answer		
1.		and methanol can be se n 2) steam distillation	- ,	tion 4) none of these
2.	Aniline is purified by 1) steam distillation solvent		3) vacuum distillatio	on 4) extraction with a
3.	Absolute alcohol is pr	repared from rectified s	pirit by :	
	1) fractional distillati	on	2) steam distillation	
	3) azeotropic distillat	ion	4) vacuum distillation	on
4.	, -	uid and stationary pha lid and stationary phas		auids
5.	, -	method of separating	, -	•
٠.	1) fractional crystalliz	1 0	2) sublimation	- ·
	3) chromatography		4) benedict solution	

EXERCISE - I / ANSWERS

WORK SHEET - I

1) 1	2) 1	3) 1	4) 2	5) 3	6) 2	7) 2	8) 3	9) 4	10) 1
11) 3	12) 4	13) A	14) 3	15) 4	16) 4	17) 4	18) 3	19) 2	20) 1
21) 3	22) 1	23) 1	24) 2	25) 2	26) 2	27) 3	28) 3	29) 1	30) 2
31) 2	32) 3	33) 2							
WORK SHEET - II									
1) 3	2) 1	3) 3	4) 1	5) 3	6) 4	7) 1	8)4	9) 2	10) 2

ALKANES

EXERCISE - I

1.	Along with methane 1) 90-95	, natural gas contains - 2) 70-80	% ethane 3) 50-60	4) 10-20		
2.	When ethyl bromide 1) Butane	is heated with sodium 2) Propane	•	he alkane obtained is nixture of the above three		
3.	When a mixture of m the alkane(s) obtaine		odide are heated with s	odium in dry ether solvent,		
	1) Ethane	2) Propane	3) Butane 4) A m	nixture of the above three		
4.	1) Acidic neutral	ueous solution after kol 2) Alkaline	3) Neutral 4) I	May be acidic, alkaline or		
5.	What is X in the follo	owing sequence of reac	tions? $X \xrightarrow{\text{Na}} Y -$	$\stackrel{\text{NaOH}}{\longrightarrow} \text{CH}_4$		
			$-\frac{1}{2}H_2$	CaO		
	1) Methanoic acid	2) Ethanoic acid	3) Propane	4) Methane		
6.	Pyrolysis of Methane	e and Ethane respective	ely are			
	1) Exothermic & End	othermic	2) Endothermic & Exothermic			
	3) Both are endothers	mic		4) Both are exothermic		
7	Alkanes with howma	any carbons are solids a	at room temperature			
	1) above C ₁₇	2) above C ₁₀	3) above C ₈	4) above C_4		
8.	Among the following	g boiling point is maxin	num for			
	1) iso butane	2) n-butane	3) propane	4) ethane		
9.	(A): For a given alkane, with increasing the branching boiling point decreases.					
	(R): For a given alkar having minimum sur		branching molecule ge	ts spherical shape which is		
10.	The correct order of 1	nelting points is				
	1) ethane < propane	< butane	2) butane , propane < ethane			
	3) propane < ethane	< butane	4) ethane < butane < propane			
11.	Arrange the following compounds in the descending order of their boiling points					
	a) n-pentane	b) iso pentane	c) neopentane			
	1) e>b>a	2) a>b>c	3) b>c>a	4) c>a>b		
12.	Petroleum refining involves					
	a) distillation	b) cracking	c) reforming			
	1) only a	2) only b and c	3) only a and c	4) a , b and c		
13.	Halogenation of alkanes in the presence of sunlight is					
	1) Free radical additi	on	2) Electrophillic sub	2) Electrophillic substitution		
	3) Nucleophillic subs	stitution	4) Free radical substitution			

14.
$$\begin{array}{c} \text{CH}_3 - \text{CH} - \text{CH}_2 - \text{CH}_3 + \text{Br}_2 \xrightarrow{\text{hv}} \chi \\ | \text{(major)}; \text{ here 'X' is} \\ \text{CH}_3 \end{array}$$

- 1) CH₃ CH CH₂ CH₂ Br
 CH₃ CH CH Br CH₃
 CH₃ CH CH Br CH₃

- ĊH,
- 3) CH₃ CBr CH₂ CH₃ 4) CH₂Br CH CH₂ CH₃ CH₃
- 15. In the chlorination of ethane in the presence of sunlight which one of the following is also formed in minute quantity
 - 1) CH₄
- 2) C_4H_{10}
- 3) C_2H_6
- 4) C_8H_{18}

- $C_2H_6 \xrightarrow{X,\Delta}$ Ethanoicacid, here 'X' is 16.

 - 1) (CH₃COO)₂Mg 2) acedified KMnO₄ 3) (CH₃COO)₂Mn 4) CH₃COONa

- 17. Polythene is
 - 1) $-(H_2C = CH_2)-_n$

- 2) -(HC CH)-_n 3) -(H₃C CH₃)-_n 4) -(H₂C CH₂)-_n
- An example of Antifreeze is 18.
 - 1) Polyvinyl chloride 2) Ethylene glycol
- 3) Ethylene chlorohydrin 4) Mustard gas

19.
$$CH_3-CH_2-CH=CH-CH_3+O_3 \xrightarrow{H_2O} Zn$$

- 1) CH₃CH₂CHO & CH₃CHO; each one mole 2) Two moles of CH₃CH₂CHO

3) Two moles of CH₃CHO

- 4) CH₃ CH₅ CH CH CH₃
- Which of the following hydrocarbons is not formed when Wurtz reaction takes place between 20. ethyl iodide and propyl iodide
 - 1) Butane
- 2) Propane
- 3) Pentane
- 4) Hexane
- Methyl magnesium iodide on treatment with D₂O furnished a hydrocarbon of structure ----21. along with Mg(OD)I
 - 1) CHD₂
- 2) CH_2D_2
- 3) CH₂D
- 4) CD₄
- 22. Which of the following is not obtained when propyl chloride and methyl chloride react with sodium in dry ether
 - 1) C_2H_6
- 2) C_4H_{10}
- 3) C_3H_8
- 4) C_6H_{14}

- Hydrolysis of ---- carbide, we get methane 23.
 - 1) Calcium
- 2) Beryllium
- 3) Aluminium
- 4) Both Be and Al
- Which of the following reactions can be used to prepare Methane? 24.
 - 1) Decarboxylation of sodium acetate
- 2) Kolbe's electrolysis

3) Wurtz reaction

- 4) Hydrogenation of alkenes
- 25. Methyl magnesium iodide reacts with ethyl alcohol to produce
 - 1) Ethane
- 2) Methane
- 3) Propane
- 4) Ether
- Methyl alcohol is treated with conc. HI and red P. The main product obtained is 26.
 - 1) CH₃OH
- 2) CH₄
- 3) CH₂I₃
- 4) PH₂
- The volume of Methane (N.T.P.) formed from 8.2 g. of sodium acetate by fusion with soda lime 27. is
 - 1) 10 lit
- 2) 11. 2 lit
- 3) 5.6 lit
- 4) 2.24 lit

28. (A): Methane is called Marsh gas

ocarbons (Alkanes, Al	kenes)			
(R): Methane is bubbled from marshy places The correct answer is 1) Both (A) and (R) are true and (R) is the correct explanation of (A) 2) Both (A) and (B) are true and (B) is not the correct explanation of (A)				
3) (A) is true but (R) i	s false	e correct explanation o	I(A)	
The final product in 1) CCl_4	the chlorination of Me 2) $CHCl_3$	thane is 3) CH_2Cl_2	4) CH ₃ Cl	
Gasoline has alkanes 1) C_{12} - C_{15}	s having 2) C ₇ - C ₁₂	3) C ₁ - C ₅	4) C ₅ - C ₇	
When petroleum is h 1) Kerosene	eated gradually the fir 2) Petroleum ether	st batch of vapours evo 3) Diesel oil	olved will be rich in 4) Lubricating oil	
Which of the following has highest knocking 1) Aromatic hydrocarbons 2) Olefins 3) Branched chain paraffins 4) Straight chain paraffins				
Kerosine oil is a mixt 1) Alkanes 3) Alcohols	ure of	Aromatic compounds Aliphatic acids		
Reforming on n-hept 1) Benzene	ane gives 2) Toluene	3) Ethyl benzene	4) Benzoic acid	
Reforming improves 1) Gasoline	the quality of 2) Coal tar	3) Paraffin wax	4) Petroleum	
1) Steam distillation	•	2) Vacuum distillation4) Passing over activated charcoal		
Aromatisation of n-h 1) Benzene	exane gives 2) Toluene	3) Methane	4) A mixture of octanes	
Natural gas is prima 1) n-Butane	rily composed of 2) n - Octane	3) Methane	4) A mixture of octanes	
petroleum is	, and the second	0 1		
		4) Gasoline, Kerosene oil, diesel		
The reaction C_8H_{18} - 1) Synthesis	$\rightarrow C_4 H_{10} + C_2 H_4 + CH_4$ 2) Isomerisation	+ C represents 3) Cracking	4) Cratalytic oxidation	
Which fraction of pet 1) Gasoline	roleum refining is used 2) Lubricating oil	d as motor fuel ? 3) Petroleum coke	4) Petroleum ether	
A knocking sound is 1) n - alkanes	produced more in the $2) CO_2$	engine when the fuel c 3) CO	ontains mainly 4) Lubricating oil	
Reaction of alkanes v 1) F_2	vith halogen is explosi 2) Cl ₂	ve in case of 3) Br ₂	4) I ₂	
A knocking sound is produced in the internal combustion engine when the fuel 1) Burns slowly 2) Burns fast 3) Contains some water 4) Is contaminated with lubricating oil				
	(R): Methane is bubb. The correct answer is 1) Both (A) and (R) ar 2) Both (A) and (R) ar 3) (A) is true but (R) is 4) (A) is false but (R). The final product in 1) CCl ₄ Gasoline has alkanes 1) C ₁₂ - C ₁₅ When petroleum is had 1) Kerosene Which of the following 1) Aromatic hydrocand 3) Branched chain paragraphs (A) Alkanes 3) Alcohols Reforming on n-hept 1) Benzene Reforming improves 1) Gasoline Petroleum is refined 11 (A) Steam distillation 3) Fractional distillate Aromatisation of n-had 1) Benzene Natural gas is primaral 1) n-Butane The order of appearance petroleum is 1) Kerosene oil, gasold 3) Gasoline, diesel, keep the content of the petroleum is 1) Kerosene oil, gasold 3) Gasoline, diesel, keep the content of the petroleum is 1) Synthesis Which fraction of petroleum is 1) Gasoline A knocking sound is 1) n - alkanes Reaction of alkanes we 1) F ₂ A knocking sound is 1) Burns slowly	The correct answer is 1) Both (A) and (R) are true and (R) is the co 2) Both (A) and (R) are true and (R) is not th 3) (A) is true but (R) is false 4) (A) is false but (R) is true The final product in the chlorination of Me 1) CCl_4 2) $CHCl_3$ Gasoline has alkanes having 1) $C_{12} - C_{15}$ 2) $C_7 - C_{12}$ When petroleum is heated gradually the fir 1) Kerosene 2) Petroleum ether Which of the following has highest knockir 1) Aromatic hydrocarbons 3) Branched chain paraffins Kerosine oil is a mixture of 1) Alkanes 3) Alcohols Reforming on n-heptane gives 1) Benzene 2) Toluene Reforming improves the quality of 1) Gasoline 2) Coal tar Petroleum is refined by 1) Steam distillation Aromatisation of n-hexane gives 1) Benzene 2) Toluene Natural gas is primarily composed of 1) n-Butane 2) n - Octane The order of appearance of the following with petroleum is 1) Kerosene oil, gasoline, diesel 3) Gasoline, diesel, kerosene The reaction $C_8H_{18} \rightarrow C_4H_{10} + C_2H_4 + CH_2$ 1) Synthesis 2) Isomerisation Which fraction of petroleum refining is used 1) Gasoline 2) Lubricating oil A knocking sound is produced more in the 1) n - alkanes 2) CO_2 Reaction of alkanes with halogen is explosi 1) F_2 2) Cl_2	$ \begin{array}{lll} \textbf{(R)}: & \textbf{Methane is bubbled from marshy places} \\ \textbf{The correct answer is} \\ \textbf{1)} & \textbf{Both (A)} & \textbf{and (R)} & \textbf{are true and (R) is the correct explanation of (A)} \\ \textbf{2)} & \textbf{Both (A)} & \textbf{and (R)} & \textbf{are true and (R)} & \textbf{is not the correct explanation of 3)} \\ \textbf{(A)} & \textbf{is false but (R)} & \textbf{is false} \\ \textbf{4)} & \textbf{(A)} & \textbf{is false but (R)} & \textbf{is true} \\ \textbf{The final product in the chlorination of Methane is} \\ \textbf{1)} & \textbf{CCl_4} & \textbf{2)} & \textbf{CHCl_3} & \textbf{3)} & \textbf{CH_2Cl_2} \\ \textbf{Gasoline has alkanes having} \\ \textbf{1)} & \textbf{C_{12}} & \textbf{-C_{15}} & \textbf{2)} & \textbf{C_{7}} & \textbf{-C_{12}} & \textbf{3)} & \textbf{C_{1}} & \textbf{-C_{5}} \\ \textbf{When petroleum is heated gradually the first batch of vapours even 1)} & \textbf{Kerosene} & \textbf{2)} & \textbf{Petroleum ether} & \textbf{3)} & \textbf{Diesel oil} \\ \textbf{Which of the following has highest knocking} \\ \textbf{1)} & \textbf{Aromatic hydrocarbons} & \textbf{2)} & \textbf{Olefins} \\ \textbf{3)} & \textbf{Branched chain paraffins} & \textbf{4)} & \textbf{Straight chain paraffins} \\ \textbf{4)} & \textbf{Straight chain paraffins} & \textbf{4)} & \textbf{Straight chain paraffins} \\ \textbf{5)} & \textbf{Aliphatic acids} \\ \textbf{Reforming on n-heptane gives} \\ \textbf{1)} & \textbf{Benzene} & \textbf{2)} & \textbf{Toluene} \\ \textbf{8} & \textbf{6} & \textbf{2)} & \textbf{Aromatic compous} \\ \textbf{3)} & \textbf{Ethyl benzene} \\ \textbf{Reforming improves the quality of} \\ \textbf{1)} & \textbf{Gasoline} & \textbf{2)} & \textbf{Coal tar} & \textbf{3)} & \textbf{Paraffin wax} \\ \textbf{Petroleum is refined by} \\ \textbf{1)} & \textbf{Steam distillation} & \textbf{2)} & \textbf{Vacuum distillatio} \\ \textbf{3)} & \textbf{Fractional distillation} & \textbf{2)} & \textbf{Vacuum distillatio} \\ \textbf{3)} & \textbf{Fractional distillation} & \textbf{2)} & \textbf{Vacuum distillatio} \\ \textbf{4} & \textbf{Passing over active Aromatisation of n-hexane gives} \\ \textbf{1)} & \textbf{Benzene} & \textbf{2)} & \textbf{Toluene} & \textbf{3)} & \textbf{Methane} \\ \textbf{Natural gas is primarily composed of} \\ \textbf{1)} & \textbf{n-Butane} & \textbf{2)} & \textbf{n-Octane} & \textbf{3)} & \textbf{Methane} \\ \textbf{The order of appearance of the following with rising temperature dupetroleum is} \\ \textbf{1)} & \textbf{Kerosene oil, gasoline, diesel} & \textbf{2)} & \textbf{Diesel, gasoline, kerosen} \\ \textbf{The reaction } & \textbf{C}_{\textbf{H}_{10}} & \textbf{C}_{\textbf{H}_{10}} & \textbf{C}_{\textbf{H}_{4}} & \textbf{C}_{\textbf{H}_{4}} & \textbf{C}_{\textbf{T}_{$	

- Which of the following hydrocarbon is a liquid at room temperature? 45.
 - 1) Ethene
- 2) Ethane
- 3) Hexane
- 4) Butane

- Cracking is a process in which 46.
 - 1) Petrol is produced by cracks on the surface of wax
 - 2) Combustion of petrol is carried out
 - 3) Compounds of high molecular mass are converted into compounds of lower molecular mass
 - 4) None of the statements is correct.
- 47. Which of the following reagent can be empolyed for isomerisation of n-butane
 - 1) HI/P
- 2) $Al_2Cl_6/HCl_{(g)}$
- 3) LiA*l*H₄
- The reaction ; $CH_3 CH_2 CH_2 CH_3 \xrightarrow{HCl_{Gas}} CH_3 CH_3 CH_3$ is an example of CH_3 48.
 - 1) Isomerisation
- 2) Polymerisation
- 3) Cracking
- 4) Dehydrogenation
- 49. Iodination of alkane is carried out in the presence of
 - 1) Alcohol
- 2) HNO₃ or HIO₃
- 3) Any reducing agent 4) Benzene

CYCLO ALKANES:

- 50. Cyclo alkanes are
 - 1) carbocyclic
- 2) homocyclic
- 3) hetero cyclic
- 4) both 1 and 2

- Cycloalkanes mainly resemble with 51.
 - 1) alkanes
- 2) alkenes
- 3) alkynes
- 4) all the above
- The Greek letter Omega (ω) is generally used to designate a substituent at the ____ of a chain. 52.
 - 1) begining
- 2) middle

3) end

- 4) any length
- 53. Which method is regarded as internal wurtz reaction
 - 1) Freunds method
- 2) Wislicenus method 3) Dieckmann method 4) Ziegler method
- 54. Which method is regarded as intra molecular condensation:
 - 1) Freunds method
- 2) Wislicenus method 3) Dieckmann method 4) Ziegler method
- $+ \parallel \xrightarrow{\qquad} X \xrightarrow{Ni/H_2} Y$; Here 'X' and 'Y' are: 55.
 - 1) cyclohexene and cyclohexane
- 2) cyclohexane and cyclohexene
- 3) cyclohexane and cyclohexane
- 4) cyclohexene and cyclohexene
- Ring strain or Angle strain is maximum in 56.
 - 1) C_3H_6

58.

2) C_1H_8

2) Cyclopentane

- 3) C_5H_{10}
- 4) C_6H_{12}

- The stability of various cycloparaffins 57.
 - 1) $C_3H_6 > C_4H_8 > C_5H_{10} > C_6H_{12}$
- 2) $C_6H_{12} > C_5H_{10} > C_4H_8 > C_3H_6$ 4) $C_6H_{12} = C_5H_{10} = C_4H_8 = C_3H_6$
- 3) $C_6H_{12} > C_4H_8 > C_5H_{10} > C_3H_6$
- Which one is not effected by H₂ in presence of nickel? 3) Cyclohexene
- 4) both 2 and 3

- Cyclohexane on chlorination gives 59.
 - 1) chloro cyclohexane

1) Cyclobutane

- 2) orthodichloro cyclohexane
- 3) paradichloro cyclohexane
- 4) a mixture of all the above.
- 60. Cyclohexanone \leftrightarrow cyclohexane. This conversion can be done with which of the following

Hydrocarbons (Alkanes, Alkenes)

reagents?

- a) Na/EtOH
- b) Conc. H_2SO_4 c) H_2/Ni
- d) HI

- 1) a, b, c
- 2) b, c, d
- 3) a, b, d
- 4) c, d

Cyclohexene + $O_3 \xrightarrow{Z_{II}/H_2O} A$, 'A' is 61.

- 1) Ketone
- 2) Dialdehyde
- 3) Diketone
- 4) Diacid

Diel's Alder reaction is an reaction 62.

- 1) Addition
- 2) Cyclic addition
- 3) Substitution
- 4) None

63 $X \xrightarrow{Na}$ Cyclopentane; X is

1) 1,6 - dibromohexane

2) 1,5 - dibromohexane

3) 1,5 – dibromopentane

4) 1,5 – dibromooctane

In Dieckmann condensation reaction ethyl heptanedioate gives 64.

- 1) Cycloheptane
- 2) cyclohexane
- 3) cyclopentane
- 4) cyclobutane

Cyclobutane $\xrightarrow{H_2/N_i}$ product in the reaction is 65

- 2) iso butane
- 3) Butene
- 4) reaction not possible

66. (A): Cyclopropane is more reactive is cyclohexane

(R): Cycloalkanes with odd number of carbons are more reactive than even number of carbons

67. In which one of the following $\angle CCC$ bond angle is 60°

- 1) Cyclopropane
- 2) Cyclobutane
- 3) Cyclopentane
- 4) Cyclohexane

ALKENES

- 68. In dehydrohalogenation, hydrogen and halogen are removed from
 - 1) the same carbon atom

- 2) from adjacent carbon atoms
- 3) from isolate carbon atoms
- 4) from any two carbon atoms

- 69. Dehydration means
 - 1) Removal of Hydrogen molecule from adjacent carbons
 - 2) Removal of Hydrogen molecule from the same carbon
 - 3) Removal of water molecule from the same carbon as H and OH
 - 4) Removal of water molecule from the adjacent carbons as H and OH
- 70. The IUPAC name of the product formed when Ethylene reacts with hypochlorous acid is
 - 1) Ethylene chlorohydrin

2) 2-chloroethanol

3) 1-chloroethanol

- 4) Hydroxyethyl chloride
- 71. The oxidation product of ethylene by air at 200-400°C in presence of silver catalyst is
 - 1) Ethylene glycol
- 2) Ethylene oxide
- 3) 1, 2-Ethanediol 4) Ethylene chlorohydrin

 $C_2H_5Cl \xrightarrow{\text{alc.KOH}} A \xrightarrow{\text{dil.}H_2SO_4} B$. Here A and B are 72.

- 1) $C_2H_{4'}$ C_2H_5OH 2) $C_2H_{6'}$ C_2H_5OH 3) $C_3H_{8'}$ C_2H_5OH 4) $C_2H_{2'}$ C_2H_5OH

 $B \leftarrow A = C_2H_5CI \xrightarrow{Z_{n-Cu}} A$ Here A and B are 73.

- 1) CH_{4} , $C_{2}H_{4}$
- 2) $C_2H_{4'}$ C_2H_6 3) $C_2H_{6'}$ C_2H_4 4) $C_2H_{6'}$ CH_4

 $C_2H_6 \xrightarrow{\Delta} A \xrightarrow{S_2Cl_2} B$. Here 'B' is 74.

- 1) $(C_2H_5)_2S$ 2) $(C_2H_4CI)_2S$ 3) $(CH_3CI)_2S$
- 4) $(CH_2)_2S$

- $HC \equiv CH \xrightarrow{\quad Pd-BaSO_4 \quad} A \xrightarrow{\quad HCl \quad} B \xrightarrow{\quad Na \quad} C \ . \ Here \ 'C' \ is$ 75.
 - 1) C_2H_6
- 2) C_4H_{10}
- 3) C_2H_5Cl
- 4) C_3H_7Cl

- 76. Ozonolysis of products of 2-methyl-2-butene are
 - 1) 2 moles are HCHO

- 2) CH₂CHO + HCHO
- 3) CH₂CHO + CH₂COCH₂

- 4) HCHO + CH₂COCH₂
- $CH_3 CH_2Cl \xrightarrow{\text{alcoholic KOH}} A \xrightarrow{Br_2} B B \xrightarrow{Zn} C. C is$ 77.
 - 1) Acetylene
- 2) Ethylene
- 3) Ethene
- 4) Methane

- $\beta \beta^1$ dichloro diethyl sulphide is known as 78.
 - 1) Lewisite
- 2) Mustard gas
- 3) Phosgene
- 4) Clatharate

- Which is a planar molecule? 79.
 - 1) $CH_2 = CH_2$
- 2) CH₃ CH₃
- 3) CH \equiv C-CH₃
- 4) Cyclohexane

- $C_2H_5Cl \xrightarrow{Alc \text{ KOH}} X \xrightarrow{HBr} Y$. reaction is 80.
 - 1) hydrohalogenation 2) dehydrohalogenation
 - 3) halogenation
- 4) dehalogenation
- LIST-1 81.
 - LIST-2
 - A) Baeyer's reagent
 - B) Lindlar's catalyst
 - C) Tollen's reagent
 - D) Wurtz reaction

- 1) Pd/BaSO₄-Quinoline
- 2) Ammonical Silver nitrate
- 3) Alkaline Potassium Permanganate
- 4) Na, dry ether
- 5) Br₂ in CCl₄

The correct match is

- 1) A-3; B-1; C-5; D-2
- 2) A 5; B 2; C 1; D 3

- 2) A 2; B 1; C 5; D 4
- 4) A 3; B 1; C 2; D 4

- 82. List-1
- LIST-2 Reagent
- LIST 3 **Product**

A) CH₃COONa

Reactant

- 1)Alc. KOH
- a) Ethylene

- B) CHCl₂-CHCl₂
- $2)H_2O$
- b) Acetylene

- C) C_2H_5MgI
- 3)NaOH + CaO
- c) Methane

- D) CH₃-CH₂Cl
- 4)Zn dust
- d) Ethane

The correct match is

- 1) A 3 c; B 4 b; C 2 d; D 1 a
- 2) A 1 a; B 1 b; C 2 a; D 1 d
- 3) A 2 b; B 3 c; C 1 b; D 4 d
- 4)A-1-d; B-2-d; C-1-b; D-4-c
- IUPAC name of allyl chloride is 83.
 - 1) 1 chloro propene
 - 3) 3 chloro propene

- 2) 2 chloro propene
- 4) 3 chloropropane
- Characteristic reactions of alkenes is 84.
 - 1) Electrophilic addition

2) Nucleophiclic addition

Hydrocarbons (Alkanes, Alkenes)

- 3) Electrophilic substitution
- 4) Nucleophilic substitution
- 85. Correct statement about ethene is
 - 1) ∠HCC is greater than ∠HCH
- 2) ∠HCC is less than ∠HCH
- 3) Carbon, carbon bond length is less than C-H bond length
- 4) Carbon undergo sp³ hybridisation

86.
$$CH_2=CH_2+H_2 \xrightarrow{Pt,T_1K} C_2H_6$$

 $CH_2 = CH_2 + H_2 \xrightarrow{Ni, T_2K} C_2H_6$. The carrect relation among the following is 1) $T_1 > T_2$ 2) $T_2 > T_1$ 3) $T_1 = T_2$ 4) $T_1 > 2T_2$

1)
$$T_1 > T_2$$

2)
$$T_2 > T_1$$

3)
$$T = T_2$$

4)
$$T_1 > 2T_2$$

- 87. Incorrect statement about addition of halogen to alkenes
 - 1) It is electrophilic addition
 - 2) Syn addition of halogen to C = C takes place
 - 3) Three membered cyclic halonium ion is intermediate
 - 4) Vicinal dehalides are formed.

88.
$$CH_2 = CH_2$$
 Cl_2/CCl_4 X Here X and Y are

- $\begin{array}{ll} \text{1) CICH}_2\text{-CH}_2\text{CI, CICH}_2\text{-CH}_2\text{CI} & \text{2) CICH}_2\text{-CH}_2\text{CI, CICH}_2\text{-CH}_2\text{OH} \\ \text{3) CI}_2\text{C=CCI}_2\text{, CICH=CHCI} & \text{4) CI}_2\text{C=CCI}_2\text{, CICH}_2\text{-CH}_2\text{OH} \end{array}$

89.
$$CH_3$$
- $CH = CH_2$

+HBr X (major)

 Y (major)

 Y (major)

Incorrect statement among the following is

- 1) X is isopropyl bromide, Y is n-propyl bromide 2) X and Y are position isomers
- 3) Formation of X is electrophilic addition
- 4) Formation of Y is electrophilic addition

90.
$$CH_3 - CH_2 - C = CH - CH_2 - CH_3 + HBr \rightarrow product formed in this reaction is $CH_3$$$

- 1) dextro rolatary
- 2) laevo rotatory
- 3) meso compound
- 4) racemic mixture

91.
$$CH_3^- \xrightarrow{C} = CH_2 + HC1 \xrightarrow{(C_6H_5CO)_2O_2} X \text{ (major)}$$

Here 'X' is

СН3

- 92. (A): HCl do not add to unsymmetrical alkene by free radical mechanism
 - (R): Benzoyl free radical unable to break stronger H Cl bond
- 93. (A): Peroxide effect is not observed in the addition of HI to unsymmetrical alkene.
 - (R): Free radical unable to break stronger H-I bond
- 94. (A): In the addition of HBr to propene, isopropyl bromide is major product but n-propyl bromide is minor product.
 - (R): Isopropyl carbonium ion is more stable than n propyl carbonium ion.
- CH_3 - $CH = CH CH_3$ $\xrightarrow{KMnO_4/H^+}$ product in this reaction. is 95.

Hydrocarbons (Alkanes, Alkenes)

2) 2CH₃CHO

3) 2CH₃COOH

4) CH₃CHO + CH₃COOH

96. CH_3 - C = CH_3 - CH_3 - CH_3 - CH_3 - CH_3 products in this reaction

1)
$$\text{CH}_3$$
- $\overset{\text{OH}}{\overset{\mid}{\underset{\text{CH}_3}{\text{CH}}}}$ $\overset{\text{OH}}{\overset{\mid}{\underset{\text{CH}_3}{\text{CH}}}}$ - $\overset{\text{OH}}{\overset{\mid}{\underset{\text{CH}_3}{\text{CH}}}}$

2) CH₃CHO+CH₃CHO

3) CH₃COCH₃ + CH₃COOH

4) 2CH₃COOH

97. Arrange the following alkenes in the descending order of their reactivity with HBr.

- a) ethene
- b) Propene
- c) 2 Butene
- d) 2- methyl-2-Butene

- 1) a > b > c > d
- 2) d > c > b > a
- 3) d > c > a > b
- 4) a > b > d > c

98. In which of the following reactions anti Markownikoff's rule is observed

1)
$$CH_3 - CH = CH_2 + HC \ell \xrightarrow{Peroxide}$$

2)
$$CH_3 - CH = CH_2 + HBr \xrightarrow{Peroxide}$$

3)
$$CH_3 - CH = CH_2 + HI \xrightarrow{Peroxide}$$

4)
$$CH_3 - C = CH_2 + H_2SO_4 \rightarrow$$

99. The Kolbe's electrolysis proceeds via

- 1) Nucleophilic substitution mechanism
- 2) Electrophilic addition mechanism
- 3) Free radical mechanism
- $4) \ Electrophilic \ sustitution \ mechanism$

100. Which of the following statements is correct?

- 1) C D bond is slightly weaker than C-H bond
- 2) C D bond is slightly stronger than C-H bond
- 3) Both C-H & C-D bonds are equally strong
- 4) Replacement of D in C-D by Cl is faster than the replacement of H in C-H

101. Propene + HCl $\underline{C_6H_5COO_2CO-C_6H_5}$ A. A is

- 1) n propyl chloride 2) Isopropyl chloride 3) Allyl chloride 4) None
- 102. Addition of Br₂ takes place readily with

1)
$$CH_2 = CH_2$$

2)
$$CH_3 - CH = CH_2$$

3)
$$CH_3$$
- CH = CH - CH_3

4)
$$CH_3 - C = CH - CH_3$$

103. Which of the following is used as gasoline additive?

- 1) n Heptane
- 2) Isoctane
- 3) TEL
- 4) Diethyl lead

 $104. \qquad X \xrightarrow{\quad Sodalime \quad} Y \xrightarrow{\quad Cl_2/uv-light \quad} Z \xrightarrow{\quad 2Na \quad} CH_3\text{-}CH_2\text{-}CH_2\text{-}CH_3\text{+}2NaCl}.$

Then X, Y and Z includes

- 1) Sodium ethanoate, ethane and ehtyl chloride
- 2) Sodium propnoate, ethane and methyl chloride
- 3) Sodium butanoate, ethane and ehtyl chloride
- 4) Sodium propanoate, ethane and ethyl chloride

Hydro	ocarbons (Alkanes,	Alkenes)		
105.	to the Wurtz reaction, which			
	1) hexane		2) 2, 5 dimethyl h	
	3) 2, 3 dimethyl bu		4) 2 - methyl pent	
106.		o propene gives 2 - bromo		_ *
	1) H ⊕	2) Br-	3) Br	4) Br⊕
107.	Orlon is the polym	nerised product of		
	1) CH ₂ =CHCl		2) CH ₂ =CH-O-CC	9
	3) CH ₂ =CH-CN		4) CH ₂ =CH-CH=	=CH ₂
108.		off's addition of HBr is no		
	1) 1 - butene	2) 1 - pentene	3) Propene	4) 2 - butene
		WORK SH	HEET - II	
1.	By treating ethylm	nagnesium bromide with	water or alcohol, we	get
	1) Methane	2) Ethane	3) Propane	4) Butane
2.	Which of the follo	wing reacts with water to	give ethane?	
	1) CH ₄	2) C ₂ H ₅ MgBr	3) C ₂ H ₅ OH	4) C ₂ H ₅ -O-C ₂ H ₅
3.	ethane by Wurtz r	eaction? (Atomic weight	t of iodine = 127)	red for preparing one mole of
	1) 142	2) 568	3) 326	4) 284
4.	Which of the follo 1) Ethane	wing compounds does n 2) Propyne	ot form an ozonide ? 3) Propene	4) Ethene
5.	The number of σ	and π bonds present in	ethene is	
	1) 6 σ	2) 3 σ	3) 4σ , 2π	4) 5 σ ,1 π
6.	When propyl iodi	de is heated with alcohol	ic KOH, the product	tis
	1) Propene	2) Cyclopropane	3) Propyne	4) Propane
7.	O	n alkane with chlorine an Ikane. This alkane should	- C	ultraviolet light, it forms only
	1) Neopentane	2) Propane	3) Pentane	4) Isopentane
		WORK SH	IEET - III	
Topic	: AIKANES AND C	YCLOALKANES		
		SECTIO	ON - A	
		Single correct answ	er Type Questions	
1.	HBr.When heated			₄ solution nor reacted with i catalyst a new hydrocarbor
	1) n-butane	2) Cis-2-butene	3) Iso-butylene	4) Cyclo butane
 Free radical monochlorination of ter.butyl bromide gives 1) 1- bromo-1-chloro-2-methyl propane 2) 2- bromo-1-chloro-2-methyl propane 3) 1- bromo-2-chloro-2-methyl propane 4) Ter.butyl Chloride 				
	-,		1, 101.2 dty 1 011101	

3. A compound "x" has molecular formula C₅H₉Cl .It does not react with Bromine in CCl₄ .On treatment with strong base it produces single compound "y" (C5H8) and reacts with $Br_2(aq)$. Ozonolysis of "y" produces a compound $C_5H_8O_2$. The structure of x is

- 4. Propene, $CH_3 - CH = CH_2$ can be converted into 1-propanol by oxidation. Which set of reagents among the following is ideal to effect the conversion?

 - 1) Alkaline KMnO₄ 2) B₂H₆ and alk. H₂O₂3) O₃/zinc dust
- 4) OsO₄/CHCl₃
- $Me_2C = CHCH_2 CH_2 C = CH CH_3 \xrightarrow{H^+}$ Product. The main product is 5.

- 6. Which of the following will explain the chemical reactivity of ethylene?
 - 1) short carbon to carbon bond distance
- 2) high double bond energy
- 3) trigonal planar structure
- 4) presence of π -electrons
- 7. For which of the following addition reaction Markownikoff's rule is applicable?
 - 1) $CH_3CH = CH_2 + Br_2 \rightarrow$

2)
$$CH_3CH = CH_2 + HBr \rightarrow$$

3)
$$CH_2 = CH_2 + HBr \rightarrow$$

3)
$$CH_2 = CH_2 + HBr \rightarrow$$
 4) $CH_3CH = CHCH_3 + Br_2 \rightarrow$

The most suitable set of reagents to perform this conversion is

- 1) HBr; $(CH_3)_3 COK/(CH_3)_3 C-OH$
- 2) NBS; Alcoholic KOH

Hydrocarbons (Alkanes, Alkenes)

- 3) HBr-peroxide; CH_3CH_2OK / CH_3CH_2OH
- 4) HBr-peroxide; $(CH_3)_2 COK/(CH_3)_2 COH$
- 9. An isolated alkadiene is:
 - 1) penta-1,4-diene
 - 2) penta-1,3-diene
- 3) penta-1,2-diene
- 4) Hexa-2,4-diene
- 10. Sample of 2,3-dibromo-3-methyl pentane is heated with zinc dust. The resulting product is isolated and heated with HI in the presence of phosphorus. Indicate which structure does represent the final organic product in the reaction?

$$CH_2 = CH - CH - CH_2 - CH_3$$

$$CH_3$$

$$CH_2 = CH - CH - CH_2 - CH_3$$
 2) $CH_3 - CH_2 - CH - CH_2 - CH_3$ CH_3 CH_3

$$\begin{array}{c} CH_3 - CH - CH - CH_2 - CH_3 \\ & | & | \\ I & CH_3 \end{array}$$

3)
$$CH_3 - CH - CH - CH_2 - CH_3$$
 4) $CH_2 = CH - CH - CH_2 - CH_3$ CH_3 CH_3

SECTION-B

More than one correct answer Type Questions

Which of the following can be prepared by wurtz reaction? 11.

1)
$$CH_3CH_3$$

$$\begin{array}{c}
CH_{3} \\
3) CH_{3} - CH - CH_{3} \\
& 4) CH_{3} - CH_{2} - CH - CH_{3} \\
& CH_{3}
\end{array}$$

$$\begin{array}{c}
HBr \\
A
\end{array}$$

12.

2) compound 'A' is Br

- 3) Reagent 'B' is H_2/Ni at $80^{\circ}C$
- 4) Reagent 'B' is Li AlH₄
- Which of the following molecules of alkane will give only one monohalogenated product on 13. reaction with halogen in presence of sunlight?

3)
$$(CH_3)_4C4$$

14. Which of the following methods yield saturated hydrocarbon?

1)
$$R - CH = CH_2 \xrightarrow{BH_3 \atop CH_3COOH}$$

2)
$$R - CH = CH_2 \xrightarrow{CH_2N_2 \atop \Delta}$$

Hydrocarbons (Alkanes, Alkenes)

4)
$$\xrightarrow{\text{NaoH+CaO}}$$

15. Which of the following reactions produce the same product?

1)
$$\xrightarrow{\text{Br}_2}$$
 $\xrightarrow{\text{Na/ehter}}$

$$\begin{array}{c}
\text{(2)} & \xrightarrow{\text{NaOH}} & \xrightarrow{\text{electrolysis}} \\
\text{(COOH)} & & & \\
\end{array}$$

$$\begin{array}{c}
\text{3)} & \xrightarrow{\text{Mg}} & \xrightarrow{\text{MeBr}} \\
\text{Br} & \xrightarrow{\text{ether}} & \xrightarrow{\text{MeBr}}
\end{array}$$

4)
$$HO_2C$$
 CO_2H $Red\ P+HI$

16. Write the products of the following reaction,

$$\begin{array}{c|c} & CH_2N_2/\Delta & \text{'A} \\ \hline & CHCl_3 + OH & \text{'B'} \end{array}$$

WORK SHEET - IV

Topic: AKANES AND CYCLOALKANES

SECTION - A

Single correct answer Type Questions

1. Select the response that correctly identifies the number of carbon atoms of each type of hybridization in the compound given below $H_2C = C = CH - CH = O$

	sp^3	sp^2	sp		sp^3	sp^2	sp
1)	2	2	0	2)	1	3	0
3)	0	3	1	d)	1	2	1

- 2. On halogenation, an alkane gives only one monohalogenated product. The alkane may be
 - 1) 2-methyl butane

2) 2, 2-dimethyl propane

3) cyclopentane

- 4) both (2) and (c)
- 3. Which of the following compounds can be best prepared by Wurtz-reaction?
 - 1) iso-butane
- 2) n-butane
- 3) n-pentane
- 4) iso-pentane
- 4. A hydrocarbon A(V.D = 36) forms only one monochloro susbtitution product. A will be:
 - 1) iso-pentane
- 2) neo-pentane
- 3) cyclohexane
- 4) methyl-cyclohexane
- 5. Ethyl iodide and n-propyl iodide are allowed to under go Wurtz reaction. The alkane which will not be obtained in this reaction is
 - 1) butane
- 2) propane
- 3) pentane
- 4) hexane

Hydrocarbons (Alkanes, Alkenes)

- $CH_3 CH CH_2 CH_3 \xrightarrow{Cl_2 \ hv} .Number of chiral centers generated during$ 6. monochlorination in the above reaction:
 - 1) 1

2)2

- 3)3
- 4) 4
- 7. $CH_3Cl \rightarrow CH_4$. Above conversion can be achieved by
 - 1) Zn/H^+
- 2) LiAlH₄
- 3) Mg/H₂O (ether) then H₂O 4) all of these
- 8. n - Butane $\xrightarrow{Cl_2/hv}$. Give the total number of monochloro products (including stereoisomers), which are possible in the above reaction.
 - 1) 2

2)3

- 4) 5
- ${\rm CH_4 + Cl_2} \xrightarrow{\quad \text{hv} \quad} {\rm CH_3Cl + HCl} \text{ . To obtain high yields of CH}_{\rm 3}{\rm Cl, the \ ratio \ of \ CH}_{\rm 4} \text{ to \ Cl}_{\rm 2}$ 9. must be
 - 1) high
- 2) low
- 3) equal
- 4) can't be predicted

- Double bond equivalent of cubane is ? 10.
 - 1)4

2)5

- 3)6
- 4)7

SECTION-B

More than one correct answer Type Questions

When Y and Z are salts then

1) X is

- 2) Molecular formula of X is C_4H_8
- 3) Molecular weight of X is 54
- When $CH_{\gamma} = CH Br$ is reacted with HBr then the product formed is A and when 12. $CH_{2} = CH - COOH$ is treated with HBr then the product formed is C

- 2) A is $CH_3 CH$
- 3) C is $CH_3 CH COOH$ 4) C is $CH_2 CH_2 COOH$ Br
- Which of the following alkanes cannot be synthesised by the Wurtz reaction in a good yield 13.

1) $(CH_3)_2 CH - CH_2 - CH(CH_3)_2$

)

 $(CH_3)_2 CH - CH_2 - CH_2 - CH (CH_3)_2$

3) $CH_3 - CH_2C(CH_3)_2 CH_2CH_3$ 4) $(CH_3)_3 C - CH_2 - CH_2 - CH_3$

$$14. \qquad {C_4H_6 \over (A)} \xrightarrow{H_2/pt} {C_4H_8 \over (B)} \xrightarrow{O_3/H_2O} CH_3COOH \ . \ \ A \ and \ B \ in \ the \ above \ sequence \ are$$

1)
$$CH_3C \equiv CCH_3$$
 and $CH_3CH = CHCH_3$

2)
$$CH_2 = CHCH = CH_2$$
 and $CH_3CH = CHCH_3$

3)
$$CH_3CH = CHCH_3$$

15. Hydroboration oxidation and acid hydration will yield the same product in case of

3)
$$CH_2 = CH_2$$

3)
$$CH_2 = CH_2$$
 4) $CH_3CH = CHCH_3$

- CH_3 $\xrightarrow{t-Buok}$ Product . which is/are correct statements about the product? 16.
 - CH₃ is an endocyclic saytzeff product
 - ►CH₂ is an exocyclic saytzeff product
 - ►CH₂ is an exocyclic Hofmann product
 - $-CH_3$ 4) is an endocyclic Hofmann product.

WORK SHEET - V

SECTION - A

Topic: CYCLOALKANES PROPERTIES ALKANES

Single correct answer Type Questions

- 1. Which of the following has highest chlorine content?
 - 1) Pyrene
- 2) DDT
- 3) Chloral
- 4) Gammaxene

- 2. Pure methane can be prepared by
 - 1) Wurtz reaction

- 2) Kolbe electrolysis method
- 3) Soda-lime de-carboxylation
- 4) reduction with H₂
- Berylium carbide + heavy water \longrightarrow ? 3.

The product of the above reaction is

- 1) C_2H_2
- 2) BeD₂
- 3) CD₄
- 4) CH₄

 $CH - OH + CH_3MgBr \rightarrow xCH_4$ (excess) 4.

$$\dot{C}H_2 - SH$$

What is the value of x in the above reaction?

Hydrocarbons (Alkanes, Alkenes) 1)1 2) 2

> \rightarrow CH₃ – CH₂– $CH_3 - CH_2$

Ethyl cyclopentane Ethyl cyclohexane Ethyl cycloheptane (I) (II)(III)

Arrange the compounds I, II and III in decreasing order of their heats of combustion:

5.

2) I > II > III

3) III > II > I

3)3

4) III > I > II

4) 4

Cyclopropane 6. Cyclobu tan e Cyclopen tan e (I) (II)(III)

The correct order of heats of combustion of above compounds is:

1) I > II > III

2) II > I > III

3) III > II > I

4) III > I > II

7. An alkane (mol wt = 86) on bromination gives only two monobromo derivatives (excluding stereoisomers). The alkane is:

stereoisonters). The alkane is:
$$\begin{array}{c} \text{CH}_3 \\ \text{1) } \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{CH}_2 - \text{CH}_3 \\ \text{CH}_3 \end{array}$$

$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_2 - \text{C} \\ \text{CH}_3 \end{array}$$

4)
$$CH_{2} - CH_{3} - CH_{3}$$
 CH_{3}

8.
$$\begin{array}{c} \operatorname{CH_3} - \operatorname{CH_2} - \operatorname{CH_3} \xrightarrow{\operatorname{CH_2N_2}} \left(\operatorname{A} \right) : \operatorname{Product} \left(1 \right) \text{ is} \\ 1) \operatorname{CH_3} - \operatorname{CH} - \operatorname{CH_3} \\ \operatorname{CH_3} \end{array}$$
 2)
$$\operatorname{CH_3} - \operatorname{CH_2} - \operatorname{CH_2} - \operatorname{CH_3}$$

- 3) equimolar mixture of (1) & (b)
- 4) n-pentane
- 9. Which of the following alkanes will give single product on methylene insertion?
 - 1) CH₃ CH₃
- 2) CH₃ CH₂ CH₃
- 3) $(CH_2)_4C$
- 4) CH₂CH₂C(CH₃)₂CH₂CH₃
- E) $(CH_3)_2CHCH(CH_3)_2$.

- 1) A, B, D
- 2) A, C, D
- 3) A, C
- 4) B, D, E

Order of the bond strength of C-H bonds involving sp, sp² and sp³ hybridized carbon atoms 10.

- 1) $sp > sp^2 > sp^3$ 2) $sp^3 > sp^2 > sp$ 3) $sp^2 > sp^3 > sp$ 4) $sp^2 > sp > sp^3$.

SECTION - B

More than one correct answer Type Questions

- When an aqueous solution of sodium formate is electrolysed 11.
 - 1) H₂ gas is liberated at cathode
- 2) No alkane is formed
- 3) H₂ and CO₂ gases are liberated at anode 4) NaOH is formed at anode

- The product obtained in the reaction $C_6H_5CH_2CH_3 \xrightarrow{Cl_2/hv} 273K$ is 12.
 - 2) $C_6H_5CH_2 CH_2Cl$ 3) $C_6H_5CCl_2 CH_3$ 4) $C_6H_5CHCl CH_2Cl$ 1) $C_6H_5CHCl-CH_3$
- Which of the following will give Cis-diols? 13.
 - 1) $C = C \left(\xrightarrow{1)\text{KMnO}} \right)$

- 2) $C = C \left(\frac{1) \operatorname{OsO}_4}{2) \operatorname{Na}_2 \operatorname{SO}_3} \right)$
- $3) \underbrace{ \frac{1) \operatorname{OsO_4} \ 25^{0} \operatorname{C}}{2) \operatorname{Na_2SO_3}}}$
- 4) $\underbrace{\hspace{1cm}}_{2)\text{HCO}_2\text{H,25}^0\text{C}}$
- CH_3 $CH_3 CH = CH_3$ which of the following reactant will yield the above compound more 14. than 50% 73

 - 3) $H_3C CH_3Br \longrightarrow CH_3Br \longrightarrow$
- i) Cis-2-butene $\xrightarrow{HCO_3H}$ I. 15.
 - ii) trans-2-butene $\xrightarrow{HCO_3H}$ II. Correct statements are
 - 1) I is racemic mixture by anti addition
- 2) II is meso compound by anti addition
- 3) I is meso compound by anti addition
- 4) II is racemic mixture by anti addition

16.
$$CH = CH_2 \rightarrow CH_2 - CH_2 - CH_2 - OH$$

The conversion can be performed suitably by

1) I. Cl₂, H₂O II. LiAlH₄

- 2) I.HBr II. OH-
- 3) I. BH₃-THF II. H₂O₂, OH⁻
- 4) I. HBr-peroxide II. OH

EXERCISE - I /ANSWERS

WORK SHEET - I

01) 4	02) 1	03) 4	04) 2	05) 2	06) 3	07) 1	08) 2	09) 1	10) 3
11) 2	12) 4	13) 4	14) 3	15) 2	16) 3	17) 4	18) 2	19) 1	20) 2
21) 3	22) 3	23) 4	24) 1	25) 2	26) 2	27) 4	28) 1	29) 1	30) 2
31) 2	32) 4	33) 1	34) 2	35) 1	36) 3	37) 1	38) 3	39) 4	40) 3
41) 1	42) 1	43) 1	44) 2	45) 3	46) 3	47) 2	48) 1	49) 2	50) 4
51) 4	52) 3	53) 1	54) 3	55) 1	56) 1	57) 2	58) 4	59) 4	60) 1
61) 2	62) 2	63) 3	64) 2	65) 1	66) 3	67) 1	68) 2	69) 4	70) 2
71) 2	72) 1	73) 3	74) 2	75) 2	76) 3	77) 3	78) 2	79) 1	80) 2
81) 4	82) 1	83) 3	84) 1	85) 1	86) 2	87) 2	88) 2	89) 4	90) 4
91) 2	92) 1	93) 3	94) 1	95) 3	96) 3	97) 1	98) 2	99) 3	100) 2
101) 1	102) 4	103) 3	104) 4	105) 2	106) 1	107) 3	108) 4		

WORK SHEET - II

01) 2 02) 2 03) 4 04) 1 05) 4 06) 1 07) 1

WORK SHEET - III

1) 4 2) 2 3) 2 4) 2 5) 4 6) 4 7) 2 8) 4 9) 1 10) 2 11) 12 12) 23 13) 134 14) 1234 15) 1234 16) 13

WORK SHEET - IV

1) 3 2) 2 3) 2 4) 2 5) 2 6) 2 7) 4 8) 2 9) 1 10) 2 11) 3,4 12) 2,4 13) 1,3,4 14) 1,2 15) 2,3,4 16) 1,3

WORK SHEET - V

1) 1 2) 3 3) 3 4) 3 5) 3 6) 3 7) 3 8) 2 9) 3 10) 1 11) 123 12) 13 13) 123 14) 23 15) 12 16) 34

ALKYNES, ARENES

EXERCISE - I

ALKYNES

1.	When alkyl substi		s addition with hydrog	gen in presence of Lindlar's			
	1) A mixture of ci		2) Trans	3) Cis			
	· -	Lindlar's catalyst, additio	_				
2.	The reagent used 1) Na in liq. NH ₃ 3) Both (1) or (2)	for getting trans alkene fr	he from alkyl substituted acetylene with hydrogen is 2) Li in liq. NH_3 4) H_2 in presence of Ni (or) Pt (or) Pd				
3.	, , , , , , ,	used in plastic industry ar	-				
	1) Vinyl acetate &	- ,	2) Vinyl cyanide & Vinyl acetate 4) Ethylidene dicyanide & Vinyl cyanide				
4.	Oxidation produc	ct of acetylene with alkali	ne potassium permang	ganate is			
	1) Acetic acid	·	2) Oxalic acid				
	3) Acetone		4) Acetylene dicarb	oxylic acid			
5.		ct of acetylene with chron	nic acid is				
	1) Acetic acid		2) Oxalic acid				
	3) Acetone		4) Acetylene dicarb	•			
6.		of hydrogens in acetylen					
	1) Sodium metal			ous chloride solution			
_	•	ver nitrate solution	4) All the above				
7.	The colour of the precipitate formed when acetylene is passed through ammonical cup chloride solution is						
	1) White	2) Red	3) Blue	4) Green			
8.	Order of reactivity						
	1) Alkynes > Alke		2) Alkanes > Alkenes > Alkynes 4) Alkenes = Alkynes > Alkanes				
	3) Alkenes > Alky		4) Alkenes = Alkynes > Alkanes				
9.		respectively in the follow	-				
		$2 - Butyne \xrightarrow{X} E - F$					
	1) Na/NH $_{3(liq)}$ an 3) Ni/140 0 C and	d Pd/BaSO ₄ + H ₂ Na/NH _{3(liq)}	2) Ni/140 0 C and P 4) Pd/BaSO ₄ + H ₂ a	d/BaSO ₄ + H ₂ and Na/NH _{3(aq)}			
10.	Tollen's reagent.		_	rive white precipitate with			
	1) C_2H_2	2) C_2H_4	3) C_6H_6	4) CH ₄			
11.	$CH_3 - CH_2 - CH$	$H_2Cl \xrightarrow{\text{alc.KOH}} X$					
	$CH \equiv CH + H_2 -$	$\xrightarrow{\text{Pd}+\text{BaSO}_4} Y$					
	-	e sequences, the final prod	ducts`X' and `Y'				
	1) are a pair of ho	omologues	2) have the percent	ase composition			
	3) have the same	empirical formula	4) All the above				
12.	(1): Disubstitute	d acetylene on partial hyd	drogenation may give t	rans isomer			
	(R): Lindlar's ca	talyst is used for Partial h	ydrogenation				
	The correct answe	er is					

- 1) Both (1) and (R) are true and (R) is the correct explanation of (A) 2) Both (1) and (R) are true and (R) is not the correct explanation of (A)
- 3) (1) is true but (R) is false 4) (1) is false but (R) is true
- 13. When $R - C \equiv CH$ is treated with cuprous ion in ammonical medium, one of the product is 1) $R - C \equiv C - Cu$ 2) $Cu - C \equiv CH$ 3) $CuC \equiv CCu$ 4) $R - C \equiv C - R$

BENZENE

- When coal is subjected to destructive distillation, the important products obtained are 14.
 - 1) Light; Middle; Heavy and Anthracene oils
 - 2) Coal gas; Coal tar; Ammonical liquor and Solid residue
 - 3) Benzene; Toluene; Xylene; Naphthalene and Anthracene
 - 4) Carbocyclic aromatic and heterocyclic aromatic compounds
- Coal tar is 15.
 - 1) Yellow, light liquid with pleasant odour
 - 2) Yellow, light liquid with unpleasant odour
 - 3) Black viscous oily liquid with unpleasant odour
 - 4) Black viscous oily liquid with very pleasant odour
- 16. To get benzene, coal tar is subjected to
 - 1) Fractional distillation

2) Destructive distillation

3) Vacuum distillation

- 4) Steam distillation
- 17. The two structures of benzene proposed by Kekule differ in
 - 1) The position of carbon nuclei
- 2) The position of hydrogen nuclei
- 3) The position of the single bonds
- 4) The position of the double bonds
- Resonance energy of benzene is 18.
 - 1) 150 Kcals Mol⁻¹
- 2) 36 Kcals Mol⁻¹
- 3) 36 KJ Mol⁻¹
- 4) 200 Kcals Mol⁻¹

- 19. In Benzene there is
 - 1) Delocalization of p electrons
- 2) Delocalization of s electrons

4) No delocalization of electrons

- 3) Delocalization of both s and p electrons
- The C C bond lengths in benzene are
- 1) 1.54A° & 1.34A° 2) 1.34A° & 1.20A°
- 3) 1.39A° only
- 4) 1.20A° only

- 21. Due to delocalization, the energy
 - 1) Increases

- 2) Decreases
- 3) May increase or decrease
- 4) There is neither increase nor decrease
- 22. The increase in stability and decrease in energy of aromatic compounds is due to
 - 1) Localization of p electrons
- 2) Delocalization of s electrons
- 3) Localization of s electrons
- 4) Delocalization of p electrons
- 23. The number of p electrons in benzene is
 - 1)3

20.

2) 6

3)9

4) 12

- 24. The C - C bond length in benzene is
 - 1) < C C in ethane
- 2) > C = C in ethene
- 3) > $C \equiv C$ in ethyne
- 4) All the above

- 25. Due to delocalization
 - 1) Reactivity increases 2) Stability increases 3) Stability decreases 4) Solubility in water increases

Hydrocarbons (Alkynes, Arenes)

- 26.
 - 1) Hexachlorocyclohexane & C₆H₅Cl
- 2) Chlorobenzene & Hexachlorocyclohexane
- 3) o-and p-Dichlorobenzene & chlorobenzene
- 4) Chlorobenzene & C₆H₆Cl₆
- 27. During ozonolysis of 1mole of benzene, number of molecules of ozone consumed is
 - 1) 1

2) 2

- 3)3
- 4)4
- 28. Under pressure, (with hydrogen) in presence of nickel catalyst, benzene forms

- 29. Which of the following statements is False
 - 1) Benzene contains three pi bonds
- 2) Ethylene is more reactive than ethyne
- 3) Kolbe's method is useful for preparation of methane
- 4) Aldehydes & Ketones are a pair of functional isomers
- $C_2H_4Br_2 \xrightarrow{\text{alc KOH}} A \xrightarrow{\text{HCN}} B$. The type of reaction involed in the conversion $A \to B$ 30.
 - 1) Nucleophilic addition $^{\text{Cu}^+}$
- 2) Electrophillic addition

3) Radical addition

- 4) Electrophillic substitution
- 31. The function of anhydrous AlCl₃ in the Friedel-crafts reaction is
 - 1) absorb water

2) absorb HCl

3) Produce electrophile

- 4) Produce nucleophile
- 32. Which of the following is not aromatic
 - 1) Cyclotetraene
- 2) Benzene
- 3) Naphthalene
- 4) Anthracene
- Nitrobenzene can be prepared from Benzene by using a mixture of conc. HNO₃ and conc. 33. H_2SO_4 . In this, active species is
 - 1) NO₃
- 2) NO+
- 3) NO_{2}^{+}
- 4) NO₂
- 34. According to the molecular formula Benzene appears to be highly unsaturated. But Benzene mainly participates in substitution reactions. It is because Benzene is
 - 1) unsaturated
- 2) Saturated
- 3) aromatic
- 4) cyclic compound
- 35. In Huckel's (4n+2) rule for aromaticity, 'n' represents
 - 1) Number of carbon atoms
- 2) Number of rings

3) Whole number

4) Fractional number (or) integer (or) zero

PROPERTIES:

- 36. LIST-1
 - 1) Methane
 - 2) Ethylene
 - 3) Acetylene
 - 4) Benzene

- LIST-2
- 1) Hawker's lamp
- 2) Paraldehyde
- 3) Printer's ink
- 4) Mustard gas
- 5) Motor fuel

- The correct match is
- 1) A 1; B 2; C 3; D 4
- 3) A 3; B 4; C 1; D 5

- 2) A 3; B 5; C 1; D 4
- 4) A-4; B-2; C-3; D-1

- 37. LIST 1
 - 1) C₆H₆Cl₆
 - 2) RMg X
 - 3) OH C CHO
 - 4) C₆H₅COCH₃
 - 1) A 5; B 2; C 3; D 1
 - 3) A 5; B 2; C 1; D 3

- LIST-2
- 1) Glyoxal
- 2) Grignard reagent
- 3) Acetophenone
- 4) Hexachlorocy clohexane
- 5) Hexachlorobenzene
- 2) A-4; B-2; C-1; D-3
- 4) A-3; B-1; C-4; D-2

The carrect relation among the following is

- 1) x = y
- 2) y = 3x
- 3) 3x y = 36k.cal

List - II

1) - NO_{2}

2) -C1

3) - OH

4) x-3y = 36k.cal

39. Match the following

List - I

- 1) O-,P directing and ring activating
- 2) O-,P-directing and ring deactivating
- 3) m directing and ring deactivating

The carrect match among the following is

- 1) 1 a; 2 b; 3 c
- 2) 1 c; 2 b; 3 a
- 3) 1 b; 2 c; 3 a
- 4) 1 a; 2 c; 3 b
- 40. Arrang the following compounds in the descending order of their reactivity towards electrophilic substitution.
 - 1) Chlorobenzene
- 2) Nitrobenzene
- 3) Benzene
- 4) Phenol
- e) Toluene

- 1) d > e > c > a > b
- 2) b > a > c > e > d
- 3) d > e > c > b > a
- 4) e > d > c > a > b
- 41. Which one of the following is benzene ring activating group towards electrophilic substitution
 - 1) -CN
- 2) -CHO
- 3) -SO₂H
- 4) -OCH₃
- 42. Which one of the following is benzene ring deactivating group towards electrophilic substitution.
 - 1) -NHCOOH₃
- 2) $-N(NH_3)_2$
- 3) -OH
- 4) Br
- 43. The correct order of activating ability of fthe groups at benzene ring, towards electrophilic substitution.
 - 1) $-NH_2 > -NHR > -NR_2 > -OH > -OR$
- 2) $-OH > -OR > -NH_2 > -NHR > -NR_2$
- 3) $-OR > -OH > -NR_2 > -NHR > -NH_2$
- 4) $-NR_2 > -NHR > -NH_2 > -OR > -OH$
- 44. (1): NO₂ is benzene ring deactivating group and m directing group.
 - **(R):** NO₂ withdraw electron density from benzine ring and make ortho and para positions more electrons deficent than mata position.
- 45. **(1)**: NH₂ is benzene ring activating group and O-, P- directing group
 - (R): NH2 increases the electron density in benzene ring through resonance and make

Hydrocarbons (Alkynes, Arenes)

O-, P-positions more electron efficient than m-position

Deactivating nature and O - , P- directing nature of halogens can be explained by the effects 46. respectively

1) - I, - M

 $2) - I_{r} + M$

 $3) + I_{*} + M$

 $4) + I_{r} - M$

WORK SHEET - II

ALKYNES

1. A gaseous mixture containing two hydro carbons X & Y of volume 44.8 lit (STP) when passed through ammonical Cu₂Cl₂ has suffered reduction in volume of about 11.2 lit. If remaining volume is due to Y, X is

1) Butyne -2

2) Ethene

3) Ethane

4) Propyne

2. A hydrocarbon of molecular formula C_5H_{12} has three chain isomers. If one of those isomers (X) gives only one mono chloro derivative, IUPAC name of X is

1) 2,2 - diethyl pentane

2) 2 - methyl pentane 3) 2,2 - diethyl propane

4) 2,2 - dimethyl propane

 $X \xrightarrow{Pd+BaSO_4} Y$, 3.

 $Q \xrightarrow{450^{\circ} C} Y$ where X,Y & Q are gaseous hydro carbons, then X, Y & Q respectively are

Y Χ Q

 $C_{2}H_{4}$ $C_{2}H_{6}$ $C_{2}H_{4}$ 1)

 C_2H_2 C_2H_6 C_2H_4 2)

3)

 $C_{2}H_{2}$ $C_{2}H_{4}$ $C_{2}H_{6}$ $C_{2}H_{6}$ $C_{2}H_{4}$ $C_{2}H_{2}$

Propyne $\xrightarrow{\text{Na(l)}} X + 1/2H_2$ 4.

> $X \xrightarrow{CH_3I} Y$ Now , which of the following reagents can be used to distinguish Y from propyne?

1) $NH_4OH + AgNO_3$ (or) cold alk $KMnO_4$ 2) $NH_4OH + Cu_2Cl$ (or) Br_2/CCL_4 3) Cold alk. $KMnO_4$ (or) Br_2/CCl_4 4) $NH_4OH + AgNO_3$ (or) $NH_4OH + Cu_2Cl_2$

3) Cold alk. $KMnO_4$ (or) Br_2 / CCl_4

The common method used to prepare ethane & ethyne is X while ethene & ethyne is Y. Now, 5. X & Y respectively are

1) decarboxylation; wurtz reaction

2) Kolbe's electrolysis; Sabatier reaction

3) Kolbe's electrolysis; dehydrohalogenation 4) Kolbe's electrolysis; decarboxylation

Ethene on ozonolysis yields X. To prepare successive homologue of X, which of the following 6. should be subjected to ozonolysis?

1) Butene - 1

2) Hexene - 3

3) Butyne - 2

4) Butene - 2

 $X \xrightarrow{-Ag/\Delta} Y$ (g) where if Y is ethyne, X is prepared from CH_4 by 7.

1) Chlorination

2) Combustion

3) Pyrolysis

4) Nitration

Lindlar's catalyst cannot be used to carryout the following process 8.

1) CH_2 - $C \equiv C$ - $CH_2 \xrightarrow{H_2}$ trans Butene -2

2) $CH_3 - C \equiv C - CH_3 \xrightarrow{H_2} Butane$

3) $C_2H_2 \xrightarrow{H_2} C_2H_6$

4) CH_3 - $C \equiv C$ - $CH_3 \xrightarrow{H_2}$ cis Butene -2

1) A only

2) A, B & D only

3) A, B & C only 4) A, C & D only

- 9. $X \xrightarrow{\text{Electrolysis}} Y(g)$ [anode]
 - $Q \xrightarrow{Electrolysis} R$ (g) [anode] where Y and R are gaseous hydrocarbons. If Y on hydrogenation yields R, X and Q are the potassium salts of
 - 1) Fumaric acid; Oxalic acid
- 2) Succinic acid; Oxalic acid
- 3) Fumaric acid; Acetic acid
- 4) Acetic acid; Propionic acid
- 10. $X \xrightarrow{ConH_2SO_4} Y \xrightarrow{Br_2} Q \xrightarrow{alc\,KOH} R$ If X is ethyl alcohol correct statement (s) about R is/are
 - I. It decolourizes Bayer's reagent
 - II. It gives benzene when subjected to polymerization
 - III. It gives red precipitate with ammonical Cu₂Cl₂
 - IV. It gives ethylene on hydrogenation in the presence of Lindlar's catalyst.
 - 1) A, B & C
- 2) B, C & D
- 3) A, B, C & D
- 4) A, B & D

BENZENE

- 11. $X \xrightarrow{\ \ dil.H_2SO_4 \ \ \ } Y \xleftarrow{\ \ Zn \ dust \ \ \ } Q \ \ where \ if \ 1 \ mole \ Y \ on \ ozonolysis \ gields \ there \ moles \ of \ ethane$
 - -1, 2- dial, X and Q respectively are
 - 1) Napthalene; Phenol

- 2) Benzone sulphonic acid, Nitrobenzene
- 3) Benzene sulphonic acid; Phenol
- 4) Phenol; Toluene
- 12. Active species involved in the process $C_6H_6 \longrightarrow C_6H_5SO_3H$ is
 - $1) SO_3$
- 2) HSO₄
- 3) SO_3^+
- 4) SO₂
- 13. In which of the following reactions, aromatic character is retained?
 - 1) $C_6H_6 \xrightarrow{H_2/N_i} X$

2) $C_6H_6 \xrightarrow{C_3} Y$

3) $C_6H_6 \xrightarrow{CH_3COCl} Q$

- 4) $C_6H_6 \xrightarrow{Cl_2} R$
- 14. Number of $\sigma sp^2 sp^2$ bonds present in a molecular of X in the process $C_6H_6 \xrightarrow{H_2/N_i} X$ is
 - 1)6
- 2) 3

- 3) 12
- 4) Zero

- 1) Both A & R are true & R explains A
- 2) Both A & R are true but R does not explain

3) A is true but R is false

- 4) R is true but A is false
- 15. (1): Ethyne gives white precipitate with Tollen's reagent
 - (R): Ethyne is the first member of alkynes
- 16. (1): Benzene does not decolourize Bayer's reagent
 - (R): Benzene molecule obeys Huckel's rule.
- 17. (1): Both Benzene & Ethyne give same product on ozonolysis.
 - (R): Ethyne & Benzene possess same empirical formula.

WORK SHEET - III

1. Which of the following reacts with ammonical cuprous chloride?

Hydrod	carbons (Alkynes, Are	nes) 2) C ₂ H ₂	3) C ₂ H ₆	4) C ₆ H ₆				
2	•		$\xrightarrow{\text{H}_2\text{O},60^{\circ}\text{C}} X \Leftrightarrow \text{CH}_3\text{C}$					
2.	In the following react		C 4, 2 4					
	1) CH ₃ CH ₂ OH	. 0	3) CH_3CH_2CHO 4) $H_2C = CHOH$					
3.	The reagent used for c 1) HgSO ₄ /aqueous H 3) KMnO ₄ /KOH, 25°C		oxalic acid is 2) HgSO ₄ /CH ₃ COOH 4) CrO ₃ /H ₂ SO ₄	I				
4.	Propyne and propene	can be distinguished b	ру					
	1) Conc. H ₂ SO ₄	2) Br ₂ in CCl ₄	3) Dil KMnO ₄	4) AgNO ₃ in ammonia				
5.	Which of these will no 1) NaOH 3) Na	ot react with acetylene?	ne? 2) Ammonical $AgNO_3$ 4) HCl					
6.	Benzene is obtaned by fractional distillation of							
	1) Light oil	2) Middle oil	3) Anthracene oil	4) Heavy oil				
7.	Benzene is used in the 1) polythene 3) chloroform	e preparation of	2) gammaxene 4) vinegar					
8.	Which of the followin 1) CH ₃ CHO	g is used in the prepara 2) P_2O_5	ation of styrene 3) CH_4	4) C ₆ H ₆				
9.	Which one of the foll substitution reaction?		prepared in the labora	tory from benzene by a				
	1) Glyoxal 3) Toluene		2) Cyclohexane 4) Hexabromo cyclohexane					
10.	The reagent used for C_2 H ₅ Cl, anhydrous 3) C_2 H ₅ OH, anhydrous	9	o ethyl benzene is : 2) C_2H_5Cl , aqueous $AlCl_3$ 4) C_2H_5Cl , $SOCl_2$					
11.	 It has six hydrogen It has a cyclic struct Double bonds prese 		ng					
12.	Ratio of π to σ bond	s in benzene is						
	1) 1 : 4	2) 1 : 2	3) 3:1	4) 1 : 6				
13.	Aromatic compounds 1) Electrophilic substi 3) Nucleophilic addit	tution	2) Electrophilic additi 4) None of these	ion				
14.	Coal tar is main source	e of						
	1) Cycloalkanes 3) Aromatic compoun	ds	2) Heterocyclic compour 4) Aliphatic compour					
15.	In which of the following the bond length between carbon and carbon atom is equal							

Hydrocarbons (Alkynes, Arenes)

1) 2 – butene 2) Benzene

3) 1 – butene 4) 1 – propyene

16. Benzene on treating with a mixture of conc. $\mathrm{HNO_3}$ and $\mathrm{H_2SO_4}$ at $100^{\circ}\mathrm{C}$ gives

1) Nitrobenzene2) m-dinitrobenzene3) o-dinitrobenzene4) p-dinitrobenzene

EXERCISE - I / ANSWERS

WORK SHEET - I

1) 3	2) 3	3) 3	4) 2	5) 1	6) 4	7) 2	8) 3	9) 1	10) 2
11) 4	12) 3	13) 1	14) 2	15) 3	16) 1	17) 4	18) 2	19) 1	20) 3
21) 2	22) 4	23) 2	24) 4	25) 2	26) 1	27) 3	28) 1	29) 3	30) 1
31) 3	32) 1	33) 3	34) 3	35) 3	36) 3	37) 2	38) 3	39) 2	40) 1
41) 4	42) 4	43) 1	44) 1	45) 1	46) 2				

WORK SHEET - II

1) 4	2) 4	3) 3	4) 4	5) 3	6) 4	7) 1	8) 3	9) 3	10) 3
11) 3	12) 1	13) 3	14) 4	15) 2	16) 2	17) 2			

WORK SHEET - III

1) 2	2) 4	3) 3	4) 4	5) 1	6) 1	7) 2	8) 4	9) 3	10) 1
11) 4	12) 1	13) 1	14) 3	15) 2	16) 2				

WORK SHEET - I

Topic : ARENES-INTRODUCTION -AROMATICITY, PREPARATORY METHODS OF BENZENE

SECTION - A

Single correct answer Type Questions

1. The order of extent of aromaticity of the following compound is

2. The aromatic character is maximum in which of these three compounds

- 3. When benzene sulphonic acid is hydrolysed with super heated steam, the product formed is
 - 1) Phenol
- 2) Benzene
- 3) Benzene triphenol 4) Benzoic acid
- 4. The aromatic character is maximum in which of these three compounds

- 5. Isomerism shown by disubstituted benzene derivatives is
 - 1) Chain isomerism

2) Positional isomerism

3) Optical isomerism

- 4) Geometrical isomerism
- 6. IUPAC name of benzyl chloride is
 - 1) Chloro methyl Benzene

2) 1-chloro 1-phenyl methane

3) Chloro benzene

- 4) Benzene chloride
- 7. Structural formula for 3,5-dinitro benzyl chloride is

8.
$$CaC_2 \xrightarrow{2H_2O} X + Ca(OH)_2$$

$$3X \xrightarrow{\text{Re } d \text{ Hot Tube}} Y$$

X & Y of the above reactions are

1) $C_2H_2 \& C_6H_6$

- 2) C_2H_2 & Toluene
- 3) C_2H_2 & meta xylene
- s) C_2H_2 & Mesitylene

9.
$$CaC_2 \xrightarrow{2H_2O} X + Ca(OH)_2$$

$$2X + propyne \rightarrow Y$$

X, Y are

1) $C_2H_2 \& C_6H_6$

- 2) *C*₂*H*₂ & *Toluene*
- 3) C_2H_2 & meta xylene
- 4) C_2H_2 & Mesitylene

10.
$$CaC_2 \xrightarrow{2H_2O} X$$

$$X + 2CH_3 - C \equiv CH \rightarrow Y X \text{ and } Y \text{ are}$$

1) $C_2H_2 \& C_6H_6$

- 2) C_2H_2 & Toluene
- 3) C_2H_2 & meta xylene
- 4) C_2H_2 & mesitylene

WORK SHEET - II

Topic: PROPERTIES OF ARENES

SECTION - A

Single correct answer Type Questions

1. Rank the following in terms of increasing reactivity toward nitration with $HNO_{3'}$ $H_2SO_{4'}$ (least to most).

- 1) 1<2<3
- 2) 2<1<3
- 3) 3<1<2
- 4) 3<2<1
- 2. For the reaction? the best reactants are:
 - 1) C₆H₅Br+HNO₃, H₂SO₄

3) $C_6H_5Br+H_2SO_4$, heat

2) C₆H₅NO₂+Br₂, FeBr₃

4) $C_6H_5NO_2$ +HBr

Hydrocarbons (Alkynes, Arenes)

3. For the reaction

- 1) $C_6H_5Cl + C_6H_5COCl$, AlCl₃
- 2) $C_6H_5COC_6H_{5'} + Cl_{2'}FeCl_3$
- 3) $C_6H_5CH_2C_6H_5+Cl_2$, FeCl₃, followed by oxidation with chromic acid.
- 4) None of these yields the deisred product.

4. The reaction

gives as the major product:

5. Which one of the following compounds undergoes bromination of its aromatic ring (electrophilic aromatic substitution) at the fastest rate?

6. The major product of the reaction is $\frac{Br_2}{FeBr_3}$

- (3) An equal mixture of compound (1) and (2) would form
- (4) None of these; substitution would not occur.
- 7. What is the product of the following reaction?

$$CH_{3}$$

$$CH_{3}$$

$$CH_{2}$$

$$CH_{3}$$

Hydrocarbons (Alkynes, Arenes)

4) I = II > III

$$\begin{array}{c|c} \operatorname{CH_3} & \operatorname{O} \operatorname{CH_3} \\ \\ \operatorname{CHCH_2} & \end{array} \\ \begin{array}{c} \operatorname{O} \operatorname{CH_3} \\ \\ \operatorname{O} \operatorname{CH_3} \\ \end{array} \\ \begin{array}{c} \operatorname{O} \operatorname{CH_3} \\ \\ \end{array}$$

8. Among the following compounds (I - III), the correct order in reaction with electrophile is

9. Which reactants combine to give the species shown as a reactive intermediate?

- 1) Benzene, isopropyl bromide, and HBr $\,$ 2) Bromobenzene, isopropyl chloride, and ${\rm AlCl}_3$
- 3) Isopropylbenzene, Br₂, and FeBr₃ 4) Isopropylbenzene, Br₂, light, and heat e) Isopropylbenzene, N-bromosuccinimide, Benzoyl peroxide, and heat
- 10. Which sequence of steps describes the best synthesis of the compound shown?

Br
$$CH_{2} \longrightarrow CH_{2} \longrightarrow Br$$

$$AlCl_{3} \longrightarrow FeBr_{3} \longrightarrow 2) \longrightarrow FeBr_{2} \longrightarrow C_{6}H_{5}CH_{2}Cl$$

$$FeBr_{2} \longrightarrow AlCl_{3} \longrightarrow C_{6}H_{5}CCl$$

$$Br_{2} \longrightarrow C_{6}H_{5}CH_{2}Cl$$

$$AlCl_{3} \longrightarrow FeBr_{3} \longrightarrow AlCl_{3} \longrightarrow AlCl_{4} \longrightarrow$$

WORK SHEET - I

1) 1 2) 1 3) 2 4) 3 5) 2 6) 2 7) 3 8) 1 9) 2 10) 3

WORK SHEET - II

1) 2 2) 1 3) 2 4) 2 5) 2 6) 1 7) 4 8) 3 9) 3 10) 3

EXERCISE - I

WORK SHEET - I

1	If air	is taken	as a bin	ary solu	tion, the	solvent	is				
	1) N ₂			2) O_{2}		3	$S) CO_2$		4)	H_2	
2.	Homo	ogeneou	as syster	n among	g the follo	owing is					
	1) mil	k				2	2) sand i	n water			
	3) ure	a in wa	ter			4	l) benze	ne in wat	er		
3.	The p	hysical	change	among	the follow	wing is					
	1) bui	rning of	coal			2	2) burnir	ng of sulp	ohur		
	3) dis	solution	n of Glud	cose in v	vater	4	l) burnir	ng of whi	te phos	ohorus	
4	(A): A	ny par	t of the s	olution	has iden	tical che	mical an	nd physic	al prope	erties	
	(R): Se	olution	is alway	s a hom	ogeneou	s mixtur	e				
	1) Bot	h (1) an	ıd (R) ar	e true ar	ıd (R) is t	he corre	ect expla	nation of	f (A)		
							_	xplanatio			
			out (R) is		, ,			alse but (
5.					solution		, , ,		,		
		The characterstic property of solution is 1) formation of solution is physical change									
						_	oarated l	by filtrati	ion		
	2) solute and solvent in the solution can be separated by filtration3) solute and solvent in the solution can be separated by decantation										
					d with a d						
	1) a, b		-	2) a			3) b,d		4)	c, d	
6.	,		ıtion cor	,	numbe		′		,		
	1) one	•		2) two		_	3) three		4) 1	four	
7.	A mixture of salt and water can be separated						•		,		
		ration			antation			llisation	4)	kept long st	anding
8.	,		followir	,	from the						O
	1) rub			2) elek			3) bell m	etal	4) a	amalgam	
9.	Occlusion of Hydrogen on Palladium is an example for type solution										
		in soli					2) solid i				
		in liqu					4) liquid in gas				
10.	, 0	LIST - 1		LI	ST - 2		, 1	O			
	A) Ga	seous s	olution	1) German silver							
	,	uid sol		2) Mill							
		_		,	d in wate	er					
					ieous Ald		olution				
	,			5) Air							
		Α	В	Ć	D		A	В	С	D	
	1)	5	4	1	2	2)	1	3	2	5	
	3)	4	2	5	1	4)	2	3	1	4	
11.	,	nits of 1	Molarity	are		,					
		The units of Molarity are 1) gms. lit ⁻¹ 2) r				9	3) equivalents. lit-1			4) moles. kg ⁻¹	
12.	, 0		molarits	,			· -	ld be ado	,		
			he solut			. 10110 111		in De ado	rica		
	±) ** C.	.6 0. 1	ic corut	c to be u	Capica						

	2) weight of the solve								
	3) volume of the solv								
	4) volume of the solu								
13.	(1): Molarity of a sol	ution decreases with ar	n increase of temperatu	ire					
	(R): As temperature	(R): As temperature increases volumes of the solution increases.							
	The correct answer i	S							
	1) Both (1) and (R) ar	e true and (R) is the cor	rrect explanation of (A)						
	2) Both (1) and (R) and	e true and (R) is not the	e correct explanation of	f (A)					
	3) (1) is true but (R) i	s false	4) (1) is false but (R)	is true					
14.	(1): Molarity of an a 4°C.	queous solution at 0°C	is less than the molarit	ty of the same solution at					
	(R): Molarity increas	ses with an increase of t	emperature						
	The correct answer i	s							
	1) Both (1) and (R) ar	e true and (R) is the cor	rrect explanation of (A)						
	2) Both (1) and (R) an	e true and (R) is not the	e correct explanation of	f (A)					
	3) (1) is true but (R) i	s false	4) (1) is false but (R)	is true					
15.	The units of Normal	ity are							
	1) moles. lit ⁻¹	2) moles. Kg ⁻¹	3) equivalents. lit-1	4) equivalents. Kg ⁻¹					
16.	The following is not	a fixed quantity							
	1) atomic weight of a compound	in element	2) equivalent weig	ght of an element (or)					
	3) molecular weight	of a compound	4) formula weight of	a substance					
17	In the reaction 2NaC	$OH+H_3PO_4 \rightarrow Na_2HPO_4$	+ 2H ₂ O, the Equivalen	t weight of the acid is					
	1) 49	2) 98	3) 32.6	4) 36.5					
18	The equivalent weig	ht of CuSO ₄ when it is c	onverted to Cu ₂ I ₂ [M=1	nol.wt]					
	1) M/1	2) M / 2	3) M /3	4) 2 M					
19.	Which of the followi	ng acid has the same m	olecular weight and ed	quivalent weight					
	1) H ₃ PO ₂	2) H ₃ PO ₃	3) H ₃ PO ₄	4) H ₂ SO ₄					
20	'M' is the molecular	weight of KMnO ₄ . Th	ne equivalent weight o	of KMnO ₄ when it reacts					
	according to the equa	ation $2KMnO_4 + 3H_2SO_4$	$_4$ + $5H_2C_2O_4 \rightarrow K_2SO_4$ +	$2MnSO_4 + 8H_2O + 10CO_2$					
	, ,	2) M /3	<i>'</i>	, ,					
21.	Molecular weight of equivalent weight of		1	educed to K ₂ MnO ₄ . The					
	1) M	2) M / 2	3) M/3	4) M/5					
22.	The equivalent weig is [M=mol. wt]			$O \rightarrow Na_2SO_4 + 2HCl + S$					
	1) M	2) M / 2	3) M/3	4) 2M					
23.	Molecular weight of in acidic medium is	Mohr's salt is 392. Its e	quivalent weight wher	n it is oxidised by KMnO ₄					
	1) 392	2) 196	3) 130.6	4) 78.5					
24.	The equivalent weig	ght of CH ₄ in the reacti	on $CH_4 + 2O_2 \rightarrow CO_2$	$+2H_2O$ is [M=mol. wt]					
	1)M / 4	2) M / 8	3)M / 12	4)M / 16					
25.	At 25°C for a given s	olution M = m, then at	50°C the correct relation	onship is					
	1) M = m	2) M > m	3) M < m	4) $M = 2M$					

- To change the molal conc. to one half, one of the following should be adopted
 - 1) weight of the solute should be doubled
- 2) weight of the solvent should be doubled
- 3) volume of the solvent should be doubled
- 4) weight of the solution should be doubled
- 27. A one molal solution is one that contains
 - 1) 1 g. of the solute in 1000 g. of solvent
 - 3) 1 g. mole of solute in 22.4 lits of solution
- 2) 1 g. mole of solute in 1000 ml of solution
- 4) 1 g. mole of solute in 1000 g. of solvent

 M^1 = gram molecular weight of solute

- 28. The units of molality are
 - 1) moles. lit-1
- 2) moles. ml⁻¹
- 3) moles. Kg⁻¹
- 4) g. equivalents Kg-1

- 29. M = molarity of the solution
 - d = density of the solution (in g. ml⁻¹)

Which of the following relations is correct

2) m = $\frac{M \times 1000}{d + MM^{1}}$

1) m =
$$\frac{M}{1000d - MM^{1}}$$

3) m=
$$\frac{M \times 1000}{(1000 \times d) - MM^1}$$

4) M =
$$\frac{m \times 1000}{(1000 \times d) - MM^{1}}$$

m = molality of the solution

- 30. (1): Molality is independent of temperature
 - (R): There is no volume factor in the expression of molality

The correct answer is

- 1) Both (1) and (R) are true and (R) is the correct explanation of (A)
- 2) Both (1) and (R) are true and (R) is not the correct explanation of (A)
- 3) (1) is true but (R) is false
- 4) (1) is false but (R) is true
- 31. (1): One molar aqueous solution is always more concentrated than one molal aqueous solution.
 - (R): The amount of solvent in 1M solution is less than in 1m solution. The correct answer is
 - 1) Both (1) and (R) are true and (R) is the correct explanation of (A)
 - 2) Both (1) and (R) are true and (R) is not the correct explanation of (A)
 - 3) (1) is true but (R) is false
- 4) (1) is false but (R) is true
- 32. Regarding molarity, which of the following statements are correct
 - a) units of molarity gm-moles kg-1
 - b) molarity of dibasic acid is half of its normality
 - c) $\frac{\text{Normality} \times \text{GEW}}{\text{GMW}}$
 - d) Molarity always equals to its molality
 - 1) a, b
- 2) a, b
- 3) b, c
- 4) a, c

- 33. (A): Mole fraction has no units
 - (R): Mole fraction is a ratio of number of moles of solute to number of moles of solvent
 - 1) Both (A) and (R) are true and (R) is the correct explanation of (A)
 - 2) Both (A) and (R) are true and (R) is not the correct explanation of (A)
 - 3) (A) is true but (R) is false
- 4) (A) is false but (R) is true

- 34. LIST 1
- LIST 2
- 1) Mole fraction
- 1) No.of g equivalents in 1000ml of solution
- 2) Molarity
- 2) Always less than one

	3) Normality	3) (Greater tha	n or equa	l to mola	rity					
	4) Molality	4) N	No.of g mo	les presei	nt in 1000	ml solu	tion				
	•	5) N	No.of g mol	les of sol	ute 1kg o	f solvan	t				
	The correct ma	atch is									
	A	В	D		A	В	C	D	1)		
	1 2	3 4	-/	2	3	1	5	3)	1		
	4 2	3 4	,	4	3	5					
35.	As temperatur		vapour pr		-						
	1) increases lir	•			2) decrea		•				
		3) increases exponentially 4) decreases exponentially									
36.	Rate of evaporation depends up on 1) Nature of liquid 2) Surface area of the liquid										
	1) Nature of lie	-			•		_				
	3) Temperatur	3) Temperature 4) Flow of air current over the surface The correct answer is									
	1) a, b only	,	, c only	;	3) a, b, ar	nd c only	4)	a, b, c an	d d		
37.	At a given tem	•									
	a) Vapour pres of solvent	sure of a sol	ution conta	ining nor	nvolatile	solute is	proporti	onal to m	ıole fraction		
	b) Lowering of mole fraction of		ssure of so	lution co	ntaining	nonvola	tile solut	e is prop	ortaional to		
	c)Relative low	ering of vap	our pressu	ire is equ	al to mol	e fractio	n of solu	te			
	The correct co	mbination is	5								
	1) a only	2) a	, b only		3) a, b an	d c only	4)	b, c only			
38.	(1): Increase in temperature increases vapour pressure of a liquid										
	(R): Volume of a solution increases by increasing the temperature.										
	1) Both (A) and (R) are true and (R) is the correct explanation of (A)										
	2) Both (A) and (R) are true and (R) is not the correct explanation of (A)										
	3) (A) is true b	ut (R) is fals	e		4) (A) is f	alse but	(R) is tru	ıe			
39.	(A): Rate of ev	3) (A) is true but (R) is false 4) (A) is false but (R) is true (A): Rate of evaporation increases with an increase in the surface area of the vessel									
	(R): Evaporati	on is a surfa	ce phenom	nenon							
	The correct answer is										
	1) Both (A) and	1) Both (A) and (R) are true and (R) is the correct explanation of (A)									
	2) Both (A) and	d (R) are tru	e and (R) is	s not the o	correct ex	planatio	on of (A)				
	3) (A) is true b	ut (R) is fals	e	•	4) (A) is f	alse but	(R) is tru	ıe			
40.	Which of the fo	O									
	a) the boiling										
	b) the tempera called its boili		the vapou	r pressui	e of liqu	id equal	s to atm	ospheric	pressure is		
	c) the vapour p non volatile so		ure solven	t is less th	an the va	pour pr	essure of	solutior	ı containing		
	d) the tempera the evaparatio	_	d remained	d in the co	ontainer a	after eva	poratior	ı is more	than before		
	1) a, b	2) b), C	;	3) c, d		4)	a, d			
41.	The graph obt	ained by tak	king vapou	r pressure	e(P) of a	liquid o	n y-axis	and tem	perature (T)		

on x-axis will be

Which graph of the following represents the graph between log p (on Y - axis) and 1/T42. (on X - axis)?

43. (A): Sea water boils at higher temperature than distilled water

(R): Addition of non volatile solute to a solvent lowers the vapour pressure

- 1) Both (1) and (R) are true and (R) is the correct explanation of (A)
- 2) Both (1) and (R) are true and (R) is not the correct explanation of (A)
- 3) (1) is true but (R) is false

4) (1) is false but (R) is true

44. (A): A pressure cooker reduces cooking time

(R): The boiling point of water inside the cooker is increased

- 1) Both (1) and (R) are true and (R) is the correct explanation of (A)
- 2) Both (1) and (R) are true and (R) is not the correct explanation of (A)
- 3) (1) is true but (R) is false

4) (1) is false but (R) is true

Which of the following solutions will have the lowest vapour pressure 45.

- 1) 0.1M Glucose
- 2) 0.1M NaCl
- 3) 0.1 M BaCl,

4) $0.1 \text{ M Al}_{2}(SO_{4})_{3}$

Which has greater lowering of vapour pressure 46.

- 1) 0.1m Urea
- 2) 0.1m Glucose
- 3) 0.1m Sucrose

4) equal in all cases

47. The vapour pressure is least for

1) pure water

2) 0.1m aqueous urea

3) 0.2m aqueous urea

4) 0.3m aqueous urea

48. Relative lowering of vapour pressure is maximum for

- 1) 0.1m urea
- 2) 0.1m NaCl
- 3) 0.1m MgCl₂

4) $0.1 \text{ m Al}_{2}(SO_{4})_{2}$

49. Boiling point is least for

- 1) 0.1m urea
- 2) 0.2m urea
- 3) 0.1m NaCl

4) 0.2m MgCl₂

50. A non-volatile solute (1) is dissolved in a volatile solvent (B). the vapour pressure of resultant solution is Ps. The vapour pressure of pure solvent is $\,P_{R}^{\,0}$. If "X" is mole fraction, which of the following is correct?

1)
$$P_{S} = P_{R}^{0} \cdot X_{A}$$
 2) $P_{R}^{0} = P_{S} X_{B}$ 3) $P_{S} = P_{R}^{0} \cdot X_{B}$ 4) $P_{R}^{0} = P_{S} X_{A}$

2)
$$P_{R}^{0} = P_{S} X_{E}$$

3)
$$P_{s} = P_{R}^{0} \cdot X_{B}$$

4)
$$P_{\mathbf{R}}^{0} = P_{s} X_{A}$$

51. A solution that obeys Raolult's law is called (1993)

- 1) normal solution
- 2) non-ideal solution 3) ideal solution
- 4) saturated solution

52. LIST - 1

LIST - 2

1) Lowering of vapour pressure

 $1) \ \frac{P^o - P}{P^o}$

2) Relative lowering of vapour pressure

 $2) \frac{P^{o} - P}{P^{o}} = \frac{w}{m} x \frac{M}{W}$

3) Raoult's law

3) P° – P

4) Ideal solution

- 4) Obeying Raoults law
- 5) Boiling point

The correct match is

A	В	C	D	A	В	C	D	1)
		4						
		4)						

- 53. (1): Vapour pressure of 0.5M sugar solution is more than 0.5M KCl solution
 - (R):Lowering of vapour pressure is directly proportional to the number of particles present in the solution
 - 1) Both (1) and (R) are true and (R) is the correct explanation of (A)
 - 2) Both (1) and (R) are true and (R) is not the correct explanation of (A)
 - 3) (1) is true but (R) is false
- 4) (1) is false but (R) is true
- 54. (1): For two solutions, 0.1m aquous solution of glucose and 0.1 m urea in benzene, the lowering of vapour pressure is same.
 - (R): Vapour pressure is always lowered when non volatile solute is added to water.
 - 1) Both (1) and (R) are true and (R) is the correct explanation of (A)
 - 2) Both (1) and (R) are true and (R) is not the correct explanation of (A)
 - 3) (1) is true but (R) is false
- 4) (1) is false but (R) is true
- 55. When KCl dissolved in water
 - 1) $\Delta H = +Ve \Delta S = +Ve \Delta G = +Ve$
- 2) $\Lambda H = +Ve \Lambda S = -Ve \Lambda G = -Ve$
- 3) $\Lambda H = +Ve \Lambda S = +Ve = -Ve$
- 4) $\Lambda H = -Ve \Lambda S = -Ve \Lambda G = +Ve$
- 56. (1): In a pressure cooker, the water is brought to boil. The cooker is then removed from the stove, Now on removing the head of the pressure cooker, the water starts boiling again
 - (R): The impurties in water bring down its boiling point
 - 1) Both (1) and (R) are true and (R) is the correct explanation of (A)
 - 2) Both (1) and (R) are true and (R) is not the correct explanation of (A)
 - 3) (1) is true but (R) is false
- 4) (1) is false but (R) is true
- 57. For an ideal solution of two components A and B, If x_A and y_A are mole fractions of component 'A' in solution and vapour phase respectively, then the slope of linear line in the graph drawn between $1/x_A$ and $1/y_A$ is
 - 1) $P_{\Delta}^{0} + P_{B}^{0}$
- 2) $P_{\Delta}^{0} / P_{B}^{0}$
- 3) $P_{B}^{0} + P_{\Delta}^{0}$
- 4) $P_A^0 P_B^0$
- 58. A liquid is in equilibrium with its vapour at its boiling point, on the average, the molecules in the two phases have equal
 - 1) Inter molecular forces

2) Potential energy

3) Temperature

- 4) Kinetic energy
- 59. (A): If one component obeys Raoult's law over a certain range of composition, the other

SUL	component woul	d not obey Henry's law	in that range					
	(R): Raoult's law in a special case of Henry's law							
	1) Both (1) and (F	of (A)						
	, , , , ,	R) are true and (R) is not	-	, ,				
	3) (1) is true but (,	4) (1) is false but	` '				
60.		• •						
	The properties of solutions which depend only on the number of particles of solute (or the number of moles of solute) but independent of the nature of the solute are called							
	1) extensive prop	erties	2) intensive proj	perties				
	3) colloidal prope	erties	4) colligative pro	operties				
61.	Which of the foll	Which of the following is a colligative property						
	1) vapour pressu	re of a liquid	2) boiling point					
	3) freezing point	4) relative lowerir	ng of vapour pressure	e of a solution				
62.	The solublity of I	, in KI solution is more	than its solubllity in p	oure water because				
	1) I ₂ dissociates in	n water	2) I, does not rea	2) I, does not react with water				
	-	e complex KI ₃ with KI	4) None of these	, 2				
63.	The freezing poin	nt of equimolal aqueous	solution will be high	est for				
	1) C ₆ H ₅ NH ₃ Cl	2) $Ca(NO_3)_2$	3) $La(NO_3)_3$	4) $C_6H_{12}O_6$				
64.				re placed on two sides of a				
	=	semipermeable membrane to equal heights, then it will be correct to say that						
	•	1) Glucose will flow towards urea solution						
		2) There will be no net movement across membrane						
		3) Urea will flow towards glucose solution						
4) Water will flow from urea solution to glucose								
65. The relationship between the value of Osmotic pressue (•				
	dissolving 6 g.L-1	of acetic acid (π_1) and	7.45 g.L ⁻¹ of KCl (π_2) is				
				π_1 π_2				
	1) $\pi_1 < \pi_2$	2) $\pi_1 > \pi_2$.	3) $\pi_1 = \pi_2$	4) $\frac{\pi_1}{\pi_1 + \pi_2} = \frac{\pi_2}{\pi_1 + \pi_2}$				
66.	Solution A, B, C	and D are respectively (0.1M Glucose, 0.05M	NaCl, 0.05M BaCl, and 0.1M				
	AlF ₃ . Which one of the following pairs is isotonic?							
	1) A&C	2) B&C	3) A&B	4) A&D				
67.	Solution S_1 contains $3g$ of urea per litre and solution S_2 contains $9g$ glucose per litre. At 298 K, the osmotic pressure of							
	1) S ₁ is greater th	an that S_2	2) S_1 is less than	2) S_1 is less than that of S_2				
	3) Both the soluti	on is same	4) Both the solu	tion is 1 atm.				
68.	Set - I		Set - II					
	i) RBC in 0.5% N		A) Swells	•				
	ii) RBC in 1% NaCl solution B) Shrinks							
	iii) egg (outer she	ell remove4) in water						
		ell remove4) in NaCl solu	ution					
	incorrect match i	S						
	1) i - A		2) ii - B					
	3) iii - A		4) iv - A					

FeCl₃ on reaction with K₄[Fe(CN)₆] in aq solution gives blue colour of these are separated by a semi permeable membrane AB as shown, Due to osmosis there is
1) blue colour formation in side X
2) blue colour formation in side Y
3) blue colour formation in both sides X & Y 4) no blue colour formation
70. The phase diagrams for the pure solvent (solid lines) and the solution (non-volatile solute, dashed line) are recorded below. The quantity indicated by 'L' in the figure is

- 71. The degree of dissociation (α) of a weak electrolyte $A_x B_y$ is related to Van't Hoff factor (i) by the expression
 - 1) $\alpha = \frac{i-1}{(x+y-1)}$ 2) $\alpha = \frac{i-1}{x+y+1}$ 3) $\alpha = \frac{x+y-1}{i-1}$ 4) $\alpha = \frac{x+y+1}{i-1}$
- 72. When mercuric iodide is added to the aqueous solution of potassium iodide, the 1) freezing point is raised 2) freezing point doesnot change
 - 3) freezing point is lowered 4) boiling point does not change
- 73. In the depression of freezing point experiment, it is found that
 - a) The vapour pressure of the solution is less than that of pure solvent
 - b) The vapour pressure of the solution is more than that of pure solvent $% \left\{ 1,2,...,n\right\}$
 - c) Only solute molecules solidify at the freezing point $\,$
 - d) Only solvent molecules solidify at the freezing point
 - 1) a, b 2) b, c 3) a, d 4) a, b, c
- 74. During depression of freezing point in a solution the following are in equilibrium 1) Liquid solvent, Solid solvent 2) Liquid solvent, Solid solute
 - 3) Liquid solute, Solid Solute 4) Liquid solute, Solid solvent
- 75. The molal elevation constant is the ratio of the elevation in boliing point to 1) Molarity 2) Molality
- 3) Mole fraction of solute 4) Mole fraction of solvent.
- 76. The relationship between osmotic pressure at 273 K when 10 g glucose (P_1) , 10 g urea (P_2) and 10 g sucorse (P_3) are dissoved in 250 ml of water is.
 - 1) $P_1 > P_2 > P_3$ 2) $P_3 > P_1 > P_2$ 3) $P_2 > P_1 > P_3$ 4) $P_2 > P_3 > P_1$
- 77. Which of the following statement is false?
 - 1) Raoult's law states that vapour pressure of a component over a solution is proportional to its mole fraciton.
 - 2) Osmotic pressure is given by the expression π = MRT where, M is molarity.
 - 3) The correct order of osmotic pressures of 0.01 M aqueous solution of each compound is BaCl₂ > KCl> CH₂COOH > Sucrose.
 - 4) Two sucrose solutions of same molarity prepared in different solvents will have same freezing point depressions.
- 78. Equimolar solutions of electrolytes in the same solvent have
 - 1) Same boiling point but different freezing point

SOLUTIONS 2) Same freezing point but different boiling point 3) Same boiling and same freezing points 4) Different boiling and different freezing point 79. If α is the degree of dissociation of Na₂SO₄, the Vant Hoff factor (i) used for calculating the molecular mass is 1) 1+ α 3) $1+2\alpha$ 4) $1-2\alpha$ 2) $1 - \alpha$ 80. Solution A contains 7g/L MgCl₂ and solution B contains 7g/L of NaCl. At room temperature, the osmotic pressure of 2) both have same osmotic pressure 1) solution A is greater than B 3) solution B is greater than A 4) Can't determine. 81. Which of the following aqueous solutions containing 10g of solute in each case, has highest melting point? 1) NaCl solution 2) KCl solution 3) Sugar solution 4) Glucose solution 82. Which of the following salt will have same value of Van't Hoff's factor [i] as that of K, [Fe(CN),] 1) $Al_{2}(SO_{4})_{3}$ 2) NaCl 3) $Al(NO_3)_3$ 4) Na₂SO₄ 83. Blood is isotonic with 1) 0.16 M NaCl 2) Conc.NaCl 3) 50% NaCl 4) 30% NaCl **WORK SHEET - II** 1. The number of Glucose molecules present in 10 ml of decimolar solution is 2) 6.0×10^{19} 1) 6.0×10^{20} 3) 6.0×10^{21} 4) 6.0×10^{22} 2. The number of ion s present in 1 ml of 0.1M CaCl, solution is 1) 1.8×10^{20} 2) 6.0×10^{20} 3) 1.8×10^{19} 4) 1.8×10^{21} 100 ml of an aqueous solution contains 6.023×10^{21} solute molecules. The solution is 3. diluted to 1 lit. The number of solute molecules present in 10ml of the dilute solution is 2) 6.0×10^{19} 1) 6.0×10^{20} 4) 6.0×10^{17} 4. 11.1 g. of CaCl₂ is present in 100 ml of the aqueous solution. The chloride ion concentration is 1) 1M 2) 2M 3) 0.5M 4) 0.2M 5. 100 ml each of 1M AgNO₂ and 1M NaCl are mixed. The nitrate ion concentration in the resulting solution is 1) 1M 2) 0.5M 3) 0.75M 4) 0.25 M H₂SO₄ is labelled as 9.8% by weight. Specific gravity of H₂SO₄ is 1.8. The volume of the acid 6. to be taken to prepare 1000 ml of 0.18M solution is 2) 100ml 1) 10ml 3) 740 ml 4) 360 ml 7. HCl is labelled as 3.65% (w/v) 10ml of the solution is diluted to 1 lit. The proton concentration in the resulting solution is 3) $7.5 \times 10^{-2} \,\mathrm{M}$

2) $2.5 \times 10^{-2} \,\mathrm{M}$

2) 1.5 lit and 0.5 lit

The volumes of 1M HCl and 5M HCl to be mixed to get 2 lit of 2M HCl are

2) 2.66M

100 ml of 1M HCl, 200 ml 2M HCl and 300 ml 3M HCl are mixed. The Molarity of the

3) 2.33 M

4) 10⁻² M

4) 4.25 M

3) 1.25 lit and 0.75 lit 4) 1.33 lit and 0.66 lit

8.

9.

1) 10^{-3} M

1) 1M

resulting solution is

1) 1 lit and 1 lit

10.	A 20%(W/W) so	lution of NaOH is 5 M	I. The density of the sol	ution is			
	1) 1 g.ml ⁻¹	2) 2 g.ml ⁻¹	3) 0.5 g.ml ⁻¹	4) 0.25g.ml ⁻¹			
11.	Zinc reacts with $CuSO_4$ according to the equation $Zn + CuSO_4 \rightarrow ZnSO_4 + Cu$. If excess of zinc is added to 100ml of 0.05M $CuSO_4$, the amount of copper formed						
	1) 0.6354 g.	2) 0.3177 g.	3) 3.177 g.	4) 6.354 g.			
12.	was pipetted out			n 100 ml. 10 ml of this solution ark with distilled water. The			
	1) 1 M	2) 10 ⁻² M	3) 10-3	$4) 10^{-4} M$			
13.	The volume of de of 5M HCl soluti		ions of hydrochloric Ac	id is required to prepare 2dm³			
	1) 0.5L	2) 1L	3) 2L	4) 3L			
14.	The concentration and y are	n of a 100 ml solution o	containing 'x' grams of I	Na_2CO_3 is yM. The values of x			
	1) 2.12, 0.05	2) 1.06, 0.2	3) 1.06, 0. 1	4) 2.12, 0.1			
15.	The number of m	nillimoles of H_2SO_4 pro	esent in 5 litres of 0.2N	H ₂ SO ₄ solution is			
	1) 500	2) 1000	3) 250	4) 0.5×10^{-3}			
16.	200 ml of 1M $\rm H_2SO_4$, 300 ml 3M HCl and 100 ml of 2M HCl are mixed and made up to 1 litre. The proton concentration in the resulting solution is						
	1) 1.25M	2) 1.5M	3) 2.5M	4) 0.75M			
17.	The volume of 0.	025M Ca(OH) ₂ solution	on which can neutralis	se 100 ml of 10^{-4} M H_3 PO $_4$ is			
	1) 10 ml	2) 60 ml	3) 0.6 ml	4) 2.8 ml			
18.	The Molarity of 2 is	200 ml of HCl solution	which can neutralise	e 10.6 g. of anhydrous Na ₂ CO ₃			
	1) 0.1M	2) 1M	3) 0.6M	4) 0.75M			
19.	10 millimoles of a of that acid is	10 millimoles of a diacidic base exactly neutralises 100 ml of an acid. Then the Normality of that acid is					
	1) 0.2 N	2) 0.1 N	3) 0.4 N	4) 0.5N			
20.	100 ml of 0.1N FeSO ₄ solution will be completely oxidised by 'x' gms of $K_2Cr_2O_7$ in acidic medium (Mol.wt = 294). The value of 'x' is						
	1) 4.9	2) 2.94	3) 0.49	4) 1.47			
21.	100 ml of 2M He equivalent weigh	-	y neutralises 10 g. of a	a metal carbonate. Then the			
	1) 50	2) 20	3) 12	4) 100			
22.	What is the volume (in ml) of 0.1 M potasium permanganate solution required to completely oxidise 100 ml of 0.5 M ferrous sulphate solution in acidic medium?						
	1) 20	2) 200	3) 50	4) 100			
23.	The Normality of	$f 0.98\% (w/v) H_2SO_4$	solution is				
	1) 0.1N	2) 0.2N	3) 0.4N	4) 1N			
24.	Molarity of 3N I	H_3PO_4 solution is					
	1) 9 M	2) 1.5 M	3) 6 M	4) 1 M			
25.	0.1 gram mole of	urea is dissolved in 1	00g. of water. The mol	ality of the solution is			
	1) 1 m	2) 0.01 M	3) 0.01 m	4) 1.0 M			
26.	The molality of 2	% (W/W) NaCl soluti	ion nearly				

SOL	UTIONS 1) 0.02m	2) 0.35 m	3) 0.25 m	4) 0.45 m				
27.	100 ml of ethyl alc	ohol [d = 0.92 g/ml] aı	$\frac{1}{100}$ ml of water [d = 1	g/ml] are mixed to form 1				
		•	f the resulting solution a					
	1) 2M and 2m	2) 2M and 2.22m	,	•				
28.		Which of the following aqueous solutions is more concentrated [Assume the density of the solution as 1g/ml]						
	1) 1M Glucose	2) 1m Glucose	3) 0.5m Glucose	4) 0.5M Glucose				
29.	Which of the follow	Which of the following solution is more concentrated						
	1) 0.3% H ₃ PO ₄	2) $0.3M H_{3}PO_{4}$	3) $0.3 \text{m H}_{3} \text{PO}_{4}$	4) $0.3N H_3PO_4$				
30.	Molarity of 1m aq	ueous NaOH solution	[density of the solution	is 1.02 g/ml]				
	1) 1M	2) 1.02 M	3) 1.2 M	4) 0.98 M				
31.	6 g. of Urea is diss	olved in 90 g. of water	. The mole fraction of so	olute is				
	1) 1/5	2) 1/50	3) 1/51	4) 1/501				
32.	A gaseous mixture fraction of "A" is	contain four gases A, l	B, C and D. The mole fra	ection of "B" is 0.5. The mole				
	1) 0.525	2) 0.375	3) 0.625	4) 0.732				
33.	Aqueous NaOH s	olution is labelled as 1	0% by weight mole fra	action of the solute in it is				
	1) 0.05	2) 0.0476	3) 0.052	4) 0.52				
34.	The mole percent	age of oxygen in a m	ixture of 7 gm of Nitrog	en and 8 gm of oxygen is				
	1) 8	2) 16	3) 21	4) 50				
35.	,	of solvent in 0.1 molal	aqueous solution is	,				
	1) 0.9982	2) 0.0017	3) 0.017	4) 0.17				
36.	NaOH aqueous so	,	10% (w/v). Density of	the solution is 1.02 g/ml.				
	1) 0.05	2) 0.0466	3) 0.53	4) 0.053				
37.	The maximum allowable level of Nitrates in drinking water as set by U.S. is 45mg NO_3 —ions per dm³, the level in ppm is							
	1) 15	2) 30	3) 45	4) 60				
38.	6 g. of urea is disso	olved in 90 g. of boilir	ng water. The vapour p	ressure of the solution is				
	1) 744.8 mm	2) 758 mm	3) 761 mm	4) 760 mm				
39.				4 g. of a non-volatile solute The Molecular weight of				
	1) 150	2) 130.832	3) 160	4) 180				
40.	The vapour pressure of pure water at 25° C is 30 mm. The vapour pressure of 10% (W/W) glucose solution at 25° C is							
	1) 31.5 mm	2) 30.6 mm	3) 29.67 mm	4) 26.56 mm				
41.	The weight of ur water by 5% is	ea to be dissolved in	100 g. of water to decre	ase the vapour pressure of				
	1) 20 g.	2) 14.66 g	3) 15.24 g	4) 16.66 g.				
42.	139.18 g of glucose solution at 100°C		water the vapour pressu	re of water for this aqueous				
	1) 704 torr	2) 759 torr	3) 7.6 torr	4) 76 torr				
43.	,	,	,	vhich the solvent is Benzene				
- •	is	O - Francisco						

	1) 15.6×10^{-4}	2) 15.6×10^{-3}	3) 15.6×10^{-1}	4) 0.05				
44.	Vapour pressure the solution is	of an aqueous solution	n is 2% less than that of	the solvent. The molality of				
	1) 2m	2) 1.5 m	3) 1.13 m	4) 0.2 m				
45.		ucose to be dissolved in re as that of 0.2 molal a	_	o produce the same lowering				
	1) 9 g.	2) 18 g.	3) 36 g.	4) 1.8 g.				
46.	then through the		vater. The loss in mass	g solution of 'A' in water and of a solution bulb is 1.92g gm f 'A' is				
	1) 0.86	2) 0.2	3) 0.96	4) 0.04				
47.		tion containing one gra f glucose in the same v		.25°C. The aqueous solution				
	1) 100°C	2)100.25°C	3) 100.5°C	4) 100.75°C				
48.	elevation of 0.4°C	A solution prepared by dissolving 0.8gm of naphthalene in $100g$ of CCl_4 has a boiling point elevation of 0.4 °C. A 1.24 g of an un-known solute in same amount of CCl_4 produced boiling point elevation of 0.62 °C, then molar mass of un-known solute is						
	1) 25g	2) 50g	3) 75g	4) 128g				
49.		Molality of an aqueous solution that produces an elevation of boiling point of 1.00 K at 1 atm pressure. (K_h for water = 0.512 K. kg. mol ⁻¹)						
	1) 0.512 M	2) 0.195 m	3) 1.95 m	4) 5.12 M				
50.	200 g of water, th through a tube co	A current of dry air was bubbled through a bulb containing 30 g of an organic compound in 200 g of water, then through a bulb at the same temparature, containing water and finally through a tube containing anhydrous CaCl ₂ , the loss in mass of bulb containing water was 0.03 g and gain in mass of CaCl ₂ tube was 2 g, then molecular mass of organic compound is						
	$P^{o}-P$	Loss in mass of solvent	bulb					
	(Hint: $\frac{\mathbf{P}^{0}}{\mathbf{P}^{0}} = \frac{\mathbf{P}^{0}}{\mathbf{P}^{0}}$	Loss in mass of solvent Gain in mass of CaCl ₂	tube)					
	1) 180	2) 530.7	3) 280.7	4) 140.7				
51.	The solution containing 6.8g of non-ionic solute in 100g of water was found to freeze at 0.93°C. If K_f for water is 1.86, the molar Mass of solute is							
	1) 13.6	2) 68	3) 34	4) 136				
52.	The molal freezing point constant for water is 1.86 K.kg mole ⁻¹ . The freezing point of 0.1m NaCl solution is							
	1) -1.86°C	2) -0.372°C	3) -0.186°C	4) 0.372°C				
53.		constant for water is a electrolyte in water is	1.86 K.Kg.mole ⁻¹ . The f	reezing point of a 0.05 molal				
	1) -1.86°C	2) -0.93°C	3) -0.093°C	4) 0.93°C				
54.	The depression in sodium sulphate	0 1	m aqueous solution o	f urea, sodium chloride and				
	1) 1:1:1	2) 1:2:3	3) 1:2:4	4) 2:2:3				
55.	The Osmotic pres is $(R = 0.082L atm)$		ning 4.0g of solute (mol	ar mass 246) per litre at 27°C				
	1) 0.1 atm	2) 0.2 atm	3) 0.4 atm	4) 0.8 atm				
56.	Average osmotic	pressure of human bl	ood is 7.4 atm at 27°C	, then total concentration of				

SOLUTIONS various solutes is 2) 0.2 molL⁻¹ 1) 0.1 molL⁻¹ 3) 0.3 molL⁻¹ 4) 0.4 molL⁻¹ 57. At 10°C, the osmotic pressure of urea solution was formed to be 500 mm. The solution is diluted 'x' times and the temperature raised to 25°C when the osmotic presure was noticed to be 105.3mm, then 'x' is 2) 4 3)5 The osmotic pressure of 5% aqueous solution of sugar (mol. Mass 342) at 15°C is 58. 1) 4 atm. 2) 3.45 atm 3) 3.75 atm 4) 2.45 atm. A 5% solution of cane suger is isotonic with 0.5% of X. The molecular weight of substance X 59. 1) 34.2 3) 95.58 2) 119.96 4) 126.98 60. At 273K, 100Cm³ of a solution containing 3gm of an unidentified solute exhibits an osmotic pressure of 2.24atm, then molar mass of the solute is 1) 88gmol⁻¹ 2) 188gmol⁻¹ 3) 300gmol⁻¹ 4) 388gmol⁻¹ 61. The osmotic pressure of the solution obtained by mixing 200cm³ of 2% (mass-volume) solution of urea with 200cm³ of 3.42% solution of sucrose at 20°C is 1) 4 bar 2) 1.2 bar 3) 5.2 bar 4) 15.4 bar 62. Correct order of osmotic pressure of the following solution is 1) 34.2 gmL⁻¹ of glucose 2) 60 gm L⁻¹ of urea 3) 90 gm L⁻¹ of glucose 4) 58.5 gm L⁻¹ of NaCl 1) A < B < C < D 2) A < C < B < D 3) A < D < B < C4) A < C < D < B A decimolar solution of K, [Fe(CN),] at 300K is 50% dissociated, then, osmotic pressure of the 63. solution is 1) 3.61 atm 2) 7.38 atm 3) 12.32 atm 4) 21.34 atm **EXERCISE-I/ANSWERS** WORK SHEET - I 1) 1 2)3 3)3 4)1 5) 2 6) 1 7)3 8) 1 9)1 10) 1 11) 2 12) 4 13) 1 14) 3 15) 3 16) 2 17) 1 18) 1 19) 1 20) 4 25) 3 21) 1 22) 2 23) 1 24) 2 26) 2 27) 4 28) 3 29) 3 30) 1 31) 1 32) 3 33) 3 34) 4 35) 3 36) 4 37) 3 38) 2 39) 1 40) 1 41)3 42) 2 43) 1 44) 1 45) 4 46) 4 47) 4 48) 4 49) 1 50) 3 51) 3 52) 3 53) 1 54) 4 55) 3 56) 3 57) 3 58) 4 59) 4 60)461) 4 62) 3 63) 4 64) 2 65) 1 66) 3 67) 3 68) 4 69) 4 70)3 71) 1 72) 1 73)3 74) 1 75) 2 76) 3 77) 4 78) 4 79)3 80)3 81) 3 82) 1 83) 1 **WORK SHEET - II** 1) 1 2) 1 3) 2 4) 2 5) 2 6) 2 7) 4 8) 3 9) 2 10) 1 11) 2 13) 2 15) 1 16) 2 17) 3 18) 2 20) 3 12) 2 14) 3 19) 1 21) 2 22) 4 23) 2 28) 1 29) 2 24) 4 25) 1 26) 2 27) 2 30) 4 31) 3 32) 2 33) 2 34) 4 35) 1 37) 3 38) 1 39) 2 40)3 36) 2 50) 1 41) 4 42) 1 43) 2 44) 3 45) 2 46) 4 47) 2 48) 4 49) 3 52) 2 53)3 55)3 57) 3 58) 2 59) 1 60)351) 4 54) 2 56) 3

61) 3

62) 2

63) 2

ELECTRO CHEMISTRY

EXERCISE - I

WORK SHEET - I

1.	Which one of the following materials conducts electricity?							
	1) diamond	2) barium sulphate	3) crystalline sodiur	n chloride				
	4) fused potassium	chloride	5) molten sulphur					
2.	An electronic condu	An electronic conductor is						
	1) NaC <i>l</i>	2) Diamond	3) Ag	4) KCl				
3.	Which of the follow	Which of the following is conductor of electricity						
	1) diamond	2) graphite	3) carborundum	4) silica				
4.	In metallic conduct	In metallic conductor the current is conducted by flow of						
	1) ions	2) atoms	3) electrons	4) molecules				
5.	In which of the follo	owing, HCl conducts ele	ctricity to large extent	?				
	1) liquid HCl		2) HCl aq. solution	2) HCl aq. solution				
	3) HCl solution in b	enzene	4) gaseous HCl					
6.	Solid NaCl is a bad	conductor of electricity	because					
	1) solid NaCl is a co	ovalent compound	2) solid NaCl has no	free ions				
	3) solid NaCl has no	o free electrons	4) solid NaCl there i	s no migration of ions				
7.	The decrease in electrical conductivity of metals with increase in temperature is due to increase in							
	1) the velocity of ele	ectrons	2) the resistance of t	2) the resistance of the metal				
	3) the number of electrons 4) the number of metal atoms							
8.	The reason for increase in electrical conduction of electrolyte with increase in temperature is							
	1) increase in the number of ions 2) increase in the speed of ions							
	3) increase in the degree of dissociation of electrolyte							
	1) A, B only	2) B, C only	3) A, C only	4) A, B, C				
9.	Sodium metal in liq	uid ammonia is	,	,				
	1) an ionic conduct		2) an electronic cond	ductor				
	3) a mixed conducte	or	4) non - conductor					
10.	A solution of Sodium metal in liquid ammonia is strongly reducing agent due to							
	1) Sodium atoms	2) Sodium hydride	3) Sodamide	4) Solvated electrons				
11.	Choose the wrong s	tatement	·	·				
	1) electrical conductance of an electrolytic conductor increases with increase in temperature							
	2) electrical conductance of a metallic conductor increases with increase in temperature							
	3) electrical conductance of a metallic conductor decreases with increase in temperature							
	4) degree of dissociation of an electrolyte increases with dilution							
12.	LIST - 1	uuion on un oncernon ve m	LIST - 2					
	1) Electronic condu	ctor	1) Aqueous urea solution					
	2) Non-electrolyte		2) Solid sodium					
	3) Electrolytic disso	ociation	•	3) Electrolytic conductor				
	4) Arrhenius		•	4) Radioactivity increases				
			5) Conductivity rais	es with temperature				
	The correct match is	2						

ELE	CTRO CE	HEMIS	STRY	•								
		A	В	C	D		A	В	C	D		
	1)	5	1	2	3	2)	5	2	1	4		
	3)	2	1	5	3	4)	2	5	1	4		
13.	Which o	of the fo	llowir	ng is 100	% ionise	d at any	dilution	?				
	1) CH ₃ C	OOH		2) HCN	1	(3) NaCl		4)	NH_4OH		
14.	Which o	Which of the following (1M) conducts more electricity?										
	1) sulph	uric ac	id	2) borio	c acid	3	3) nitric acid 4) phosphorous acid					
15.	The deg	ree of d	lissoci	ation of a	an electr	olyte in a	aqueous	solution	depend	s on		
	1) Temp	erature				,	2) Conce	ntration	of the ele	ectrolyte		
	3) Natur	e of the	electr	olyte								
	1) Only			2) Only			3) Only E		4)	A, B, C		
16.		What happens at infinite dilution in a given solution?										
	1) The degree of dissociation is unity for weak electrolytes 2) The electrolyte is 100% ionized.									1.		
		2) The electrolyte is 100% ionised 3) All inter ionic attractions disappear 4) All the three									ear	
17.	,	At infinite dilution the degree of dissociation for sucrose in aqueous solution is										
17.	1) 0	ite dira		2) 0.5	or disse		3) 0.99 4) 1					
18.	•	Choose the correct statement regarding electrolytic cell										
	1) It is a				0	_	-	nto elect	rical ene	ergy		
	2) Anod					03				0,		
	3) Oxidation reaction takes place at the anode											
	4) Electrons flow from cathode to anode											
19.	The follo	The following are some statements about electrolytic cell										
	1) in this	1) in this, chemical energy converted into electrical energy										
	2) in this	2) in this, cell electrons flow from cathode to anode										
	3) in this	3) in this, cell reduction takes place at cathode										
	4) in this	4) in this, cathode is a +ve electrode										
	The corr	ect con	nbinat	ion is								
	1) only E	3		2) only	C	3	3) only C	,D	4)	only B, C		
20.	The reac	ctions to	aking	place at	anode a	nd catho	de are					
	1) Oxida					2	2) Reduc	tion and	Oxidati	.on		
	3) Oxida	ation ar	nd Hyd	drolysis		4	4) Reduc	tion and	Hydrol	ysis		
21.	The elec	trode tl	hroug	h which t	the elect	rons ente	er the ele	ctrolytic	solution	ıis		
	1) catho	de				,	2) anode					
	3) may b	e anod	e or ca	thode		4	4) neithe	r anode 1	nor cath	ode		
22.	As electr	rolysis	is in p	rogress, i	if the cat	hode pla	ite is rem	oved				
	1) the mo					,	2) the ion	is move a	at rando	m		
	3) all ion	ns mov€	e towa	rds anod	le	4	4) only a	nions mo	ove towa	ards the an	ıode	
23.	In the ele	ectrolyt	tic cell	, flow of	electron	s is from						
	1) catho	de to ar	node ii	n the solu	ution	2	2) cathod	le to and	oe throu	ıgh externa	al circuit	
	3) anode	e to cath	node tl	nrough e	xternal	circuit 4	4) all of t	hese				
24.		olysis c	of dilu	te H ₂ SO ₄	, what is	liberate	d at ano	de in pre	sence of	inert elect	trode?	
	1) H ₂			2) SO ₂			$3) SO_3$,	O_2		
25.	Which r	orocess	occur	s in the	electrol	vsis of a	queous	solution	of nick	el chloride	e at nickel	

anode? 1) $Ni^{2+} + 2e \rightarrow Ni$ 2) $2H^+ + 2e \rightarrow H_2$ 3) $2Cl^- \rightarrow Cl_2 + 2e$ 4) Ni \rightarrow Ni²⁺ + 2e 26. Molten CuCl₂ is electrolysed using platinum electrode. The reaction occurring at anode is (E-01) 2) $Cl_2(g) + 2e^- \rightarrow 2Cl^-$ 1) $2Cl^- \rightarrow Cl_2(g) + 2e^-$ 4) Cu (s) \rightarrow Cu²⁺ + 2e⁻ 3) $Cu^{2+} + 2e^{-} \rightarrow Cu$ (s) 27. During the electrolytic reduction of alumina, the reaction at cathode is 1) $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$ 2) $3F^- \rightarrow 3F + 3e^-$ 3) $Al^{3+} + 3e^{-} \rightarrow Al$ 4) $2H^+ + 2e^- \rightarrow H_2$ When an aqueous solution of copper sulphate is electrolysed using copper electrodes the 28. reaction at the anode is represented by 1) $H^+ + e^- \rightarrow H$ 2) $Cu^{2+} + 2e^{-} \rightarrow Cu$ 3) $SO_4^{2-}(aq) \rightarrow SO_4 + 2e^-$ 4) $Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-}$ 29. Which of the following reaction is possible at anode? 1) $2Cr^{3+} + 7H_2O \rightarrow Cr_2O_7^{2-} + 14H^+$ 2) $F_2 \rightarrow 2F^-$ 3) $\frac{1}{2}O_2 + 2H^+ \rightarrow H_2O$ 4) None of these 30. Aqueous solution of CuSO₄ is electrolysed using inert electrodes till the blue coloured solution becomes colourless. The colourless solution formed is 3) CuSO₄ 1) Cu(OH), 2) H₂SO₄ 4) H₂O 31. After the electrolysis of aqueous solution of NaCl using Pt electrodes, the pH of the solution 2) decreases 3) remains constant 4) becomes zero 32. During the electrolysis of aqueous solution of the following, molarity of the solution increases without changing the chemical composition 2) HCl 3) CuSO₄ 4) H₂SO₄ 33. Aqueous NaCl solution is electrolyzed using platinum electrodes. What is the product formed at cathode? 1) Na 2) H₂ 3) O_{2} 4) Cl₂ At anode in the electrolysis of fused sodium chloride 34. 1) Na⁺ is oxidised 2) Cl⁻ is oxidised 3) *Cl* is reduced 4) Na is reduced 35. In electrolysis of NaCl when Pt electode is taken then H, is liberated at cathode while with Hg cathode, it forms sodium amalgam. This is because 1) Hg is more inert than Pt 2) More voltage is required to reduce H⁺ at Hg than at Pt 3) Na is dissolved in Hg while it does not dissolve in Pt 4) Conc. of H⁺ ions is larger when Pt electrode is taken 36. (A): Hydrogen gas always evolved only at cathode during electrolysis (R): H⁺ ions undergo reduction by gaining electrons The correct answer is 1) Both (1) and (R) are true and (R) is the correct explanation of (A) 2) Both (1) and (R) are true and (R) is not the correct explanation of (A) 3) (1) is true but (R) is false 4) (1) is false but (R) is true

Which of the following ions is discharged at the cathode when an aqueous solution of sodium

37.

ELE	CTRO CHEMIST	RY						
	hydroxide is elect	rolysed?						
	1) Hydrogen	2) Hydroxyl	3) Oxygen	4) Sodium				
38.	During electrolysi	is of fused NaOH						
	1) H ₂ is liberated a	at cathode	2) O ₂ is liberated at o	athode				
	3) H_2 is liberated a	at anode	4) O ₂ is liberated at a	4) O ₂ is liberated at anode				
39.	Aqueous solution	of $AgNO_3$ is electrolysed	using inert electrodes.	At the end of electrolysis				
	1) pH of the solut	ion increases	2) pH of the solution	2) pH of the solution decreases				
	3) pH of the solution	tion remains unchanged	4) pH of the solution becomes 14					
40.	At cathode, the ele	ectrolysis of aqueous Na ₂ S	SO ₄ gives					
	1) Na	2) H ₂	3) SO ₃	4) SO ₂				
41.	An aqueous solution containing one mole per litre of each $Cu(NO_3)_{2'}$, $AgNO_3$. $Hg(NO_3)_{2'}$ $Mg(NO_3)_2$ is being electrolysed using inert electrodes. The values of standard electrode potential in volts (reduction potential) are							
	$Ag / Ag^{+} = +0.80$	$Hg / Hg^{2+} = +0.79V$	$Cu / Cu^{2+} = +0.34V$	$Mg / Mg^{2+} = -2.37V$				
	With increasing v	oltage, the sequence of de	position of metals on ca	athode will be				
	1) Ag, Hg, Cu, Mg 5) Cu, Hg, Ag, Mg	2) Mg, Cu, Hg, Ag	3) Ag, Hg, Cu	4) Cu, Hg, Ag				
42.	The electrolysis of	an aqueous solution of K	NO_3 between platinum	electrode gives				
	1) K at the cathod	e NO ₂ at the anode	2) H ₂ at cathode and	l O ₂ at anode				
	3) H ₂ at cathode a	nd NO ₂ at anode	4) K at cathode and	O ₂ at anode				
43.	According to Fara	day's first Law of electrol	ysis mass of substance	liberated is equal to				
	1) eC	2) eQ	3) et	4) eCt/nF				
44.	When the same charge is passed through the solutions of different electrolytes in series, the amounts of elements deposited on the electrodes are in the ratio of their							
	1) atomic number	s	2) atomic weights					
	3) specific gravitie	es	4) equivalent weights					
45	, 1	law of Faraday's electroly	, 1					
	i) $\frac{\text{wt. of H}_2 \text{ liber}}{\text{wt. of Cl}_2 \text{ liber}}$	$\frac{\text{ated}}{\text{rated}} = \frac{\text{eq. wt. of H}_2}{\text{eq. wt. of Cl}_2}$	$ii) \frac{m_{Ag}}{m_{Cu}} = \frac{E_{Ag}}{E_{Cu}}$	$ii) \frac{m_{Ag}}{m_{Cu}} = \frac{E_{Ag}}{E_{Cu}}$				
	iii) $\frac{m_{Ag}}{m_{Cu}} = \frac{E_{Cu}}{E_{Ag}}$		iv) $\frac{m_{H_2}}{m_{Cu}} = \frac{E_{H_2}}{E_{Cu}}$	iv) $\frac{m_{\rm H_2}}{m_{\rm Cu}} = \frac{E_{\rm H_2}}{E_{\rm Cu}}$				
	The correct combi	nation is						
	1) only ii, iv	2) only i	3) only i, ii, iv	4) only ii, iii				
46.	One Faraday is	s equal to						
	1) 96.5 c mol ⁻¹	2) 96500 c mol ⁻¹	3) 6.023 ×10 ²³ mol ⁻¹	4) 96.5×10^{23} c mol ⁻¹				
47.	<i>'</i>	,	,	1 gram atom of the metal from the solution				
	1) CuCl ₂	2) CuSO ₄	3) AgNO ₃	4) AuCl ₃				
48	,	of equal masses of the following	, 0 3	, 3				

								E	ELECTRO CHEMISTRY			
	1) H ⁺			2) Cu ²⁺			3) Ag+		4) .	A1 ³⁺		
49.		LIST - 1				I	LIST - 2					
	A) Fa	araday's	first law	7		1	1) e × 96500					
	B) Cł	nemical e	equivale	nt		2	$2) \frac{m_1}{E_1} = \frac{m_2}{E_2}$					
	C) Fa	raday's	second l	aw		3	3) S.H.E.					
		D) Pt, H_2 (atm)/ H^+ (1M)					4) m = eQ 5) Salt bridge					
	The	correct m	natch is									
		A	В	С	D		A	В	С	D		
	1)	4	1	3	2	2)	4	5	2	3		
	3)	1	1	2	3	4)	4	1	2	3		
50.		Copper can be deposited from acidified copper sulphate and alkaline cuprous cyanide. If the same current is passed for a definite time :										
	1) Th	1) The amount of copper deposited from acidic copper sulphate will be higher										
	2) Th	2) The amount of copper deposited from alkaline cuprous cyanide will be higher										
	3) Th	3) The same amount of copper will be deposited										
	4) No	4) None of the above										
51.	,	IST - 1		LIST	- 2							
	A) O	ne farad	ay	1) Reduction								
	B) A1		-	2) 96500 coulomb								
	C) Ca	athode		3) 6.24×10^{18} electrons								
	D) 1	coulomb	1	4) Oxid	lation							
				5) Z × 9	96,500							
	The	correct m	natch is									
		Α	В	C	D		A	В	C	D		
	1)	5	4	2	3	2)	2	4	1	3		
	3)	2	4	1	5	4)	5	2	1	3		
52.		-	ectrolysi	•	lite, Alu			orine are			ar ratio of	
	1) 3:			2) 1 : 3			3) 2:3		4)	3:2		
53.			n condu			state is sh	•					
	1) M	_		2) CaC	_		B) BaCl ₂		,	SrCl ₂		
54.					wing ca		•	n conc. is in the order				
	,	1) $Li^+ < Na^+ < K^+ < Rb^+$					2) Li ⁺ > 1					
	3) Li	3) $Li^+ < Na^+ > K^+ > Rb^+$					l) Li+=1	Na⁺ < K+	< K ⁺ < Rb ⁺			

- 55. The value of molar conductivity of HCl is greater than that of NaCl at a particular temperature because
 - 1) Molecular mass of HCl is greater than that of NaCl $\,$
 - 2) Mobility of H^+ ions is more than that of Na^+ ions
 - 3) HCl is strongly acidic

	4) Ionisation of HCl is	s larger than that of Na	Cl					
56.	(1): The conductivity	of an aqueous solution	of NaCl is greater than	n that of pure solvent.				
			number of ions in soluti					
57.	The unit of specific con	ductivity is						
	1) ohms cm ⁻¹	2) ohms cm ⁻²	3) ohms ⁻¹ cm	4) ohm ⁻¹ cm ⁻²				
	5) ohms ⁻¹ cm ⁻¹	•	•	,				
58.	The unit of equivalen							
	1) ohm cm	·	2) ohm ⁻¹ cm ² (g equivalent) ⁻¹					
	3) ohm cm ² (g equiva	lent)	4) S cm ⁻²					
59.	The equivalent cond	uctance of 1N solution	of an electrolyte is nearly					
	1) Same as its specific		2) 10 ⁻³ times its specific conductance					
	3) 10^2 times more than its specific conductance							
	4) 10^3 times more than	n its specific conducta	nce					
60.	Assertion: The molar electrolytes at moder		electrolytes is low as cor	mpared to that of strong				
	Reason: Weak electrolytes at moderate concentrations dissociate to a much greater extent when compared to strong electrolytes							
61.	The highest electrical	conductivity of the fol	lowing aqueous solutio	ons is of				
	1) 0.1 M acetic acid		2) 0.1 M chloroacetic	acid				
	3) 0.1 M fluoroacetic	acid	4) 0.1 M difluoroaceti	ic acid				
62.				oncentration of solution e unit of the constant of				
	1) S.m mol ⁻¹	$2) S.m^2 mol^{-1}$	$3) S^{-2}.m^2 mol$	4) $S^2.m^2 mol^{-2}$				
63.	If the specific conducted equal to	tance and conductance	e of a solution is same,	then its cell constant is				
	1) 1	2) 0	3) 10	4) 100				
64.	Assertion: The condu	ctivity of 0.1M solution	ons of different electrolytes is same.					
	Reason: The conduct	ivity depends on the si	ze of the ions.					
65.	Specific conductivity	of a solution						
	1) increases with dilu	ition	2) decreases with dilution					
	3) remains unchange	d with dilution	4) depends on mass o	f electrolyte.				
66.	For measuring condu	ctivity of an electrolyte	, its solution should be _I	prepared in				
	1) Tap water	2) Distilled water	3) Conductivity wate	r 4) Polywater				
67.		tween the $ \chi_{ m eq}^{} $ values a		n electrolyte. Which of				
	1) KCl	2) BaCl ₂						
	3) H ₂ SO ₄	4) CH ₃ COOH		↑ λeq				
		· ·						
68.	For which case 'λ' v	alues v/s \sqrt{c} shows a		Conc →				
	1) KCl	2) HCOOH	3) CH_3NH_2	4) CH ₃ COOH				
69.	According to Kohlrau	ısch law, the limiting va	alue of molar conductiv	ity of an electrolyte A ₂ B				

1)
$$\lambda_{A^+}^{\infty} + \lambda_{B^{-2}}^{\infty}$$

$$2) \frac{1}{2} \lambda_{A^+}^{\infty} + \lambda_{B^-}^{\infty}$$

2)
$$\frac{1}{2}\lambda_{A^{+}}^{\infty} + \lambda_{B^{-2}}^{\infty}$$
 3) $2\lambda_{A^{+}}^{\infty} + \frac{1}{2}\lambda_{B^{-2}}^{\infty}$ 4) $2\lambda_{A^{+}}^{\infty} + \lambda_{B^{-2}}^{\infty}$

4)
$$2\lambda_{A^{+}}^{\infty} + \lambda_{B^{-2}}^{\infty}$$

70. The equation representing Kohlrausch law from the following is

$$1) \lambda_{\rm m} = \frac{100K}{C}$$

1)
$$\lambda_{\rm m} = \frac{100K}{C_{\rm m}}$$
 2) $\lambda_{\rm m}^0 = v^+ \lambda_+^0 + v^- . \lambda_-^0$ 3) $\lambda_{\rm eq} = \frac{1000K}{C_{\rm eq}}$ 4) $\lambda_{\rm m}^0 = \lambda_{\rm c} + \lambda_{\rm a}$

$$3) \lambda_{\text{eq}} = \frac{1000K}{C_{eq}}$$

4)
$$\lambda_m^0 = \lambda_c + \lambda_a$$

The expression showing the relationship between equivalent conductivity and molar 71. conductivity is

1)
$$\lambda_m = Z \times \lambda_{ee}$$

1)
$$\lambda_m = Z \times \lambda_{eq}$$
 2) $\lambda_{eq} = Z \times \lambda_m$ 3) $\lambda_m = \frac{\lambda_{eq}}{Z}$ 4) $\lambda_m = \lambda_{eq}^2$

3)
$$\lambda_{\rm m} = \frac{\lambda_{\rm eq}}{Z}$$

4)
$$\lambda_{\rm m} = \lambda_{\rm eq}^2$$

The molar conductivities Λ_{NaOAc}^0 and Λ_{HCl}^0 at infinite dilution in water at 25°C and 91.0 and 426.2 72.

 ${\rm S\,cm^2/}$ mol respectively. To caculate $\Lambda_{\rm HOAc}^0$ the additional value required is

1)
$$\Lambda_{\text{NaCl}}^0$$

2)
$$\Lambda_{\rm H_2O}^0$$

3)
$$\Lambda_{\mathrm{KC1}}^{0}$$

4)
$$\Lambda_{\text{NaOH}}^0$$

The equivalent conductances of two strong electrolyetes at infinite dilution in H_2O (where ions move freely through a solution) at $25^{\circ}C$ are given below 73.

 $\Lambda_{\text{CH}_3\text{COONa}}^0 = 91.0 \,\text{S cm}^2 / \text{equiv}$; $\Lambda_{\text{HCl}}^0 = 426.2 \,\text{S cm}^2 / \text{equiv}$

What additional information / quantity one needs to calculate Λ^0 of an aqueous solution of acetic acid?

1)
$$\Lambda^0$$
 of CH₃COOK 2) Λ^0 of H⁺

2)
$$\Lambda^0$$
 of H⁺

3)
$$\Lambda^0$$
 of ClCH₂COOH 4) Λ^0 of NaCl

4)
$$\Lambda^0$$
 of NaCl

- 74. In a Galvanic cell, the electrons flow from
 - 1) anode to cathode through the solution
 - 2) cathode to anode through the solution
 - 3) anode to cathode through the external circuit
 - 4) cathode ot anode thorugh the external circuit.
- Which of the following statements is wrong about galvanic cells 75.
 - 1) cathode is the positive electrode
- 2) cathode is the negative electrode
- 3) electrons flow from anode to cathode in the external circuit
- 4) reduction occurs at cathode
- The following statements is correct w.r.t. both electrolytic cell and Galvanic cell 76.
 - 1) in both cells, anode is shown by +ve sign
 - 2) in both cells, cathode is shown by -ve sign
 - 3) in both cells, reduction reaction takes place at the cathode
 - 4) in both cells, oxidation reaction takes place at the cathode
- Saturated solution of KNO3 is used to make salt bridge because 77.
 - 1) velocity of K^+ is greater than that of NO_3^- 2) velocity of NO_3^- is greater than that of K^+
 - 3) velocities of both K^+ and NO_3^- are nearly the same
 - 4) KNO₃ is highly soluble in water.
- Assertion: A salt bridge allows the flow of current by completing the electrical circuit 78. Reason: A salt bridge maintains the electrical neutrality of the two half cells
- 79. The function of a salt bridge is

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

1) to provide a link between two half cells 2) to allow ions to go from one cell to another 3) to keep the emf of the cell positive 4) to maintain electrical neutrality of the solution in two half cells Which of the following is correct? 1) Zinc acts as cathode in Daniel cell 2) In a Li-Zn couple, zinc acts as anode 3) Copper displaces iron from its salt solution 4) Zinc dsplaces tin from its salt solution Which of the following statements is true for the electrochemical Daniell cell? 1) Electrons flow from copper electrode to zinc electrode 2) Current flows from zinc electrode to copper electrode 3) Cations move towards copper electrode 4) Cations move toward zinc electrode The cell reaction of the galvanic cell, $Cu(s) / Cu^{2+}(aq) / Hg^{2+}(aq) / Hg(l)$ is 1) Hg + Cu²⁺ \rightarrow Hg²⁺ + Cu 2) $Hg + Cu^{2+} \rightarrow Hg^+ + Cu^+$ 4) $Cu + Hg^{2+} \rightarrow Cu^{2+} + Hg$ 3) Hg + Cu⁺ \rightarrow CuHg Assertion: The Daniel cell becomes dead after some time Reason: Oxidation potential of zinc anode increases and that of copper cathode decreases The correct answer is The cell for which the cell reaction is $H_2 + Cu^{2+} \rightarrow 2H^+ + Cu$ is represented as 1) $Cu/Cu^{2+}//H^{+}/H_{2}$ 2) $H_2(g)/H^+//Cu^{2+}/Cu$ 4) Pt, H_2/H^+ (aq) (1atm)// Cu^{2+}/Cu 3) Pt, $H_2(1 \text{ atm})$, $H^+ / / Cu^{2+} / Cu$ Which metal will dissolve if the cell works $\left. Cu \middle| Cu^{2+} \middle| \middle| Ag^+ \middle| \right.$ 4) None of these 2) Ag 3) Both (1) and (2) The chemical reaction $2AgCl_{(s)} + H_{2(g)} \rightarrow 2HCl_{(aq)} + 2Ag_{(s)}$ taking place in a galvanic cell is represented by the notation. 1) $Pt(s)|H_2(g)$, 1bar|1M KCl(aq)|AgCl(s)|Ag(s)2) $Pt(s)|H_2(g),1bar|1M HCl(aq)||1M Ag^+(aq)|Ag(s)$ 3) $Pt(s)|H_2(g),1bar|1M HCl(aq)|AgCl(s)|Ag(s)$ 4) $Pt(s)|H_2(g),1bar|1M HCl(aq)|Ag(s)|AgCl(s)$ Which is correct for cell reaction? 1) $Zn + 2Ag^+ \rightarrow Zn^{2+} + 2Ag$ 2) $2Ag + Zn^+ \rightarrow 2Ag^+ + Zn$ 3) Both 4) None Stronger the oxidising agent greater is the 1) Oxidation potential 2) Reduction potential

4) Hydration potential

The reaction, $1/2H_{2(g)}+AgCl_{(s)} \rightarrow H^+_{(aq)}+Cl^-_{(aq)}+Ag_{(s)}$ occurs in the galvanic cell :

3) Redox potential

	3) $Pt, H_{2(g)} HCl_{(Soln)} AgCl_{(s)} Ag$	4) $Pt, H_{2(g)} KCl_{(So ln)} $	$\left \left \operatorname{AgCl}_{(s)}\right \operatorname{Ag}\right $						
90.	For spontanity of a cell, which is correct?								
	1) $\Delta G = 0, \Delta E = 0$ 2) $\Delta G = -Ve, \Delta E = 0$	3) $\Delta G = +Ve, \Delta E = 0$	4) $\Delta G = -Ve$						
91.	If the cell reaction is spontaneous								
	1) E^0 is -ve 2) ΔG is positive	3) E^0 is +ve	4) ($\Delta G + E^0$) is positive						
92.	Assertion : If E^0 of $Cu^{2+}/Cu = +0.34V$ and constructed from these is $Ag/Ag^+//Cu^{2+}/Cu$	$E^0 \text{ of } Ag^+/Ag = +0.$	80V then galvanic cell						
	Reason: In any galvanic cell the reaction that	takes place is a redox	reaction						
93.	The metal that cannot displace hydrogen fron	n dilute hydrochloric	acid is						
	1) aluminium 2) iron	3) copper	4) zinc						
94.	A standard hydrogen electrode has zero elect	rode potential becaus	e						
	1) Hydrogen is easiest to oxidise								
	2) This electrode potential is assumed to be ze	ero							
	3) Hydrogen atom has only one electron	4) Hydrogen is the lig	htest element						
95.	The following statements about electro chemic	cal series are							
	i) the metals occupying top positions in the series do not liberate hydrogen with dilute acids								
	ii) the substances which are stronger reduci	ng agents and strong	er oxidising agents are						
	placed below & top respectively	a matal from its soluti	on which is lower in the						
	iii) a metal higher in the series will displace th series	e metai from its soluti	on which is lower in the						
	iv) various electrodes are arranged in a series	in the descending ord	er of their potentials						
	The correct statements are	O	1						
		3) all	4) iii & iv						
96.	The following are some statements about norm	nal hydrogen electrod	e (NHE)						
	1) when a 'Zn' electrode is in combination of NHE, Zn electrode acts as cathode								
	•	2) when a 'Cu' electrode is in combination with NHE, Cu electrode is the anode							
	3) when a 'Ag' electrode is in combination with NHE, Ag electrode is the anode								
	4) when a chlorine electrode is in combination	•							
	1) only (1) is correct 2) all are correct	3) all are incorrect	4) both (2) & (3) correct						
97.	Which defines the standard reduction electro	de potential of Zn ²⁺ io	ons?						
		2) $Zn_{(g)} \rightarrow Zn^{(2+)} + 2e^{-2}$							
	3) $Zn^{2+}_{(aq)} \rightarrow Zn_{(s)} + 2e$; $[Zn^{2+}] = 1M$	4) $Zn^{2+}_{(g)} \rightarrow Zn_{(s)} -2e$	$z; [Zn^{2+}] = 1M$						
98.	Assertion: Lithium has less electrode potenti	(0)							
	Reason: Hydration energy of lithium ion is h	igh.							
99.	The reference electrode is made by using								
	1) ZnCl ₂ 2) CuSO ₄	3) HgCl ₂	4) Hg ₂ Cl ₂						
100.	The more electro positive element has		. 02 2						
	-	2) negative reduction potential							
		4) negative oxidation potential							
101.	•	LIST - 2							
	A) Very dilute H ₂ SO ₄ by inert electrodes	1) Hg/Hg ₂ Cl ₂ (S), KCl	(salt)						
		· -	241						

 $1) \ Ag \left| AgCl_{(s)} \right| KCl_{(So\,ln)} \left| AgNO_{3(so\,ln)} \right| Ag \qquad 2) \ Pt, \\ H_{2(s)} \left| HCl_{(So\,ln)} \left| AgNO_{3(so\,ln)} \right| Ag \qquad 20 \ Pt, \\ H_{2(s)} \left| HCl_{(So\,ln)} \left| AgNO_{3(so\,ln)} \right| Ag \qquad 20 \ Pt, \\ H_{2(s)} \left| HCl_{(So\,ln)} \left| AgNO_{3(so\,ln)} \right| Ag \qquad 20 \ Pt, \\ H_{2(s)} \left| HCl_{(So\,ln)} \left| AgNO_{3(so\,ln)} \right| Ag \qquad 20 \ Pt, \\ H_{2(s)} \left| HCl_{(So\,ln)} \left| AgNO_{3(so\,ln)} \right| Ag \qquad 20 \ Pt, \\ H_{2(s)} \left| HCl_{(So\,ln)} \left| AgNO_{3(so\,ln)} \right| Ag \qquad 20 \ Pt, \\ H_{2(s)} \left| HCl_{(So\,ln)} \left| AgNO_{3(so\,ln)} \right| Ag \qquad 20 \ Pt, \\ H_{2(s)} \left| HCl_{(So\,ln)} \left| AgNO_{3(so\,ln)} \right| Ag \qquad 20 \ Pt, \\ H_{2(s)} \left| HCl_{(So\,ln)} \left| AgNO_{3(so\,ln)} \right| Ag \qquad 20 \ Pt, \\ H_{2(s)} \left| HCl_{(So\,ln)} \left| AgNO_{3(so\,ln)} \right| Ag \qquad 20 \ Pt, \\ H_{2(s)} \left| HCl_{(So\,ln)} \left| AgNO_{3(so\,ln)} \right| Ag \qquad 20 \ Pt, \\ H_{2(s)} \left| HCl_{(So\,ln)} \left| AgNO_{3(so\,ln)} \right| Ag \qquad 20 \ Pt, \\ H_{2(s)} \left| HCl_{(So\,ln)} \left| AgNO_{3(so\,ln)} \right| Ag \qquad 20 \ Pt, \\ H_{2(s)} \left| HCl_{(So\,ln)} \left| AgNO_{3(so\,ln)} \right| Ag \qquad 20 \ Pt, \\ H_{2(s)} \left| HCl_{(So\,ln)} \left| AgNO_{3(so\,ln)} \right| Ag \qquad 20 \ Pt, \\ H_{2(s)} \left| HCl_{(So\,ln)} \left| AgNO_{3(so\,ln)} \right| Ag \qquad 20 \ Pt, \\ H_{2(s)} \left| HCl_{(So\,ln)} \left| AgNO_{3(so\,ln)} \right| Ag \qquad 20 \ Pt, \\ H_{2(s)} \left| HCl_{(So\,ln)} \left| AgNO_{3(so\,ln)} \right| Ag \qquad 20 \ Pt, \\ H_{2(s)} \left| HCl_{(So\,ln)} \left| HCl_{(So\,ln)} \right| Ag \qquad 20 \ Pt, \\ H_{2(s)} \left| HCl_{(So\,ln)} \left| HCl_{(So\,ln)} \right| Ag \qquad 20 \ Pt, \\ H_{2(s)} \left| HCl_{(So\,ln)} \left| HCl_{(So\,ln)} \right| Ag \qquad 20 \ Pt, \\ H_{2(s)} \left| HCl_{(So\,ln)} \right| Ag \qquad 20 \ Pt, \\ H_{2(s)} \left| HCl_{(So\,ln)} \right| Ag \qquad 20 \ Pt, \\ H_{2(s)} \left| HCl_{(So\,ln)} \right| Ag \qquad 20 \ Pt, \\ H_{2(s)} \left| HCl_{(So\,ln)} \right| Ag \qquad 20 \ Pt, \\ H_{2(s)} \left| HCl_{(So\,ln)} \right| Ag \qquad 20 \ Pt, \\ H_{2(s)} \left| HCl_{(So\,ln)} \right| Ag \qquad 20 \ Pt, \\ H_{2(s)} \left| HCl_{(So\,ln)} \right| Ag \qquad 20 \ Pt, \\ H_{2(s)} \left| HCl_{(So\,ln)} \right| Ag \qquad 20 \ Pt, \\ H_{2(s)} \left| HCl_{(So\,ln)} \right| Ag \qquad 20 \ Pt, \\ H_{2(s)} \left| HCl_{(So\,ln)} \right| Ag \qquad 20 \ Pt, \\ H_{2(s)} \left| HCl_{(So\,ln)} \right| Ag \qquad 20 \ Pt, \\ H_{2(s)} \left| HCl_{(So\,ln)} \right| Ag \qquad 20 \ Pt, \\ H_{2(s)} \left| HCl_{(So\,ln)} \right| Ag \qquad 20 \ Pt, \\ H_{2(s)} \left| HCl_{(So\,ln)} \right| Ag \qquad 20 \ Pt, \\$

ELE(CTRO	CHEM	ISTRY								
	B) Pot	tential is	zero Vo	olts			2) H ₂ S ₂ C	o ₈ at ano	de		
	$C) 50^{\circ}$	% H ₂ SO	by iner	t electro	des		3) Daniel cell				
	D) Zr	n/Zn^{+2} (a	q)//Cu	⁺² (aq)/C	Cu		4) O ₂ at a	anode			
							5) Pt, H ₂	(1atm)/ 1	$H^+(1M)$		
	The co	orrect m	atch is								
	1\	A	В	C	D	2)	A	В	C	D	
	1) 3)	4 2	5 5	2 4	3	2) 4)	2 5	1 3	4 1	3 2	
102.	,	A smuggler could not carry gold by depositing iron on the gold surface since									
102.		ld is der		curry g	ord by dep		2) Iron r	_	Garrace	Sirice	
	,			duction	notential		,	asts			
		3) Gold has higher reduction potential than iron4) Gold has lower reduction potential than iron									
103.	,	Standard reduction electrode potential of three metals A, B and C are respectively +0.05 V,									
100.					powers of		e metan	71, D an	a c are r	espectively	10.00 17
	1) B >	C > A		2) A >	B > C		3) C > B	> A	4) .	A > C > B	
104.	The d	The difference of potential of two electrodes					n a galva	nic cell i	s known	as	
	1) EM	F					2) Poten	tial diffe	rence		
	3) Ele	ctrode d	ifference	9			4) Ionic	differenc	e		
105.		The standard electrode potentials of four elements A, B, C and D are -2.65, -1.66, – 0.80 and +0.86 V. The highest chemical activity will be exhibited by								0.80 and	
	1) A			2) B			3) C		4)	D	
106.	Zn gives H ₂ gas with H ₂ SO ₄ and HCI but not with HNO ₃ because										
	1) Zn	1) Zn acts as oxidizing agent when reacts with HNO ₃									
	2) HN	IO_3 is w	eaker a	cid than	H ₂ SO ₄ and	d HCI					
	3) In 6	electroch	nemical s	series Zr	n is above l	hydrog	gen				
	4) NC	o ₃ -is redu	uced in p	referenc	ce to hydro	nium	ion				
107.	At 298	8 K the s	tandard	reducti	on potenti	ials for	the follo	owing ha	ılf reactio	ons are give	n as
	Zn^{2+} ((aq) + 2e	$e^- \rightarrow Z$	Zn(s) ; -	-0.762 V		Cr ³⁺ (aq)) + 3e ⁻ -	\rightarrow Cr(s)	; -0.740 V	
	2H+ (a	aq) + 2e ⁻	\rightarrow H ₂	(g); -0	.00 V		Fe^{3+} (aq) + $e^- \rightarrow Fe^{2+}$ (aq) ; + 0.770 V				
	The st	trongest	reducin	g agent	is						
	1) Zn	(s)		2) H ₂ (g)		3) Cr(s)		4)]	Fe ²⁺ (aq)	
108.	Wher	Zn pied	e is kep	t in CuS	O_4 solutio	n, cop	per gets	precipit	tated bec	ause:	
					al of zinc i						
	2) Sta	ındard r	eduction	n potent	ial of zinc	is less	than co	pper			
					rger than c			-			
	4)Ato	mic nun	nber of z	zinc is lo	wer than c	opper					
109.	_	•								→ Br ₂ +2e ⁻ , s on potentia	

volt. Which of the following reactions is non-spontaneous?

1) $Br_2 + 2I^- \rightarrow 2Br^- + I_2$ 3) Fe + $I_2 \rightarrow Fe^{2+} + 2I^-$

2) Fe + Br₂ \rightarrow Fe²⁺ + 2Br⁻

4) $I_2 + 2Br^- \rightarrow 2I^- + Br_2$

110.	Beryllium is placed above magnesium in the II group. When beryllium dust is added to ${\rm MgCl}_2$ solution, will							
	1) Has no effect	2) Precipitate Mg metal						
	3) Precipitate MgO	4) Lead to dissolution of Be metal						
111.	Which reaction is not feasible?							
	$1) 2KI + Br_2 \rightarrow 2KBr + I_2$	$2) 2KBr + I_2 \rightarrow 2KI + Br_2$						
	3) $2KBr + Cl_2 \rightarrow 2KCl + Br_2$	$4) 2H2O + 2F2 \rightarrow 4HF + O2$						
112.	E° for Fe ²⁺ + 2e \rightarrow Fe is -0.44 V ; E° for Zr	$n^{2+} + 2e \rightarrow Zn \text{ is } -0.76 \text{ V. Then}$						
	1) Zn is more electropositive than Fe	2) Fe is more electropositive than Zn						
	3) Zn is more electronegative	4) None of the above						
113.	Based on the data given below, the correct	order of reducing power is:						
	$Fe^{3+}_{(aq)} + e \rightarrow Fe^{2+}_{(aq)}; E^{\circ} = 0.77V$	$Al^{3+}_{(aq)} + 3e \rightarrow Al_{(s)}$; E° = -1.66V						
	$Br_{2(aq)} + 2e \rightarrow 2Br_{(aq)}^-$; E° = +1.08V							
		3) $Al < Br^- < Fe^{2+}$ 4) $Al < Fe^{2+} < Br^-$						
114.	For the cell prepared from electrode A: $\operatorname{Cr_2O_7^{2-}} \operatorname{Cr^{3+}}, \operatorname{E^{\circ}}_{\operatorname{red}} = +1.33 \operatorname{V}$ and electrode B: $\operatorname{Fe^{3+}} \operatorname{Fe^{2+}}, \operatorname{E^{\circ}}_{\operatorname{red}} = 0.77 \operatorname{V}$. Which of the following stament is correct? 1) The electrons will flow from B to A when connection is made 2) The e.m.f. of the cell will be $0.56 \operatorname{V}$							
	3) A will be positive electrode	4) All of the above						
115.	The S.R.Ps of Cu^{2+} / Cu , Hg^{2+} / Hg and Zn^{2+} / Zn are respectively 0.34V, 0.85 V and -0.76 V. The wrong statement is							
	1) Cu reduces Hg ²⁺	2) Zn reduces Cu ²⁺						
	3) Hg reduces Zn ²⁺	4) Zn reduces both Cu^{2+} and Hg^{2+}						
116.	The $E^{\circ}_{M^{3+} M^{2+}}$ values for Cr, Mn, Fe and Co are -0.41, +1.57V, +0.77 and +1.97V respectively.							
	For wihch one of these metals the change is	n oxidation sate from +2 to +3 is easiest?						
	1) Co 2) Mn	3) Fe 4) Cr						
117.	Assertion : is immersed in AgNO ₃ solution	A blue colour is obtained when a copper wire						
	Reason :	Silver reduces Cu ²⁺ to copper						
118.	Standard electrode potentials are							
	Fe^{2+} / Fe ($E^0 = -0.44$); Fe^{3+} / Fe^{2+} ($E^0 = 0.77$	7)						
	$\mathrm{Fe^{2+}}$, $\mathrm{Fe^{3+}}$ and Fe blocks are kept together, the	nen						
	1) Fe ³⁺ increases	2) Fe ³⁺ decreases						
	3) Fe ²⁺ /Fe ³⁺ remains unchanged	4) Fe ²⁺ decreases.						
119.	The half cell reaction, with its standard red	luction potentials are						
	I) $Pb^{2+} + 2e^{-} \rightarrow Pb (E^{0} = -0.13 \text{ V})$	II) $Ag^+ + e^- \rightarrow Ag (E^0 = +0.80 \text{ V})$						
	Which of the following reactions will occur?							
	1) $Pb^{2+} + 2Ag \rightarrow 2Ag^{+} + Pb$	2) $Pb^+ + H_2 \rightarrow 2H^+ + Pb$						

3)
$$2H^+ + 2Ag \rightarrow 2Ag^+ + H_2$$

4)
$$2Ag^+ + Pb \rightarrow Pb^{2+} + 2Ag$$

The standard reduction potentials of Zn and Ag in water at 298 K are, $Zn^{2+} + 2e^- \rightarrow Zn$; 120. $E^0 = -0.76V$ and $Ag^+ + e^- \rightarrow Ag$; $E^0 = +0.80V$ Which of the following reactions take place?

1)
$$Zn^{2+}_{(aq)} + Ag^{+}_{(aq)} \rightarrow Zn_{(s)} + Ag_{(s)}$$

2)
$$Zn_{(s)} + Ag_{(s)} \rightarrow Zn^{2+}_{(aq)} + Ag^{+}_{(aq)}$$

3)
$$Zn^{2+}_{(aq)} + 2Ag_{(s)} \rightarrow 2Ag^{+}_{(aq)} + Z$$

3)
$$Zn^{2+}_{(aq)} + 2Ag_{(s)} \rightarrow 2Ag^{+}_{(aq)} + Zn_{(s)}$$
 4) $Zn_{(s)} + 2Ag^{+}_{(aq)} \rightarrow Zn^{2+}_{(aq)} + 2Ag_{(s)}$

- 121. A student made the following observations in the laboratory,
 - 1) Clean copper metal did not react with 1 molar Pb(NO₃)₂ solution
 - B)Clean lead metal dissolved in a 1 molar AgNO₃ solution and crystals of Ag metal appeared
 - C)Clean silver metal did not react with 1 molar $Cu(NO_3)_2$ solution.

The order of decreasing reducing character of the three metals is:

- For the electrochemical cell, $M\left|M^+\right|\left|X^-\right|X$, $E^\circ_{M^+/M}=-0.44V$ and $E^\circ_{X/X^-}=0.33V$. From 122. this data, one can deduce that:
 - 1) $M+X \rightarrow M^++X^-$ is the spontaneous reaction
 - 2) $M^++X^- \rightarrow M+X$ is the spontaneous reaction

3)
$$E_{cell} = 0.11V$$

4)
$$E_{cell} = -0.77V$$

Four colourless salt solutions are placed in separate test tubes and a strip of copper is placed 123. in each. Which solution finally turns blue?

1)
$$Pb(NO_3)_2$$

2)
$$Zn(NO_3)_2$$

3)
$$AgNO_3$$

$$4) Cd(NO_3)_2$$

- Assertion: In the construction of Galvanic cell, lithium electrode can not be used as cathode 124. Reason: Lithium has the highest negative S.R.P value.
- 125. The potential of single electrode depends upon
 - 1) the nature of the electrode
- 2) temperature
- 3) concentration of the ion with respect to which it is reversible
- 4) all the above
- 126. The Nernst equation giving dependence of electrode potential on concentration is

1)
$$E = E^0 + \frac{2.303 \text{ RT}}{nF} \log \frac{[M]}{[M^{n^+}]}$$
 2) $E = E^0 + \frac{2.303 \text{ RT}}{nF} \log \frac{[M^{n^+}]}{[M]}$

2)
$$E = E^0 + \frac{2.303 \text{ RT}}{\text{nF}} \log \frac{[M^{n+}]}{[M]}$$

3)
$$E = E^0 - \frac{2.303 \text{ RT}}{\text{nF}} \log \frac{[M^{n+}]}{[M]}$$

4)
$$E = E^0 - \frac{2.303 \text{ RT}}{\text{nF}} \log [M^{n+}]$$

127. Consider the following four electrodes:

$$A = Cu^{2+} (0.0001 M) / Cu (s)$$

$$B = Cu^{2+} (0.1 M) / Cu (s)$$

$$C = Cu^{2+} (0.01 \text{ M}) / Cu (s)$$

$$D = Cu^{2+} (0.001 M)/Cu (s)$$

If the standard reduction potential of /Cu is +0.34V, the reduction potentials (in volts) of the above electrodes follow the order

1)
$$A > D > C > B$$

2)
$$B > C > D > A$$

3)
$$C > D > B > A$$

4)
$$A > B > C > D$$

128. The Nernst equation for the reduction potential of a non metal A when $[A^{n-}] = C$ is given by

1)
$$E^0 + \frac{0.059}{n} \log C$$

2)
$$E^0 - \frac{0.059}{n} \log C$$

3)
$$E^0 + \frac{0.059}{n} \log C^n$$
 4) $E^0 - \frac{0.059}{n} \log \frac{1}{C}$

- 129. Which of the following is not correct?
 - 1) Aqueous solution of NaCl is an electrolyte
 - 2) The units of electrochemical equivalent are g.coulomb.
 - 3) In the Nernst equation, 'n' represents the number of electrons transferred in the elctrode
 - 4) Standard reduction potential of hydrogen electrode is zero volts.
- The e.m.f. of the following Daniell cell at 298 K is E_1 ; $Zn/ZnSO_4(0.01M)//CuSO_4(1.0M)/Cu$ 130. When the concentration of $ZnSO_4$ is 1.0 M and that of $CuSO_4$ is 0.01 M, the e.m.f. changed to E_2 . What is the relationship between E_1 and E_2 ?

1)
$$E_1 > E_2$$
 2) $E_1 < E_2$ 3) $E_1 = E_2$ 4) $E_2 = 0 \neq E_1$

- Zn (s) + $Cl_2(1atm) \rightarrow Zn^{2+} + 2Cl^-$, The E⁰ of the cell is 2.12 V. To increase E 131.
 - 1) Zn²⁺ concentration should be increased 2) Zn²⁺ concentration should be decreased
 - 4) partial preassure of Cl₂ should be decreased. 3) Cl⁻ concentration should be increased
- For the cell $Zn/Zn^{2+}//Cu^{2+}/Cu$, if the concentration of Zn^{2+} and Cu^{2+} ions is doubled, the emf of the cell 132.
 - 3) remains same 1) doubles 2) reduces to half
- In a cell that utilises the reaction $\mathrm{Zn_{(s)}}$ + $\mathrm{2H_{(aq)}}^+$ ightarrow $\mathrm{Zn^{2+}}_{(aq)}$ + $\mathrm{H_{2(g)}}$ addition of $\mathrm{H_2SO_4}$ to 133. cathode compartment, will
 - 1) lower the E and shift equilibrium to the left
 - 2) increase the E and shift equlibrium to the left
 - 3) increase the E and shift equlibrium to the right
 - 4) lower the E and shift equilibrium to the right
- For a cell reaction, $Cu^{2+}(C_1, aq)+Zn(s) \rightarrow Zn^{2+}(C_2, aq)+Cu(s)$ of an electro chemical cell, the 134. change in standrad free energy, ΔG^0 at a given temperature is

1)
$$\ln C_1$$
 2) $\frac{0.0591}{2} \log \frac{C_2}{C_1}$ 3) $\ln C_2$ 4) $\ln(C_1 + C_2)$

The relationship between standard reduction potential of a cell and equilibrium constant is 135. shown by (M.P.C.E.T.2002)

1)
$$E_{\text{cell}}^0 = \frac{n}{0.059} \log K_c$$
 2) $E_{\text{cell}}^0 = \frac{0.059}{n} \log K_c$ 3) $E_{\text{cell}}^0 = 0.059 n \log K_c$ 4) $E_{\text{cell}}^0 = \frac{\log K_c}{n}$

- For a spontaneous reaction the $\,\Delta G$, equilibrium constant (K) and E 0 will be respectively 136.
 - 1) -ve, >1, +ve 4) -ve, >1, -ve
- For the reaction Pt /H₂(1atm) / H⁺(aq) // Cl⁻(aq) /AgCl/Ag; K_c (equilibrium constant) is 137.

1)
$$K_{c} = \frac{\left[Cl^{-}\right]\left[AgCl\right]}{\left[H^{+}\right]\left[H_{2}\right]}$$
 2) $K_{c} = \left[H^{+}\right]\left[Cl^{-}\right]$ 3) $K_{c} = \frac{\left[H^{+}\right]\left[H_{2}\right]}{\left[Cl^{-}\right]\left[AgCl\right]}$ 4) $K_{c} = \frac{\left[H_{2}\right]}{\left[Ag\right]}$

138. The relationship between free energy and electrode potential is

	1) $\Delta G = -nFE$	2) $\Delta G = n FE$	3) $\Delta G = \frac{nFE}{R}$	4) $\Delta G = \frac{\Delta H}{nFE}$				
139.	The correct relations equilibrium constan	_	gy change in a reaction	n and the corresponding				
	1) $\Delta G^0 = RT \ln K_c$	2) $\Delta G^0 = -RT \ln K_C$	3) $\Delta G = RT \ln K_C$	4) $\Delta G = RT \ln K_C$				
140.	When an electric cell	is charged, then						
	1) voltage of cell incr	eases	2) electrolyte of cell of	dilutes				
	3) resistance of cell is	ncreases	4) None of these.					
141.	When lead storage b	attery is discharged						
	1) SO ₂ is evolved		2) Lead sulphate is	consumed				
	3) lead is formed		4) H ₂ SO ₄ is consume	4) H ₂ SO ₄ is consumed				
142.	When lead storage b	attery is charged						
	1) PbO ₂ dissolves							
	2) The lead electrode	e becomes coated in the	lead sulphate					
	3) H ₂ SO ₄ is regenera	ited	4) The amount of acid decreases					
143.								
	1) Pb \rightarrow Pb ²⁺ + 2e ⁻		2) $Pb^{2+} + 2e^- \rightarrow Pb$					
	3) $Pb^{2+} + SO_4^{2-} \rightarrow Pb^{2-}$	oSO ₄	4) $PbSO_4 + 2H_2O \rightarrow$	PbO ₂ + 4H ⁺ +SO ₄ ²⁻ + 2e ⁻				
144.	With respect of fuel	cell prepared from H_2 a	and O_2 gases, the false	statement is				
	1) It is free from poll	-						
	2) This is more efficie	ent than conventional r	nethod of generating e	lectricity				
	3) The reaction occu	ring at anode is $O_{2(g)}$ +	$2H_2O + 4e^- \rightarrow 4OH^-$					
		ne to go into operation.	-					
		WORK SH	EET - II					
1.	During the electorlys	is of cryolite, aluminium	and fluorine are forme	d in molar ratio				
	1) 1: 2	2) 2:3	3) 1:1	4) 1:3				
2.	Weight of copper (a through cupric salt		sited when 2 Faraday	ys of electricity is passed				
	1) 63.5g.	2) 31.15g.	3) 127g.	4) 2g.				
3.	By passing 0.1 Farad liberated is	ay of electricity througl	n fused sodium chlorid	le, the amount of chlorine				
	1) 35.45 g	2) 70.9 g	3) 3.545 g	4) 17.77 g				
4.		mbs required to deposited as $A1^{3+} + 3e^{-} \longrightarrow$	· ·	when the given electrode				
	1) 1.83×10^5 C	2) 57900 C	3) 5.86×10^5 C	4) 3F				
5.	The number of electr $CuSO_4$ is	ons involved in the elec	etro deposition of 63.5 g	g. of Cu from a solution of				
	1) 6.0×10^{23}	2) 3.011×10^{23}	3) 12.04×10^{23}	4) 6.02×10^{22}				
6.	The electrochemical metal is	equivalent of a metal	is "x" g. coulomb ⁻¹ . T	The equivalent weight of				

				CITO CHEMINISTICE				
	1) x	2) x × 96500	3) x/96500	4) $1.6 \times 10^{-19} \times x$				
7.	The electro chemical equivalent of an element is 0.0006735 g/C. Its equiva-lent weight is							
	1) 65	2) 67.35	3) 130	4) 32.5				
8.	The current strength	required to displace 0.	1 g. of H ₂ in 10 sec is					
	1) 9.65 amp	2) 1.988 amp	3) 198 amp	4) 965 amp				
9.	On electrolysing a sar of oxygen in ml obtain	=	, 22.4 ml of hydrogen w	as obtained. The volume				
	1) 22.4	2) 44.8	3) 11.2	4) 2.24				
10.	An electrolytic cell is constructed for preparing hydrogen. For the average current of 1 ampere in the circuit, the time required for producing 112 ml of H ₂ at STP is approximately							
	1) 500 sec	2) 800 sec	3) 1930 sec	4) 965 sec				
11.	One coulomb of charge passes through solutions of AgNO ₃ and CuSO ₄ . The ratio of the amounts of silver and copper deposited on platinum electrodes used for electrolysis is							
	1) 108 : 63.5	2) 54 : 31.75	3) 108:31.75	4) 215.8 : 31.75				
12.	When electricity is paradays must be	assed through molten	AlCl ₃ , 13.5 g. of Al is de	eposited. The number of				
	1) 0.5	2) 1.0	3) 1.5	4) 2.0				
13.	One Faraday charge was passed through the electrolytic cell placed in series containing solutions of Ag^+ , Ni^{2+} and Cr^{3+} . Then Ag , Ni and Cr deposited will be (Atomic masses; $Ag = 108$, $Ni = 59$ and $Cr = 52$)							
		Ag	Ni	Cr				
	1)	108 g	29.5 g	17.3 g				
	2)	108 g	59 g	52 g				
	3)	108 g	108 g	108 g				
	4)	108 g	116 g	156 g				
14.	The weight in grams of $\rm O_2$ formed at Pt anode during the electrolys of aq. $\rm K_2SO_4$ solution during the passage of one coulomb of electricity is							
	16	8	32	. 64				
	1) $\frac{16}{96800}$	$2)\frac{8}{96500}$	$3)\frac{32}{96500}$	$4)\frac{64}{96500}$				
15.	When one ampere cu passing through it is		h a Cu wire for 10 sec.,	the number of electrons				
	1) 1.6×10^{19}	2) 1×10^{35}	3) 1×10^{16}	4) 6.24×10^{19}				
16.	How many coulombs of electricity are required for the reduction of 1 mol of ${\rm MnO_4^{-1}}$ to ${\rm Mn^{2+}}$?							
	1) 96500 C	2) 1.93×10^5 C	3) 4.83×10^5 C	4) 9.65×10^6 C				
	5) 5.62×10^5 C							
17.	Electric charge on 1g	m ion of N ³⁻ is						
	1) 4.8×10^{-19} C	2) 10 × 1.6 × 10 ⁻¹⁹ C	3) 1.6 × 10 ⁻¹⁹ C	4) 2.89×10^5 C				
18.	The charge required toFaradays.	for the oxidation of one	mole of Mn ₃ O ₄ to MnC	Q_4^{2-} in alkaline medium is				
	1) 10	2) 5	3) 3.34	4) 2				
19.	Time required to dep	osit one millimole of al ution of aluminium ior		passage of 9.65 amperes				
	1) 30 s	2) 10 s	3) 30,000 s	4) 10,000 s				
20	,	,	,	d another acidified ferric				

	chloride, are in series will be	. The ratio of masses of	f Iron deposited at the	cathode in the two cells
	1) 3:1	2) 2:1	3) 1 : 1	4) 3:2
21.			g of K is deposited. The sed through molten A	amount of Al deposited ICl_3 is
	1) 4.5 g	2) 9 g	3) 13.5 g	4) 2.7 g
22.		1	acidulated water, 112 ds. The current passed	ml of hydrogen gas at in amperes is
	1) 1.0	2) 0.5	3) 0.1	4) 2.0
23.	The amount of chloring aqueous solution of N		peres of current is pass	sed for 30 minutes in an
	1) 66 g	2) 1.32 g	3) 33 g	4) 99 g
24.		001 M acetic acid is 5 × ssociation constant of		00.5 S cm ² mol ⁻¹ then the
	1) 81.78 × 10 ⁻⁴	2) 81.78×10^{-5}	3) 18.78×10^{-6}	4) 18.78 × 10 ⁻⁵
25.	The distance between cell constant (in cm ⁻¹)		is 2.5 cm and area of ea	ch electrode is 5 cm ² the
	1) 2	2) 12.5	3) 7.5	4) 0.5
26.	The limiting molar co mol ⁻¹ respectively. The		NaCl, KBr an KCl are	126, 152 and 150 S. cm ²
	1) 128 S cm ² mol ⁻¹	2) 302 S cm ² mol ⁻¹	3) 278 S cm ² mol ⁻¹	4) 176 S cm ² mol ⁻¹
27.	Which of the following	ng solutions of NaCl ha	ns the higher specific co	onductance?
	1) 0.001N	2) 0.01N	3) 0.1 N	4) 1 N
28.	Molar conductivity of conductivity will be	a solution is 1.26×10^2 G	Ω^{-1} cm ² mol ⁻¹ . Its molar	ity is 0.01M. Its specific
	1) 1.26 × 10 ⁻⁵	2) 1.26×10^{-3}	3) 1.26×10^{-4}	4) 0.0063
29.	-	•	inte dilutions for NH $_4$ C $$ m 2 equi $^{-1}$. The value of	Cl , NaOH and NaCl are λ^{∞}_{eq} of NH ₄ OH is
	1) 371.44		2) 271.44	1
	3) 71.44		,	ted from the data given
30.	•	of 0.1 M Nitric acid is	•	The molar conduc-tance
	1) 630 ohm ⁻¹ cm ²	2) 315 ohm ⁻¹ cm ²	3) 100 ohm ⁻¹ cm ²	4) 6300 ohm ⁻¹ cm ²
	5) 63.0 ohm ⁻¹ cm ²			
31.		ution of 0.05 mole litre [.] ductivity (in Scm ² mole		been found to be 0.0110
	1) 0.055	2) 550	3) 0.22	4) 220
32.	Molar ionic conductive the solution will be	rities of a bivalent elect	rolyte are 57 and 73. Th	e molar conductivity of
	1) 130 S cm ² mol ⁻¹	2) 65 S cm ² mol ⁻¹	3) 260 S cm ² mol ⁻¹	4) 187 S cm ² mol ⁻¹
33.	EMF of a cell in terms	of reduction potential	of its left and right elec	etrodes is
	1) $E = E_{left} - E_{right}$	2) $E = E_{left} + E_{right}$	3) $E = E_{right} - E_{left}$	4) $E = -(E_{right} + E_{left})$

			E	LECTRO CHEMISTRY					
34.	E^0 for the half ce	E^0 for the half cell Zn^{2+}/Zn is -0.76V. emf of the cell $Zn/Zn^{2+}(1M)/H^+(1M)/H_2$ at 1 atm is							
	1) -0.76 V	2) + 0.76 V	3) -0.38 V	4) + 0.38 V					
35.		electrode protential of C M concentration of Cu ²⁺		0.34 V, what is the electrode					
	1) 0.399 V	2) 0.281 V	3) 0.222 V	4) 0.176 V					
36.	The potential of	hydrogen electrode is -1	18 mV. The H ⁺ conce	entration of the solution is					
	1) 0.01M	2) 2M	$3) 10^{-4} M$	4) 1M					
37.	The standard po	otentials (E ⁰) for the half	reactions are as Zn®	$Zn^{2+} + 2e^-$, $E^0 = + 0.76 \text{ V}$					
	Fe ® Fe ²⁺ + 2e ⁻ ,	Fe ® Fe ²⁺ + 2e ⁻ , E ⁰ = + 0.41 Vthe emf for the cell reaction Fe ²⁺ + Zn ® Zn^{2+} + Fe is							
	1) - 0.35 V	2) + 0.35 V	3) + 1.17 V	4) - 1.17 V					
38.	E^0 for $F_2 + 2e^-$ ®	E^0 for $F_2 + 2e^- \otimes 2F^-$ is 2.8 V; E^0 for $1/2 F_2 + e^- \otimes F^-$ is							
	1) 2.8 V	2) 1.4 V	3) -2.8 V	4) -1.4 V					
39.	Consider the fol	llowing E ⁰ values							
		+ 0.77 V; $E^{0}Sn^{2+} / Sn = -0$ (s) + $2Fe^{3+}$ (aq) $\rightarrow 2Fe^{2+}$ (d conditions the potential for					
	1) 1.68 V	2) 0.63 V	3) 0.91 V	4) 1.40 V					
40.	E ⁰ for the reaction	$\rm E^0$ for the reaction Fe + $\rm Zn^{2+} \ B$ Zn + $\rm Fe^{2+}$ is -0.35 V. The given cell reaction is							
	1) feasible	2) not feasible	3) explosive	4) slow					
41.	E.M.F of the ce	ll reaction, 2Ag ⁺ + Cu	\rightarrow 2Ag + Cu ²⁺ is 0.46	V. If $E_{Cu^{2+}/Cu}^{0}$ is + 0.34 V,					
	$E^0_{Ag^+/Ag}\ is$								
	1) 0.80 V	2) 0.12 V	3) 0.40 V	4) 1.60 V					
42.		The EMF of the cell Ni/Ni ²⁺ $(0.01M)$ /Cl ⁻ $(0.01M)$ /Cl ₂ , pt is V if the SRP of nickel and chlorine electrodes are $-0.25V$ and $+1.36V$ respectively							
	1) +1.61	2) -1.61	3) +1.79	4) -1.79					
43.	The standard el	ectrode potential of the t	wo half cells are given	below					
	$Ni^{+2} + 2e^- \rightarrow N$	$F_i : E^o = -0.25 \text{ Volt}$	$Zn^{+2} + 2e^- \rightarrow Zr$	$h : E^{o} = -0.77 \text{ volt}$					
	The voltage of c	ell formed by combining	the two half cells wou	ıld be					
	1) -1.02	2) +0.52 volt	3) +1.02 volt	4) -0.52 volt					
	,		•						

EXERCISE- I / ANSWERS

WORK SHEET - I

1) 4	2) 3	3) 2	4) 3	5) 2	6) 2	7) 2	8) 4	9) 3	10) 4	
11) 2	12) 3	13) 3	14) 1	15) 4	16) 4	17) 1	18) 3	19) 2	20) 1	
21) 1	22) 2	23) 3	24) 4	25) 4	26) 1	27) 3	28) 4	29) 1	30) 2	
31) 1	32) 4	33) 2	34) 2	35) 2	36) 4	37) 1	38) 4	39) 2	40) 2	
41) 3	42) 2	43) 2	44) 4	45) 3	46) 2	47) 3	48) 1	49) 4	50) 2	
51) 2	52) 3	53) 3	54) 1	55) 2	56) 3	57) 5	58) 2	59) 4	60) 3	
61) 4	62) 2	63) 1	64) 4	65) 2	66) 2	67) 4	68) 1	69) 4	70) 2	
71) 1	72) 1	73) 4	74) 3	75) 2	76) 3	77) 3	78) 1	79) 4	80) 4	
81) 3	82) 4	83) 3	84) 3	85) 1	86) 3	87) 1	88) 2	89) 3	90) 4	
91) 3	92) 4	93) 3	94) 2	95) 2	96) 3	97) 1	98) 1	99) 4	100) 2	
101) 1	102) 3	103) 1	104) 1	105) 1	106) 4	107) 1	108) 2	109) 4	110) 1	
111) 2	112) 1	113) 1	114) 4	115) 3	116) 4	117) 3	118) 2	119) 4	120) 4	
121) 3	122) 1	123) 3	124) 1	125) 4	126) 2	127) 2	128) 2	129) 2	130) 1	
131) 2	132) 3	133) 3	134) 2	135) 2	136) 1	137) 2	138) 1	139) 2	140) 1	
141) 4	142) 3	143) 4	144) 3							

WORK SHEET - II

1) 2	2) 1	3) 3	4) 2	5) 3	6) 2	7) 1	8) 4	9) 3	10) 4
11) 3	12) 3	13) 1	14) 2	15) 4	16) 3	17) 4	18) 1	19) 1	20) 4
21) 1	22) 1	23) 2	24) 3	25) 4	26) 1	27) 4	28) 2	29) 2	30) 1
31) 4	32) 1	33) 3	34) 2	35) 2	36) 1	37) 2	38) 1	39) 3	40) 2
41) 1	42) 3	43) 2							

EXERCISE - I

WORK SHEET - I

- Which of the following reactions occurs at measurable rate? 1.
 - 1) reaction between H⁺ and OH⁻ ions in aqueous solution
 - 2) reaction between AgNO₂ and NaCl aqueous solutions
 - 3) hydrolysis of methyl acetate
 - 4) reaction between hydrogen and oxygen gases at room temperature
- 2. Which of the following reaction is spontaneous at room temperature

1)
$$I_2 + H_2O \rightarrow$$

2)
$$2H_2 + O_2 \xrightarrow{Pt} 2H_2O$$

3)
$$N_2 + O_2 \rightarrow 2NO$$

4)
$$2HC1 \rightarrow H_2 + Cl_2$$

3. Among the following slowest reaction under identical conditions is

1)
$$H^+ + OH^- \rightarrow H_2O$$

2)
$$2KMnO_4 + 5H_2C_2O_4 + 3H_2SO_4 \rightarrow K_2SO_4 + 10CO_2 + 2MnSO_4 + 8H_2O_4 + 8H_2O_5 + 8H_2O_5 + 8H_2O_5 + 8H_2O_5 + 8H_2O_5$$

3)
$$2KMnO_4 + 10FeSO_4 + 8H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 5Fe_2(SO_4)_3 + 8H_2O_4 + 8H_$$

4)
$$AgNO_{3(aq)} + NaCl_{(aq)} \rightarrow AgCl_{(s)} + NaNO_{3(aq)}$$

4. The rate of reaction for $N_2 + 3H_2 \rightarrow 2NH_3$ may be represented as

1)
$$r = -\frac{d[N_2]}{dt} = -\frac{1}{3}\frac{d[H_2]}{dt} = +\frac{1}{2}\frac{d[NH_3]}{dt}$$
 2) $r = -\frac{d[N_2]}{dt} = \frac{1}{3}\frac{d[H_2]}{dt} = +\frac{1}{2}\frac{d[NH_3]}{dt}$

2)
$$r = -\frac{d[N_2]}{dt} = \frac{1}{3} \frac{d[H_2]}{dt} = +\frac{1}{2} \frac{d[NH_3]}{dt}$$

3)
$$r = -\frac{d[N_2]}{dt} = 3\frac{d[H_2]}{dt} = +\frac{1}{2}\frac{d[NH_3]}{dt}$$

3)
$$r = -\frac{d[N_2]}{dt} = 3\frac{d[H_2]}{dt} = +\frac{1}{2}\frac{d[NH_3]}{dt}$$
 4) $r = -\frac{d[N_2]}{dt} = -\frac{1}{3}\frac{d[H_2]}{dt} = +2\frac{d[NH_3]}{dt}$

- 5. The rate of a chemical reaction
 - 1) increases as the reaction proceeds
- 2) decreases as the reaction proceeds
- 3) may increase or decrease during the reaction
- 4) remains constant as the reaction proceeds
- 6. The chemical reaction occurring between covalent molecules involve
 - 1) breaking of existing bonds
- 2) formation of new bonds

3) evolution of heat energy

- 4) 1& 2
- 7. In a reaction $2A + B \rightarrow A_aB$, the reactant 'A' will disappear at
 - 1) half the rate at which B disappears
- 2) the same rate at which B disappears
- 3) the same rate at which A₂B is formed
- 4) twice the rate at which B disappears
- 8. If the first order reaction involves gaseous reactants & gaseous products, the units of its rate are
 - 1) atm
- 2) atm. sec
- 3) atm. sec-1
- 4) atm² sec⁻²
- 9. For the reaction $A \rightarrow B$; following curves represent reaction

The correct curves are

- 1) 1, 2 only
- 2) 2, 3 only
- 3) 1, 4 only
- 4) 3, 4 only
- 10. The reactions $2NO + O_2 \rightarrow 2NO_2$, $2CO + O_2 \rightarrow 2CO_2$ look to be identical, yet the first is faster than the second. The reason is that
 - 1) The first reaction has lower enthalpy change than the second
 - 2) The first reaction has lowe internal energy change than the second
 - 3) The first reaction has lower activation energy than the second
 - 4) The first reaction has higher activation energy than the second
- 11. For $3A \rightarrow xB$, $\frac{d[B]}{dt}$ is found to be $2/3^{rd}$ of $\frac{d[A]}{dt}$. Then, the value of x is
 - 1) 1.5
- 2) 3

3) 1/2

- 4) 2
- 12. Burning of coal is represented as $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$. The rate of this reaction is increased by
 - 1) decrease in the concentration of oxygen
- 2) powdering the lumps of coal
 - 3) decreasing the temperature of coal
- 4) providing inert atmosphere
- 13. For a hypothetical reaction; A \rightarrow L the rate expression is, rate = $-\frac{dC_A}{dt}$
 - 1) negative sign represents that rate is negative
 - 2) negative sign pertains to the decrease in the concentrations of reactant
 - 3) negative sign indicates the attractive forces between reactants $\frac{1}{2}$
 - 4) all of the above are correct
- 14. For the reaction; $2HI \rightarrow H_2 + I_2$, the expression $-\frac{1}{2} \frac{d[HI]}{dt}$ represents
 - 1) The rate of formation of HI
- 2) The rate of disappearance of HI
- 3) The instantaneous rate of the reaction
- 4) The average rate of reaction
- 15. For a reaction $A \rightarrow 2B$, as time proceeds
 - 1) [A] ↓ but [B] ↑
 - 2) Rate of disappearance of A \downarrow , but that of rate of appearance of B \uparrow
 - 3) Rate of disappearance of A \uparrow , but that of rate of apparance of B \downarrow
 - 4) Rate with respect to A and B remain same $\,$
- 16. From the graph

X = 10 min;

Now, correct relationship is

1)
$$\frac{C_o - C_1}{X} = \frac{C_1 - C_2}{Y} = \frac{C_2 - C_3}{Q}$$

2)
$$\frac{C_2 - C_3}{O} > \frac{C_1 - C_2}{Y} > \frac{C_0 - C_1}{X}$$

3)
$$\frac{C_0 - C_1}{X} > \frac{C_1 - C_2}{Y - X} > \frac{C_3 - C_2}{Q - Y}$$

4)
$$\frac{C_1 - C_3}{Q - X} = \frac{C_0 - C_2}{Y}$$

17. At 298 K, 1 atm, among

1)
$$2H_2 + O_2 \rightarrow 2H_2O$$
 2) $H_2 + Cl_2 \rightarrow 2HCl$

3)
$$N_2 + O_2 \rightarrow 2NO$$

3)
$$N_2 + O_2 \rightarrow 2NO$$
 4) $H_2SO_4 + KOH \rightarrow products$, correct order of reaction rates is

1)
$$D > A > C > B$$
 2) $D < A < B < C$ 3) $D > B > A > C$

4)
$$D > B = C > A$$

18. In which of the following cases, rate of disappearance of any reactant at a given instant equals to rate of appearance of any product

1)
$$H_2 + F_2 \rightarrow 2HF$$

2)
$$N_2 + 3H_2 \rightarrow 2NH_3$$

3)
$$PCl_5 \rightarrow PCl_3 + Cl_2$$

4)
$$H_2 + \frac{1}{2}O_2 \rightarrow H_2O$$

For $\frac{1}{2}X_2 + Y_2 \to XY_2$, relative rates of species given as 19.

1) Rate =
$$\frac{-d[x_2]}{dt} = \frac{-d[y_2]}{dt} = +\frac{d[xy_2]}{dt}$$

1) Rate =
$$\frac{-d[x_2]}{dt} = \frac{-d[y_2]}{dt} = +\frac{d[xy_2]}{dt}$$
 2) Rate = $-2\frac{d[x_2]}{dt} = \frac{-d[y_2]}{dt} = +\frac{d[xy_2]}{dt}$

3) Rate =
$$\frac{-1}{2} \frac{d[x_2]}{dt} = \frac{-d[y_2]}{dt} = + \frac{d[xy_2]}{dt}$$
 4) Rate = $-\frac{1}{2} \frac{d[x_2]}{dt} = \frac{+d[y_2]}{dt} = + \frac{d[xy_2]}{dt}$

4) Rate =
$$-\frac{1}{2} \frac{d[x_2]}{dt} = \frac{+d[y_2]}{dt} = +\frac{d[xy_2]}{dt}$$

For N_2 + $3H_2 \rightarrow 2NH_3$, rates of dis-appearance of N_2 and H_2 and rate of appearance of NH_3 20. respectively are a, b and c, then

1)
$$a > b > c$$

2)
$$a < c < b$$

3)
$$a = b > c$$

4)
$$a = b = c$$

The reaction $CH_3COOC_2H_5 + H_2O \xrightarrow{H^+}$ products is a/an _____ process 21.

1) Instantaneous

2) Spontaneous

3) Moderately slow

Then correct statement(s) is/are

1) A & C

2) B&C

3) A only

4) Conly

1) pressure 2) concentration of reactants 3) concentration of product 4) nature of reactants 36. A catalyst in a chemical reaction does not change 1) Average energy of reactants or products 2) Enthalpy of the reaction 3) Activation energy of the reaction 4) Both 1 and 2 37. In general the rate of a given reaction can be increased by all the factors except 1) Increasing the temperature 2) Increasing the concentration of reactants 3) Increasing the activation energy 4) Using a positive catalyst 38. The effect of temperature on a reaction rate for which Ea is zero is given by 1) with increase of temperature rate increases 2) with increase of temperature rate decreases 3) rate is independent of temperature 4) reaction never occurs 39. The graph of log K versus 1/T is given below. Here 'x' is equal to [Where K = rate constant and T = absolute temperature] 1) $\frac{-E_a}{2303}$ 2) $\frac{-E_a}{2.303R}$ 3) $\frac{-2.303}{E_a.R}$ 40. In the graph drawn between log K and 1/T, intercept equals to 1) $\frac{-Ea}{2.303R}$ 2) log A 4) (log 1) / 2.303 3) ln A 41. In the Arrhenius equation, the Boltzmann factor e-Ea/RT represents the of the molecules possessing energy in excess of activation energy 1) number 2) fraction 3) weight 4) percentage Rate constant of a reaction can be expressed by Arrhenius equation as $K = Ae^{-E/RT}$. In this 42. equation, E represents 1) the fraction of molecules with energy greater than the activation energy of the reaction 2) the energy above which all the colliding molecules will react 3) the energy below which colliding molecules will not react 4) the total energy of the reacting molecules at a temperature, T 43. Activation energies for different reactions are given below 1) A \rightarrow products, Ea=14 K.Cal 2) B \rightarrow products, Ea=16 K.cal 3) $C \rightarrow \text{products}$, Ea=12 K.Cal 4) D \rightarrow products, Ea=10K.cal If the temperature increases by 10° C for which reactions the temperature coefficients $\left(\frac{k_1+10}{k_1}\right)$ are maximum and minimum respectively. 4) d&b 1) a & b 2) b&c 3) b & d Which of the following parameters of a chemical reaction are increased when a catalyst is 44. used? 1) Rate & activation energy 2) Rate constant & enthalpy 3) Enthalpy & time duration 4) Rate & Rate constant 45. Which of the following influence the rate of reaction 1) Nature of reactants 2) Concentration of reactants

3) Temperature

4) Molecularity

- 1) A,B
- 2) B,C,D
- 3) C,D
- 4) A, B,C
- 46. For an exothermic chemical process occurring in two steps as
 - i) $A + B \rightarrow X$ (slow)

ii) $X \rightarrow AB$ (fast)

The progress of the reaction can be best described by

- 4) All are correct
- Which of the following does not affect the rate of reaction? 47.
 - 1) Amount of the reactants taken
- 2) Physical state of the reactants

3) ΔH of reaction

- 4) Size of the vessel
- 48. The rate expression gives the relation between rate of reaction and
 - 1) conc. of reactants

2) conc. of products

3) rate constant

- 4) rate law
- 49. Rate of a reaction can be expressed by Arrhenius equation $k = A \cdot e^{-E_a/RT}$. In this equation, E_a represents
 - 1) The energy above which not all the colliding molecules will react
 - 2) The energy below which colliding molecules will not reacts
 - 3) The total energy of the reacting molecules at temperature T
 - 4) The fraction of molecules which energy greater than the activation energy of the reaction
- 50. The minimum energy required for molecules to enter into chemical reaction is called
 - 1) Kinetic energy
- 2) Potential energy
- 3) Threshold energy 4) Activation energy
- 51. In a reaction, threshold energy is equal to
 - 1) activation energy

- 2) normal energy of the reactants
- 3) activation energy + energy of reactants
- 4) activation energy energy of reactants
- 52. The value of activation energy for a chemical reaction is primarily depends on
 - 1) temperature

2) nature of the reacting species

- 3) the collision frequency
- 4) concentration of the reacting species
- 53. For a reversible reaction, $A \rightleftharpoons B$, which one of the following statements is wrong from the given energy profile diagram?

Reaction coordinate ->

1) Activation energy of forward reaction is greater than that of backward reacton.

	3) The forward reaction is endothermic						
	4) Activation energy of forward reaction activation energy of backward reaction.	on is equal to the sum o	f heat of reaction and the				
54.	Wrong statement among the following is						
	1) effective collisions are more if activation	on energy is less					
	2) zero order reaction proceeds at a constant rate independent of concentration or time						
	3) reactions with highest rate constant	values have lowest acti	vation energies				
	4) if initial concentration increases half li	fe decreases in zero ord	er				
55.	For the reaction $A + B \Leftrightarrow C + D$, the for energy of formation of $A + B$ is that						
	1) equal to 2) less than	3) greater than	4) double				
56.	Collision theory satisfactorily explains						
	1) First order reaction	2) Zero order reaction	on				
	3) Bimolecular reaction		4) Any order reaction				
57.	According to collision theory of reaction	rates, the activation ener	rgy is				
	1) the energy gained by the molecule on o	colliding with other mole	ecules.				
	2) the energy that molecule should posse	ss in order to undergo re	eaction				
	3) the energy it should possess so that it can enter into an effective collision						
	4) the energy it has to acquire so that it ca	n enter into an effective	collision.				
58.	Increase in the concentration of the react	ants leads to the change	in				
	1) Heat of reaction	2) Activation energy	y.				
	3) Collision frequency	4) Threshold energy	I				
59.	The population of activated molecules ca	n be increased by					
	1) increase in temperature	2) using a catalyst					
	3) increase of concentration of reactants	4) All					
60.	Consider an endothermic reaction $X \rightarrow$ backward and forward reactions, respect		energies E_b and E_f for the				
	1) $E_b < E_f$ 2) $E_b > E_f$	3) $E_b = E_f$					
	4) no definite relation						
61.	An endothermic reaction $A \rightarrow B$ has an acount of the reaction is yKJ, the activation energy						
	1) - x 2) x - y	3) $x + y$	4) y - x				
62.	Which of the following explains the incre	ease of reaction rate by a	catalyst?				
	1) Catalyst provides the necessary energy	y to the colliding molecu	les to cross the barrier				
	2) Catalyst decreases the rate of backward a	reaction so that the rate of	forward reaction increases				
	3) Catalyst decreases the enthalpy change of the reaction						
	4) Catalyst provides an alternative path of	of lower activation energ	y.				
63.	The plot of log k vs $\frac{1}{T}$ helps to calculate						
	1) Energy of activation 2) Rate constant of	f the reaction					
	3) Order of the reaction						

2) The threshold energy is less than that of activation energy

CIII	A) E	11 .1 6			
		on as well as the frequen			
64.		y of a reaction can be de	termined by		
		entration of reactants			
		nstant at standard tempe			
		nstants at two different	temperature	S	
	4) by doubling conc.				
65.	Which of the following	-			
	1) Molecularity of a r	eaction is always same	as the order o	of reaction	
	2) In some cases mole	ecularity of the reaction	is same as th	e order of reaction	
	3) Molecularity of the	e reaction is always mo	re than order	of reaction	
	4) Molecularity never	r be equal to order			
66.	The rate equation for to in relation to this rea		found to be:	rate=K[A][B]. The correct sta	tement
	1) unit of k must be s	ec ⁻¹			
	2) value of k is indep	endent of the initial cor	ncentrations o	of A and B	
	3) rate of formation of	of C is twice the rate of d	isappearance	e of A	
	4) $t_{1/2}$ is a constant				
67.	If the rate for the che	mical reaction is expres	ssed as Rate =	$K[A][B]^n$, then	
	1) order of reaction is	sone	2) order of r	eaction is n	
	3) order of reaction is	s 1 + n	4) order of r	eaction is 1 - n	
68.	Which of the following	ng statements is correct	regarding or	der of reaction	
	1) first order reaction	should be bimolecular	2) order of r	eaction must be positive	
	3) order depends up	on stoichiometry	4) order is d	etermined by experimental	results
69.	If the rate of gaseous	reaction is independen	t of pressure,	the order of reaction is	
	1) 0	2) 1	3) 2	4) 3	
70.	For the reaction H ₂ statement is true abo	+ $Br_2 \rightarrow 2HBr$, the raut this reaction	ate expression	n is, rate = $K [H_2] [Br_2]^{1/2}$	which
	1) The reaction is of s	econd order	2) Order of	the reaction is 3/2	
	3) The unit of K is see	g ⁻¹	4) Molecula	rity of the reaction is 2	
71.	For the following elem	mentary step $(CH_3)_3CB_1$	$r_{(aq)} \rightarrow (CH_3)$	$C_{(aq)}^{+} + Br_{(aq)}^{-}$ the molecularit	y is
	1) Zero	2) 1	3) 2	4) fractional	
72.	The units of rate cons	stant for the reaction ob	eying rate ex	pression, $r = k[A][B]^{2/3}$ is	
	1) mole ^{-2/3} lit ^{2/3} time ⁻¹		2) mole ^{2/3} lit		
	3) mole ^{-5/3} lit ^{5/3} time ⁻¹		4) mole ^{2/3} lit	^{2/3} time ⁻¹	
73.	them has been found		redict the effe	l rate law for the reaction bect on the rate of the reaction	
	1) the rate is doubled		2) rate becom	mes four times	
	3) the rate becomes s	ix times	4) the rate b	ecomes eight times	
74.	In the following sequ	ience of reactions $_{ m M}-$	$N \xrightarrow{K_1} N$	$\rightarrow O \xrightarrow{K_3} P: K_1 < K_2 < K_3$, the	hen the

	rate determining step	is						
	$1) M \rightarrow N$	2) N \rightarrow O	$3) O \rightarrow P$	$4)\mathrm{M} \longrightarrow \mathrm{P}$				
75.	Taking the reaction $x+2y \rightarrow products to be of second order, which of the following is / are the rate law expression/s for the reaction$							
	$I) \frac{\mathrm{dx}}{\mathrm{dt}} = K[x][y]$							
	III) $\frac{\mathrm{dx}}{\mathrm{dt}} = \mathrm{K} \left[\mathrm{x} \right]^2$	$IV)\frac{dx}{dt} = K[x] + K[$	$y]^2$					
	Then the correct answ	vers can be						
	1) I only		2) I and III only					
	3) I and II only		4) I and IV only					
76.	of a reaction cannot be determined experimentally.							
	1) order		2) rate					
	3) rate constant		4) molecularity					
77.	The rate expression for the reaction $A_{(g)} + B_{(g)} \rightarrow C_{(g)}$ is rate = $kC_A^2 C_B^{1/2}$ What changes in tinitial concentrations of A and B will cause the rate of reaction to increase by a factor eight?							
	, –	2) $C_A \times 2; C_B \times 4$,	,				
78.	For a reaction pA+ qE	$B \rightarrow \text{products}$, the rate l	aw expression is r = k [A	A] ^l [B] ^m then				
	1) $(p+q) = (1+m)$		2) $(p + q) > (1 + m)$					
	3) $(p+q)$ may or may	not be equal to (l + m)	4) $(p+q) \neq (l+m)$					
79.	For $H_2 + Cl_2 \xrightarrow{X} 2$	HCI, rate law is given l	by R=K. Then, X is					
	1) Pt	2) Ni	3) h v	4) Water				
80.	If both $\frac{dc}{dt}$ & specific	rate have same units, tl	nen rate law is					

3) R=K [a]⁻²

For $A+B \rightarrow C+D$, when [A] alone is doubled, rate gets doubled. But, when [B] alone is increased

3)4/9

s[B](M)

0.01

0.02

0.02

Which of the following relation is correct for a first order reaction? (k = rate constant; r = rate

2) $k = r \times c$ 3) $k = \frac{c}{r}$

3) $r=K[A][B]^{1/3}$

4) R=K

4) 2

2.5

5

45

4) $k = \frac{r}{c}$

Rate (M/s)

4) $r=K[a]^{2/3}[B]^{1/3}$

2) $R=K[A]^{1/2}$

by 9 times, rate gets tripled. Then, order of reaction is

2)3/2

[A](M)

0.01

0.01

0.03

2) $r=K[A]^2[B]$

Rate law for $2A+B \rightarrow C+D$ from following data:

1) $R = K[A]^2$

1)3/4

S.No

1

2

3

1) $r=K[A]^{1/3}[B]$

1) $k = r \times c^2$

of reaction; c = conc. of reactant

81.

82.

83.

259

84.	$\frac{dc}{dt}$ of a first ord	er reaction depends on				
	1) time	2) concentration	3) Temperature	4) All		
85.	Which of the fol	lowing is correct for a first	order reaction? (K= ra	ate constant $t_{1/2}$ = half-life)		
	1) $t_{1/2} = 0.693 \times F$	$(2) k.t_{1/2} = \frac{1}{0.693}$	3) k.t _{1/2} = 0.693	4) $6.93 \times k \times t_{1/2} = 1$		
86.		a given reaction was doubl der of the reaction is	ed as the initial concer	tration of the reactant was		
	1) Zero	2) 1st	3) 2nd	4) 3rd		
87.	The inversion of	f cane sugar into glucose a	nd fructose is			
	1) 1st order	2) 2nd order	3) 3rd order	4) zero order		
88.	The half-life of a	first order reaction is				
	1) independent	of the initial concentration	of the reactant			
	2) directly prop	ortional to the initial conc	entration of the reactar	nt		
		portional to the initial con				
	, , ,	ortional to the square of th				
89.	, ,	of ester in the presence of a				
	1) 1	2) 2	3) 0	4) 3		
90.	$CH_4 + Cl_2 - \frac{hv}{}$	\rightarrow CH ₃ Cl+ HCl; the order	er of this reaction is			
	1) 0	2) 1	3) 2	4) 3		
91.	RCOOR+H ₂ O_	HCI → RCOOH + ROH fo	ollows reaction kir	nectics [karnataka 2001]		
	1) 2 nd order		2) unimolecular			
	3) pseudo unime	olecular	4) Zero order			
92.	Order of a reacti	on is decided by				
	1) molecularity		2) law of mass action	on		
	3) performing ex	periment	4) Lechatlier princi	ple		
93.	$2A \rightarrow B+C$ would	ld be a zero order reaction	when rate of reaction			
	1) is directly pro	portional [A]	2) is directly propo	2) is directly proportional [A] ²		
		nt of change of [A]	, , , , ,			
94.	·	ollowing is a first order r	-			
	$1) 2N_2O_5 \rightarrow 4NC$	-	2) $2H_2O_2 \rightarrow 2H_2O +$	$-O_2$		
	3) CH ₃ COOC ₂	$H_5 + H_2O \xrightarrow{H^+} produc$	ts 4) All the above			
95.	If a reaction obey	s the following equation k	$= \frac{2.303}{t} \log \frac{a}{a - x} $ the c	order of the reaction will be		
	1) zero	2) one	3) two	4) three		
96.	The rate constar	nt for a reaction is 2.05×10^{-5}) ⁻⁵ mole lit ⁻¹ .sec ⁻¹ . The 1	eaction obeys order		
	1) First	2) Second	3) Zero	4) Half		
97.				rectly proportional to the concentration of the other.		

	The overall or	der of reaction will be							
	1) One	2) Two	3) Zero	4) fractional					
98.	In the reaction	of aA + bB + cC \rightarrow Pro	ducts,						
	i) If concentration becomes doubt		eeping conc. of B and (C constant the rate of reaction					
	ii) If concentra remains unaffe		ping conc. of A and C	constant, the rate of reaction					
	iii) If concentra reaction is	ition of C is made 1.5 tim	es, the rate o reaction b	ecomes 2.25 times.The order of					
	1) 1	2) 2.5	3) 3	4) 3.5					
99.		$2A+B \rightarrow Products$, the of A is doubled and that		to be one and w.r.t B equal to 2. the of reaction will be					
	1) Doubled	2) Halved	3) Remain unaf	fected 4) Four times					
100.				rved that a plot of logarithm of obtained from this observation					
	1) Specific rate	!	2) Reaction rate						
	3) Energy of ac	tivation	4) Molecularity	7					
101.	The correct exp	pression for the rate con	stant for reactions of z	ero order is					
	1) k - [A _o]/2t		2) $k = \frac{1}{t} \{ [A_0] \}$	-[A]}					
	3) $k = \frac{1}{t} \{ [A] -$	$-[A_0]$	$4) k = \frac{2.303}{t} \log t$	$\{[A_0] - [A]\}$					
102.	If 'a' is the initial if it is of zero o		eactant, the time taken	for completion of the reaction,					
	1) a/k	2) a/2k	3) 2a/k	4) k/a					
103.	For the first order reaction $A \rightarrow Products$, which one of the following is the correct plot of $log (a-x)$ versus time?								
	1) log(a-x)	$2) \log(a-x)$	$3) \log(a-x)$	$4) \log(a-x)$					
104.	The slowest st	ep of a particular reacti	on is found to be $\frac{1}{X_0}$	$+Y_2 \rightarrow XY_2$					
		The slowest step of a particular reaction is found to be $\frac{1}{2}X_2+Y_2 \rightarrow XY_2$ The order of the reaction is							
		2) 3	3) 3.5	4) 1.5					
	1) 2	,	,	•					
105.		For the reaction $A \rightarrow B$, the rate law expression is : rate = K[A]. Which of the following statements is incorrect?							
	1) The reaction	1) The reaction follows first order kinetics							
	2) The $t_{1/2}$ of real	action depends on initial	concentration of reacta	nts					
	3) K is constar	nt for the reaction at a co	onstant temperature						
		v provides a simple way the start of the reaction	y of predicting the con	c. of reactants and products at					
106.		units of the rate constantial concentration of rea		ich the half life is doubled by					
	1) M-s ⁻¹	2) M ⁻¹ s ⁻¹	3) sec ⁻¹	4) $M^{-2}s^{-1}$					

107.	Which of the following represents the expression for 3/4 th life of 1st order reaction							
	1) $\frac{2.303}{k} \log 3/4$	2) $\frac{2.303}{k} \log 3$	3) $\frac{2.303}{k} \log 4$	4) $\frac{K}{2.303} \log 4$				
108.	The formation of gas	s at the surface of tungs	ten due to adsorption	n is order reaction				
	1) 0	2) 1	3) 2	4) Insufficient data				
109.	The rate law for a re doubling the concenthe earlier rate of the	tration of A and halving	stances A and B is gig the concentration of	ven by Rate = $k[A]^m [B]^n On$ B, the ratio of the new rate to				
	1) (m + n)	2) (n - m)	3) 2 ^(m-n)	4) $\frac{1}{2^{(m+n)}}$				
110.	by increasing the pro	a: $2NO(g) + O_2(g) \rightarrow 2NO(g)$ essure on it. If the react of NO, the rate of reaction	ion is of first order w	only reduced to half its value ith respect to O_2 and second				
	1) diminish to one-e	ighth of its initial value	e 2) increase to eigh	t times of its initial value				
	3) increase to four ti	mes of its initial value	4) diminish to one	-fourth of its initial value				
111.		ion, the concentration of becomes 0.025M in	of the reactant, decrea	ases from 0.8M to 0.4M in 15				
	1) 7.5 minutes	2) 15 minutes	3) 30 minutes	4) 60 minutes				
	1) Both (1) and (R) as	re true and (R) is the co	rrect explanation of ((1)				
	2) Both (1) and (R) a	re true and (R) is not th	ne correct explanation	n of A				
	3) (1) is true but (R)	is false	4) (1) is false but (I	R) is true				
112.	Assertion: Spontane	eous reaction may be sl	ow or fast.					
	Reason: Spontaneon	us nature deals with fo	easibility of the react	ion but not rate.				
113.		eaction increases with						
				n concentration of reactants.				
114.		stant of a reaction at a p	=					
		of rate constant 'K' is in		concentration.				
115.	, ,	sis of an ester is a slow						
	Reason: Reactions l	oetween covalent speci	es involve breaking a	and making of bonds.				
116.	Assertion: As time passes the rate of non zero order reaction w.r.t reactants (or) products decreases							
	Reason: Rate of a re	eaction is directly prope	ortional to (Concentr	ration) ^{order}				
117.		sions lead to chemical i						
	Reason: Activated	molecules bring about o	effective collisions					
118.	Assertion : Lesser th	e activation energy, gr	eater is the rate of rea	action				
	Reason: Activation	energy of a reaction is	independent of temp	erature				
119.	Assertion :Order of	reaction is evaluated fr	om the mechanism o	f a reaction				
	Reason: Order of re							
120.		st increases the rate of a	a reaction.					
-	·							

Reason: In presence of a catalyst, the activation energy of the reaction increases.

2)

4)

122.

Set - II
$$\left(t_{\frac{1}{2}}\right)$$

1) Independent of C

2) Proportional to [C]⁻¹

3) Proportional to [C₂]¹

4) Proportional to [C₀]⁻²

- 1) $H_2 + I_2 \rightarrow 2 HI$
- 2) $2H_2O_2 \rightarrow 2H_2O + O_2$
- 3) $2NO + Cl_2 \rightarrow 2NOCl$
- 4) $CH_4 + Cl_2 \xrightarrow{h9} CH_3Cl + HCl$

Correct match is

- 3
- 1) 3) 2
- Set I (process)
- 1) 2HI __Au products
- 2) $SO_2Cl_2 \rightarrow products$
- 3) $R_1COOR_2 + H_2O \xrightarrow{OH^-}$ products
- 4) 2NO + Cl₂ \rightarrow products
- 5) Inversely proportional to [C_a]⁻² В 2 1 5

2

- Set II (unit of K)
- 1) Sec-1

1

- 2) mol ltr-1 sec-1
- 3) lit² mol⁻² sec⁻¹
- 4) lit mol-1 sec-1

Correct match is

- 2 3 1 ' 1 1) 3)
- 2)
- 1 1

D

5

WORK SHEET - II

- For the reaction $N_2 + 3H_2 \rightarrow 2NH_3$, the rate $\frac{d[NH_3]}{dt} = 2 \times 10^{-4} \, Ms^{-1}$. Therefore the rate $-\frac{d[N_2]}{dt}$ is given as: 01.
 - $dt_{1} = 10^{-4} \,\mathrm{Msec}^{-1}$
- 2) $10^4 \,\mathrm{M\,sec^{-1}}$
- 3) $10^{-2} \,\mathrm{M\,sec^{-1}}$
- 4) $10^{-4} \text{ sec}^{-1} \text{ M}^{-1}$
- The rate of a heterogeneous reaction such as iron (soli4) and any gas (oxygen) does not depend 02. on:
 - 1) Concentration of reactants
- 2) Surface area of reactants
- 3) Pressure of reactant gases
- 4) Potential energy of reactant
- For the reaction: $[Cu(NH_3)_4]^{2+} + H_2O \rightleftharpoons [Cu(NH_3)_3H_2O]^{2+} + NH_3$. The net rate of 03. reaction at any time is given by: rate =
 - $2.0\times 10^{-4} \Big[[Cu(NH_3)_4]^{2+} \Big] [H_2O] 3.0\times 10^5 \Big[[Cu(NH_3)_3H_2O]^{2+} \Big] [NH_3] \, . \, \text{Then correct}$ statment is/are
 - 1) Rate constant for forward reaction = $2x \cdot 10^{-4}$
 - 2) Rate constant for backward reaction = 3×10^5
 - 3) Equilibrium constant for the reaction = 6.6×10^{-10}
 - 4) All of these

Consider the reaction : $N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$. The equally relationship between 04.

$$-\frac{d[NH_3]}{dt}$$
 and $-\frac{d[H_2]}{dt}$ is:

1)
$$\frac{d[NH_3]}{dt} = -\frac{3}{2} \frac{d[H_2]}{dt}$$

2)
$$\frac{d[NH_3]}{dt} = -\frac{d[H_2]}{dt}$$

3)
$$\frac{d[NH_3]}{dt} = \frac{1}{3} \frac{d[H_2]}{dt}$$

4)
$$\frac{d[NH_3]}{dt} = -\frac{2}{3} \frac{d[H_2]}{dt}$$

05. The accompanying figure depicts the change in concentration of species X and Y for the

 $X \rightarrow Y$, as a function of time. The point of intersection of the two curves represents

2)
$$t_{3/4}$$

3)
$$t_{2/3}$$

Benzene diazonium chloride (1) decomposes into chlorobenzene (2) and N₂(g) in first-order 06. reaction. Volumes of N2 collected after 5 min and at the complete decomposition of A are 10 mL. and 50 mL. The rate constant for the reaction is .

For the reaction $N_2O_5 \rightarrow 2NO_2 + O_2$; Given $\frac{-d[N_2O_5]}{dt} = K_1[N_2O_5]$ 07.

 $\frac{d[NO_2]}{dt} = K_2[N_2O_5]$ and $\frac{d[O_2]}{dt} = K_3[N_2O_5]$. The relation in between K_1 , K_2 and K_3 is:

1)
$$2K_1 = K_2 = 4K_3$$

2)
$$K_1 = K_2 = K_3$$

1)
$$2K_1 = K_2 = 4K_3$$
 2) $K_1 = K_2 = K_3$ 3) $2K_1 = 4K_2 = K_3$ 4) None of these

- 08. For the reaction, $2A + B \rightarrow 3C + D$; which of the following does not express the reaction rate

1)
$$\frac{d[D]}{dt}$$

2)
$$-\frac{d[A]}{2dt}$$
 3) $-\frac{d[C]}{3dt}$ 4) $-\frac{d[B]}{dt}$

$$3) - \frac{d[C]}{3dt}$$

4)
$$-\frac{d[B]}{dt}$$

- $Hydrogenation\ of\ vegetable\ ghee\ at\ 25^{0}C\ reduces\ pressure\ of\ H_{2}\ from\ 2\ atm\ to\ 1.2\ atm\ in\ 50$ 09. minute. The rate of reaction in terms of molarity per second is:
 - 1) 1.09×10^{-6}
- 2) 1.09×10^{-5}
- 3) 1.09×10^{-7} 4) 1.09×10^{-9}
- In reversible reaction: $2NO_2 = \frac{k_1}{k_2}N_2O_4$ the rate of disappearance of NO_2 is equal to 10.

1)
$$\frac{2k_1}{k_2}[NO_2]^2$$

2)
$$2k_1[NO_2]^2 - 2k_2[N_2O_4]$$

3)
$$2k_1[NO_2]^2 - k_2[N_2O_4]$$

4)
$$(2k_1 - k_2)[NO_2]$$

WORK SHEET - III

01. The rate constant (K) for the reaction. $2A+B \rightarrow Product$ was found to be 2.5×10^{-5} litremol⁻¹ sec⁻¹ after 15 sec, 2.60×10^{-5} litremol⁻¹ sec⁻¹ after 30 sec and 2.55×10^{-5} litremol⁻¹ sec⁻¹ after 50 sec. The order of reaction is:

02. A first order reaction is carried out with an initial concentration of 10 mol per litre and 80% of the reactant changes into the product in 10 sec. Now if the same reaction is carried out with an initial concentration of 5 mol per litre. The percentage of the reactant changing to the product in 10 sec is:

03. For a first order reaction $A \subset K_1 \to B$ which of the following relation is not correcet:

1)
$$K = K_1 + K_2$$

2)
$$\frac{1}{\tau} = \frac{1}{\tau_1} + \frac{1}{\tau_2}$$

3)
$$\frac{1}{t_{1/2}} = \left(\frac{1}{t_{1/2}}\right)_1 + \left(\frac{1}{t_{1/2}}\right)_2$$

4)
$$\frac{1}{K} = \frac{1}{K_1} + \frac{1}{K_2}$$

04. A substance undergoes first order decomposition. The decomposition follows two parallel first order reactions as:

The percentage distribution of B and C are:

1) 80% B and 20%C

2) 76.83% B and 23.17% C

3) 90% B and 10% C

- 4) 60% B and 40% C
- 05. Half life (t_1) of the first order reaction and half life (t_2) of the second order reaction are equal. Hence ratio of the rate at the start of the reaction:
 - 1) 1

2) 2

- 3) 0.693
- 4) 1.44
- 06. For a first order reaction, the half-life is 50 sec. Identify the correct statement from the following.
 - 1) the reaction is almost gets complete in 500 sec
 - 2) the same quantity of reactant is consumed for every 50 sec of the reaction
 - 3) quantity of reactant remaining after 100 sec is half of what remains after 50 sec
 - 4) All the above three

CHE	VIICAL	KILLE								
07.	For a first order reaction, if the time taken for completion of 50% of the reaction is 't' second, the time required for completion of 99.9% of the reaction is:									
	1) 10t		2	2) 5t		3)	100t		4) 2t	
08.			eaction, me taker							3 M to 0.4 M in 15 25 M is
	1) 30 m	inutes	2	2) 60 min	utes	3) 2	7.5 minu	tes	4) 15	minutes
09.	The fol	O	data are	obtaine	d from t		mpositio	O	aseous c	ompound Initial
	Time fo	or 50% re	eac., min			80	113 1	60		
	The ord	der of the	e reaction	n is						
	1) 0.5		2	2) 1.0		3)	1.5		4) 2.0)
10.	In a zer			47.5&%		,		the end	,	ours. The amount
	1) 10.5	%	2	2) 32.0 %		3) \	52.6 %		4) 21	.0 %
			EX	KERCI	ISE -	I / AN	ISWE	RS		
				W	ORK S	SHEET	' - I			
	1) 3	2) 2	3) 2	4) 1	5) 2	6) 4	7) 4	8) 3	9) 3	10) 3
	11) 4	12) 2	13) 2	14) 3	15) 1	16) 3	17) 3	18) 3	19) 2	20) 2
	21) 2	22) 1	23) 3	24) 3	25) 2	26) 3	27) 3	28) 3	29) 2	30) 2
	31) 1	32) 3	33) 2	34) 2	35) 4	36) 4	37) 3	38) 3	39) 2	40) 2
	41) 2	42) 3	43) 3	44) 4	45) 4	46) 2	47) 3	48) 1	49) 2	50) 4
	51) 3	52) 2	53) 2	54) 4	55) 3	56) 3	57) 4	58) 3	59) 4	60) 1
	61) 2	62) 4	63) 4	64) 3	65) 2	66) 2	67) 3	68) 4	69) 1	70) 2
	71) 2	72) 1	73) 4	74) 1	75) 2	76) 4	77) 2	78) 3	79) 3	80) 4
	81) 2	82) 2	83) 4	84) 4	85) 3	86) 1	87) 1	88) 1	89) 2	90) 1
	91) 3	92) 3	93) 3	94) 4	95) 2	96) 3	97) 3	98) 3	99) 2	100) 1
	101) 2	102) 1	103) 2	104) 4	105) 2	106) 2	107) 3	108) 1	109) 3	110) 2
	111) 3	112) 1	113) 1	114) 2	115) 1	116) 1	117) 4	118) 2	119) 4	120) 3
				W	ORK S	НЕЕТ	- II			
	1) 1	2) 4	3) 4	4) 4	5) 1	6) 2	7) 1	8) 3	9) 2	10) 2
				W	ORK S	HEET	- III			
	1) 1	2) 2	3) 4	4) 2	5) 3	6) 4	7) 1	8) 1	9) 3	10) 4

EXERCISE-II

Column - II

1) Decomposition of H₂O₂

p) $10t_{1/2}$

2)
$$\frac{k_{308K}}{k_{298K}}$$

g) 1st order

3) Arrhenius equation

r) Temperature coefficient

s)
$$\log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left(\frac{T_2 - T_1}{T_1 T_2} \right)$$

64. Column - I Column - II

1) Decomposition of H₂O₂

p) First order reaction

2) Decomposition of ozone

q) Order of reaction with respect to oxygen is -

1

3) Decomposition of N₂O₅

r) Half life is independent of initial conc

4) $RCOOR + H_2O \xrightarrow{H^+} RCOOH + ROH$ s) Pseudo unimolecular reaction

t) Units of rate of reaction are M.time⁻¹

65. Match the Order of Reaction (in Column-I) with its Property (in Column-II):

Column - I (Order)

Column - II (Property)

p) Half Life
$$\propto \frac{1}{a^2}$$

q) Half Life
$$\propto \frac{1}{a}$$

3) Second

r) Half Life is doubled on doubling the initial concentration

4) Third

s) 50% reaction takes same time even if concentration is halved (or)

doubled

EXERCISE- II / ANSWERS

EXERCISE - I

WORK SHEET - I

1.	Which of the following is transition element					
	1) Pb	2) Sn	3) Cr	4) Zn		
2.	Liquid metal among d-block elements is					
	1) Hg	2) Zn	3) Nb	4) Cd		
3.	Outer electronic confi	guration of the element	Palladium is			
	1) $4d^55s^1$	2) $4d^9 5s^2$	3) $4d^{10}5s^1$	4) $4d^{10}5s^0$		
4.	In 3d series which ele	ment has highest M.P a	and B.P			
	1) V	2) Zn	3) Cu	4) Cr		
5.	Which of the followin	g orbitals are filled pro	gressively in the transit	tion elements		
	1) s	2) p	3) d	4) f		
6.	Which set of elements	among the following a	re called non-transitio	nal elements		
	1) Cu, Ag and Au	2) Fe, Co and Ni	3) Zn, Cd and Hg	4) Re, Os and Ir		
7.	The catalyst used in the	ne manufacture of HNO	O ₃ by Ostwald's proces	s is		
	1) Pt	2) Ni	3) Fe	4) Mo		
8.	Iron catalyst is used in					
	1) Contact process		2) Ostwald's process			
	3) Birkland-Eyde process 4) Haber's process					
9.	The changed name of Khurchatovium (Z=104) is					
	1) Joliotium	2) Dubnum	3) Rutherfordium	4) Hatrium		
10.	The number of elect	rons in 4d-subshell of	'Pd' is			
	1) 7	2) 8	3) 9	4) 10		
11.	Electron configuration of Ferrous ion is					
	1) $1s^22s^22p^63s^23p^63d^6$	$64s^{0}$	2) $1s^22s^22p^63s^23p^63d^6$	$64s^{2}$		
	3) $1s^22s^22p^63s^23p^63d^9$	$54s^{1}$	4) $1s^22s^22p^63s^23p^63d^54s^0$			
12.	The following pair of	ions have the same elec	ctronic configuration			
	1) Cr^{3+} and Fe^{3+}	2) Fe ³⁺ and Mn ²⁺	3) Fe ³⁺ and Co ³⁺	4) Sc ³⁺ and Cr ³⁺		
13.	How many 'd' electrons are present in Cr2+ ion?					
	1) 4	2) 5	3) 6	4) 3		
14.	What kind of electro metal ions	nic transition take plac	ce in the exhibition of	colour by transition		
	1) d to s	2) s to p	3) d to d	4) f to s		
15.	Outermost EC	Element				
	1) $5s^1 4d^5$	A) Cu				
	2) $6s^1 5d^{10}$	B) Pd				
	3) $4s^1 3d^{10}$	C) Mo				
	4) 5S° 4d¹0	D) Cr				
		E) Au				
	The correct match is					
	1) 1-C, 2-A, 3-A, 4-B		2) 1-C, 2-E, 3-B, 4-A			
	3) 1-C, 2-E, 3-A, 4-B		4) 1-E, 2-C, 3-A, 4-B			

16.	(A): Fe^{+3} is more stable than that of Fe^{+2} .					
	(R): Fe^{+3} ion has half filled 3d orbital whereas Fe^{+2} does not.					
	1) Both A & R are correct and R is correct explanation for A					
	2) Both A & R are correct and R is not correct	=				
	3) A is true but R is false	4) A is false but R true	e			
17.	Number of 'd' electrons present in M shell	•				
	1) 10 2) 20	3) 18	4) 16			
18	The atomic numbers of vanadium chromiu 24, 25 and 26. Which one of these may be enthalpy	m, manganese and iron	are respectively 23,			
	1) V 2) Cr	3) Mn	4) Fe			
19.	Of the following outer electronic configura achieved by which one of them?	tions of atoms, the high	est oxidation state is			
	1) $(n-1)d^8ns^2$ 2) $(n-1)d^5ns^2$	3) $(n-1)d^3ns^1$	4) $(n-1)d^5ns^1$			
20.	The common oxidation state of transition el	lements is				
	1) + II 2) + IV	3) + VI	4) + VII			
21.	Which of the following transition elements	exhibit +8 oxidation sta	te			
	1) Cu and Zn 2) Ru and Os	3) W and Pb	4) Ag and Au			
22.	Manganese exhibits oxidation states from	,	, 0			
	1) + II to + VII 2) + I to + VI	3) + I to + V	4) + III to + V			
23.	The most stable oxidation state of Iron is	,	,			
	1) + II 2) + III	3) + I	4) + VI			
24.	The maximum oxidation state in 3d series ϵ	,	,			
	1) Cu 2) V	3) Mn	4) Fe			
25.	The transition element that has stable confi	•	,			
	1) Cu 2) Zn	3) Sc	4) Mn			
26.	Divalent Manganese is more stable due to	,	,			
	1) 3d ⁴ configuration 2) 3d ² configuration	3) 3d ⁵ configuration	4)3d ³ configuration			
27.	The oxidation state of "Ni" in Ni(CO) ₄ is	9, 11)			
	1) + II 2) zero	3) + III	4) + VIII			
28.	The element which has half-filled d-orbital	,	,			
	1) Mn 2) Cr	3) Zn	4) Fe			
29.	Coloured complexes absorb radiation in the	•	,			
	1) visible region 2) infrared region	3) U.V. region	4) far IR region			
30.	Coloured ion among the following is					
	1) Zn ²⁺ 2) Mn ²⁺	3) Cu ¹⁺	4) Ti ⁴⁺			
31.	In aqueous solution which of the following	colour is exhibited by N	JiCl,			
	1) pink 2) green	3) blue	4) yellow			
32.	The ion which exhibits orange red colour in	•	, ,			
	1) $Cr_2O_7^{2-}$ 2) MnO_4^{2-}	3) MnO ₄	4) Cr ³⁺			
33.	The following ion is colourless in aqueous	′ 1	,			
	1) Ti ²⁺ 2) Cu ²⁺	3) Ni ²⁺	4) Zn ²⁺			
34.	Which of the following pairs of ions are col	,	,			
	1) Ti ⁺³ , Cu ⁺² 2) Sc ⁺³ , Zn ⁺²	3) Co ⁺² , Fe ⁺³	4) Ni ⁺² , V ⁺³			
35.	The following ion exhibits colour in aqueou	us solution?				

d and	f - Block Elements					
	1) Sc ³⁺	2) Cu ⁺	3) Ni ²⁺	4) Zn ²⁺		
36.	A: Sc+3 ion in aqueou	us solutions is colorless	, }	,		
	R: Ions with d ⁰ configuration are colorless					
	The correct answer is	~				
	1) Both (A) and (R) as	e true and (R) is thecor	rect explanation of (A)			
		• •	e correct explanation of	(A)		
	3) (A) is true but (R) i		4) (A) is false but (R) i			
37.	The atomic number o of the element in its M		ow many electrons are p	oresent in the M-shell		
	1) 5	2) 14	3) 12	4) 13		
38.	Paramagnetism is the	e property of	·	•		
	1) completely filled e	lectronic subshells	2) unpaired electrons	,		
	3) non-tranistion eler	nents	4) vacant orbitals			
39.	The formula to calcu	late paramagnetic mon	nent of a substance is			
	$1) \mu_S = \sqrt{4S(S+2)} B$	M	2) $\mu_{S} = \sqrt{n(n+2)} \text{ B.M}$	M		
	3) $\mu_{S} = \sqrt{n(n+4)} \text{ B.N}$	M	4) $\mu_{\rm S} = \sqrt{L(L+2)}$ B.	M		
40.	The units of Magnetic	c moment are				
	1) Newton - ohm	2) Torrs	3) Bohr Magneton	4) Pascals		
41.	The value of B.M in S	I units is	,	,		
	1) $9.273 \times 10^{-23} \text{ J.T}^{-1}$		2) $9.273 \times 10^{24} \text{J.T}^{-1}$			
	3) $9.273 \times 10^{-24} \text{ J.T}^{-1}$		4) $9.273 \times 10^{23} \text{ J.T}^{-1}$			
42.	,	e attracted towards ma	,			
	1) Zn	2) Mn	3) Mg	4) Cd		
43.	•	diamagnetic substance	, 0	,		
	1) 1.73	2) 2.83	3) 5.0	4) 0		
44.	,	ng set of elements are Fe	,	, -		
	1) Zn, Cd and Hg	2) Cu, Ag and Au	3) Fe, Co and Ni	4) Sc, Ti and U		
45.	,	, 0	al magnetic field are ca	,		
	1) diamagnetic	1 /	2) paramagnetic			
	3) ferromagnetic		4) antiferromagnetic			
46.	The following is para	magnetic	, 0			
	1) CaCl,	2) CuCl ₂	3) ZnCl ₂	4) NaCl		
47.	-	nibits highest magnetic	·	,		
	1) Cu ²⁺	2) Ti ³⁺	3) Ni ²⁺	4) Mn ²⁺		
48.	•	etic moment of Cu ²⁺ ion	<i>'</i>	,		
	1) 1.73 B.M.	2) zero	3) 2.6 B.M.	4) 3.4 B.M.		
49.	Ferrous ion changes number of	,	rith acidified hydrogen	,		
	-	· ·		4) 4 and 5 02 P.M		
50	1) 6 and 6.93 B.M.	2) 5 and 5.92 B.M.	3) 5 and 4.9 B.M.	4) 4 and 5.92 B.M.		
50.		gnetic moment of Sc+3 is	Γ			
	R: The spin only mag	gnetic moment (in BM)	of an ion is equal to $\sqrt{1}$	n(n+2)		
	1) Both (A) and (R) are true and (R) is the correct explanation of (A)					

	2) Both (A) and (R) a	are true and (R) is not the	correct explanation of	(A)
	3) (A) is true but (R)	is false	4) (A) is false but (R)	is true
51.	A : Cu ⁺ is diamagne	etic		
	R: Ions with d10 con	figuration are diamagne	tic	
		are true and (R) is the cor		
		are true and (R) is not the		
	3) (A) is true but (R)	is false	4) (A) is false but (R)	is true
52.	Which of the follow spin only magnetic	ing pair of transition met moment?	al ions, have the same	calculated values of
	1) $Ti^{+2} \& V^{+2}$	2) Fe ⁺² & Ci ⁺²	3) Cr ⁺² & Fe ⁺²	4) Co ⁺² & Ti ⁺²
53.	Which one of the fo	llowing has diamagnetis	sm?	
	1) Co ²⁺	2) Cu ²⁺	3) Mn ²⁺	4) Sc ³⁺
54	Which of the follow	ing ions has the maximu	m magnetic moment	
	1) Mn ⁺²	2) Fe ⁺²	3) Ti ⁺²	4) Cr ⁺³
55.	The spin only magn	etic moment of Ni ²⁺ in ac	uous solution would	be
	1) 1.73BM	2) 2.84BM	3) 4.9 BM	4) 0
56.	Metals constitute br	,	,	,
	1) Zn and Cu	2) Cu and Sn	3) Sn and Zn	4) Cu, Zn and Sn
57.	Bronze is an alloy o	•	,	,
	1) Cu + Sn	2) Cu + Zn	3) Pb + Sn + Zn	4) Pb + Zn
58.	,	nt in German silver is	,	,
	1) Ag	2) Cu	3) Ni	4) Zn
59.	Steels are generally	prepared by me	thod	•
	1) Compressed metal deposition	hod 2) Oxidation	3) Quenching	4) Electrylytic
60.	Percentage of carbo	n in the steels is nearly		
	1) 3%	2) 2%	3) 0.2%	4) 10%
61.	The alloy used to re-	duce nitrites to ammonia		
	1) Type metal	2) Devarda's metal	3) Wood's metal	4) Solder metal
62.	Which among the fo	ollowing is an example of	Ferrous alloy	
	1) Wood's metal	2) Type metal	3) Invar	4) Solder metal
63.	Which of the follow	ing alloys does not conta	in copper	
	1) Devarda alloy	2) Aluminium bronze	3) German silver	4) Magnalium
64.	Gunmetal is an allo	y of		
	1) Cu and Fe	2) Cu, Sn and Zn	3) Ni, Fe and Cr	4) Al and Mg
65.	Which of the follow	ing is ferrous alloy?		
	1) German Silver	2) Gunmetal WORK SHE F	3) Nichrome E T - II	4) Devarda's alloy
1.	The following repre	esents the electronic confi	guration of a transition	n element
	1) $ns^2 np^3$		2) $ns^2 np^6 nd^3 (n+1)s$	
	3) $ns^2 np^6 nd^{10} (n-1)$	$s^2 (n+1)p^4$	4) $ns^2 np^5$	
2.	, - ,	ring element has high der	- nsity	
	1) Sc	2) Zn	3) Cu	4) Co
3.	Which of the follow	ing statements concernin	g transition elements	is not true?
	1) They are all meta	ls	2) They easily form co	omplexes

d and f-Block Elements 3) Compounds contain

	3) Compounds cont	aining their ions are cold	oured	
	4) They show multip	ole oxidation states alwa	nys differing by two un	its.
4.	The atomic number 1) 46	of element having pseud 2) 45	o inert gas configuratio 3) 47	on in it's atomic state is 4) 48
5.	The highly stable pa	air of ions are		
	1) Fe ²⁺ and Fe ³⁺	2) Fe ²⁺ and Mn ³⁺	3) Fe ³⁺ and Mn ²⁺	4) Fe^{3+} and Fe^{4+}
6.	Which ion has thre	e unpaired d-electrons		
	1) Ti ²⁺	2) V ³⁺	3) Cr ³⁺	4) Mn ²⁺
7.	A transition metal io number is	n has configuration [Ar]($3d^4$ in its tripositive oxic	lation state. Its atomic
	1) 25	2) 26	3) 32	4) 19
8.	The number of 'd' el	ectrons in Fe ²⁺ is not eq	ual to that of	
	1) s-electrons in Mg	2) p-electrons in Ne	3) p-electrons in Cl	4) d-electrons in Fe
9.	The pair of ions whi	ch do not have same nu	mber of unpaired elect	rons is
	1) Mn^{2+} and Fe^{3+}	2) Ti ²⁺ and Ni ²⁺	3) Cu ²⁺ and Ti ³⁺	4) Fe ²⁺ and Ni ²⁺
10.	(R): Pt in its ion att. The correct answer 1) Both (A) and (R) a 2) Both (A) and (R) a 3) (A) is true but (R) 4) (A) is false but (R) (A): Elements of sec (R): Lanthanide cor 1) Both (A) and (R) a 2) Both (A) and (R) a 3) (A) is true but (R) 4) (A) is false but (R)	are true and (R) is the contre true and (R) is not the is false one and third transition attraction is observed in the true and (R) is the contre true and (R) is not the is false of is true	rect explanation of (A) e correct explanation of n series have nearly san he elements from atom crect explanation of (A) e correct explanation of	ne atomic radii ic number 58 to 71.
12. 13.	I) The transition elements II) Cu is a better con III) Sc ⁺³ , Zn ⁺² are dia	statements among the forments have partially filled ductor of electricity than amagnetic whereas Ti ⁺⁴ in ments are less electro-po 2) I, II, III only	ed (n-1)d orbitals. n that of Ag. s paramagnetic.	s. 4) I, III only
13.	1) + I and + II	2) + II and + III	3) + I and + III	4) + II and + IV
14.	,	guration of a transition e	•	,
	1) +1, +2 and +3	2) +2 and +3	3) +2, +3, +4 and +5	4) +2 and +5
15.	configuration	tion state is exhibited	·	
	1) (n-1)d ⁵ ns ¹	2) $(n-1)d^5ns^2$	3) $(n-1)d^8ns^2$	4) $(n-1)d^6ns^2$
16.		ent having highest oxida	_	-
	1) VIII	2) VII _B	3) V_B	4) $IV_{_{ m B}}$

d and f-Block Elements

17.	The formation of coloured ions by transition metals is due to							
	1) incompletely fille	1) incompletely filled 'd' orbitals 2) completely filled 'd' orbitals						
	3) completely filled	3) completely filled 's' and 'd' orbitals 4) formation of interstitial compounds						
18.	Element furnishing	coloured ions in the aqu	eous medium is					
	1) Zn	2) Hg	3) Cu	4) Al				
19.	Hydrated Cu ²⁺ ions	absorb light of colou	ır and transmit light o	f colour				
	1) red and blue	2) green and purple	3) purple and red	4) blue and red				
20.	CrO ₄ ²⁻ and MnO ₄ io	ns exhibit colour due to						
	1) presence of unpa	nired electrons in 'd' orbti	ials of Cr and Mn					
	2) charge transfer p	henomenon	3) d-d electron trans	sition				
	4) close packing cry	stal structure						
21.	The colour of [Ti(H	$_{2}O)_{6}]^{3+}$ is due to						
	1) transfer of electro	on from Titanium to anot	her atom of Titanium					
	2) presence of water	r molecules	3) d-d transition					
	4) intra molecular v	ribration						
22.	Transition metal which forms green compounds in its +3 oxidation state and orange red compounds in its +6 oxidation state is							
	1) Cobalt	2) Chromium	3) Iron	4) Nickel				
23.	Complementary co	lour of green light of wav	velength 5000 A° is					
	1) purple	2) blue	3) red	4) grey				
24	Ti ³⁺ is purple but Ti ⁴⁺ is colourless. This is because							
	1) d¹ configuration of Ti³+ 2) d° configuration of Ti³+							
	3) d ³ configuration of Ti ³⁺ 4) d ¹⁰ configuration of Ti ³⁺							
25.	A transitional metal is expected as	l ion X ⁺² ion in its hydrate	d state has six 3d elect	rons. The colour of ion				
	1) Green	2) Pink	3) Blue	4) Yellow				
26.	(A): Transition met	(A): Transition metals form colored ions						
	(R): They have completely filled d-orbitals in the n th shell.							
	The correct answer is							
	1) Both (A) and (R) are true and (R) is the correct explanation of (A)							
	2) Both (A) and (R) are true and (R) is not the correct explanation of (A)							
27.	3) (A) is true but (R) The magnetic mom) is false ent of Cr³+ is similar to tha	4) (A) is false but (R at of) is true				
	1) Fe ²⁺	2) Fe^{3+}	3) Co ³⁺	4) Co ²⁺				
28.	The magnetic mon unpaired d-electron	nent of an ion in its +3 ons present in it are	oxidation state is 3.85	5 BM. The number of				
	1) 2	2) 3	3) 4	4) 5				
29.	The atomic number oxidation state is	of an element is 26. The i	magnetic moment exhi	bited by its ion in its +2				
	1) 5.92 BM	2) 2.84 BM	3) 3.87 BM	4) 4.9 BM				
30.	The ion with highes	st magnetic moment is						
	1) V^{3+}	2) Cr ³⁺	3) Fe^{3+}	4) Co ³⁺				
31.	The pair of ions wh	ich do not have diamagı	netic nature					
	1) Cu^{1+} and Zn^{2+}	2) Sc^{3+} and Ti^{4+}	3) Ca^{2+} and Zn^{2+}	4) V^{2+} and Fe^{2+}				

d and	f-Block Elements						
32.	The magnetic mome	nt of an ion is $\sqrt{24}$ B.J	M. Then that ion may b	e			
	1) Mn ²⁺	2) Fe ²⁺	3) Fe ³⁺	4) Cu ²⁺			
33.	The highest degree of	paramagnetism is sho	wn by				
	1) CoCl ₂ . H ₂ O	2) MnSO ₄ . 4H ₂ O	3) FeCl ₂ . 4H ₂ O	4) NiCl ₂ . 6H ₂ O			
34.	M³+ ion of the first trainumber of the metal		has a magnetic moment	: 1.73 BM. The atomic			
	1) 21	2) 24	3) 29	4) 22			
35.	M ^{x+} ion has magnetic	moment 2.84 BM. The	en'x' is (Z of M = 23)				
	1) 3	2) 2	3) 4	4) 1			
36.	The value of paramag	gnetic moment of Ti ⁺³ io	on in Joule/Tesla is				
	1) 273 x 10 ⁻²⁴	2) 16.042 x 10 ⁻²⁴	3) 26.34 x 10 ⁻²⁴	4) 16.042 x 10 ⁻²⁷			
37.	What is the correct or	der of spin only magne	etic moment (in BM) of	Mn^{+2} , Cr^{+2} and V^{+2} ?			
	1) $Mn^{+2} > V^{+2} > Cr^{+2}$	2) $V^{+2} > Cr^{+2} > Mn^{+2}$	3) $Mn^{+2} > Cr^{+2} > V^{+2}$	4) $Cr^{+2} > V^{+2} > Mn^{+2}$			
38.	(A): Magnetic momen	nt of Mn ⁺² is 5.8 B.M					
	(R): Mn ⁺² has five unp	paired electrons					
	The correct answer is						
	1) Both (A) and (R) are true and (R) is the correct explanation of (A)						
	2) Both (A) and (R) are true and (R) is not the correct explanation of (A)						
	3) (A) is true but (R) is false						
	4)(A) is false but (R) is	strue					
39.	Spin only magnatic moment can be calculated by using $\mu = \sqrt{n \left(n + 2 \right)}$ where 'n						
	represents	NI	2) 14 (1 0 4	NI			
	1) Principal Quantur		2) Magnetic Quantur				
	3) Number of unpair		4) Spin Quantum No).			
40.	_	ving 'd' subshells are de	•	1.			
	1) $Cu_{(aq)}^{2+}$	2) $Fe_{(aq)}^{2+}$	3) $Fe_{(aq)}^{3+}$	4) $Cu_{(aq)}^{1+}$			
41.	Transition elements f	orm alloys easily becau	ise they have				
	1) same number of sh	ells	2) same electronic con	nfiguration			
	3) nearly same atomic size 4) same atomic weight						
42.	The common metal p	resent in German Silve	r, Bell metal and Brass	is			
	1) Fe	2) Cu	3) Zn	4) Sn			
43.	The correct statemen	t among the following	g is				
	1) The colour of $Cr_2O_7^2$ ion is due to d-d transition of unpaired electrons						
	2) Transition elements form a large number of alloys, because of similar boiling points						
	3) Bronze is an alloy	of Copper and Zinc					
	4) Salt of Fe ²⁺ ion has	greenish colour					
44.	Alloy formation abili	ty of transition element	ts is due to				
	1) same crystalline str	ructures	2) same atomic radii				
	3) similar chemical pr	roperties	4) any one of these pr	operties			
45.	The alloy containing	highest percentage con	nposition of copper is				
	1) German silver	2) Aluminium Bronze	e 3) Bell metal	4) Brass			

Which of the following is used for sharply defined castings

46.

d and f - Block Elements

4) Devarda's alloy

- 1) Soldermetal 2) Wood's metal 3) Type metal
- 47. Identify the correct statements among the following
 - I) Both Cr and Cu show +1 oxidation state
 - II) The complementary colour of absorbed green colour of visible radiation is purple.
 - III) Ni⁺² ion in its hydrated state exhibits green colour
 - IV) Devarda's alloy contains least percentage of 'Zn
 - 1) All
- 2) I, II, III only
- 3) I, IV only
- 4) I, III only
- 48. The percentage of copper, tin and zinc metales present in 'Gun metal' respectively are
 - 1) 88, 2, 10
- 2) 88, 10, 2
- 3) 80, 20, Zero
- 4) 80, Zero, 20

EXERCISE- I / ANSWERS

WORK SHEET -I

- 1) 3 2) 1 3) 4 4) 1 5) 3 6) 3 7) 1 8) 4 9) 2 10) 4
- 11) 1 12) 2 13) 1 14) 3 15) 3 16) 1 17) 1 18) 2 19) 2 20) 1
- $21)\ 2 \qquad 22)\ 1 \qquad 23)\ 2 \qquad 24)\ 3 \qquad 25)\ 1 \qquad 26)\ 3 \qquad 27)\ 2 \qquad 28)\ 2 \qquad 29)\ 1 \qquad 30)\ 2$
- 31) 2 32) 1 33) 4 34) 2 35) 3 36) 1 37) 4 38) 2 39) 2 40) 3
- 41) 3 42) 2 43) 4 44) 3 45) 1 46) 2 47) 4 48) 1 49) 2 50) 4
- $51)\,1 \quad 52)\,3 \quad 53)\,4 \quad 54)\,1 \quad 55)\,2 \quad 56)\,1 \quad 57)\,1 \quad 58)\,1 \quad 59)\,3 \quad 60)\,2$
- 61) 2 62) 3 63) 4 64) 2 65) 3

WORK SHEET - II

- 1) 2 2) 3 3) 4 4) 1 5) 3 6) 3 7) 1 8) 3 9) 4 10) 3
- 11) 1 12) 3 13) 3 14) 3 15) 4 16) 1 17) 1 18) 3 19) 1 20) 2
- 21) 3 22) 2 23) 1 24) 1 25) 1 26) 3 27) 4 28) 2 29) 4 30) 3
- $31)\ 4$ $32)\ 2$ $33)\ 2$ $34)\ 4$ $35)\ 1$ $36)\ 2$ $37)\ 3$ $38)\ 1$ $39)\ 3$ $40)\ 4$
- 41) 3 42) 2 43) 4 44) 2 45) 2 46) 3 47) 1 48) 2

d and f - Block Elements

EXERCISE - II

1. Column-I(Property) Column - II (Transition elements) 1) Highest oxidation state p) Cr 2) Highest density q)Os 3) Element with maximum unpaired electrons r) Tc 4) 1st synthetic transition element s) Ru 2. Column-I Column - II 1) Tc p) Transition element 2) Hg q) Not found in nature 3) Zn r) Last element of third transition series 4) Es s) Used in galvanization of iron 3. Column-I Column - II 1) Zn, Cd, Hg p) Ferromagnetic metals 2) Fe, Co, Ni q) Coin metal 3) Cu, Ag, Au r) Noble metals 4) Au, Pt, Hg s) Non transition metals 4. Column-I (Compounds) Column - II (Oxidation state of Cr) 1) $\left[Cr(H_2O)_6 \right] C\ell_3$ p) 5 2) *CrO*₅ q) 4 3) K_3CrO_8 r) 6 4) $(NH_4)_2 CrO_4$ s) 3 5. Column-I Column - II 1) Ni²⁺ p) Alloy 2) Ti q) Diamagnetic character 3) Misch metal s) $\sqrt{8}$ B.M. (Magnetic moment) 4) Hg Column- I Column - II 1) German silver p) Cu 2) Gun metal q) Zn 3) Brass r) Ni

s) Sn

4) Solder

7. Column-I (Alloys)

- 1) Fe, Cr, V
- 2) Cu, Zn & Ni
- 3) Cu, Sn & Zn
- 4) Fe, Cr & Ni

8. Column-I

- 1) K₂MnO₄
- 2) KMnO₄
- 3) K, Cr, O₇.
- 4) K₂CrO₄

9. Column-I

- 1) Ag⁺ (Isoelectroni3) with, and
- 2) Zn²⁺
- 3) Element with lowest density
- 4) Cr

Column - II (Composition)

- p) Chrome steel
- q) German silver
- r) Gun metal
- s) Stainless steel

Column - II

- p) Transition element in +6 state
- q) Oxidising agent in acid medium
- r) manufactured from pyrolusite ore
- s) manufactured from chromite ore

Column - II

- p) Diamagnetic
- q) Cd²⁺
- r) Sc
- s) Paramagnetic

EXERCISE - II / ANSWERS

- 01) 1 Q,S; 2 Q; 3 P; 4 R
- 03) 1 S; 2 P; 3 Q; 4 R
- 05) 1 S; 2 R; 3 P; 4 Q
- 07) 1-P; 2-Q; 3-R; 4-S
- 09) 1 P,Q; 2 P,R; 3 R; 4 S

- 02) 1 P,Q; 2 P,R; 3 S; 4 Q
- 04) 1 S; 2 R; 3 P; 4 Q
- 06) 1 P,Q,R; 2 P,Q,S; 3 P,Q; 4 S
- 08) 1 P,R; 2 Q,R; 3 P,Q,S; 4 P,S

EXERCISE - I

WORK SHEET - I

1.	Ligand in a meta	Ligand in a metal carbonyl complex is						
	1) CO ₂	2) CO	3) CoCl ₂	$4) C_2 O_4^{2-}$				
2.	In complex comp	oounds the metal atom	acts as a					
	1) Lewis acid	2) Lewis base	3) Bronsted acid	4) Bronsted base				
3.	A ligand should	contain						
	1) odd electrons		2) even number of	felectrons				
	3) lone pair of el	ectrons to donate	4) vacant orbital t	o accept the lone pair				
4.	The oxidation st	ate of Iron in $[Fe(CN)_6]$	³ ion					
	1) + 1	2) + 2	3) + 3	4) zero				
5.	The primary val	ency of 'Fe' in the comp	$lex K_4[Fe(CN)_6]$ is					
	1) 2	2) 3	3) 6	4) 4				
6.	In which of the f	ollowing compounds I	ron has zero oxidation s	tate				
	1) Fe(CO) ₅	2) $\operatorname{Fe_2O_3}$	3) FeO	4) $\operatorname{Fe_3O_4}$				
7.	The hybridisation	on of metal ion in squar	e planar complexes is					
	$1) dsp^2$	2) sp ³ d	$3) d^3sp^3$	4) sp^{3}				
8.	The charge on C	obalt in $[Co(CN)_6]^{3-}$ is						
	1) -3	2) +3	3) -6	4) +6				
9.	The hybridisation	on of Iron in K ₄ [Fe(CN) ₆] is					
	$1) dsp^2$	2) sp^{3}	3) d^2sp^3	$4) d^2sp^2$				
10.	A bidentate liga	nd is						
	1) pyridine	2) thiocyanate	3) ethylene diamr	nine 4) water				
11.	Which of the fol	lowing is a polynuclear	compound					
	1) [Co(NH ₃) ₄ Cl	2] Cl	2) NaFe[Fe(CN) ₆]					
	3) [Cr(H ₂ O) ₅ Cl]	_	4) [Co ₂ (NH ₃) ₆ (ÕH					
12.		-	_	es of ions on dissolution in				
	water. One mole	water. One mole of the same complex reacts with two moles of AgNO ₃ solution to yield two						
	moles of AgCl(s). The structure of the co	omplex is					
	1) [Co(NH ₃) ₅ Cl]	Cl ₂	2) $[Co(NH_3)_3Cl_3]$	1.2NH ₃				
	3)[Co(NH ₃) ₄ Cl ₂	-	$4)[Co(NH_3)_6]Cl_3$					
13.	0 1 2							
		The coordination number of a central metal atom in a complex is determined by 1) The number of ligands around a metal ion bonded by sigma bonds						
	•	2) the number of only anionic ligands bonded to the metal ion						
		3) the number of ligands around a metal ion bonded by sigma and pi-bonds both						
	•	•	l ion bonded by pi-bond	-				
14.	•	ersion, the ligand OH- is	, .					
	1) hydroxide	2) hydroxyl	3) hydroxo	4) ol				
15.	The formula of '	nitrosyl' group	-					
	1) NO	2) NO+	3) NO-	4) ONO				
16.		e' in IUPAC version cha	•					
	1) Oxalite	2) Oxalato	3) Oxalito	4) Oxalide				

17. (A): Structure of $[Co(NH_3)_6]^{+3}$ ion is octahedral (R): The coordination number of the metal ion is 6							Р				
		1) Both (A) and (R) are true and (R) is the correct explanation of (A)									
							correct ex				
	-) is true			()		4) (A) is f	_		ie	
18.	, ,	,	, ,		cated by	its cher	nical sym		()		
		-NCS	,	2) M-S			3) M-CN		4)	M-CSN	
19.	[Pt B	r Cl(NO	,) (NH ₃)]	I on ioni	isation gi	ives the	ion		,		
	1) Cl			2) Br-			3) I-		4)	NO ₂ -	
20.	A rac	cemic mi	ixture ha	s a net r	otation					_	
	1) to	right of	original	plane			2) to left	of origin	al plane		
	3) to	right or l	left of or	iginal pl	ane		4) zero				
21.	_	cal isome									
	-	emical p	_				2) molecu				
		ysical p	_			_	4) optical	l propert	ies		
22.		AC Nam	e Fo		of ligand	1					
	i) Bro			A) CO							
		rbonyl		B) C_6H	-						
	,	enzoato		C) H_2 C)						
	iv) A	-	(.1. 1.	D) Br-							
	1 ne o	correct m		:::	:		•	::	:::	•	
	1)	i D	ii A	iii B	iv C	2)	i D	ii B	iii A	iv C	
	3)	D	A	C	В	4)	D	C	A	В	
23.	,					,	general f			2	
	1) M			2) M(A			3) MABC		4)]	$M(AA')_3$	
24.	•	3 3	followir		. 5	of ambi	dentate li		,	\ /3	
	1) CC			2) CN-			3) H ₂ O	O	4) :	SO ₄ 2-	
25.	LIST			,			LIST - II		,	4	
		aber's p	rocess				1) Cu				
		ontact pr					$2) V_{2}O_{5}$				
		ydrogen		oils			, 2 3		3)]	Pt	
	D) O	stwald's	process	;			4) Fe		ŕ		
							5) Ni				
	The	correct n	natch is								
		A	В	C	D		A	В	C	D	
	1)	4	3	5	1	2)	4	2	3	5	
	3)	4	2	5	3	4)	3	1	5	2	
26.	Coor	dinatior	isomer	ism is ex	hibited b	у					
	1) [C	$r(H_2O)_6$	Cl ₃				2) [Cr(NH ₃) ₆] [Co(CN) ₆]				
	3) [C	r(en) ₂]N0	O ₂				4) [Ni(NH ₂) ₆] [BF ₄],				
27.	Whi	ch is not	amphote	eric (CPN	MT)				_		
	1) Al	+3		2) Cr+3			3) Fe ⁺³		4)	Zn^{+2}	
28.	Whi	ch of the	followir	ig has ma	aximum	numbe	r of unpai	red d-ele	ectrons (BIT)	
	1) Zr			2) Fe ⁺²			3) Ni ⁺³			Cu ⁺¹	
29.	,	noglobii	n is mad	e up of			•		,		
		1) 4 haeme units and one globular protein 2) 4 haeme units and four globular protei								roteir	

Coord	lination Compou	ınds				
	3) 2 haeme unit	s and one globular protei	n 4) 4 haeme units ar	nd two globular protein		
30.	Globular protei	n in haemoglobin is mad	e up of			
	1) two polypept	tide chains	2) four polypeptide	e chains		
	3) one polypept	ride chain	4) eight polypeptid	le chains		
31.	Geometry of orl	bitals around the transitio	on metal ion in haem of h	naemoglobin is		
	1) square plana	r arrangement	2) tetrahedral arrar	ngement		
	3) plane trigona	l arragement	4) octahedral arran	gement		
32.	The number of 1	moles of KI required to pr	repare one mole of K_2 [H	$[gI_4]$ is		
	1) 4	2) 3	3) 2	4) 1		
33.	The protein par through	t of the Haemoglobin and	l non protein part of Hae	moglobin are coordinated		
	1) N of the pyrro	ole	2) N-of the Histidir	ne		
	3) N of 2,3-dimethyl Benzimidazole					
	4) N of the 5,6-d	limethyl Benzimidazole				
34.	In metallurgy th	ne metal used to displace	silver from its cyano con	nplex is		
	1) Zn	2) Au	3) F ₂	4) Cl ₂		
35. W	hich of the followi	ng releases metal slowly	which gives uniform coa	ating in electroplating		
	1) Metal salts	2) Double salts	3) Complex salts	4) Alums		
36.	The metal prese	ent in chlorophyll is				
	1) Fe	2) Mg	3) Co	4) Zn		
37.	Number of dati	ve bonds around Mg ²⁺ io	n in chlorophyll is			
	1) 2	2) 3	3) 4	4)6		
38.	Which element among the lanthanides has the smallest atomic radius					
	1) Cerium		2) Lutetium			
	3) Europium		4) Gadolinium			
39.	Which of the fol	llowing elements belongs	to actinide series			
	1) La	2) Gd	3) Lu	4) Th		
40.		The electronic configuration of gadolinium (At No. = 64) is 1) $[Xe]4f^85d^96s^2$ 2) $[Xe]4f^75d^16s^2$				
	3) $[Xe]4f^35d$	5 6 2	2) $[Xe]4f^75d^16s$ 4) $[Xe]4f^65d^26s$	2		
41.		nanide series, the basic st	· ·	hydroxides		
	1) Increases		2) Decreases			
	•	es and then decreases	4) First decreases a	nd then increases		
42.	Which of the following statement is not correct					
	1) La(OH) ₃ is less basic than Lu(OH) ₃					
	2) In lanthanide series, ionic radius of Ln³+ ions decreases					
		an element of transition		anide series		
	4) Atomic radii	of Zr and Hf are same be	ecause of lanthanide cor	ntraction		
43.	The catalytic ac	tivity of the transition me	etals and their compound	ds is ascribed to		
	1) Their chemica	•	2) Their magnetic b			
	3) Their unfilled	•	, 0			
	*	to adopt multiple valenci	es			
44.	•	oxidation states shown by				
	TATOOL COTTUINOUL	maanon sialos showil Dy	CCITATILATE			

45.	Arrange Ce^{3+} , La^{3+} , Pm^{3+} and Yb^{3+} in increasing order of their ionic radii						
	1) $Yb^{3+} < Pm^{3+} <$	$Ce^{3+} < La^{3+}$	2) $Ce^{3+} < Yb^{3+} <$	$Pm^{3+} < La^{3+}$			
	3) $Yb^{3+} < Pm^{3+} < L$	$Ca^{3+} < Ce^{3+}$	4) $Pm^{3+} < La^{3+} <$	$(Ce^{3+} < Yb^{3+})$			
46.	The basic character	of the transition metal 1	monoxides follows the	e order			
	1) VO > CrO > TiO >	> FeO	2) CrO > VO > FeC	> TiO			
	3) TiO > FeO > VO > CrO 4) TiO > VO > CrO > FeO						
47.	Cerium ($Z = 58$) is a about cerium is inco		of lanthanoids. Which	of the following statement			
	1) The common oxidation states of cerium is +3 and +4						
	2) The +3 oxidation	state of cerium is more	stable than the +4 oxi	dation state			
	3) The +4 oxidation						
	4)Cerium (iv) acts a	4)Cerium (iv) acts as an oxidising agent					
48.	Which of the follow	ring is a lanthanide?					
	1) Ta	2) Rh	3) Th	4) Lu			
49.	Which of the follow	ing belongs to the actin	ide series of elements	?			
	1) Y	2) Ta	3) U	4) Lu			
50.	Which of the following	ng is a lanthanide elemer	nt?				
	1) Ac	2) Als	3) Nd	4) Pd			
51.	Cerium shows oxidation state of +4 because						
	1) It resembles alkali metals 2) It has very low I.E						
	3) It has tendency to attain noble gas configuration						
	4) It has tendency to	attain f ⁰ configuration					
52.	Which of the two ha	ave almost similar size					
53.	$1)_{22}$ Ti and $_{40}$ Zr In aqueous solution	2) $_{41}$ Nb and $_{73}$ Ta as Eu ²⁺ acts as	3) $_{39}$ Y and $_{57}$ La	4) $_{20}$ Ca and $_{31}$ Ir			
	1) an oxidising ager	nt	2) a reducing ager	2) a reducing agent			
	3) can act either of t	hese	4) can act as redox agent				
54.	The radius of La ³⁺ (Z the radius of Lu ³⁺	Z=57) is 1.06A ⁰ . Which o	one of the following gi	ven values will be closest to			
	1) 1.60A°	2) 1.40A°	3) 1.06A°	4) 0.85A°			
55.	Cerium (Z=58) is an important member of the lanthanoids. Which of the following statements about cerium is incorrect?						
	1) The common oxidation states of cerium are +3 and +4						
	2) Cerium(IV) acts as an oxidizing agent						
	3) The +4 oxidation state of cerium is more stable in solutions						
	4) The +3 oxidation state of cerium is more stable than the +4 oxidation state						
	,	WORK SH					
1.	The primary vale [Cr(NH ₃) ₄ Cl ₂]Cl			in a complex compound			
	1) 3	2) 2	3) 1	4) 0			
2.	,	s given by [Co(NH3)3Cl	,	,			

Coor	dination Compounds							
	1) 1	2) 2	3) 3	4) zero				
3.	The primary and sec respectively are	condary valencies of th	ne central metal ion in th	e complex $[Co(NH_3)_6]Cl_3$				
	1) 6 and 3	2) 6 and 6	3) 3 and 3	4) 3 and 6				
4.	The complex compo	und which does not g	ive precipitate with Ag	NO ₃ solution is				
	1) [Co(NH ₃) ₅ Cl]Cl ₂	2) $[Co(NH_3)_6]Cl_3$	3) [Co(NH ₃) ₄ Cl ₂]Cl	4) $[Co(NH_3)_3Cl_3]$				
5.	The configuration of 'X' is	The configuration of an element ${}^{\rm l}X^{\rm l}$ is $4s^13d^{10}$. The wrong statement regarding the element ${}^{\rm l}X^{\rm l}$ is						
	1) it forms complexe	s	2) it exhibits variabl	e valency				
	3) it forms paramagi	netic ions only	4) It can form colour	ed salts				
6.	The oxidation state of	of Cr in [Cr(NH ₃) ₄ Cl ₃]C	C1					
	1) +3	2) +2	3) +1	4) 0				
7.	When 1 mole of [Coprecipitated is	$(NH_3)_3Cl_3$] is added to	o excess of AgNO ₃ solu	ation the weight of AgCl				
	1) 143.5g	2) 108 g	3) zero	4) 54 g				
8.	The primary valency	The primary valency of Iron in $K_4[Fe(CN)_6]$ is satisfied by						
	1) Six CN ⁻ ions	2) Two CN ⁻ ions	3) Four K ⁺ ions	4) Two K ⁺ ions				
9.	The secondary valency of Chromium in [Cr(en) ₃]Cl ₃ is							
	1) 6	2) 3	3) 2	4) 4				
10.	Which of the followi	ng is wrong with resp	ect to [Co(NH ₃) ₅ Cl]Cl ₂					
	1) central metal ion is Co and the ligands are NH_3 and Cl ion							
	2) oxidation number	of Co is +2	3) co-ordination nur	mber of Co is 6				
	4) the number of ions formed when 1 mole of the compound dissolves in water is 3 moles							
11.	The deep blue complex produced by adding excess of Ammonia to CuSO ₄ solution is							
	1) $[Cu(NH_3)_2]^{2+}$	2) [Cu(NH ₃) ₄] ²⁺	3) $[Cu(NH_3)_6]^{2+}$	4) Cu ²⁺				
12.	A complex in which central atom carries zero oxidation state is							
	1) [Co (NH ₃) ₃ Cl ₃]	2) PtCl ₄ .2NH ₃	3) Ni(CO) ₄	4) Na ₂ [(Ni(CN) ₄)]				
13.	K ₂ SO ₄ .Al ₂ (SO ₄) ₃ . 24H	K,SO ₄ .Al ₂ (SO ₄) ₃ . 24H ₂ O is						
	1) a complex salt		2) a double salt	2) a double salt				
	3) a complex salt & c	louble salt	4) a basic salt	,				
14.	Number of dative bo	onds in the complex Co	oCl ₃ .5NH ₃ is					
	1) 5	2) 6	3) 3	4) 4				
15.	Coordination number	er and oxidation numbe	er respectively for the co	mplex [Co(NH ₃) ₄ Cl ₂]ClO ₄				
	1) 6, +3	2) +6, +2	3) 6, +1	4) 4, +3				
16.	The number of ions	formed when cupra as	mmonium sulphate is d	issolved in water				
	1) 1	2) 2	3) 4	4) zero				
17.	•	•	,	dissolved in water three				
				and secondary valencies				

Coordination Compounds

is

2) 1

4) zero

18. LIST-I

LIST - II

- A)Ti+3
- 1) Charge transfer phenomenon
- B)MnO₄-
- 2) Impurities
- C)F,
- 3) s-s transition
- D)Gems
- 4) d-d transition
- 5) Excitation of electron

o) Exertation of electron

The correct match which is responsible for colour

19. LIST-I (complex) LIST-II (Charge on co-ord. sphere)

- A) CoCl₃.6NH₃
- 1) +1
- B) CoCl₃.5NH₃
- 2) +2
- C) CoCl₃.4NH₃
- 3) +3
- D) $CoCl_3$.3NH₃
- 4) +4
- 5) 0

The correct match in terms of the charge on the complex

	A	В	C	D		A	В	C	D
1)	3	2	5	1	2)	3	1	2	5
3)	3	2	1	5	4)	4	3	2	1

20. **Prop. of transition element**

Reason

1) Colour of ion

A) unpaired e in (n-1)d orbital

2) Variable oxdn. states

B) Same crystal structure

3) formation of alloys

C) d-d-transition

4) paramagnetic

- D) high magnitude of + ve charge
- E) slight energy difference between ns & (n-

1)d shells

21. Give the correct increasing order of electrical conductivity of aqueous solutions of following complex entities

$$\text{I)} \ \left[\text{Pt} \big(\text{NH}_3 \big)_6 \right] \text{Cl}_4 \quad \text{II)} \ \left[\text{Cr} \big(\text{NH}_3 \big)_6 \right] \text{Cl}_3 \quad \text{III)} \left[\text{Co} \big(\text{NH}_3 \big)_4 \, \text{Cl}_2 \right] \text{Cl} \qquad \text{IV)} \ \text{K}_2 \big[\text{Pt} \, \text{Cl}_6 \big] \\ \text{Cl}_3 \quad \text{IV} \quad \text{Cl}_4 \quad \text{IV} \quad \text{Cl}_6 \big] \\ \text{Cl}_4 \quad \text{IV} \quad \text{Cl}_7 \quad \text{Cl}_8 \quad$$

- 1) III < IV < II < I
- 2) IV < II < III < I
- 3) II < I < IV < III
- 4) I < II < IV < III
- 22. Co-ordination number of Cr is 6. A complex entity with $C_2O_4^{-2}$, en, superoxide as ligands is

	1) [Ni(CN) ₄] ²⁻	2) [Fe(CN) ₆] ⁴⁻	Coo 3) [Ni(CO),]	rdination Compounds 4) [Co(NH,),] ³⁺	
37.	Complex	EAN value	3) [141(CO) ₄]	4) [CO(1411 ₃) ₆]	
	A) Fe(CO) ₅	i) 34			
	B) Fe(CN) ₆ ³⁻	ii) 35			
	C) Fe(CN) ₆ ⁴⁻	iii) 36			
	/ / /6	iv) 37			
	The correct match is	,			
	1) A - iv, B-ii, C-iii	2) A – i, B–ii, C–iii	3) A-iii, B-ii, C-i	4) A-iii, B-ii, C-iii	
38.	Stable complex based	d on EAN rule			
	i) $K_4[Fe(CN)_6]$	ii) [Co(NH ₃) ₅ Cl]Cl ₂	iii) $[Ni(CO)_4]$	$iv) K_2[Ni(CN)_4]$	
	1) i only	2) i & ii only	3) i, ii & iii only	4) all	
39.	IUPAC name of Ni(C	CO) ₄ is			
	1) tetra carbonyl Nicl	kel(II)	2) tetra carbonyl Nickel (O)		
	3) tetra carbonyl Nicl	kelate (II)	4) tetra carbonyl Nickelate (O)		
40.	Potassium hexa chlo	ro platinate (IV) is			
	$1) \operatorname{Pt}_{2}[K(Cl)_{6}]$	$2) K[Pt(Cl)_6]$	3) K2[Pt(Cl)6]	$4) K_4[Pt(Cl)_6]$	
41.	IUPAC name of $K_3[A]$	$l(C_2O_4)_3]$			
	1) potassium alumin	o oxalte	2) potassium trioxala	to aluminate (III)	
	3) potassium alumin	ium oxalate (III)	4) potassium trioxala	to aluminate (VI)	
42.	IUPAC name of Li[A	$[H_4]$ is			
	1) Lithium Aluminiu	m hydride	2) Lithium Tetra hydi	rido aluminate[III]	
	3) Tetrahydride Alur	ninium Lithionate	4) Aluminium Lithiu	m hydride	
43.	The neutral complex	, diammine dibromo di	chloro platinum(IV) is	best represented as	
	1) $[Pt (NH_3)_2 Br_2 Cl_2]$	2) $[Pt Cl_2 Br_2 (NH_3)_2]$	3) $[Pt Br_2 Cl_2 (NH_3)_2]$	4) $[Pt (NH_3)_2 Cl_2 Br_2]$	
44.	IUPAC name of [Fe(C	$(2N)_6$] ⁴⁻ is			
	1) ferrocyanide		2) hexacyanoferrate	(II)	
	3) ferricyanide		4) hexacyanoferrate ((III)	
45.	When AgNO ₃ solution formed. What is the		llit. of CoCl ₃ x NH ₃ solu	tion, one mole of AgCl is	
	1) 1	2) 2	3) 3	4) 4	
46.	Complex	Type			
	A) $CoCl_3$. $3NH_3$	i) Anionic complex			
	B) Na ₂ ZnCl ₄	ii) Cationic complex			
	C) PtCl ₄ . 5NH ₃	iii) Neutral complex			
	The correct match is	-11, 1 toutur complex			
	THE COHECT HIATCH IS				

47. (A) : IUPAC name of $[Co(H_2O)_4Cl_2]Cl$. $2H_2O$ is tetra aquadichloro cobalt (III) chloride. (R) : Water of crystallisation is represented by Arabic numerical before its name

3) A-ii, B-i, C-iii

2) A-iii, B-i, C-ii

1) A - ii, B-iii, C-i

4) A-iii, B-ii, C-i

Coordination Compounds
1) Both (A) and (R) are
2) Both (A) and (R) are

	1) Both (A) and (R) are true and (R)	is the correct explanation of	(A)				
	2) Both (A) and (R) are true and (R)	is not the correct explanation	n of (A)				
	3) (A) is true but (R) is false	4) (A) is false but (R) is true				
48.	(A): IUPAC name of [Pt Br ₂ (en) ₂] Cl_2 is (R): (en) represents ethylenediamine its designation.						
	1) Both (A) and (R) are true and (R)	is the correct explanation of	(A)				
	2) Both (A) and (R) are true and (R)	is not the correct explanation	n of (A)				
	3) (A) is true but (R) is false	4) (A) is false but (R) is true				
49.	(A): $[Co_2(OH)_3(NH_3)_6]Cl_3$ is an exam	ple of polynuclear complex	compound.				
	(R): Compound in which the num polynuclear compound.	nber of central metal atoms	is more than one is called				
	1) Both (A) and (R) are true and (R)	1) Both (A) and (R) are true and (R) is the correct explanation of (A)					
	2) Both (A) and (R) are true and (R)	-					
	3) (A) is true but (R) is false	4) (A) is false but (R) is true				
50.		The IUPAC name of the coordination compound $K_3[Fe(CN)_6]$					
	1) Potassium hexacyanoferrate(II)	2) potassium hexad	` '				
	3) potassium hexacyanoiron (II)	, -	exacyano iron (II)				
51.	The IUPAC name of the complex $[Co(NO_2)(NH_3)_5]Cl_2$ is						
	1)pentaamminenitrito-N-cobalt (III)chloride2)nitrito-N-pentaamminecobalt (III)chloride2)						
	3) nitrito-N-pentaamminecobalt(II)	chloride					
	4) pentaamminenitrito-N-cobalt(II) o	chloride					
52.	Example showing ionisation isomer	Example showing ionisation isomerism					
	$1) \left[\text{Co(NO}_3)(\text{NH}_3)_5 \right] \text{SO}_4 \& \left[\text{Co(SO}_4)(\text{NH}_3)_5 \right] \text{NO}_3 \\ 2) \left[\text{Co(NH}_3)_4 \text{Cl}_2 \right] \text{Cl} \& \left[\text{CO(NH}_3)_5 \text{Cl} \right] \text{Cl}_2 \\ \\$						
	3) [Cr(H ₂ O) ₅ Cl]Cl ₂ .H ₂ O & [Cr(H ₂ O) ₄ Cl ₂]Cl.2H ₂ O						
	4) $[Pt(NH_3)_4] [Pt Cl_4] & [Pt(NH_3)_3 Cl]_2$	$[\operatorname{Pt} \operatorname{Cl}_4]$					
53.	When two ligands of the same type of polyhydron, the isomer is called	occupy opposite positions to	each other in a coordinatior				
	1) trans- 2) cis-	3) fac-	4) mer-				
54.	Geometrical isomerism in square pl						
	1) Ma ₄ type complex	, , ,	2) Mabcd type complex				
	3) Ma ₂ b ₂ type complex	4) Mb ₄ type comple	ex				
55.	Both geometrical and optical isome:	•	4) [D+ (om)]				
56.	1) $[Pt (NH_3)_2Cl_2]$ 2) $[Pt(NH_3)_4C$ (A):A cis-isomer has a net dipole mo		4) [Pt (en)3]				
50.	(R): A cis-isomers has two ligands		adiacent positions				
	1) Both (A) and (R) are true and (R)	71 17 0	, -				
	2) Both (A) and (R) are true and (R)	-					
	3) (A) is true but (R) is false	4) (A) is false but (
57.	Optical isomerism is exhibited by a	, , , ,					
	1) coordination number 4, with a bidentate ligand						

			Cut	n amauon Compouna			
	2) coordination nun	nber 4, with two biden	tate ligands	-			
	3) coordination nun	nber 6, with a bidentat	e ligand				
	4) coordination nun	nber 6, with three tride	entate ligands				
58.	Ligands with which	n linkage isomerism is	possible				
	A) NO ₂	B) CN-	C) SCN-				
	1) A only	2) A & B	3) B & C	4) A,B & C			
59.	Optical isomers hav	re					
	A) property of chira	lity	B) almost identical c	hemical properties			
	C) almost identical	physical properties	D) similar rotation o	of plane polarised light			
	1) A,B,C are correct	2) B,C,D are correct	3) A,C,D are correct	4) A,B,D are correct			
60.	Identify the correct	statements among the	following				
	I) Cr in first series of	f d-block has highest o	oxidation state.				
	II) Colour of MnO ₄ -	is due to charge transf	er phenomenon.				
	III) Zn can show var	riable oxidation state.					
	IV) Ferromagnetism	n disappears in the solu	ution of Fe				
	1) All	2) I & II only	3) II & IV only	4) II & III only			
61.	What is wrong abo Cl_2 . H_2 O	ut the following pair	of compounds? [Cr(H ₂ C	$(C_1)_6$ $(C_1)_6$ $(C_2)_5$ $(C_1)_6$			
	1) They are hydration isomers 2) They have different colours						
	3) Their 0.1M aqueous solutions have same molar conductivity						
	4) They have differe	nt IUPAC name					
62.	Geometrical Isomer	ism is observed in					
	1) Tetrahedral comp	olex	2) Square planar con	nplex			
	3) Tined complexes		4) planar triangle co	mplexes			
63.	Which of the follow	ing compound shows	optical isomerism?				
	1) $[Cu(NH_3)_4]^{2+}$	2) $[Zn(Cl)_4]^{2-}$	3) $[Cr(C_2O_4)_3]^{2-}$	4) $[Co(CN)_6]^{3-}$			
64.	Which of the follow	ing has least magnetic	moment				
	1) Cu ⁺²	2) Ni ⁺²	3) Co ⁺²	4) Fe^{+2}			
65.	Which of the follow	ing compound is expe	cted to be coloured				
	1) Ag ₂ SO ₄	2) CuF ₂	$3) \mathrm{MgF}_2$	4) CuCl			
66.	Which of the follow	ing has the maximum	number of unpaired ele	ctron			
	1) Mg^{+2}	2) Ti ⁺³	3) V^{+3}	4) Fe ⁺²			
67.	Which has the large	est radii					
	1) Cr ⁺³	2) Mn ⁺³	3) Fe^{+3}	4) Co+3			
68.	Which of the follow	ing elements is alloyed	d with copper to form br	ass			
	1) Pb	2) Bi	3) Zn	4) Sb			
69.	The oxidation state	of Fe in brown ring coi	mplex [Fe(H ₂ O) ₅ NO]SO	is			
	1) +1	2) +2	3) +3	4) +4			
70.	IUPAC name of K ₃ [I	,	,	,			
	1) potassium hexacy	· ·	2) Potassium hexacy	ranoferrate			
	3) hexacyanoferrate		4) potassium ferricy				
71	,	(111)	4) potassium terricy	arnue			
71.	K.[Fe(CN).lisa						

Coordi	ination Compound	S						
	1) double salt		2) complex compound					
	3) neutral molecule		4) none of these					
72.	The oxidation num	ber of Pt in the compl	ex $[Pt(C_2H_4)Cl_3]$ - is					
	1) +1	2) +2	3) +3	4) +4				
73.	The effective atomi	c number of Cr (at. no	o. 24) in [Cr(NH ₃) ₆]Cl ₃ is					
	1) 35	2) 27	3) 33	4) 36				
		WORK S	HEET - III					
1.	The pair in which b	oth species have iron	is:					
	1) nitrogenase, cyto	_	2) carboxypeptidas	se, haemoglobin				
	3) haemoglobin, ni		4) haemoglobin, cy	•				
2.		as an anticancer agen						
	1) mer – $[Co(NH_3)_3C$		2) Cis – $[PtCl_2(NH_2)]$),]				
	3) Cis – K ₂ [PtCl ₂ Br ₂]	4) $Na_2[CoCl_4]$	-				
3.	Identify the comple	xes which are expecte	ed to be coloured.					
	1) [Ti(NO ₃) ₄]		2) [Cu(NCCH ₃) ₄]+	BF_4^{-}				
3) [Cr(NH ₃) ₆] ³⁺ 3C <i>l</i> ⁻		4) K ₃ [VF ₆]	4) K ₃ [VF ₆]				
4.	The complex, [Co(N to:	NH_3 ₄ Cl_2] ⁺ is known to	exist in two different co	oloured forms. This is due				
	1) ionisation isome	rism	2) optical isomerisa	m				
	3) geometrical isom		4) linkage isomeris					
5.	, 0		isomers expected for oct					
	[Mabcdef] is;							
	1) 0	2) 15	3) 12	4) 30				
6.	The following comp	olexes which can form	same no.of geometrica	l isomers are				
	1) $[CoCl_2Br_2]^{2-}$	2) $[Rh(en)_3]^{3+}$	$3) \left[Cr(en)_2 Br_2 \right]^+$	4) [Pt(en)Cl ₂]				
7.	The ligands in antic	cancer drug 'cis - plat	in' are :					
	1) NH ₃ ,Cl	2) NH ₃ , H ₂ O	3) <i>Cl</i> , H ₂ O	4) NO, Cl				
8.	In $Fe(CO)_{5'}$ the Fe-C	C bond possesses:						
	1) π character only	7	2) σ character onl	2) σ character only				
	3) ionic character o	only	4) both π and σ	characters				
9.	The coordination of $[x(NH_3)_5(SO_4)]Cl$ w		number of X in the follo	wing compound				
	1) 10 and 3	2) 2 and 6	3) 6 and 3	4) 6 and 4				
10.	The ligand called 1	7 -acid is:						
	1) Co	2) NH ₃	3) $C_2O_4^{2-}$	4) ethylene diamine				
11.	the donor sites of E	DTA lgand are:	-					
	1) O atoms only		2) N atoms only					
	3) Two N atoms an	d four O atoms	4) Three N atoms of	of EDTA ion is:				
12.								

- 1) Cis-platin a drug used in the treatment of cancer
- 2) Haemglobin a protein present in blood
- 3) chlorophyll a green plant pigment which acts as a photosensitiser in the synthesis of carbohydrates
- 4) vitamin B_{12} It is a cobalt (I) complex.
- 13. Which of the following statements are correct about stability of chelates?
 - 1) As the number of rings in complex increases, stability of chelate also increases
 - 2) A chelate having five membered ring is more stable if it contains double bonds.
 - 3) A chelate having six membered ring is more stable if it does not contain double bonds.
 - 4) chelating ligands are atleast bidentate ligands.
- According to valence bond theory, the following complexes will have same geometry. 14.
 - 1) $[Ni(CN)_4]^{2-}$
- 2) $[Fe(CN)_{64}]^{3-}$
- 3) [FeF₆]³⁻
- 4) [Cr(NH₃)₆]³⁺
- the tetrahedral crystal field spliting is only_____of the octahedral splitting. 15. 1)1/9
 - 2) 2/9
- 3) 4/9
- 4) 5/9
- 16. Which of the following metal ions cannot form both high spin & low spin octahydral complexes?
 - 1) Ti^{+3}
- 2) CO²⁺
- 3) Fe^{+2}
- 4) Cu²⁺

EXERCISE - I / ANSWER

WORK SHEET - I

1) 2	2) 1	3) 3	4) 3	5) 1	6) 1	7) 1	8) 2	9) 3	10) 3
11) 4	12) 1	13) 1	14) 3	15) 1	16) 2	17) 1	18) 1	19) 3	20) 4
21) 4	22) 1	23) 1	24) 2	25) 3	26) 2	27) 3	28) 2	29) 1	30) 2
31) 4	32) 1	33) 2	34) 1	35) 3	36) 2	37) 1	38) 2	39) 4	40) 2
41) 2	42) 1	43) 4	44) 2	45) 1	46) 4	47) 3	48) 4	49) 3	50) 3
51) 4	52) 2	53) 2	54) 4	55) 3					

WORK SHEET - II

1) 1	2) 4	3) 4	4) 4	5) 3	6) 1	7) 3	8) 2	9) 1	10) 2
11) 2	12) 3	13) 2	14) 2	15) 1	16) 2	17) 2	18) 2	19) 3	20) 2
21) 1	22) 1	23) 2	24) 4	25) 2	26) 2	27) 3	28) 4	29) 4	30) 3
31) 3	32) 4	33) 2	34) 4	35) 2	36) 1	37) 4	38) 3	39) 2	40) 3
41) 2	42) 2	43) 1	44) 2	45) 4	46) 2	47) 4	48) 1	49) 1	50) 2
51) 1	52) 1	53) 1	54) 3	55) 3	56) 4	57) 3	58) 4	59) 1	60) 3
61) 3	62) 2	63) 3	64) 1	65) 2	66) 4	67) 1	68) 3	69) 1	70) 2
71) 2	72) 2	73) 3							

WORK SHEET - III

3) 34 6) 124 7) 1 1) 4 2) 2 4)3 5) 2 8) 4 9) 3 10) 1 11) 3 12) 234 13) 14 14) 234 15) 3 16) 14

EXERCISE-II

1. Match Column-I (Compounds) with Column - II (Oxidation states of Co) and select the correct answer using the codes given below the Columns:

Column-I	Column - II
1) [Co(NCS)(NH ₃) ₅](SO ₃)	p) -1
2) Na[Co(CO) ₄]	q) 0
3) $Na_4[Co(S_2O_3)_3]$	r) +3
4) Co ₂ (CO) ₈	s) +2

- 2. Column - I
- Column-II 1) EDTA p) diamagnetic 2) Ni(CO), q) Bidentate 3) low spin complex r) Hexa dentate 4) Glycine s) $K_{4}[Fe(CN)_{6}]$
- 3. Match Column-I (Complex ions) with Column - II (Number of unpaired electrons) and select the correct answer using the codes given below the Columns:

Column - I	Column - II
(Complex ions)	(number of unpaired electrons)
1) [CrF ₆] ⁴⁻	p) One
2) [MnF ₆] ⁴⁻	q) Two
3) $[Cr(CN)_6]^{4-}$	r) Five
4) $[Mn(CN)_6]^{4-}$	s) Four

Match Column - I (Complexes) with Column-II (Hybridization) of central atom and select the 4. correct answer using the codes given below the Columns:

Column - I	Column -
1) Ni(CO) ₄	$p) sp^3$
2) [Ni(CN) ₄] ²⁻	q) dsp ²
3) [Fe(CN) ₆] ⁴⁻	$r) sp^3d^2$
4) [MnF ₆] ⁴⁻	s) d^2sp^3

5. Match Column I with Column II and select the correct answer using the codes given below the Columns.

Column-I (Complex)	Column- II (Geometry)
1) [Ni(CN) ₄] ²⁻	p) Tetrahedral
2) [ZnCl ₄] ²⁻	q) Tetragonal
3) [Co(en) ₃] ³⁺	r) Square planar
4) [Cu(NO ₂) ₆] ⁴⁻	s) Octahedral

6. Column-I Column - II

- 1) Octahedral
- 2) Square plannar
- 3) Trigonal bi pyramidal
- 4) Linear

- p) [Cu(NH₃)₄]⁺²
- $q) [As(NH_3)_3]^+$
- r) [Fe(CO)₅]
- s) [Cr(dien)₂]³⁺
- 7. Match Column-I (Co-ordination compounds) with Column-II (Type of isomerism) and select the correct answer using the codes given below the Columns:

Column-I

- 1) [Co(NH₃)₄Cl₂]
- 2) Cis-[Co(en)₃Cl₂]
- 3) [Co(en)₂(NO₂)Cl]SCN
- 4) $[Co(NH_3)_6][Cr(CN)_6]$

- Column II
- p) Optical isomerism
- q) Ionization isomerism
- r) Co-ordination isomerism
- s) Geometrical isomerism
- 8. Match the complexes in Column I with their properties listed in Column II. Indicate your answer by darkening the appropriate bubbles of the 4 x 4 matrix given in the ORS.

Column-I

- 1) [Co(NH₃)₄(H₂O)₂]Cl₂
- 2) [Pt(NH₃)₂Cl₂]
- 3) [Co(H₂O)_ECl]Cl
- 4) [Ni(H₂O)₆]Cl₂

- Column II
- p) Geometrical isomers
- q) Paramagnetic
- r) Diamagnetic
- s) Metal ion with +2 oxidation state

- 9. Column-I
 - 1) [Fe(CN)₆]⁴⁻
 - 2) $[Fe(H_2O)_6]^{2+}$
 - 3) $[Cu(NH_3)_6]^{2+}$
 - 4) [Ni(CN)₄]⁴⁻

- Column-II
- p) Paramagnetic
- q) Diamagnetic
- r) Inner orbital complex
- s) Outer orbital complex

- 10. Column I
 - 1) [Ni(H,O),]Cl,
 - 2) [Co(CN)₂(NH₃)₄]OC₂H₅
 - 3) [IrCl₄]³⁻
 - 4) [PtCl₂(NH₃)₄]Br₂

- Column-II
- p) d²sp³ hybridisation
- q) Ionisation isomerism
- r) $\mu = 2.83 \, bM$
- s) $\Delta_0 < P$

EXERCISE - II / ANSWERS

- 01)1 R; 2 P; 3 S; 4 Q
- 02) 1 R; 2 P; 3 S; 4 Q
- 03) 1 s; 2 r; 3 q; 4 p
- 04) 1 p; 2 q; 3 s; 4 r
- 05) 1 r; 2 p; 3 s; 4 q
- 06) 1-s; 2-p; 3-r; 4-q
- 07) 1 s; 2 p; 3 q; 4 r
- 08) 1 p,q,s; 2 p, r; 3 q,s; 4 q,s
- 09) $1 q_sR$; $2 p_ss$; $3 p_ss$; $4 q_ss$ 10) $1 r_ss$; $2 p_sq$; $3 p_s$; $4 p_sq$

EXERCISE - I

WORK SHEET - I

1.	The general formula	a of alkyl halides is				
	$1) C_{n}H_{2n}X$	2) $C_n H_{2n+1} X$	$3) C_n H_{2n} X_2$	4) $C_n H_{2n-1} X$		
2.	The hybridisation of	carbon atoms in C ₂ H ₅ C	l are			
3.	1) sp³ and sp² Ethyl chloride is	2) sp^3 and sp	3) sp^3 and sp^3	4) sp ² and sp		
·	1) 1º alkyl halide	2) 2º alkyl halide	3) 3º alkyl halide	4) gem halide		
4.	The C - Cl bond in E 1) sp^3 -s	thyl chloride is formed 2) sp³-p	l by overlaping 3) sp³d-p	4) sp²-p		
5.	IUPAC name of (CF 1) 1-Bromo - 3 -meth 3) 1-Bromo pentane	I ₃) ₂ CHCH ₂ CH ₂ Br is	2) 1-Bromo - 3 -metl	2) 1-Bromo - 3 -methyl propane 4) 3-Bromo pentane		
6	IUPAC name of H ₃ C 1) Ethylidene bromi 3) 1,1 - dibromo etha	de	2) Gem - dibromide 4) Any of the above			
7.	n-Butyl chloride an1) position isomers3) Chain isomers	d iso butyl chloride ar	2) Functional group isomers 4) Metamers			
8.	With increase in nu compounds 1) Decrease	mber of halogen atoms 2) Increase	s & atomic mass of halo 3) Remains same	ogen atoms density of the 4) Can't say		
9.	Among the followir	ng Density maximum f	or			
	1) CH ₃ Cl	2) CH,Cl,	3) CHCl ₃	4) CCl ₄		
10.	For the same alkyl (or) aryl group boiling _l	point is more for	•		
	1) RI	2) RBr	3) RCl	4) RF		
11.	The following cannot 1) PCl ₃	ot be used for the preparation PCl_5	aration of ethyl chlorid $3) SO_2Cl_2$	e from ethyl alcohol 4) SOCl ₂		
12.	The best reagent for 1) Lucas reagent 3) Thionyl chloride		re C_2H_5Cl from Ethano 2) PCl_5 4) Red Phosphorou			
13.	$CH_2 = CH_2 + HCl$ 1) Al_2O_3	\xrightarrow{X} CH ₃ – CH ₂ Cl, 2) Anhy. AlCl ₃		4) MgCl ₂		
14.	$3C_2H_5OH + PCl_3 - \frac{1}{2}$	\rightarrow 3C ₂ H ₅ Cl + X where	'X' is			
	1) H ₃ PO ₂	2) H ₃ PO ₄	3) H ₃ PO ₃	4) $H_4P_2O_7$		
15	$C_2H_5OH + SOCl_2$ -	$\xrightarrow{\text{Pyridine}} X + Y + Z$	in this reaction X, Y, &	Z respectively are		
	1) C ₂ H ₄ Cl ₂ ,SO ₂ ,H	ICl	2) C ₂ H ₅ Cl, SO ₂ ,H	Cl		
	3) C ₂ H ₂ Cl, SOCl, H	IC1	4) C ₂ H ₄ ,SO ₂ ,Cl ₂	4) C.H. SO. Cl.		

16.	What is 'X' in the for $C_2H_5Cl + X \rightarrow C_2$	O .		
	1) KHCO ₃	2) Alcoholic KOH	3) Aqueous KOH	4) K_2CO_3
17.	Metal present in Gi 1) Na	rignard reagent is 2) Mg	3) Al	4) Zn
18.	example of re	action	•	ne is formed. This is an
19.	1) AdditionEthyl iodide when1) Ethanol	2) Substitution treated with dry silver o 2) Diethyl ether	,	4) Rearrangement4) Ethane
20.	1) They are covaler	n hydrogen bonds with v	2) They have low po	olarity
21.	The major product 1) Ethyl Nitrite	formed when alcoholic 2) Ethyl Nitrate	$AgNO_2$ reacts with eth 3) Nitroethane	nyl chloride is 4) Ethyl diNitrate
22.	solvent 'x' used in	Solvent 'x' C_2H_5N the reaction is mide 2) Dimethyl ester		4) Diethyl ether
23.	•	s with "X" to form dieth	•	i) Dietily retiter
_0.	1) NaOH	2) H ₂ SO ₄	3) C₂H₅ONa	4) Na ₂ S ₂ O ₂
24.	The reaction	7 24	-7 -2 5	, 2-2-3
		$\xrightarrow{\text{AlCl}_3} + \text{HCl} + \text{C}_6\text{H}_3$	5 ^{CH} 3 is	
	1) Friedel - Craft's a 3) Friedel - Craft's a	•	2) Addition reaction4) Friedel Craft's ber	
25.	The solvent used ir 1) dry ether	n the preparation of Grig 2) dry acetone	gnard's reagent is 3) dry alcohol	4) dry chloroform
26.	Ethyl chloride does 1) Sodium in dry et 3) Magnesium in d	her	2) AgNO ₃ solution 4) KCN	
27.	Ethyl chloride reac 1) Isobutane chloride	ts with sodium metal in 2) n-butane	presence of dry ether a 3) Neopentane	and forms 4) Tertiary butyl
28.	In the reaction sequence molecular formula	- *	$X \xrightarrow{C_2H_5OH} X \xrightarrow{H_3O^{\oplus}}$	$Y + NH_3W$ is the
	1) $C_3H_6O_2$	2) C_3H_5N	3) $C_2H_4O_2$	4) C_2H_6O
29.	Ethyl chloride is no	ot used in		
	1) preparation of T.	E.L.	2) local anaesthesia	
	3) general anaesthe	esia	4) Ethylating agent	

HAL) 30.		LS & H UPAC na								
		loroform			hlorometha	ane	3) Chloro	methane	4)	Dichloromethane
31.	The l	nybridisa	tion of	carbon i	n CHCl ₃ is					
	1) sp ³	3		2) sp ²			3) sp		4)	sp³d
32.	The s	hape of c	hlorofo	orm mole	ecule is					
	The shape of chloroform molecule is 1) Tetrahedral 2) Pyramidal 3) Planar trigonal							4)	Distorted tetrahedral	
33.	Pure	chlorofo	rm is pr	epared f	rom					
	1) CC			2) CH ₃	CHO		3) CCl ₃ CI	$H(OH)_2$	4)	CH_3 - CO - CH_3
34.	Chloral hydrate is dissolved in NaOH solu obtained? 1) CH ₃ Cl, NaCl 4) C ₂ H ₅ Cl, CH ₃ COONa						tion and distilled. What are the compounds 2) CH ₃ Cl,CH ₃ COONa 3) CHCl ₃ /HCOONa,H ₂ O			
35.		ber of month H_4 with Z			ydrogen ato	oms	required ir	the redu	action o	f one mole of CHCl ₃
	1) 2			2) 4			3) 6		4)	3
36.		Ü			ostance add ethyl alcho		l 3) 1% ace	taldehyd	le 4)	1% acetone
37.		h of the f noist air	followir	ng poiso	nous gass i	s foi	rmed wher	n chlorof	form is	exposed to sunlight
	1) Mı	ıstard ga	ıs	2) Pho	sgene		3) Chlori	ne	4)	Carbon monoxide
38.	The g 1) CH		ted wh	en CHC 2) C ₂ H	l ₃ reacts wi	th A	$\frac{1}{2}$ g powder $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	is	4)	HCl
39.	-	•	tricholo		ane with ac oral	quec	ous KOH g 3) acetyle		4)	potassium formate
40.	List-1L1) CCl_4 12) $CHCl_3$ 23) Gemdihalide34) Vicinaldihalide4					List - 2 1) CH ₃ CH 2) Solven 3) CH ₂ Cld 4) Anaest 5) Toluer	t CH ₂ Cl :hetic			
	The	orrect m	atch is				-,			
	-1	A	В	C	D	- \	A	В	C	D
	1) 3)	5 5	3 3	1 2	2 1	2) 4)	1 2	4 4	3 1	2 3
41.	List - 1) C ₂ l 2) C ₂ l 3) C ₂ l 4) Na	1	₂ H ₅ ONa her			,	List - 2 1) William 2) Wurtz 3) Local A 4) Antise 5) Grigna	mson syr reaction Anaesthe ptic	nthesis etic	
	2210	A	В	С	D		A	В	С	D

HALOKANES & HALORENES

1)	3	5	1	2	2)	5	3	1	2
3)	3	4	1	2	4)	3	5	1	4

42. Match the following

Reactants

- 1) C₂H₅Cl, Moist Ag₂O
- 2) C₂H₅Cl, aqueous Ethanolic AgCN
- 3) C₂H₅Cl, aqueous Ethanolic AgNO₂
- 4) C₂H₅Cl, aqueous Ethanolic KOH

Products

- i) CH₃CH₂ONO
- ii) C,H,
- iii) C₂H₅OH
- iv) CH₃CH₂NC
- v) C₂H₆

The Correct match is

	Α	В	C	D		Α	В	C	D
1)	\mathbf{v}	iii	iv	i	2)	i	ii	iii	iv
3)	iii	iv	i	ii	4)	iv	i	ii	iv

43. List - 1

- 1) Chloroform, phenol & alkali
- 2) Ethyl alcohol, bleaching powder
- 3) Chloroform, aniline & alkali
- 4) Acetone, iodine & caustic soda

List - 2

- 1) Carbylamine reaction
- 2) Reimer Tiemann reaction
- 3) Iodoform test
- 4) Chloroform
- 5) Williamson synthesis

The correct match is

	A	В	C	D		A	В	C	D
1)	2	4	3	1	2)	2	4	1	3
3)	4	3	1	2	4)	1	4	2	3

44. List - 1

- 1) Dehydrohalogenation
- 2) Dehalogenation
- 3) Dehydration
- 4) Hydrolysis

List-2

- 1) Na + C_2H_5OH
- 2) conc. H₂SO₄
- 3) aq. KOH
- 4) alc. KOH
- 5) Ethanolic zinc.

The correct match is

	A	В	C	D		A	В	C	D
1)	2	5	1	3	2)	4	5	2	3
3)	1	5	2	3	4)	3	5	4	2

- 45. Amongst the following the most reactive alkyl halide is
 - 1) C_2H_5F 2) C_2H_5C1
- $3) C_2 H_5 Br$
- 4) C_2H_5I
- 46. SN¹ reactions occur through the intermediate formation of

HALOKANES & HALORENES 1) Carbocations 2) Carbanions 3) Free radicals 4) None of these The reaction $(CH_3)_3 C - Br \xrightarrow{H_2O} (CH_3)_3 C - OH$ is ----- reaction. 47. 1) elimination 2) substitution 3) free radical 4) displacement 48. An optically active halide when allowed to react with CN-gives a racemic mixture. The halide is most likely to be 1) 1° 3) 3° 2) 2° 49. A dextrorotatory optically active alkyl halide undergoes hydrolysis by SN² mechanism. The resulting alcohol is 1) Dextrorotatory 2) Laveorotatory 4) may be dextro (or) laevorotatory 3) Optically inactive due to racemisation 50. Aryl halides are less reactive towards nucleophilic substitution reaction as compared to alkyl halides due to 1) The formation of less stable carbanion 2) Resonance stabilization of aryl halides 3) Longer – carbon halogen bond 4) Inductive effect 51. Chlorobenzene is? 1) More reactive than ethyl bromide 2) More reactive than isopropyl chloride 3) As reactive as methyl chloride 4) Less reactive than benzyl chloride 52. The conditions that are necessary in the preparation of Aryl halides? 1) Low temperature 2) Absence of sunlight 3) Presence of halogen carrier 4) all of the above 53. Aryl halides can be prepared by 1) Sand mayer's method 2) Friedel - craft reaction 3) Gattermann's reaction 4) 1 and 3 54. Flouro benzene can not be prepared by direct flourination since. 1) F, is highly reactive 2) F, is inert 3) Reaction with F₂ reversible 4) F, reacts slowly 55. In Gattermann reaction, a diazonium group is replaced by X using Y. X, Y are: X Y 1) Cl Θ Cu/HCl 2) C1[⊕] CuCl₂/HCl 3) C1 O CuCl₂/HCl

4) Cl_2 $\text{Cu}_2\text{O/HCl}$

56. $C_6H_5NH_2 \xrightarrow{NaNO_2 + HCl} A \xrightarrow{KI} B + C \uparrow$

Here B and C are

1) $C_6H_5I_1N_2$ 2) $C_6H_5I_1O_2$ 3) $C_6H_6I_2$

57. Chlorobenzene on fusing with solid NaOH follwed by acidification gives

1) Benzene 2) Benzoic acid 3) Phenol 4) Benzene Chloride

4) C₆H₅CH₂I,N₂

WORK SHEET - II

1.	Tertiary alkyl halid 1) 2 - chlorobutane	e among the following	is 2) Secondary butyl c	hloride			
	3) Isobutyl chloride		4) 3 - chloro - 3 - met	hyl pentane			
2.	Number of possible	isomers with the mole	cular formula C ₄ H ₉ Cl are				
	1) 3	2) 4	3) 5	4) 6			
3.	alkyl halide		•	vdrogen(s). It is called (2002)			
	1) Two, primary	2) Three, primary	3) Two, secondary	4) One, Tertiary			
4.	Which of the following 1) Isobutyl bromide 3) Isopentyl bromide	ng is a primary alkyl ha le	2) Neo - Pentyl chlor	ide ? 2) Neo - Pentyl chloride 4) All are primary halides			
5.	1) n-propylchloride2) n-butyl chloride3) sec butyl chloride	among the following and isopropyl chlorid and iso butyl chloride and ter-butyl chloride and ter-butyl chloride	are chain isomers e are chain isomers				
6.	Among the following	ng perhaloalkane is					
	1) SCl ₄	2) CHCl ₃	3) C_2Cl_6	4) CF ₃ CHClBr			
7.	В	_r IUPAC name is					
	/	-					
	1) 4 - bromo pent - 3		2) 4 - bromo pent - 2				
	3) 2 - bromo pent -		4) 3 - bromo bute - 2				
8.	ring, is called as -			attached to an aromatic			
	1) Allylic halide	2) Benzyl hlaide	3) Perhalo alkane	4) Aryl halide			
9.	Which of the follow 1) 1 - Chloropentand 3) ter-pentyl chlorid		iling point ? 2) isopentyl chloride 4) All have equal bo				
10.	C - X bond is strong 1) CH ₃ Cl	gest in 2) CH ₃ Br	3) CH ₃ F	4) CH₃I			
11.		ring alkyl halides has tl	he maximum density?	. 3			
	1) C ₃ H ₇ I	2) C_2H_5I	3) CH ₃ Br	4) CH ₃ I			
12.	$C_2H_5Cl + Na \frac{dry}{-N}$	$\xrightarrow{\text{ether}} A$					
	A on monochlorina 1) 1	tion give how many iso 2) 2	omers 3) 3	4) 4			
13.	С ₂ Н ₅ ОН + НС1—	$\xrightarrow{\text{ZnCl}_2}$ $C_2\text{H}_5\text{Cl} + \text{H}_2$	$2^{\rm O}$ in this reaction and	nydrous ZnCl ₂ acts as			
	1) dehydrating ager	nt	2) dehydrogenating	agent			

3) dehalogenating agent

- 4) dehydrohalogenating agent
- 14. Hydrogen chloride and SO, are the by products in the reaction of ethanol with thionyl chloride. Which of the following is the main product in this reaction?
 - 1) $C_2H_5OC_2H_5$
- 2) C₂H₆
- 3) CH₂Cl
- 4) C₂H₅Cl
- The hybridization state of carbon atoms in the product formed by the reaction of ethyl chloride 15. with aqueous KOH is
 - 1) Sp
- 2) Sp²
- 3) Sp^3
- 4) Sp^3d
- $C_2H_5C\ell \xrightarrow{\text{alc.KOH}} x \xrightarrow{C\ell_2/CC\ell_4} y$. About 'y' the correct statement is 16.
 - 1) It is an example of gem dihalide
- 2) It is an example of vic dihalide
- 3) Hybridisation of carbon in 'y' is SP²
- 4) It is an unsaturated compound
- Ethyl chloride on heating with Silver cyanide forms a compound 'X'. The functional isomer 17. of 'X' is 1) C₂H₅NC $2) C_2 H_5 CN$ 3) CH₃ - NH - CH₃ 4) (CH₂)₂N
- For the preparation of ethyl propionate from ethyl bromide, the other reactant required is 18. 1) Silver acetate 2) Propionic anhydride 3) Propanoyl chloride
 - 4) Silver propionate
- 19. $C_2H_6 \xrightarrow{450^{\circ}C} A \xrightarrow{+HCl/AlCl_3} B$ aqueous ethanolic KCN **B**< aqueous ethanolic AgCN

Covalence of 'Carbon' in the functional group of C and D are

- 1) 3, 3
- 3)4,3
- 4) 3, 4

 $C_2H_5Cl + KNO_2 \xrightarrow{DMF} A_{(Major)}$ 20.

The bond absent in 'A' is

- 1) C-N
- 2) C-O
- 3) C-H
- 4) C-C

 $C_2H_5Cl_{excess} \xrightarrow{NH_3alc.} A_{(final)}$ 21.

Covalenc of 'N' in 'A' is

1)4

2)3

- 3) 2
- 4) 1
- 22. Which one of the following reaction is not possible
 - 1) $C_2H_ECl + KF \rightarrow C_2H_EF + KCl$
- 2) $C_2H_2Cl + NaBr \rightarrow C_2H_2Br + NaCl$
- 3) $C_2H_ECl + KI \rightarrow C_2H_EI + KCl$
- 4) $C_2H_ECl + KBr \rightarrow C_2H_EBr + KCl$
- $C_6H_6 + C_2H_5C1 \xrightarrow{'X'} 'Y'$ 23.

Wrong statement among the following is

1) 'X' is Lewis acid

- 2) In 'Y' all carbons undergo Sp² hybridization
- 3) For 'Y' four aromatic isomers are possible 4) Its homologue is toluene
- 24. $CH_3COOAg + C_2H_5Cl \rightarrow A(org.)$

Wrong statement about 'A' is

1) A is an ester

- 2) IUPAC name of 'A' is ethylethanoate
- 3) Functional group isomers of 'A' is butyric acid

4) All carbons in 'A' are Sp² hybridised

37.

1) CHCl,

What is the product obtained when chlorine reacts with ethyl alcohol in KOH?

3) CH, Cl

2) CCl, CHO

none

HAL	OKANES & HAL	OKENES				
38.	o .	ring which is stable				
		2) CCl ₃ CH(OH) ₂				
39.	2 3	OH is added to chlorofo	orm, the phosgene	present in chloroform is		
	converted into.	O 2) CH ₃ - C- CH ₃				
		5 5	3) (CH ₃ CH ₂ O) ₂ CO	4) CH ₃ COOH		
40.	=	$\xrightarrow{\text{h}\mathfrak{g}} A \xrightarrow{C_2H_5OH} B$				
	Correct statement among the following is 1) In 'A' hybridization of 'carbon' is Sp ³ 2) 'B' is harmfull 3) 'A' gives white precipitate with aq-AgNO 4) In the presence of 1% C ₂ H ₅ OH, formation of A is retarded					
41.	The number of moles of Ag metal to be reacted with $CHCl_3$ to get 1 mole of C_2H_2 is					
	1) 1	2) 2	3) 4	4) 6		
42.	$CHCl_3 + C_6H_5OH \xrightarrow{NaOH} x + NaCl + H_2O$ the principal functional group in the compound 'x' is					
	1) -OH	2) - CHO	3) -COOH	4) - Cl		
43.	$C_6H_5NH_2+CHCl_3+KOH_{(alc.)} \xrightarrow{\Delta} A_{(org)}$					
	Covalence of C an 1) 4, 3	d N in the functional grou 2) 3, 4	up of 'A' is 3) 4, 4	4) 3, 3		
44.	Chloroform reacts with $'X'$ and forms a compound having offensive smell in the presence of base, $'X'$ is					
	$1) 1^0$ amine	2) 2º amine	3) 3 ⁰ amine	4) 4 ⁰ amine		
45.	Isocyanide test is used to identify					
	 Aromatic secondary amines Aromatic tertiary amines Quaternary ammonium compound 					
46.	Which of the following does not participate in the carbylamine reaction?					
	1) aniline	2) chlorofor	3) ethanal	4) KOH _(alc)		
47.	Reagent used for α 1) aq. AgNO ₃	letecting $CHCl_3$ is 2) 1°-amine	3) 1°-amine + KOH	I _(alc.) 4) 1% C ₂ H ₅ OH		
48.	Reagent used for t 1) aq.AgNO ₃	resting the purity of CHCl 2) 1°-amine	; is 3) 1°-amine+KOH(aq) 4) 1% C ₂ H ₅ OH		
49.	Iodoform test is not answered by					
	1) CH ₃ CHO	2) 3-pentanone	3) CH ₃ COCH ₃	4) CH ₃ CHOHCH ₂ C ₆ H ₅		
50.	The following are some statements about ethyl chloride i) it is used as refrigerant ii) it is used to prepare diethyl ether iii) it is used to prepare Tetra Ethyl Lead(TEL) 1) all are correct 2) only i and ii are correct 3) only ii is correct 4) only ii and iii are correct					
	1) Both (1) and (R) are true and (R) is the correct explanation of (A)					
	2) Both (1) and (R) are true and (R) is not the correct explanation of (A)					

	3) (1) is true but (R) is 4) (1) is false but (R)					
51.	(1): Ethyl chloride with aq.ethanolic AgCN gives ethyl cyanide as major product.					
	(R) : In ethyl cyanide ethyl carbon is linked to $C\overline{N}$ group.					
52.	(1): Chloroform vapours burn with green flame.(R): chloroform is green coloured liquid.					
53.	(1): Pure chloroform doesnot give precipitate with AgNO ₃ solution. (R): CHCl ₃ is covalent compound.					
54.	Which of the following is formed when the product of oxidation of chloroform is treated with					
	ethyl alcohol ?					
	1) Ethyl chloride	2) Ethyl carbonate	3) Chloral hydrate	4) Chloral		
55.	In the chemical reaction, $CH_3CH_2NH_2 + CHCl_3 + 3KOH \rightarrow (A) + (B) + 3H_2O$					
	(1) & (2) are respectively					
	1) C ₂ H ₅ NC & 3KCl		2) C ₂ H ₅ CN & 3KCl			
	3) CH ₃ CH ₂ CO NH ₂ &	z 3KCl	4) C ₂ H ₅ NC & K ₂ CO ₃			
56.	The characteristic reactions of alkyl halides are 1) electrophilic substitution reactions 2) electrophilic addition reactions 3) nucleophilic addition reactions 4) nucleophilic substitution reactions					
57.	Which of the following is an example of SN ² rection?					
	1) $CH_3Br + OH^- \longrightarrow CH_3OH + Br^-$					
	2) $CH_3 - CH - CH_3 + OH^- \longrightarrow CH_3 - CH - CH_3 + Br^-$					
			 Br	OH		
	3) CH ₃ CH ₂ OHH ₂ O	$CH_2 = CH_2$	4) (CH ₃) ₃ C-Br+OH ⁻ –	\longrightarrow (CH ₃) ₃ COH+Br ⁻		
58.	Most reactive halide towards S_{N^1} reaction is					
	1) n - Butyl chloride 2) sec - Butyl chloride 3) tert - Butyl chloride 4) Allyl Chloride					
59.	Which of the following alkyl halides is hydrolysed by SN¹ mechanism?					
	1) CH ₃ -Br	2) CH ₃ CH ₂ -Br	3) CH ₃ CH ₂ CH ₂ -Br	4) (CH ₃) ₃ C-Br		
60.	Which of the following alkyl halides is hydrolysed by SN ² mechanism?					
	$1) C_6 H_5 C H_2 B r$	2) CH ₃ Br	3) $CH_2 = CHCH_2Br$	4) (CH ₃) ₃ CBr		
61.	In S_N^{-1} reactions rate of reaction depends on					
	a) concentration of alkyl halide b) concentration of nucleophile					
	c) Nature of alkyl halide					
	1) All	2) 'a' and 'c' only	3) 'a', 'b' only	4) 'c' only		
62.	The reaction describe	ed is				

- 63. In SN¹ (substitution, nucleophilic uni molecular) reaction, the racemization takes place. It is
 - 1) inversion of configuration
- 2) retention of configuration
- 3) conversion of configuration
- 4) both 1 and 2
- The organic chloro compound, which shows complete stereo chemcial inversion during 64. S_{N} 2 reaction is
 - 1) (CH₃)₃CCl
- 2) (CH₃), CHCl
- 3) CH₃Cl
- 4) (C₂H₅)₂CHCl

- 65. $C_2H_EN_2Cl \xrightarrow{CuCl/HCl} C_2H_ECl + N_2$ is called
 - 1) Etard reaction

2) Sandmeyer reaction

3) Wurtz-Fittig's reaction

- 4) Perkin's reaction
- The reaction of an alkyl halide with RCOOAg produces 66.
 - 1) ester
- 2) ether
- 3) aldehyde
- 4) ketone
- 67. Which of the following statements are not correct?
 - 1) Chlorobenzene is more reactive than benzene towards electrophilic substitution reactions
 - 2) C Cl bond in chlorobenzene is less polar than in CH Cl
 - 3) Chlorobenzene is less reactive than CH₂Cl towards nucleophilic substitution reactions
 - 4) In chlorobenzene further substitution take place at ortho and para position

WORK SHEET - III

- 01. Which of the following statements is incorrect?
 - 1) Alkyl halides are more reactive than aryl halides towards nucleophilic substitution reaction.
 - 2) Alkyl halides are less reactive than aryl halides towards nucleophilic substitution reactions.
 - 3) The presence of an electron-releasing substituent at ortho and/or para position decreases the reactivity of nucleophilic substitution of chlorine in the substituted chlorobenzene
 - 4) The replacement of chlorine in chlorobenzene by strong bases proceeds via eliminationaddition reaction
- 02. Which of the following reagents shown below would accomplish the following transformation?

$$\begin{array}{c|c}
Br & OH \\
\hline
 & (1)X \\
\hline
 & (2)Y
\end{array}$$

- 1) H_3O^+ ; $BH_3 THF$, $H_2O_2 / NaOH$ 2) NaOH; $BH_3 THF$, $H_2O_2 / NaOH$
- 3) HBr / ether; $Hg(OAC)_{2} / H_{2}O, NaBH_{4}$ 4) $NaNH_{2} Hg(OAC)_{2} / H_{2}O, NaBH_{4}$

03. Which of the following undergoes dehydrobromination at a fastest rate?

- 05. A Compound 'X' have molecular formula $C_3H_6Br_2$ reacts with Nal and acetone to form a substance which turns starch solution blue. 'X' is
 - a)CH₃CH(Br)CH₂Br

2) CH₃CH₂CHBr,

3) CH₃C(Br)₂CH₃

- 4) BrCH,CH,CH,Br
- 06. An unknown alkylhalide (1) reacts with alcoholic KOH to produce C_4H_8 which on ozonolysis gives one mole of propanone and one mole of formaldehyde. The structure of 'A' is
 - 1) (CH₃)₃CBr

2) CH₃CH(Br)CH(Br)CH₃

3) CH₃CH₂CH(Br)CH₃

- 4) BrCH2CH2CH2Br
- 07. Consider the following compounds.
 - I. DDT
- II. Gammexane
- III. Carbon tetrachloride IV. Chlorobenzene

The correct sequence of these compounds in the increasing order of percentage of chlorine in them is

- 1) III, II, I, IV
- 2) IV, II, I, III
- 3) III, I, II, IV
- 4) IV, I, II, III
- 08. Which of the following will give yellow precipitate with I, / NaOH?
 - 1) $CH_3COOCOCH_3$
- 2) $CH_3COOCH_3CH_3$

3) CH_3CONH_2

- 4) CH₃CH(OH)CH₂CH₃
- 09. Among the three possible isomers of dibromo benzenes, the highest melting point is possessed by
 - 1) o-dibromobenzene 2) p-dibromobenzene 3) m-dibromobenzene 4) Both B & C
- 10. Which of the following compounds are more reactive towards NaOH.
 - 1) *CH*₃*Cl*

$$_{2)}$$
 CH₂Cl

4)
$$CH_3CH = CHC\ell$$

11. Which of the following compounds undergoes replacement of -CI by -OH by merely warming the compound with aqueous NaOH?

12. CI
$$O_{2}$$
 O_{2} O_{2}

13.
$$CCl_3 \xrightarrow{Conc.HNO_3} (X)$$
. X is

4) Y is

1)
$$NO_2$$
 CCl_3 O_2N CCl_3 O_2N CCl_3 O_2N O

14.
$$\xrightarrow{\text{HBr}} A \xrightarrow{\text{Alc.KOH}} B \xrightarrow{\text{O}_3/\text{Zn}} C + D$$
. C & D are

1) C is

2) D is

4) C is

15. The product obtained by reduction of Benzyl bromide with LiAlH₄ is

16. ONa +
$$CH_2$$
 = $CHCH_2Cl \xrightarrow{Heat} [X] \xrightarrow{\Delta} [Y] + [Z]$ then the correct

1) X is
$$OCH_2CH = CH_2$$
 OH OH

$$CH_2CH$$
 CH₂CH CH_2 CH₂CH CH_2 CH₂CH₂CH₃

17. Column - I

$$(1) \bigcirc^{Cl} \rightarrow \bigcirc^{Cl}$$

(P) Benzyne mechanism

Column - II

(2)
$$\xrightarrow{H}$$
 (Q) Carbocation reaction

3)
$$Cl$$
 (R) Anhydrous AlCl₃

$$(4) \qquad \stackrel{Cl}{\underbrace{\qquad \qquad }} NH_2$$

(S) Electrophilic aromatic substitution

18. Column - I

1)
$$H_3C \xrightarrow{Br} CH_3 + HOH \rightarrow$$

Column - II

P) Ethers

2)
$$H_3C \xrightarrow{CH_3} O \overset{\Theta}{\underset{Na}{\triangleright}} + CH_3 - Br \longrightarrow$$
 Q) 2^0 Alcohol

3)
$$H_{3}C$$
 CH_{3} +NaOH \rightarrow R) 3^{0} Alcohol

4)
$$H_3C \xrightarrow{OH} CH_3 \xrightarrow{H^+} \Delta$$
 S) Alkene

EXERCISE - I / ANSWERS

WORK SHEET - I

1) 2	2) 3	3) 1	4) 2	5) 1	6) 3	7) 3	8) 2	9) 4	10) 1
11) 3	12) 3	13) 2	14) 3	15) 2	16) 3	17) 2	18) 3	19) 2	20) 3
21) 1	22) 1	23) 3	24) 1	25) 1	26) 2	27) 2	28) 1	29) 3	30) 2
31) 1	32) 4	33) 3	34) 3	35) 3	36) 1	37) 2	38) 3	39) 4	40) 4
41) 1	42) 3	43) 2	44) 2	45) 4	46) 1	47) 2	48) 3	49) 4	50) 2
51) 4	52) 4	53) 4	54) 1	55) 1	56) 1	57) 4			

WORK SHEET - II

1) 4	2) 3	3) 1	4) 4	5) 4	6) 3	7) 2	8) 2	9) 1	10) 3
11) 1	12) 2	13) 1	14) 4	15) 3	16) 2	17) 2	18) 4	19) 3	20) 2
21) 1	22) 1	23) 2	24) 4	25) 4	26) 4	27) 3	28) 4	29) 4	30) 3
31) 3	32) 2	33) 4	34) 4	35) 1	36) 2	37) 1	38) 2	39) 3	40) 4
41) 4	42) 2	43) 2	44) 1	45) 3	46) 3	47) 3	48) 1	49) 2	50) 1
51) 4	52) 3	53) 1	54) 2	55) 1	56) 4	57) 1	58) 4	59) 4	60) 2
61) 2	62) 3	63) 4	64) 3	65) 2	66) 1	67) 1			

WORK SHEET - III

1) 2 2) 4 3) 4 4) 1 5) 1 6) 1 7) 4 8) 4 9) 2 10) 2 11) 34 12) 34 13) 1 14) 12 15) 3 16) 123 17) 1-QR; 2-Q; 3-RS; 4-P 18) 1-R; 2-P; 3-Q; 4-S

ALCOHOLS, PHENOLS AND ETHERS EXERCISE - I

WORK SHEET - I

1.	The number of 1°,	2º and 3º alcoholic group	s in Mannitol or Sorb	itol are		
	1) 2, 4 and 0	2) 1, 4 and 0	3) 2, 2 and 0	4) 2, 1 and 1		
2.	The common name	of 2-methyl-1-propanol				
	1) 2-methyl-2-prop	panol	2) Sec.butyl alcoho	ol		
	3) Isobutyl alcohol		4) Tertiary butyl al	cohol		
3.	An isomer of ethan	nol is				
	1) Methanol	2) Dimethyl ether	3) Diethyl ether	4) Ethylene glycol		
4.	Which one of the f 1) 2 - Methyl - 1 - p 3) 2 - Butanol	ollowing is a secondary ropanol		2) 2 - Methyl - 2 - propanol		
5.	If the boiling poin diethyl ether (mole 1) 100°C	·	weight = 46) is 78°C, s	what is the boiling point of 4) 34°C		
(,	,	,	,		
6.	1) Methanol	wing alcohols has the lov 2) Ethanol	3) 1-Propanol	er ? 4) 1-Butanol		
7.	The enzyme that is 1) maltase	not associated in the pr 2) diastase	eparation of C_2H_5OH 3) invertase	from starch is 4) zymase		
8.	Glucose is convert 1) maltase	ed into ethyl alcohol by 2) zymase	3) invertase	4) diastase		
9.	The percentage of 1) 95%	C_2H_5OH in wash is 2) 10%	3) 50%	4) 75%		
10.	Rectified spirit ca	n be converted into Abs	solute alcohol by disti	lling with		
11.	1) Na ₂ CO ₃	2) Na rch formed by passing s	3) conc. H_2SO_4	4) CaO		
	1) malt	2) mash	3) wash	4) absolute alcohol		
12.	The enzyme produ 1) maltase	iced by Malt is 2) diastase	3) invertase	4) zymase		
13.	The enzyme Malta 1) Glucose and Fru 3) Glucose only	se converts maltose into actose	2) Fructose only 4) Glucose and C ₂ I	2) Fructose only		
14.	•	nade unsuitable for drin 2) 1-propanol		4) 2-propanol		
15.	(1): Alcoholic ferm (R): Fermentation The correct answer 1) Both (1) and (R)	nentation involves conve involves the liberation of r is are true and (R) is the co are true and (R) is not th	ersion of sugar into ether CO_2 gas.	nanol by the action of yeast. A) of (A)		

16.		wing alkenes when pas would give tert-butyl a		O ₄ followed by hydrolysis			
	1) Ethylene	2) Isobutylene	3) Propylene	4) 1-Butene.			
17.	- 0	ts of methyl alcohol an berated is more in the c	•	th excess of sodium metal			
	1) C2 H5 OH	2) CH ₃ OH	3) Equal in both	4) H ₂ do not liberated			
18.	The reaction of ethy	ylmagnesium iodide w	ith acetaldehyde gives a	fter acidification			
19.	1) 2-Butanol To prepare 2-propa	2) 1-Butanol anol from methylmagne	3) 2-Methyl-2-propandesium bromide,the other	ol 4) 2-Methylpropanol. r chemical required is			
	1) HCHO	2) CH ₃ CHO	$3) C_2 H_5 OH$	4) CH ₃ COCH ₃			
20.	Slow decompositio	n of complex organic co	ompounds into simpler o	ones by enzymes is known			
	1) Condensation	2) Fermentation	3) Dehydration	4) Polymerization			
21.	In the conversion o	f starch to ethyl alcoho	l,the following enzymes	are used			
	1) Invertase, Zymas	se, Emulsin	2) Maltase, Zymase,	2) Maltase, Zymase, Emulsin			
22.	 Diastase, Maltas Which one of the magnesium iodide 	following gases is libe	4) Invertase, Diastas erated when ethyl alcoh	se, Zymase. nol is heated with methyl			
	1) Methane	2) Ethane	3) Carbondioxide	4) Propane			
23.	1) A = aqueous KO	H ' B = AgOH	•	H/; B = aqueous NaOH			
24.	3) A = aqueous Nat The reaction 2ROF Suggests that alcoh 1)Acidic	I+2 Na → 2RONa+	4) $A = AgNO_2$; $B = F$ H_2 3) Amphoteric	KNO ₂ 4)Neutral in character			
25.	•	react with methanol to	, -	,			
20.	1) One mole of oxyg			2) 1/2 mole of hydrogen			
	3) One mole of hyd	,	4) 1/4 mole of oxyge				
26.	,	ving alcohols is the stro	, ,				
20.	1) CH ₃ OH	2) CH ₃ CH ₂ OH	3) (CH ₂),CHCH,OH	4) (CH ₂), COH.			
27.		. 3 2	32	H,O,OH-, CH,OH,CH,O-			
27.	1) CH ₃ OH< H ₂ O <0			2 3			
	3) H ₂ O < CH ₃ OH < 0	3	, 3	2) CH ₃ O ⁻ > OH ⁻ > CH ₃ OH > H ₂ O 4) OH ⁻ > CH ₃ O ⁻ > CH ₃ OH > H ₂ O			
28.	, 2	3	ed to have the lowest pK				
29.	•	•	,	acid, the main product is			
۷).	1) 1-Butene	2) 2-Butene	3) 2-Methyl propene	-			
30.		*	, , , , ,	e 2-methylpropene as the			

major product is

1) CH,CH,CH,CH,OH

2) (CH₃), CH-CH, OH

3) CH₃-CHOH-CH₃CH₃

- 4) CH, CHOHCH,
- $\xrightarrow{\text{conc.H}_2\text{SO}_4} \text{CH}_3\text{COOC}_2\text{H}_5 + \text{H}_2\text{O}.$ $CH_2COOH + C_2H_5OH -$ 31.

The above reaction is known as

- 1) Hydrolysis
- 2) Esterification
- 3) Sopanification
- 4) Dehydration
- 32. C₂H₅OH can be converted in to C₂H₅Cl by reacting with
 - 1) PCl₂
- 2) PC1₅
- 3) SOCl, + Pyridine
- 4) All the above
- 33. A mixture of anhydrous ZnCl2+conc.HCl is known as
 - 1) Fehling's reagent
- 2) Lucas reagent
- 3) Tollen's reagent
- 4) Benedict's reagent
- 34. When C₂H₅OH reacts with Conc. HNO₂ the product formed is
 - 1) Nitroethane
- 2) Ethyl Nitrite
- 3) Ethyl Nitrate
- 4) Nitrosoethane
- 35. Action of bleaching powder on ethyl alcohol gives
 - 1) Chloroform
- 2) Dichloro methane 3) Trichloro ethane
- 4) Ethylene chloride
- 36. Which is formed when ethanol reacts with acetic acid
 - 1) CH₃COOC₂H₅
- $2) C_2H_5OC_2H_5$
- 3) CH₃OCH₃
- 4) CH₂CH₂CHO

Assertion (1) & Reason (R) type Questions:

- 1) Both (1) and (R) are true and (R) is the correct explanation of (A)
- 2) Both (1) and (R) are true and (R) is not the correct explanation of (A)
- 3) (1) is true but (R) is false
- 4) (1) is false but (R) is true
- 37. Assertion: Ethanol is miscible in all proportions with water.

Hydrogen bonds are formed between water and alcohol molecules. Reason:

Assertion: CaCl, can't be used for drying ethyl alcohol 38.

> Reason: Ethyl alcohol forms addition compound with CaCl,

39. Assertion: Ethyl alcohol is soluble in organic solvents

> Reason: Ethyl alcohol is having non polar ethyl group.

40. Assertion: The boiling point of C,H₅OH is less than that of H,O, though the molecular

weight of C₂H₅OH is more than that of water.

C₂H₅OH molecules are not highly associated through hydrogen bonding as in Reason:

water.

41. Assertion: Addition of C₂H₅OH to CH₂MgI gives methane.

> Reason: C₂H₅OH is more acidic than CH₄.

Assertion: Dehydration of alcohols can be carried out with Conc H₂SO₄ but not with conc. 42.

HC1

Reason: H₂SO₄ is dibasic while HCl is monobasic.

43.		hols on dehydration can litions	produce ether as well	as alkene under different					
44.	In the reaction, C ₂ H	ydration of alcohol takes $I_5OH \xrightarrow{Cu} \underline{X}$. The molecupour)	place with conc. H_2SO_4 lar formula of \underline{X} is (EAN)	or Al ₂ O ₃ . MCET-ENG-2005)					
	$1) C_4 H_6 O$	2) $C_4H_{10}O$	$3) C_2 H_4 O$	4) $C_{2}H_{6}$					
45.	$C_2H_5OH + SOC$	$1_2 \xrightarrow{\text{pyridine}} X + Y + Z$	In this reaction X , Y an	ad Z respectively are					
	1) C ₂ H ₄ Cl ₂ , SO ₂ , H	ICl 2) C ₂ H ₅ Cl, SO ₂ , HCl	3) C ₂ H ₄ Cl, SOCl ₂ , H	(Cl 4) C ₂ H ₄ , SO ₂ , Cl ₂					
46.	The compound tl	nat reacts with CH ₃ MgBr	to yield methane as or	ne of the products is					
	1) CH ₃ CHO	2) CH ₃ COCH ₃	3) CH ₃ COOCH ₃	4) CH ₃ CH ₂ OH					
47.	The correct order	of reactivity of hydroger	n halides with ethyl alc	ohol is					
	1) HF > HCl > HE	3r > HI	2) HCl > HBr > HF	>HI					
	3) HBr > HCl > H	3) HBr > HCl > HI > HF 4) HI > HF							
48.	What is the hybri	disation state(s) of the ato	oms in X formed in the	following reaction?					
	$C_2H_5OH - Al_2O_3 \over (Vapours)$	$$ \underline{X}							
49.	1) sp³ only Phenol can be pre	2) sp² and sp³ epared from	3) sp ² only	4) sp only					
	1) Benzene diazo3) Sodium benzer		2) Chlorobenzene4) All						
50.	Benzene diazoni	um chloride on boiling w	ith dilute H ₂ SO ₄ gives						
	1) Cresol	2) Xylene	3) Phenol	4) Toulene					
51.	Sodium salt of begives	Sodium salt of benzene sulphonic acid on fusion with caustic soda followed by acidification gives							
	1) Benzene	2) Phenol							
	3) Thiophenol	4) Benzenesulfonic	acid						
52.	On heating with	soda-lime, salicylic acid {	gives						
	1) Phenol	2) Benzoic acid	3) Sodium salicyla	te 4) Benzene.					
53.	The reaction, $C_6H_5ONa+CO_2+H_2O \rightarrow C_6H_5OH+NaHCO_3$ suggests that								
	1) Phenol is a stro	1) Phenol is a stronger acid than carbonic acid							
	2) Carbonic acid	2) Carbonic acid a stronger acid than phenol							
	3) Water is a stronger acid than phenol								
	4) None of the abo	ove							
54.	Phenol can be pre 1) Aniline and H	epared by the reaction be NO ₃ at 373 K	tween						
		CO ₂ followed by hydroly	sis						
	3) C ₆ H ₅ Cl and Na	_							
	4) C ₆ H ₅ SO ₃ Na an	d NaOH at 573–623K foll	owed by acidification.						

${\bf ALCOHOLS, PHENOLS\, AND\, ETHERS}$

55.	Phenol is prepared co	mmercially from				
56.	 Ethylbenzene Phenol is commercial Light oil 	,	 n-Propylbenzene lowing fraction of coal- Cresotic oil 	4) Toluene. tar distillation 4) Antheracene oil		
57.	The acidic character of 1) Greater resonance 2) Greater resonance 3) Because of tautome	·	ide ion over phenol over phenoxide ion nol			
58.	The correct order of r 1) Phenol > Water > I 3) Ethyl alcohol > Phe	Ethyl alcohol	of phenol, ethyl alcoho 2) Ethyl alcohol > Wa 4) Water > Phenol > I	nter > Phenol		
59.	Which of the following	ng compounds will rea	ct with sodium hydrox	ide?		
	1) CH ₃ OH	2) CH ₃ CH ₂ OH	$3) C_6 H_5 OH$	4) C ₆ H ₅ CH ₂ OH		
60.	Which of the followir than seven?	ng compounds when d	issolved in water, give	s a solution with pH less		
61.	1) CH ₃ COCH ₃ The general formula	2) C ₆ H ₅ OH of ethers is	$3) C_6 H_5 NH_2$	4) C_2H_5OH		
	$1) C_{n}H_{2n}O$	2) $C_n H_{2n+1} O$	3) $C_n H_{2n+2} O$	$4) C_n H_{2n} O C_n H_{2n}$		
62.	The IUPAC name of a	with the molecular for	rmula C ₄ H ₁₀ O			
	1) Ethoxy propane		2) Methoxy ethane			
	3) Ethoxy ethane		4) Methoxy propane			
63.	Hybridisation of Oxy 1) SP	gen in Diethylether is 2) SP ²	3) SP ³	4) SP ³ d		
64.	The reaction , $RX + R$	$-ONa \rightarrow R-O-R + NaX$	is called			
	1) Wurtz reaction		2)Williamson's synthesis			
	3) Kolbe's reaction		4) Hofmann bromamide reaction			
65.	Williamson's synthes	sis in an example of :				
	1) Nucleophillic addi	tion	2) Electrophillic addition			
	3) Electrophillic subs		4) Nucleophillic subs			
66.	When vapours of eth 1) 1,2-Ethanediol	yl alcohol are passed c 2) Etene	over Al_2O_3 at 523 K, it for 3) Ethoxyethane			
67.	,	with sodium ethoxide	, •	4) Ethanal Which of the following		
	1) C ₂ H ₅ Cl,KOH(alc	$),\Delta$	2) 2C ₂ H ₅ OH, conc.H	$_{2}SO_{4},140^{0}C$		
	3) C ₂ H ₅ Cl,Mg (dry	ether)	4) C ₂ H ₂ , dil. H ₂ SO ₄ , H ₅	gSO ₄		
68.	Consider the following	ng reaction $C_2H_5I - \frac{\Delta}{X}$	→ (Pleasant smelling l	iqluid), X is (
	1) Sodium	2) Dry silver oxide	3) Ethyl chloride	4) Dry silver powder		
69.	The IUPAC name of (1) Ethoxy propane	$C_2H_5 - O - CH(CH_3)_2$	2) 1,1-dimethyl ether			

ALCC	OHOLS, PHENOLS	AND ETHERS		
	3) 2-Ethoxy isopropar		4) 2-Ethoxy propane	
70.	Which of the following 1) H ₂ O	ng is the strongest Lewi 2) CH ₃ OH	s base ? 3) CH ₃ OCH ₃	4) C ₆ H ₅ OH
71.	Grignard reagents are 1) Benzene	e prepared in 2) Chloroform	3) Alcohols	4) Ethers
72.	A mixture of Ether an 1) NaCl	d gives temperatu 2) Ice	res as low as 163K 3) Solid CO ₂	4) C ₂ H ₅ OH
73.	Sometimes explosion 1) Oxides	occurs while distilling 2) Ketones	ethers. It is due to the J 3) Aldehydes	presence of 4) Peroxides
74.	When diethyl ether is 1) Propanoic acid 3) Ethyl alcohol	heated with dil. H_2SO_4	under pressure , it form 2) Acetic acid 4) Ethyl hydrogen sul	
75.	-		•	s not declourise bromine f molecules would behave
	1) Alkene	2) Alcohol	3) Ether	4) Phenol
Asserti	on (1) and Reason (R) t	ype Questions :		
	1) Both (1) and (R) are	true and (R) is the corr	ect explanation of (A)	
	2) Both (1) and (R) are	true and (R) is not the	correct explanation of ((A)
	3) (1) is true but (R) is	false		
	4) (1) is false but (R) is	true		
76.	(A):Diethyl ether who	en heated with dil.mine	eral acid gives C ₂ H ₅ OH	
	(R):Diethyl ether und	ergoes dehydration wh	nen heated with minera	l acid.
77.	(A): Ethers behave as	bases in the presence of	of mineral acids.	
	(R): Oxygen atom in e	ther is having lone pai	r electrons.	
78.	(1): Ethers are relative	ely inert when compare	ed to C_2H_5OH .	
	• •	oth carbon and oxyger	0	eation.
79.	In the reaction C_2H_5	$OC_2H_5 + CO \frac{BF_{3,}500a}{150^0 C}$	etms C	
	What is X?	2) Ethyl carbonate		4) Ethyl propionate
80.	Halothane is 1) CF ₃ CHCl Br	2) CCl ₃ CHFCl	3) C ₂ H ₅ Cl	4) CHCl ₃
81.	$C_2H_5-O-C_2H_5+HI-$ 1) C_2H_5I and C_2H_5OH	$\xrightarrow{\Delta}$ X+Y, here X and Y 2) C_2H_5I and H_2O	(are (hot) 3) C ₂ H ₅ OH + H ₂ O	4) C ₂ H ₄ + H ₂ O
82.	. 2 3	reating diethyl ether w	. 2 3	· 2 1 2
·	1) C ₂ H ₄	2) CH ₄	3) C_2H_5Cl	4) C ₂ H ₅ COCl
83.	$C_2H_5-O-C_2H_5+PCl_5$	\rightarrow C ₂ H ₅ Cl + X, here 'X'	is	

- 1) PCl
- 2) H₂PO₂
- 3) PO₃Cl
- 4) POCl₃
- 84. Diethyl ether when treated with acetyl chloride in presence of AlCl₂ gives
 - 1) C₂H₅Cl, CH₃COOCH₃

2) C₂H_ECl, CH₂COOH

3) CH₃CHO, CH₃COCH₃

4) C₂H₅Cl, CH₃COOC₂H₅

WORK SHEET - II

- 1. Most favourable condition for alcohol fermentation of sugar is
 - 1) High concentration of sugar solution, low temperature, plenty of air
 - 2) Low concentration of sugar solution, high temperature, plenty of air
 - 3) Low concentraion of sugar solution, low temperature, absence of air
 - 4) None of the above
- 2. Consider the following sequence of reactions:

$$A \xrightarrow{C_2H_5Mgl} X \xrightarrow{H^+/H_2O} tert - amylalcohol$$

The compound A in the above sequence of reactions is:

- 1) 2- Butanone
- 2) Acetaldehyde
- 3) Acetone
- 4) Propanal
- 3. Which of the following alcohols cannot be prepared by the action of a suitable Grignard reagent on an aldehyde or a ketone followed by acid hydrolysis?
 - 1) Ethyl alcohol
- 2) n- Propyl alcohol
- 3) Isopropyl alcohol
- 4) Methyl alcohol

- 4. Wood spirit is the common name of
 - 1) Methly alcohol
- 2) Ethyl alcohol
- 3) Amyl alcohol
- 4) Benzyl alcohol
- 5. Basic hydrolysis of ethyl acetate gives acetate ion and
 - 1) Ethyl alcohol
- 2) Ethoxide ion
- 3) Acetaldehyde
- 4) Acetone

6.
$$X \xrightarrow{\text{HCl}_3} Y \xrightarrow{\text{KOH(aq)}} C_2 H_5 OH.$$

In the above reaction 'X' is

- 1) C₂H₅Cl
- 2) C₂H₂
- 3) C.H.
- 4) C_2H_5Br

7.
$$CH_2 = CH_2 + H_2SO_4 \xrightarrow{75-80^{\circ}C} A \xrightarrow{H_2O} B$$

A and B in the above reaction are

1) C,H5OH; C,H5HSO4

2) $(C_2H_5)_2SO_4$; C_2H_5OH

3) C₂H_EHSO₄; C₂H_EOH

- 4) C_2H_EOH ; $(C_2H_E)_2SO_4$
- 8. A + CH₃MgI \rightarrow Addition product $\xrightarrow{\text{H-OH}} \rightleftharpoons$ CH₃CH₂OH. What is 'A'?
 - 1) CH₃ CHO
- 2) HCHC
- 3) CH₃-CH₂-CHO
- 4) CH₃-CO-CH₃
- 9. $C_2H_5OH \xrightarrow{K_2Cr_2O_7/H_2SO_4} A \xrightarrow{K_2Cr_2O_7/H_2SO_4} B$

A and B in the above reaction are

- 1) acetone and acetaldehyde
- 2) acetaldehyde and acetone
- 3) acetic acid and acetaldehyde
- 4) acetaldehyde and acetic acid

10.	10. Glycerol does not contain alcoholic group						
	1) 1^{0}	2) 20	$3) 3^0$	4) 1° and 3°			
11.	Which of the following	ng is more volatile CH ₂ OH					
	1) CH ₃ -CH ₂ -CH ₂ OH	2) $\stackrel{CH_2}{\downarrow}$ CH_2OH	3) Glycerol	4) CH ₃ OH			
12.	Which is a more vola 1) C_2H_5OH	tile liquid 2) CH ₃ COOH	$3) C_2 H_5 O C_2 H_5$	4) C ₆ H ₆			
13.	$C_2H_5Cl + AgOH \rightarrow A$	A + AgCl					
	A + $CH_3COCl \rightarrow C$ 1) Ethyl acetate	+ HCl. Here "C" is 2) Methyl acetate	3) Butanone	4) Propanone			
14.	In which of the follow	wing reactions, chlorin	e acts as an oxidizing a	agent?			
	$\text{I} : \text{CH}_3\text{CH}_2\text{OH} + \text{Cl}_2 \rightarrow \text{CH}_3\text{CHO} + 2\text{HC1} \text{II} \colon \text{CH}_3\text{CHO} + \text{Cl}_2 \rightarrow \text{CCl}_3\text{CHO} + \text{HCl}$						
	$III: CH_4 + Cl_2 \xrightarrow{hv} CH_3Cl + HCl$						
	The correct answer is						
	1) only I	2) only II	3) I and II	4) I, II and III			
15.	$C_2H_5OH + HONO_2$ 1) Ester	\rightarrow A + H ₂ O. "A" is 2) Ether	3) Alcohol	4) Alkane			
16.		CaCl ₂ . XC ₂ H ₅ OH; M respective anhydrous		CuSO ₄ . ZC ₂ H ₅ OH when			
	1) $X = 3$, $Y = 3$, $Z = 6$	2) $X = 3$, $Y = 6$, $Z = 3$	3) $X = 3$, $Y = 7$, $Z = 4$	4) $X = 4$, $Y = 4$, $Z = 4$			
17.	<i>-</i> -	$\xrightarrow{\text{Ni}:\Delta}$ B. A dibasic a	cid is formed when "B'				
	1) SOCl ₂	2) HCl	3) PCl ₃	4) PCl ₅			
18.	$2C_2H_5OH \xrightarrow{X} B \xrightarrow{Y} C$	$_{2}\mathrm{H}_{4}+\mathrm{H}_{2}\mathrm{O}$ then X and	Y are respectively				
	1) $X = Al_2O_3$; 260^0 C; $Y = AlCl_3$ 2) $X = Conc. H_2SO_4$; 170° C; $Y = Conc. H_2SO_4$; 140° C						
	3) $X = Al_2O_3$; $360^{\circ}C$; $Y = Conc.$ H_2SO_4 ; $140^{\circ}C4$) $X = Al_2O_3$; $260^{\circ}C$, $Y = Al_2O_3$, $360^{\circ}C$						
19.	Haloform reaction is	not given by					
	1) CH ₃ COCH ₃	2) CH ₃ COC ₂ H ₅	3) C6H5COC2H5	4) CH ₃ CHOHCH ₃			
20.	What is the final pro 1) CHCl ₃	oduct obtained when 2) CCl ₃ CHO	chlorine reacts with et 3) CH ₃ Cl	hyl alcohol in KOH? 4) none			
21.	Which of the follow	ring is a tertiary alcoh	ol				
	1) CH ₃ -CH(CH ₃)-CH ₂	ОН	2) CH ₃ -CH ₂ -CH ₂ -CH ₂	-OH			
	3) CH ₃ -CH ₂ -CH(CH ₃)	-OH	4) CH3-C(CH3)2-OH				
22.	3 moles of ethanol rea	acts with one mole of ph	nosphorous tribromide	to form 3 moles of bromo			

ethane and one mole of X. Which of the following is "X"

ALCOHOI	LS, PHEN	OLSAND	ETHERS
---------	----------	--------	---------------

- 1) H₃PO₄
- 2) H₃PO₂
- 3) HPO₂

What are X and Y respectively in the following reaction $X \xrightarrow{PBr_3} C_2H_5Br \xrightarrow{AgOH(Aq)} Y$ 23.

1) CH₃.OH; C₂H₆

- 2) C_2H_5OH ; C_2H_5Br
- 3) CH₃COOH; CH₃.CH₂OH
- 4) C₂H₅OH; C₂H₅OH

24. In the following reaction Χ and Υ respectively are

$$C_2H_5OH \xrightarrow{KMnO_4/H^{\oplus}} X \xrightarrow{Y} CH_3COOC_2H_5$$

1) CH₂OH; C₂H₅OH 2) CH₃CHO; CH₃OH 3) CH₂=CH₂; CH₃COOH 4) CH₃COOH; C₂H₅OH

25. Which of the following is most suitable method for removing the traces of water from ethanol

1) Heating with Na metal

2) Passing dry HCl through it

3) Distilling it with CaO

4) Reacting with Mg

26. Hydrolysis of an ester gives acid "A" and alcohol "B". "A" reduces fehling's solution and oxidation of B gives A. The ester is

- 1) Methyl formate
- 2) Ethyl formate
- 3) Methyl acetate
- 4) Ethyl acetate

27. $R-OH + HX \rightarrow R-X + H_2O$ in this reaction the reactivity of alcohols is

- 1) Tertiary > Secondary > Primary
- 2) Tertiary < Secondary < Primary
- 3) Tertiary > Priamry > Secondary
- 4) Secondary > Primary > Tertiary

28. Which statement is not correct about alcohol

- 1) Ethyl alcohol is heavier than water
- 2) Ethyl alcohol evaporates more quickly than water
- 3) Alcohol with less number of carbon atoms are more soluble in water
- 4) Alcohol produces H₂ by reaction with sodium metal

29. Which of the following compound gives ethylmethyl ketone on oxidation

- 1) Propan-2-ol
- 2) Butan-1-ol
- 3) Butan-2-ol 4) 2-Methyl butan-2-ol

30. In CH₂CH₂OH, the bond that undergoes heterolytic change most readily in reaction with 'Na' is

- 1) C--C
- 2) O--H
- 3) C--H
- 4) C--O

31. Match the following:

Set - I

Set - II

1)
$$C_2H_5OH \xrightarrow{Cone.H_2SO_4} 170^{0_C}$$

1) Methane

2) $CHI_3 \xrightarrow{\Delta} Ag(powedr) \rightarrow$

- 2) Ethylene
- 3) $CH_3COONa_{(aq)} \xrightarrow{electrolysis}$
- 3) Benzene

4) $CH_3COONa \xrightarrow{NaOH} CaO$

- 4) Acetylene
- 5) Ethane

32.
$$CH_3CH_2OH \xrightarrow{Cl_2} CH_3CHO \xrightarrow{3Cl_2} step-2$$

Cl₂CCHO

In the above reaction the role of Cl₂ in step - 1 & step - 2 respectively is:

1) Oxidation, chlorination

2) Reduction, Chlorination

3) Oxidation, addition

4) Reduction, substitution

33. CaO Cl₂ + H₂O
$$\rightarrow$$
 Ca(OH)₂ + \underline{X}

$$\underline{X} + CH_3CHO \rightarrow \underline{Y}$$

$$\underline{Y} + Ca(OH)_2 \rightarrow CHCl_3$$

What is 'Y'?

- 1) CH₂CH(OH)₂
- 2) CH₂Cl₂
- 3) CCl₃CHO
- 4) CCl₃COCH₃

34. Match the following lists

List - I

- 1) Ethylene
- 2) Acety lene
- 3) Ethanol
- 4) Diethyl ether

- List II
- 1) Natalite
- 2) Preservative
- 3) Hawker's lamp
- 4) Drug

5) Polyethylene

Answer is:

35. What are X and Y in the reaction

$$C_2H_4 + H_2SO_4 \xrightarrow{80^0C} X \xrightarrow{H_2O/\Delta} Y$$

- 1) C_2H_6, C_2H_5OH
- 2) C₂H₂,C₂H₅SH 3) C₂H₅OSO₃H,C₂H₅OH 4) C₂H₂CH₃CHO

36.
$$(CH_3)_2CHOH \xrightarrow{\text{mild oxidation}} x \xrightarrow{\text{(i)}CH_3MgBr} y$$

Here 'Y' is

- 1) Iso butyl alcohol
- 2) Iso butylene
- 3) Secbutyl alcohol
- 4) Terbutyl alcohol

- 37. Increasing pK values of o,m and p-cresols is
 - 1) o
- 2) m
- 3) m < o < p
- 4) p < o < m
- Which of the following compounds would not evolve CO₂ when treated with aq. NaHCO₃ 38. solution?
 - 1) Phenol
- 2) Benzoic acid
- 3) 2,4- Dinitrophenol 4) 2,4,6-Trinitrophenol
- 39. Phenol is converted into Salicylaldehyde by

Kolbe's reaction
 Reimer - Tiemar

- 2) Cannizaro reaction
- 3) Reimer Tiemann reaction
- 4) Kolbe Schmidt reaction
- 40. Rate of electrophilic substitution reaction in phenol is
 - 1) Equal to that to benzene

- 2) Faster than that of benzene
- 3) Slower than that of benzene
- 4) Very slower than that Nitrobenzene
- 41. m-Dihydroxybenzene is called as
 - 1) Resorcinol
- 2) Catechol
- 3) Quinol
- 4) Cresol

- 42. 2 Methyl phenol is
 - 1) m cresol
- 2) o cresol
- 3) m xylene
- 4) o xylene
- 43. Identify the product Z in the following sequence of reactions

phenol
$$\xrightarrow{\text{NaOH}}$$
 X $\xrightarrow{\text{CO}_2}$ Y $\xrightarrow{\text{H}_3\text{O}^+}$ Z

- 1) Aspirin
- 2) Salicylaldehyde
- 3) Benzoic acid
- 4) Salicilic acid
- 44. Phenol on heating with aq. KOH and chloroform undergoes
 - 1) Kolbe reaction

- 2) Rosenmund reaction
- 3) Reimer Tiemann reaction
- 4) Cannizzaro reaction
- 45. Which of the following has the least value of pKa?

1) A

- 2) B
- 3) C
- 46. Electrophilic substitution in phenol takes place at
 - 1) ortho and para-positions
- 2) meta-position

3) ortho-position

- 4) para-position
- 47. Regarding diethyl ether, the wrong statement is
 - 1) It is slightly soluble in water
 - 2) In cold condition, ether does not react with alkali and dilute acids
 - 3) Ethers have active hydrogen
 - 4) Ethers do not react with Na metal
- 48. (1):Diethyl ether is used as general anaesthetia.
 - (R): Diethyl ether produces unconsciousness The correct answer is
- 49. Alcohols can be distinguished from Ethers by
 - 1) Sodium metal
- 2) Ester formation
- 3) Iodoform test
- 4) All the above
- 50. Which of the following can not form Oxonium salts with diethyl ether
 - 1) HCl
- 2) HBr
- 3) H,SO₄
- 4) HCN
- 51. $'\underline{A}'$ reacts with C_2H_5l giving $'\underline{B}'$ and Nal. Here $'\underline{A}'$ and $'\underline{B}'$ respectively are
 - 1) CH₃COONa, CH₃OCH₃
- 2) $C_2H_5OC_2H_5$, $C_2H_5COOC_2H_5$
- 3) C_2H_5ONa , $C_2H_5OC_2H_5$
- 4) $C_2H_5OH, C_2H_5OC_2H_5$

WORK SHEET - III

Following questions consists of an assertion (1) and reason (R). use the following the key to select the correct answer.

- 1) If both (1) and (R) are correct and (R) is correct explanation of (1)
- 2) If both (1) and (R) correct but (R) is not the correct explanation of (1)
- 3) If (1) is correct but (R) is incorrect 4) If (1) is incorrect but (R) is correct

Alcohols:

1. Assertion : Alcoholic fermentation involves conversion of sugar into ethyl alcohol

by yeast.

Reason : Fermentation involves the slow decomposition of complex organic

compounds into simpler substances through the agency of complex

nitrogenous compounds called enzymes.

2. Assertion : All ketones on reaction with Grignard reagent gives 3° alcohols

Reason : R⁻is nucleophile in Grignard reagent.

3. Assertion : The solubility of the alcohols in water follow the order t-butyl-alcohol >

s-butyl alcohol > n-butyl alcohol.

Reason : Alcohols are soluble in water due to hydrogen bonding.

4. Assertion : The solubility of alcohols increase with increase in branching.

Reason : Ethanol and methanol are immsicible in water

5. Assertion : The boiling point of alcohols is higher than those of hydrocarbons of

comparable molecular masses.

Reason : Alcohols show intramolecular hydrogen bonding.

Assertion : Secondary alcohol reacts faster with sodium than primary alcohol.

Reason : Primary alcohol is more acidic than secondary alcohol.

7. Assertion : $CH_2 = CH - OH$ is more acidic than $CH_3 - CH_2 - OH$

Reason : Enolate ion is stabilised by resonance

8. Assertion : Methyl alcohol is most reactive for acetylation reaction.

Reason : The O-H bond is the weakest in methyl alcohol.

9. Assertion : Tertiary alcohol is most reactive for nucleophilic substitution reactions.

Reason : The C-O bond is the weakest in tertiary alcohol.

10. Assertion : Acid catalysed dehydration of t- butanol is slower than n-butanol.

Reason : Dehydration involves formation of the protonated alcohol, ROH₂⁺

11. Assertion : Phenol decomposes $NaHCO_3$ solution to evolve CO_2 gas

Reason : picric acid is 2,4,6-trinitrophenol.

12. Assertion : The order of acidic strength is $CH_3COOH > H_2CO_3 > Phenol > H_2O >$

 C_2H_5OH

Reason : As acid strength increases, pK_a increases

13. Assertion : Picric acid doesnot contain carboxylic group.

Reason : Presence of three - NO₂ groups makes the phenol more acidic.

14. Assertion : Phenol is more reactive than benzene towards electrophilic substitution

reaction

Reason : OH group of phenol is electron donating group due to resonance effect.

15. Assertion : Ortho nitrophenol and para nitrophenol can be separated by steam

distillation

Reason : Intramolecular hydrogen bonding is present in ortho nitrophenol.

16. Assertion : Dichloro carbene is active intermediate in Reimer-Tiemann reaction.

Reason : Dichloro carbene is an electrophile because its octet is not complete

17. Assertion : Sodium phenoxide exists in water whereas sodium ethoxide exists in

gaseous state.

Reason : Phenol is stonger acid than alcohol because phenoxide ion is stabilised

by resonance.

18. Assertion : Reaction between sodium-tert butoxide and ethyl iodide does not produce

an ether.

Reason : Sodium-tert butoxide is very strong base but it is not a nucleophile.

19. Assertion : Di-tert-butyl ether cannot be prepared by Williamson method.

Reason : t-Butyl bromide gives alkene with $R - O^-$.

20. Assertion : Ethers are stronger bases than alcohols.

Reason : Alcohols are soluble in water.

EXERCISE - I / ANSWER

WORK SHEET - I

01) 1	02) 3	03) 2	04) 3	05) 4	06) 4	07) 3	08) 2	09) 2	10) 4
- /	- / -	/	- / -	/	/	- / -	/	- ' /	- /

11) 2 12) 2 13) 3 14) 1 15) 2 16) 2 17) 2 18) 1 19) 2 20) 2

21) 3 22) 1 23) 1 24) 1 25) 2 26) 1 27) 2 28) 3 29) 2 30) 2

31) 2 32) 4 33) 2 34) 3 35) 1 36) 1 37) 1 38) 1 39) 1 40) 1

41) 1 42) 2 43) 2 44) 3 45) 2 46) 4 47) 4 48) 1 49) 4 50) 3

51) 2 52) 1 53) 2 54) 4 55) 2 56) 2 57) 1 58) 1 59) 3 60) 2

61) 3 62) 4 63) 3 64) 2 65) 4 67) 2 68) 2 69) 4 70)3 66) 3 71) 4 72) 3 73) 4 74) 3 75) 3 76) 3 77) 1 78) 2 79) 4 80) 1

81) 2 82) 3 83) 4 84) 4

WORK SHEET - II

01)	3 0	2) 3	03) 4	04) 1	05) 1	06) 3	07) 3	08) 2	09) 4	10) 3

11) 4 12) 3 13) 1 14) 4 15) 1 16) 2 17) 3 18) 4 19) 3 20) 1

 $21)\ 4 \qquad 22)\ 4 \qquad 23)\ 4 \qquad 24)\ 4 \qquad 25)\ 3 \qquad 26)\ 1 \qquad 27)\ 1 \qquad 28)\ 1 \qquad 29)\ 3 \qquad 30)\ 2$

EXERCISE - I

WORK SHEET - I

Aldehydes and Ketones:

1.	General molecular i	formula of carbonyl co	mpounds				
	$1) C_n H_{2n} O_2$	2) $C_n H_{2n+2} O_2$	3) $C_nH_{2n}O$	$4) C_n H_{2n+2} O$			
2.	The hybridisation 1) sp ³	of carbon in the car	bonyl group is 3) sp	4) sp³d			
3.	The IUPAC name of 1) 3-methyl-2-pentage 3) 2-pentanone	f methyl isopropyl ke inone	one 2) 3-methyl butan-2-one 4) 2-methyl pentanone				
4.	Controlled oxidation 1) aldehydes	on of primary alcohols 2) ketones	give 3) carboxylic acids	4) ethers			
5.	On the dry distillati of 'X' is:	on of calcium acetate,	a compound 'X' is form	ed, the functional isomer			
	1) Acetone	2) Acetaldehyde	3) Propionaldehyde	4) Butanone			
6.	Dehydrogenation o 1) Methanol	f isopropyl alcohol giv 2) Methanal	ves 3) Ethanal	4) Propanone			
7.	$C_2H_5OH \xrightarrow{Cu} 300^0C$	CH ₃ CHO					
	The above process in 1) Reduction		3) Dehydrogenation	4) Both 2 and 3			
8.	Ketones cannot be ₁ 1) Alcohols	orepared in one step fi 2) Alkenes	rom 3) Alkynes	4) Acid halides			
9.	The first oxidation p	product of isopropyl alc	ohol is				
	1) ethanal ketone	2) propanone	3) ethanoic acid	4) methyl isopropyl			
10.	Which carboxylic a 1) Only formic acid 3) Both formic acid		de on strong heating in presence of catalyst 2) Only acetic acid 4) Calcium formate				
11.	Ketones can not be	prepared by					
	1) Rosenmund's rea	nction	2) The hydrolysis of	terminal gem dihalides			
12.			•	dified aqueous solution			
	1) Wacker process	-	2) Pyrolysis				
	3) Williamson's syr	thesis	4) Clemmenson's red	duction			
13.	Ethylidene chloride 1) CH ₃ COOH	when heated with ac 2) CH ₃ CHO	queous KOH gives 3) CH ₃ COCH ₃	4) C ₂ H ₅ OH			
14.		n the following reactio	. 3	, 2 3			
*	$C_2H_5OH \xrightarrow{Cl_2} X$	•	1				
) 2) CH ₃ CHO,CH ₃ C	O_2H	3) CH ₃ CHO,CCl ₃ CHO			

4) C₂H₅Cl,CCl₃CHO

15. Which of the following on heating with aqueous KOH, produces acetaldehyde?

1) CH₃CH₂Cl

- 2) CH₂ClCH₂Cl
- 3) CH₃ CHCl₂
- 4) CH₃COCl

16. Ozonolysis of the following gives only acetaldehyde

- 1) 2-butene
- 2) 1-Butene
- 3) Isobutylene
- 4) Ethylene

17. Aldehydes and ketones give addition reactions with

- 1) HCN
- 2) NaHSO₂
- 3) CH₂MgX
- 4) All of these
- 18. The formation of cyanohydrin with acetone is an example for
 - 1) nucleophilic addition

2) nucleophilic substitution

3) electrophilic addition

- 4) electrophilic substitution
- 19. Molecular formula of acetone semicarbazone

1)
$$CH_3 - C = N - OH$$
H

2)
$$CH_3 - C = N - OH$$

3)
$$CH_3 - C = N - NH - CO - NH_2$$

4)
$$CH_3 - C = N - NH - C_6H_3(NO_2)_2$$

 CH_3

- 20. Acetone adds up the following without the elimination of water molecule
 - 1) NH₂ OH
- 2) 2, 4 DNP
- 3) $H_2N NH_2$
- 4) HCN
- 21. Which of the following gives oximes with acetaldehyde?
 - 1) H,NNH,
- 2) 2, 4 DNP
- 3) H₂NOH
- 4) H, NNHCONH,
- 22. The following is more reactive towards nucleophilic addition reactions
 - 1) CH₃COCH₃
- 2) HCHO
- 3) CH₃CHO
- 4) C₂H₅CHO
- 23. The following does not undergo aldol condensation in the presence of alkali
 - 1) CH, CHO
- 2) CH, COCH,
- 3) CH, CH, CHO
- 4) CCl₂CHO

- 24. Fehling's solution is
 - 1) Alkaline CuSO₄ + Rochelle salt (Sod. pot. tartarate)
 - 2) Alkaline CuSO₄ complexed with citrate ions
 - 3) Ammonical AgNO₂ solution
 - 4) Magenta solution in H₂SO₃
- 25. (A): Acetaldehyde participate in aldol condensation reaction
 - (R) : Acetaldehyde contains α hydrogen atom.
 - 1) Both (A) and (R) are true and (R) is the correct explanation of (A)
 - 2) Both (A) and (R) are true and (R) is not the correct explanation of (A)
 - 3) (A) is true but (R) is false
 - 4) (A) is false but (R) is true
- 26. Aldehydes can be oxidised by
 - 1) Benedicts solution 2) Tollen's reagent
- 3) Fehling's solution 4) All of these
- 27. An example of hydro carbon

ALI	DEHYDES, KETON	ES						
	1) Phorone	2) Mesitylene	3) Metaldehyde	4) Chloretone				
28.	Acetaldehyde and a	cetone cannot be distin	guished by					
	1) Tollen's test	2) Benedicts test	3) Iodoform test	4) Schiff's test				
29.	IUPAC name of Isol	outyraldehyde is						
	1) Butanal	2) Methyl propanal	3) Ethyl ethanal	4) Methyl Butanal				
30.	The medium in which 1) any alcohol	ch Ehtanol is oxidised t 2) Nitrobenzene	· ·					
31.	PCC is							
	$1) C_6H_5N^+CrO_2Cl^-$	$2)[C_5H_5N \rightarrow H]^+CrO_3C$]-					
	$3) C_6H_5NH^+Cl^-$	4) C ₆ H ₅ N ⁺ CrO ₃ Cl ⁻						
32.	Ethanol and Ethanal 1) HCN	are isolated from their 2) NaHSO ₃	mixture using the rea 3) $C_6H_5NHNH_2$	ngent 4) All				
33.	The reagents used in 1) Zn - Hg and conc 3) Hydrazine, Glyce		fluction are 2) Anhydrous $ZnCl_2$ and conc HCl 4) Zn and CH_3COOH					
34.	Isopropyl alcohol—	$H^+/K_2Cr_2O_7$ final Prod	luct					
	1) Propene	2) Propanol	3) Ethanal	4) Ethanoic acid				
35.		owing reagents reacts w 2) Grignard reagent	•					
36.	The interaction of acetone with methyl magnesium chloride in the presence of water gives							
	1) Isobutyl alcohol 4) Sec-butyl alcohol	2) Tertiary butyl alcol	nol	3) n-butyl alcohol				
37.	Acetone and Acetalo	dehyde can be distingu	ished using					
	1) Grignard reagent	2) NaHSO ₃	3) Ammonical AgNO	O ₃ 4) PCl ₅				
38.	Haloform reaction is 1) CH ₃ COCH ₃	s not given by 2) CH ₃ COC ₂ H ₅	3) C ₆ H ₅ COC ₂ H ₅	4) CH ₃ CHOHCH ₃				
39.	Which of the following 1) Ethanol	ing does not respond to 2) Methanol	o iodoform test 3) Acetaldehyde	4) Acetone				
40.	Acetaldehyde and a 1) Schiff's test	cetone can be identified 2) Tollen's reagent	l by 3) Lucas test	4) 2, 4 - DNP				
41.		with chlorine gives no one 2) Dichloroacetone	•	4) Hexachloro acetone				
42.	Acetaldehyde canno 1) Iodoform test	ot give 2) Lucas test	3) Benedict test	4) Tollens test				
43.	C ₂ H ₅ CHO and CH ₃ (1) phenyl hydrazine	${\sf COCH}_3$ can be distingu	ished from one anothe 2) 2, 4 dinitrophenyl					

	3) Fehling solution		4) sodium bisulphite				
44.	An alkaline solution 1) Silver nitrate; Fel 3) Silver chloride; T	C .	ons is called				
45.	Ethylene is converte	d to X on passing thro le and cupric chloride.	ugh a mixture of an ac	idified aqueous solution ng reagents readily take			
	1) Br ₂	2) HBr	3) HCl	4) HCN			
46.	The product obtaine	ed when acetaldehyde i	is treated with dilute N	NaOH is			
	1) CH ₃ CH ₂ OH	2) CH ₃ COOH	3) CH ₃ - CH - CH ₂ C OH	2HO 4) CH ₃ - CH ₃			
47.	When acetaldehyde the following is that	-	solution, a red precipi	tate is formed. Which of			
	1) Cu ₂ O	2) Cu	3) CuO	4) CuSO ₄			
48.	8. What reagent is used in the Rosenmund reduction?						
	1) $H_2 \mid Pd - BaSO_4$		2) LiA ℓH_4				
	3) NH ₂ NH ₂ /KOH	/Ethylene Glycol	4) Zn - Hg HCl				
49.	_		- •	nate in dichloromethane orm Tri iodomethane the			
	1) C ₂ H ₅ OH	2) CH ₃ CHO	3) CH ₃ COCH ₃	4) CH ₃ COOH			
		WORK SH	EET - II				
1.	CH ₃ CHO + NH ₂ OH	$I \longrightarrow X \xrightarrow{-H_2O} Y$					
	The number of σ be respectively	onds, π bonds and lo	one pairs of electrons i	n the compound 'Y' are			
2.	1) 9, 1 and 4	2) 11, 1, 5 - pentanone are predo:	3) 9, 2, 2	4) 8, 1, 3			
۷.	-	s 2) Functional isomer	•	4) Ring chain isomers			
3.	IUPAC name of <i>α</i> , <i>α</i> 1) 2, 5 - dichloro - 3 - 3) 1, 4 - dichloro - 2-	-	one is 2) 2, 4 - dichloro - 3 - pentanone 4) 2, 5 - dichloro - 3- Hexanone				
4.	The IUPAC name of	β-methyl valeraldehy	yde is				
	1) 2-methyl pentana	1 2) 3-methyl pentana	ıl 3) 2-methyl butanal	4) 2-methyl butanal			
5	Iso propyl alcohol is obtained by the reaction of the following						

	1) Acetone with Clemmenson's reducin presence of Ni	ag agent	2) Acetone with H ₂ in
	3) Acetaldehyde with H ₂ in presence of	Ni 4) Acetone with chlo	proform
6.	Which one of the following undergoes a 1) Actaldehyde 2) Ethyl alcohol	aldol condensation and gi	ves iodoform test 4) formaldehyde
7.	CH ₃ COCH ₃ + NaOH + Na ₂ [Fe(CN) ₅ N yellow colour on standing. This test is ca		colour. This changes to
8.	 Legal test Indigo test Jegal test Jegal test Indigo test Jegal test 	3) Iodoform test COH gives an unstable pro	•
	1) CH ₃ COCH ₃ 2) CH ₃ CH(OH)CI	H ₃ 3) CH ₃ C(OH) ₂ CH ₃ 4	e) CH ₃ CH(OH)CH ₂ CHO
9.	An alkene on ozonolysis gives acetalde CH ₃	hyde and acetone. The all	kene in question is
	1) $CH_3 - CH = C - CH_3$	2) CH ₃ - CH = CH - C	CH_2 - CH_3
10.	3) $CH_2 = CH - CH_3$ The first oxidation product of the follow carbon atoms	4) $(CH_3)_2C = C(CH_3)_1$ ring alcohol is a ketone v	2
11.	1) CH ₃ CH ₂ CH ₂ OH 2) (CH ₃) ₂ CHCH ₂ O HCHO; CH ₃ CHO; CCl ₃ CHO; CH ₃ COCH (I) (II) (III) (IV) Which of the above compounds undergo	H ₃ ; CCl ₃ COCH ₃ ; C ₆ H ₅ CHC (V) (VI)	
	1) Only II, III, IV and VI		2) Only II, IV and V
12.	3) Only II and IIITollens reagent can be obtained by mixThe reagent mainly contains	4) All except I sing aqueous AgNO ₃ with	n aqueous NH ₃ solution.
	1) $[Ag(NH_3)_2]^+$ 2) AgOH	3) Ag	4) CH ₃ CHO
13.	Acetaldehyde $\xrightarrow{\text{concH}_2SO_4}$ (A) 'A' is	s	
14.	1) Acetaldehyde 2) Metaldehyde In aldehydes -CHO may be attached to	3) Mesitylene	4) Paraldehyde
14.	1) Alkyl group 2) H atom	3) Aryl group	4) Alkyl / aryl / H atom
15.	(A): Acetone gets oxidised by strong ox	kidising agents like Ag+, C	Cu ⁺² etc
	(R) : Oxidation of acetone involved carb	bon - carbon bond cleavaş	ge
	1) Both (A) and (R) are true and (R) is the	ne correct explanation of ((A)
	2) Both (A) and (R) are true and (R) is no	ot the correct explanation	of (A)
	3) (A) is true but (R) is false		
	4) (A) is false but (R) is true		
16.	Alkaline sodium nitroprusside is used to 1) Aldehyde 2) Ketone having 3) All Ketones 4) Secondary and	lpha - hydrogen atom	
17.	Consider the following statements		

A) On reaction with grignard reagent followed by hydrolysis Acetone gives tertiary alcohol

	B) Me	sitylene	is a poly	mer of A	Acetone							
	C) Ch	loroforn	n gives c	hloreton	e with a	cetor	ne					
	D) Ac	etone ar	nmonia	is an ado	lition pr	oduc	ct of	acetone	with N	IH_3		
	The co	orrect sta	atement	s are								
	1) All	are corr	ect	2) A is c	orrect	3)	A, 1	B and C	are cor	rect 4)	A and D a	re correct
18.	The ca	•	n Wacke	r process 2) PdCl ₂			3)	Cu,Cl,		4)]	Pd	
19.	Staten Staten 1) I is	nent - I : nent - II true II is	: Schiff's wrong	des resto s reagent	ore the n	_	nta c ss p 2)	olour o - rosan I is wro	iline hy ng II is	drochlo	ride	
20.	 (A) :Acetaldehyde reduces Fehling's solution but Acetone does not (R): Acetaldehyde is stronger reducing agent than acetone. The correct answer is 1) Both (A) and (R) are true and (R) is the correct explanation of (A) 2) Both (A) and (R) are true and (R) is not the correct explanation of (A) 3) (A) is true but (R) is false 4) (A) is false but (R) is true 											
21.	(R):Ac 1) Bot 2) Bot 3) (A)	cetaldeh h (A) an h (A) an is true l	yde doe d (R) ar		ntain a - d d (R) is	hydr the co	oger orre	n ct expla	nation	of (A)	A)	
22.]	List- 1					List - 2					
			→ Aldo	1			A) LiAlH ₄					
	•	3	\rightarrow CH ₃				B) Zn - Hg; Con. HCl					
	III) CI	1 ₃ COCH	$I_3 \rightarrow CH_3$	CH ₂ CH ₃			C) Con. H ₂ SO ₄ ; Δ					
		3	→(CH ₃ 0	CHO) ₃				NaOH KMnO ₄	, H⁺			
	1) 3)	orrect m I E B	II B E	III A A	IV C D	2) 4)		I D D	II A B	III B E	IV C D	
23.	1) Ace	etone	reaction etaldehy	with hy	pochloro	ous a	2)	gives Chloro Dichlor				
24.	The re 1) NH	_	at gives	an orang 2) NaHS		ed pr		itate wit Iodine	h acetal		is 2, 4 - DNP	ı
25.	The No.of p bonds in the product formed by passing acetylene through dil.H ₂ SO ₄ containing											

	mercurio	sulpha	te is									
	1) zero			2) one		(3) two		4) th	rree		
26.	Which of	f the foll	lowing	g can be	detected	by sil	ver mirror	test				
	1) CH ₃ CO	OCH ₃		2) CH ₃ C	COOH	(C_2H_6		4) C	H ₃ CHO		
27.	What is 2	X in the	follov	ving read	ction 2CF	1 ₃ СН	IO dil.Na	$\xrightarrow{\text{OH}} X$				
	1) CH ₃ -C						2) CH ₃ -CO-CH ₂ CHO					
	3) CH ₃ -Cl	H(OH)-C	H ₂ -CH	IO		4	4) CH ₃ -CH ₂ -CH(OH)-CHO					
28.	Which of 1) H ₂ N -			g conver 2) 2, 4 -			cetone oxin 3) C ₆ H ₅ NH		4) N	IH ₂ OH		
29.							olourised b 3) Schiff's r	-		ollen's reagen	ıt	
30.	Acetone on distillation with bleaching powder and water gives chloroform and X. Ethy alcohol on distillation with bleaching powder and water gives CHCl ₃ and Y. X and Y togethe on distillation gives							-				
	1) CH ₃ Cl	НО		2) CH ₃ C	OCH ₃	,	3) CH ₂ = C	НОН	4) C	H ₃ COC ₂ H ₅		
31.	. Match the following List - I List - II											
A) $CH_3COCH_3 \xrightarrow{Zn-Hg}$ 1						1) Phorone						
	B) CH ₃ C					,	2) CH ₃ CH	O				
					+ H ₂ O —		→ 3) CH ₃					
	D) CH ₃ C		~		2	11	4) CH ₃ CH					
	•		11250	94			5. CH ₃ CH ₂					
							6. CH ₃ CH ₂					
	The corr	ect mat	ch is				7. C ₆ H ₃ (C	-				
			В	C	D		A	В	C	D		
	,		6	3	1	2)	5		3	7		
32.	,		6 Ivde is	4 s treated	3 with LiA	4) 1H., V	5 What is the		4 formed	2 d		
	1) CH ₃ C		-			-1	3) CH ₃ -OH	_		СООН		
33.	Ethanal i	is reacte	d witl	h acidifie	ed K,Cr,C	,. Wł	nat is the p	roduct fo	rmed?			
	1) C ₂ H ₅ C	Н		2) CH ₃ C	OOH	,	3) C ₂ H ₆		4) C	Cl ₃ CHO		
34.	During r	eduction	n of al	dehyde	with $\frac{H_2N}{OH^-}$	– NI 	$\frac{H_2}{col}$, the firs	st interme	ediate o	compound for	med	
	as											
. -	1) RCN			2) RCON	4		3) R-CH=N		,	-CH = NNH	_	
35.	Acetalde formed.	enyde is	reduc	ed with	nydroger	ın th	ie presence	ot Nicke	ei. Wha	t is the compo	ound	
	1) Ethano			2) n-pro			3) Methano	ol	4) Is	opropanol		
36.	What is t	the "X" i	n the	followin	g reactior	ı						

$$2CH_3COCH_3 \xrightarrow{Ba(OH)_2} X$$

$$\begin{array}{c}
OH \\
OH_{3} - C - CH_{2} - C - CH_{3} \\
CH_{3} O \\
\end{array}$$

OH
$$\begin{array}{c} OH \\ CH_3 - C - CH_2 - CH_2 - CHO \\ CH_3 \end{array}$$

4)
$$CH_3 - CH - CH - C - CH_3$$

 $CH_3 OH O$

37. An organic compound X gives a red precipitate on heating with Fehling's solution. Which one of following reactions yields X as major product?

1) HCHO
$$\xrightarrow{(i)CH_3MgI}$$
 $\xrightarrow{(ii)H_2O}$

2)
$$C_2H_5Br + AgOH \xrightarrow{\Delta}$$

3)
$$2C_2H_5Br + Ag_2O \xrightarrow{\Delta}$$

4)
$$C_2H_2 + H_2O \xrightarrow{40\% H_2SO_4 + 60^0 C}$$

38. Which one of the following compounds reacts with Saturated solution of Sodium bisulphite to give colourless crystalline products?

39. Identify acetaldoxime (EAMCET-ENG- 2004)

1)
$$CH_3CH = N - NH_3$$

4)
$$CH_2 = N - OH$$

Which of the following reagents can form a hydrazone with alkanone? 40.

3 - Hydroxy butanal is formed when (X) reacts with (Y) in dilute (Z) solution. What are(X),(Y) 41. and(Z)? XY Z

$$(CH_3)_2CO$$

NaOH

NaCl

$$(CH_2)$$
, CO

HC1

NaOH

Which of the following reagents converts both acetaldehyde and acetone to alkanes? 42.

EXERCISE - I / ANSWER

WORK SHEET - I

01) 3	02) 2	03) 2	04) 1	05) 3	06) 4	07) 4	08) 4	09) 2	10) 3
11) 4	12) 1	13) 2	14) 3	15) 3	16) 1	17) 4	18) 1	19) 2	20) 4
21) 3	22) 2	23) 4	24) 1	25) 1	26) 4	27) 2	28) 3	29) 2	30) 3
31) 2	32) 2	33) 3	34) 4	35) 2	36) 2	37) 3	38) 3	39) 2	40) 4
41) 3	42) 2	43) 3	44) 4	45) 4	46) 3	47) 1	48) 1	49) 1	

WORK SHEET - II

1) 4	2) 3	3) 2	4) 2	5) 2	6) 1	7) 1	8) 3	9) 1	10) 3
11) 2	12) 1	13) 4	14) 4	15) 4	16) 3	17) 3	18) 1	19) 3	20) 1
21) 3	22) 2	23) 3	24) 4	25) 2	26) 4	27) 3	28) 4	29) 3	30) 1
31) 2	32) 2	33) 2	34) 4	35) 1	36) 1	37) 4	38) 3	39) 2	40) 2
41) 4	42) 4								

EXERCISE - I

WORK SHEET - I

Carboxylic Acids & Derivatives:

3) $CH_3COOH + NH_3$

13.

 $CH_3OH + CO \xrightarrow{X} CH_3COOH \text{ Here X is}$

1.	Saturated mono carb	lled							
	1) Paraffins		2) Olefins						
	3) Fatty Acids		4) Mineral Acids						
2.	The general formula	of carboxylic acids is							
	$1) C_n H_{2n} O_2$	2) $C_n H_{2n+1} O_2$	3) $C_n H_{2n+2} O_2$	4) $C_n H_{2n-2} O_2$					
3.	The acid obtained by the distillation of ants is called as								
	1) Formalin	2) Formic acid	3) ethanoic acid	4) Both 2 & 3					
4.	The chief constituent	of vinegar is							
	1) Acetal	2) Acetic acid	3) Ethanoic acid	4) Both 2 and 3					
5.	Root of valerian plan	nt contains							
	1) C ₃ H ₇ COOH	2) C ₂ H ₅ COOH	3) C_4H_9COOH	4) HCOOH					
6.	IUPAC name of vale	ric acid							
	1) Propionic acid		2) Burtyic acid						
	3) Pentanoic acid		4) 2-methyl butanoic	acid					
7.	Propionic acid can a	lso be named as							
	1) Methyl methanoic	acid	2) Methyl acetic acid						
	3) Methyl ethanoic a	cid	4) ethyl acetic acid						
8.	Which of the followi	ng is a pair of functiona	al isomers?						
	1) CH ₃ COCH ₃ , CH ₃ C	НО	2) C ₂ H ₅ CO ₂ H, CH ₃ CO ₂ CH ₃						
	3) C ₂ H ₅ CO ₂ H, CH ₃ CO	$C_2C_2H_5$	4) CH ₃ CO ₂ H, CH ₃ CHO						
9.	In the reaction seque	nce, $C_2H_5Cl+KCN - C_2$	$\xrightarrow{H_5OH} \times \xrightarrow{H_3O^{\bigoplus}} Y \cdot$						
	What is the molecula	r formuls of Y?							
	1) $C_3H_6O_2$	2) C_3H_5N	3) $C_2H_4O_2$	$4) C_2 H_6 O$					
10.	Oxidation of primary	y Alcohols finally gives							
	1) Aldehydes	2) Ketones	3) Carboxylic acids	4) Esters					
11.	Which one of the foll acid?	owing when reacts with	h CH ₃ MgBr followed b	y hydrolysis gives acetic					
	1) CO	2) CH ₃ CHO	3) C ₂ H ₅ OH	4) CO ₂					
12.	Acetonitrile when bo	oiled with alkali (or) aci	d gives						
	1) CH ₃ COOH only		2) CH ₃ COOH+C ₂ H ₅	OH					

4) $CH_3COOH + H_2$

- 1) Cu
- 2) Co
- 3) Rb
- 4) Ni
- 14. Which one of the following functional group undergoes hydrolysis with alkali to yield an acid group
 - 1) -CN
- 2) -CHO
- 3) -COCH₃
- 4) -Br

15. Ethyl Benzene $\frac{(i)KMnO_4/OH^-}{(ii)H^+/H_2O}$

Predict X in above reaction

1) C₆H₅CH₂COOH

2) C₆H₅CH₂CHO

3) Benzoic acid

- 4) Benzaldehyde
- 16. $C_6H_5MgBr \xrightarrow{(1)CO_2} P$ In the above reaction, product P is
 - 1) Phenol
- 2) Benzoic acid
- 3) Benzaldehyde
- 4) Benzophenone
- 17. Lower carboxylic acids are soluble in water due to
 - 1) Low molecular weight

2) Hydrogen bonding

3) Dissociation into ions

- 4) Easy Hydrolysis
- 18. Which of the following possess higher boiling point?
 - 1) C_2H_5Cl
- 2) CH₃CHO
- 3) C_2H_5OH
- 4) CH₃COOH

- 19. Which of the following exists as dimer in benzene?
 - 1) CH₃CHO
- 2) CH₃COCH₃
- 3) CH₃CH₂OH
- 4) CH₃COOH

- 20. Acetic acid liberates CO₂ gas with
 - 1) Na
- 2) Zn
- 3) NaHCO₃
- 4) NaOH

- 21. Acetic acid can be used
 - 1) For curing meat and fish
- 2) As vinegar in cooking
- 3) In the preparation of perfumes
- 4) All
- 22. Which of the following is not a fatty acid
 - 1) Propionic acid
- 2) Oxalic acid
- 3) Valeric acid
- 4) Stearic acid
- 23. The reagent used for converting ethanoic acid to ethanol is
 - 1) LiAlH₄
- 2) BH₃
- 3) PCl₃
- 4) K₂Cr₂O₇
- 24. Acetic acid gives acetic anhydride when treated with
 - 1) PCl₅
- 2) P_2O_5
- 3) Cl₂/P
- 4) Na
- 25. Which of the following compounds is formed when ethanol reacts with acetic acid in the presence of concentrated H_2SO_4
 - 1) CH₃COOC₂H₅
- 2) $C_2H_5OC_2H_5$
- 3) CH₃OCH₃
- 4) CH₃CH₂CHO
- 26. Which one of the following graphs represents the correct order of boiling points (B.P) of ethane (1), ethyl alcohol (2) and acetic acid (3)?

- 27. Which of the following is the strongest acid
 - 1) CF₃COOH
- 2) CBr₂COOH
- 3) CH₃COOH
- 4) CCl, COOH

- 28. Which of the following is the weakest acid
 - 1) Phenol
- 2) CH₂COOH
- 3) HCOOH
- 4) Benzoic acid

WORK SHEET - II

- 1. $C_2H_5OH \xrightarrow{K_2Cr_2O_7/H^+} (X) \xrightarrow{(O)} (Y);$ What is 'Y'?
 - 1) CH₃CHO
- 2) CH₃COOH
- 3) CH₃COOC₂H₅
- 4) CH₃COCH₃
- 2. The catalyst used in the manufacture of acetic acid from acetaldehyde by the atmospheric oxygen is
 - 1) (CH₃COO)₂Mn
- 2) $(CH_3COO)_2Zn$
- 3) CH₃COOK
- 4) CH₃COONa
- 3. The reagent used for the detection of a carboxyl group in an organic compound is
 - 1) PCl₅
- 2) SOCl₂
- 3) Na
- 4) NaHCO₃
- 4. Which of the following does not participate in HVZ reaction.
 - 1) CH₃COOH
- 2) CH₃CH₂COOH
- 3) CH₃CHClCOOH
- 4) $(CH_3)_3CCOOH$
- 5. During the electrolysis of Potassium acetate solution the anode products are
 - 1) $C_2H_{6'}CO_2$
- $2)\,C_{2}H_{6'}\,H_{2}$
- 3) $C_4H_{10'}CO_2$
- 4) $CH_{4'}C_2H_6$
- 6. $CH_3COOH \xrightarrow{X} CH_3COC1$. Here the reagent X can not be
 - 1) PCl₅
- 2) PCl₃
- 3) SOCl₂
- 4) NaCl
- 7. $C_2H_5OH + CH_3COOH \xrightarrow{H_2SO_4} CH_3COOC_2H_5 + H_2O.$

Here H₂SO₄ acts as

- 1) Oxidising agent
- 2) Reducing agent
- 3) Dehydrating agent 4) negative catalyst
- 8. The intermediate compound formed during the hydrolysis of CH₃CN is
 - 1) CH₃COOH
- 2) CH₃COONH₄
- 3) CH₃CONH₂
- 4) CH₃CH₂NH₂
- 9. Hydrolysis of an ester gives a carboxylic acid which on kolbe's electrolysis yields ethane. The ester is
 - 1) methyl ethanoate
- 2) methylmethanoate 3) ethyl methanoate
- 4) methyl propanoate
- 10. Compound A reacts with PCl₅ to give B which on treatment with KCN followed by hydrolysis gave propionic acid. What are A & B respectively?
 - 1) $C_3H_8 \& C_3H_7C1$
- 2) $C_2H_6 \& C_2H_5C1$

3) C	H	OH	Ŕт	C	Н.	C1	Ĺ
J,) C	յւ⊥բ	OII	œ	-	1_{1}	C	17

4) $C_2H_5OH \& C_2H_5CI$

11. An organic compound reacts with metallic sodium to liberate hydrogen and with Na₂CO₃ solution to liberate CO₂. The compound is

- 1) Alcohol
- 2) Carboxylic acid
- 3) Ether

4) An ester

Acetic acid is treated with metallic Sodium to form Hydrogen and X. When X is treated with 12. Sodalime, Y and Sodium Carbonate are formed 'Y' is

- 1) C_2H_6
- 2) CH₄
- 3) CH_sCOONa

4) CH₃CONH₂

What is the reagent used in the preparation of chloro-acetic acid from acetic acid 13.

- 1) PCl₅
- 2) Cl₂ / Red P
- 3) PCl₂

4) SOCl₂

In the following reaction X and Y respectively are. 14.

$$X \xrightarrow{Aq.NaOH} CH_3COOH \xrightarrow{Y} (CH_3CO)_2O$$

1) CH₃.CHO; PCl₅

2) CH_3CN ; P_2O_5

3) CH₃CH₂OH; NaOAC

4) CH₃COCH₃; H₂SO₄

15. In the following reaction X and Y are respectively

$$CH_3COOH + NH_3 \rightarrow X \xrightarrow{\Delta} Y + H_2O$$

1) CH₃CONH₂; CH₄

- 2) CH₃COONH₄; CH₃CONH₂
- 3) CH₃CONH₂; CH₃COOH
- 4) CH₃NH₂; CH₃CONH₂

In the following reaction X and Y respectively are 16.

$$C_2H_5OH \xrightarrow{KMnO_4/H^{\oplus}} X \xrightarrow{Y} CH_3COOC_2H_5$$

1) CH₃OH; C₂H₅OH

2) CH₃CHO; CH₃OH

- 3) $CH_2 = CH_2$; CH_3COOH
- 4) CH₃COOH; C₂H₅OH

17. Aqueous 10% NaHCO₃ solution is used as a reagent for identifying 'X'. Which one of the following compounds yields 'X' on hydrolysis?

- 1) $CH_3CO_2C_2H_5$ 2) $C_2H_5 O C_2H_5$ 3) CH_3CHO
- 4) CH₃ CH₂ OH

Acid hydrolysis of X yields two different organic compounds. Which one of the following is 18. X?

- 1) CH₂COOH
- 2) CH₃CONH₂
- 3) CH₂COOC₂H₅
- 4) (CH₂CO)₂O

19. When compound X is oxidised by acidified potassium dichromate, compound Y is formed. Compound Y on reduction with $LiA\ell H_A$ gives X.X and Y respectively are:

1) C₂H₅OH, CH₃COOH

2) CH₃COCH₂, CH₃COOH

3) C₂H₅OH, CH₃COCH₃

4) CH₃CHO, CH₃COOH₃

 $CH_{3}COOH \xrightarrow{\quad LiAlH_{4} \quad} \underline{A} \land \qquad \underline{A} + CH_{3}COOH \xrightarrow{\quad H_{3}O^{+} \quad} \underline{B} + H_{2}O$ 20.

In the above reactions 'A' and 'B' respectively are

- 1) $CH_3COOC_2H_5$, C_2H_5OH
- 2) CH₃CHO, C₂H₅OH

3) C₂H₅OH, CH₃CHO

- 4) C₂H₅OH, CH₃COOC₂H₅
- 21. Identify X and Y in the following sequence of reactions.

$$CH_3CHO \xrightarrow{\quad HNO_3 \quad} X \xrightarrow{\quad P_4O_{10} \quad} Y$$

- X

- Y

- 1) C_2H_5OH , C_2H_4 2) CH_3CO_2H , 3) CH_3CO_2H , $CH_3CO_2CH_3$ 4) C_7H_5OH ,
- (CH₂CO)₂O

- 4) C_2H_5OH ,
- CH₂CO₂H
- 22. In which of the following reactions hydrogen gas is liberated?
 - 1) CH₂COOH + Na

2) CH₂COOH + NaHCO₂

3) CH₃COOH + NaOH

- 4) CH₃COOH + H₂O
- Methyl alcohol when reacted with carbon monoxide using cobalt or Rhodium as catalyst, 23. compound 'A' is formed, 'A' on heating with HI in the presence of red phosphorous as catalyst 'B' is formed. Inentify 'B'
 - 1) CH₃COOH
- 2) CH₃CHO
- 3) CH₃CH₂I
- 4) CH₃CH₃
- 24. Reaction of CH₃COOH with excess of CH₃CH₂MgBr finally yields
 - 1) an alkene
- 2) an ester
- 4) a tertiary alcohol
- $\text{CH}_3\text{CH}_2\text{COOH} \xrightarrow{\text{Br}_2 \\ \text{Red'p'}} X \xrightarrow{\text{NH}_3 \\ \text{alcohol}} Y \text{ Y in the reaction is}$ 25.
 - 1) Lactic acid
- 2) Ethylanine
- 3) Propylamine
- $\text{CH}_3\text{COOH} \xrightarrow{\quad \text{Imole Cl}_2 \, / \, \text{Re} \, \text{d} \, P \quad} A \xrightarrow{\quad KCN \quad} B \xrightarrow{\quad H^+ \, / \, \text{H}_2\text{O} \quad} C \, \cdot \, \, \text{Hence 'C' is}$ 26.
 - 1) Oxalic acid

2) Maleic acid

3) Fumaric acid

- 4) Malonic acid
- $CH_2CH_2COOH \xrightarrow{Cl_2/RedP} A \xrightarrow{aq.KOH} B$. Here 'B' is 27.
 - 1) Succinic acid
- 2) Lactic acid
- 3) Picric acid
- 4) Malonic acid
- Benzoic acid gives benzene on being heated with X and phenol gives benzene on being 28. heated with Y therefore X and Y are respectively
 - 1) Sodalime and copper

2) Zincdust and sodium hydroxide

- 3) Zinc dust and Sodalime
- 4) Sodalime and Zinc dust
- On vigorous oxidation by permanganate solution (CH₃), C= CH- CH₂CH₃ gives 29.

CH₃

$$C = O + CH_3CH_2COOH$$

$$CH_3$$

30. Identify C in the following reaction:

$$C_2H_2 \xrightarrow{\quad \text{Chromic acid} \quad} A \xrightarrow{\quad \text{NH}_3 \quad} B \xrightarrow{\quad \Delta \quad} C$$

- 1) CH₃CH₂NH₂ 2) CH₃CN

- 3) CH₃CH₂NHCH₃ 4) CH₃ C– NH₂

 $CH_3CN + H_2O \xrightarrow{\ \ \, H^+ \ \ \, } A \xrightarrow{\ \ \, Excess\ Cl_2 \ \ \, } B \ . \ In \ the \ above \ reaction\ A \ and\ B \ are \ respectively$ 31.

- 1) CH₂COOH, CCl₂COOH
- 2) CH₃CH₂OH, CH₃CH₂Cl

3) CH₃CHO, CCl₃CHO

4) CH₃COCH₃, CCl₃COCH₃

Identify A and B in the following reaction, $CH_3CH_3 \leftarrow B - CH_3COOH \xrightarrow{A} CH_3CH_2OH$ 32.

Α

В

- A

- 1) HI + Red P
- LiAlH₄
- 2) Ni/ Λ
- LiAlH₄

- 3) LiAlH₁
- HI + Red P
- 4) Pd-BaSO₁
- Zn + HC1

33. In the anion HCOO the two carbon-oxygen bonds are found to be of equal length. What is the reason for it 1) The anion HCOO- has two equivalent resonating structures

- 2) The anion is obtained by removal of a proton from the acid molecule
- 3) Electronic orbitals of carbon atom are hybridised
- 4) The C=O bond is weaker than the C-O bond

Among the following acids which has the lowest pK value 34.

- 1) CH, COOH
- 2) HCOOH
- 3) (CH₂)₂CH-COOH 4) CH₂CH₂COOH

35. Which of the following has highest tendency to ionise in aqueous solution.

- 1) HCOOH
- 2) CH₃COOH
- 3) FCH₂COOH

4) BrCH2COOH

Which acid has lowest value of pK₂? 36.

- 1) p Methoxybenzoic acid
- 2) p Chlorobenzoic acid

3) p - Aminobenzoic acid

4) p - Toluic acid

37. Which of following anion is a strongest base?

- 1) $C_6H_5COO^-$
- 2) HCOO-
- 3) CH₃COO-
- 4) (CH₃)₂CHCOO⁻

Which of the following statements are correct? 38.

- 1) the two carbon-oxygen bond lengths in molecular formic acid are different
- 2) the two carbon-oxygen bond length in sodium formate are equal
- 3) very partial resonance is there in formic acid
- 4) all of the above

39. Among acetic acid, phenol and n-hexanol, which of the compounds will react with solution to give sodium salt and CO ₂					
	1) acetic acid	2) phenol	3) n-hexanol	4) acetic acid and phenol	
40.	CH ₃ COOH is less	acidic than HCOOH. 1	It is due to which ef	fect	
	1) + I of Methyl gro	oup 2) + M of Methyl g	roup		
	3) - I of Methyl gro	up 4) None			
41.	What is the main r	eason for the fact that	carboxylic acids car	n undergo ionisation.	
	1) Absence of $\alpha - 1$	nydrogen	•	Ţ	
	2) Resonance stabi	lisation of the carboxy	late ion		
	3) High reactivity of	of α – Hydrogen	4) Hydrogen b	onding	
42.	The reagent that ca	an be used to distingui	sh between phenol	and ethanoic acid is	
	1) Ammoniacal silv	ver nitrate solution	2) Fehling solu	ition	
	3) Sodium carbona	te solution	4) Phenolphth	alein	
		WORK S	HEET - III		
01.	$(CH_3)_2C = CH-CH$	I_2 -CH $_3$ on oxidation w		olution gives	
	~ =	CH ₃ CH ₂ CH ₂ OH			
	3) (CH ₃) ₂ CHCO ₂ l	H+CH ₃ CH ₂ COOH	4) (CH ₃) ₂ C(O	H)CH(OH)CH ₂ CH ₃	
02.			g acids on dry disti	llation produces 2,4 - dimethyl	
	pentane - 3 - one?		2) lautania a si s	1 4) muonionio osid	
		2) adipic acid		4) propionic acid	
03.		$\xrightarrow{HCN} X \xrightarrow{H_2O/H^+}$			
	-	nce, the end $product Z$		الاندينا	
	 but-2-enoic acid tartaric acid 	L	2) prop - 2 - er4) lactic acid	1 OIC acid	
04.	·	tained by the reaction (,	H-SO, will be	
01.				4) CH ₃ COOH	
05.		wing has highest solub		, 3	
		2) isobutyric acid	•	id 4) propionic acid	
06.	CH_3OH — PCl_5	$\rightarrow (A) \xrightarrow{KCN} (B) \xrightarrow{B}$	$\xrightarrow{I_3O^+}$ (C) the end	product (3) will be ?	
	1) CH ₃ CONH ₂	2) CH ₃ -CH ₂ OH	3) HCOOH	4) CH ₃ COOH	
07.	The end product (3) in the following sequ	uence of reactions,		
	$CH_3 Cl \xrightarrow{KCN} $	$(A) \xrightarrow{H^+/H_2O} (B) -$	$\xrightarrow{P_4O_{10}}$ C. The co	ompound 'C' is	
	1) (CH ₃ CO) ₂ O	2) CH ₃ COOCH ₂	3) CH ₃ COOH	4) CH ₃ COCH ₃	
08.	Which of the follow	wing is optically active	e?		
	1) Lactic acid	, •	, •	d 4) Both (2) & (c)	
09.				$\xrightarrow{P_2O_5}$ C the product C is:	
	1) ammonium ace	tate 2) methane	3) acetonitrile	4) methanol	

CARBOXYLIC ACIDS

- Which of these can not show resonance stabilisation? 10.
 - 1) $CH_2 = CH CH_2 O$ 2) $C_c H_c \overline{O}$
- 3) $C_6H_5CO\bar{O}$
- 4) All of these
- Acetic anhydride is prepared industrially by heating sodium acetate with: 11.
 - 1) CH₃Cl
- 2) PCl₃
- 3) POCl₃
- 4) SO₂Cl₂
- 12. Which of the following will be able to produce acetyl chloride by its reaction with acetic acid
 - 1) PCl₃
- 2) PCI₅
- 3) Cl₂
- 4) SOCl₂/Py
- Acetyl chloride is reduced to acetaldehyde by : 1) LiAIH $_4$ 2) H $_2$ /Pd-BaSO $_4$ 3) H $_2$ /Ni 4) Na-C $_2$ H $_5$ OH 13.

- Which of the following compounds will give ethyl alcohol on reduction with LiAlH₄? 14.
 - 1) (CH₃CO)₂O
- 2) CH₃COCl
- 3) *CH*3*CONH*2 4) *CH*3*COOC*2*H*5
- -OH group of acid can be replaced with 15.
 - 1) SOCl,
- 2) COCl,
- 3) PCl₅
- 4) PCl₂
- 16. Aceto Phenone is oxidised by peroxyacetic acid followed by acid catalysed hydrolysis to give two products (1) and (B). Identify the products (1) and (B)
 - 1) (1) is benzoic acid

2) (2) is phenol

3) (1) is acetic acid

- 4) (2) is methanol
- 17. The intermediate(s) formed during the reaction,

$$C_6H_5CH_2COOAg + Br_2 \xrightarrow{CCL_4} C_6H_5CH_2Br + AgBr$$
 is / are

1)
$$C_6H_5 - CH_2 - C - OBr$$
 2) $C_6H_5 - CH_2 - C - O \bullet$

$$C_{6}H_{5}-CH_{2}-C-O$$

3)
$$C_6H_5 - \dot{C}H_7$$

4) Br •

Passage - I

An organic compound (1) of molecular weight 135 on boiling with NaOH evolves a gas which gines white dense fumes on bringing a rod dipped in HCl near it. The alkaline solution thus, obtained on acidification gives the precipitate of a compound (2) having molecular weight 136. Treatment of (1) with HNO₂ also yeilds (B), whereas its treatment with Br_2/KOH gives (C). compound (3) reacts with cold HNO₂ to give(D), which gives red colour with ceric ammonium nitrate. On the other hand(E) an isomer of (1) on boiling with dil HCl gives an acid (F), having molecular weight 136. On oxidation followed by heating, (F) gives an anhydride (G) which condenses with benzene in presence of AlCl₃ to give anthraquinone.

18. Structural formula of compound (1) is

$$\bigcirc -CH_{2}CNH_{2}$$

- 19. IUPAC name of compound (2) is
 - 1) p-methylbenzoic acid

2) 2-phenylethanoic acid

3) methyl benzoate

- 4) none of these
- Structural formula of compound (3) is 20.
 - 1) $CH_3 \leftarrow O \rightarrow NH_2$

- NHCH₃

 $4) C_6 H_5 C H_2 N H_2$

- 21.

- 22. Compound (F) is

23. Match List-I with List - II and select the correct answer using the codes given below the lists.

Column - I (compound)

Column - II (used as)

(1) 1,4 addition

(P) $Ph - CH_2 - C - CH = CH_2$

(2) Tautomerism

(Q) PCC

- (3) Allylic bromination
- (4) Preparation of Ketone from 2° alcohol
- (S) NBS
- 24. Match list - I with list - II and select the correct answer using the codes give below the lists

Column - I

Column - II

(1)
$$C_6H_5CHO + HCHO \xrightarrow{OH} C_6H_5CH_2OH + HCOO$$
 (P) Cannizzaro reaction

- (2) $C_6H_5-H+CH_3COCI$ Anhy.AlCl₃ $C_6H_5-CO-CH_3$ (Q) Friedel Crafts reaction

CARBOXYLIC ACIDS

(3)
$$C_6H_6+CO+HCI \xrightarrow{AnhyZnC_2} C_6H_5-CHO$$
 (R) Reimer-Tiemann reaction

(4)
$$(i)CHCl_3/Alc.KOH/\Delta$$
 OH (S) Gattermann-Koch aldehyde synthesis

- 25. Number of compounds with the formula $C_4H_8O_2$ is -----
- 26. How many lone pair of eletrons are in oxalic acid?
- 27. The number of acids which have greater K_a value than acetic acid is Formic acid, Benzoic acid, CH_2 = CHCOOH, CH_3OCH_2COOH , CH_2 =CHCH $_2COOH$.

EXERCISE - I / ANSWERS

WORK SHEET - I

1) 3	2) 1	3) 2	4) 4	5) 3	6) 3	7) 2	8) 2	9) 1	10) 3
11) 4	12) 3	13) 2	14) 1	15) 3	16) 2	17) 2	18) 4	19) 4	20) 3

WORK SHEET - II

$$11)\ 2 \qquad 12)\ 2 \qquad 13)\ 2 \qquad 14)\ 2 \qquad 15)\ 2 \qquad 16)\ 4 \qquad 17)\ 1 \qquad 18)\ 3 \qquad 19)\ 1 \qquad 20)\ 4$$

41) 2 42) 3

WORK SHEET - III

EXERCISE - II

WORK SHEET - IA

25. Column -I (Ester) Column - II (Flavour)

(1) ethyl butanoate

(P) orange

(2) octyl ethanoate

(Q) jasmine

(3) n-pentyl ethanoate

(R) pineapple

(4)benzyl ethanoate

(S) banana

26. Column-I Column -II

(1) R-CONH₂

(P) most reactive towards aryl substitution

(2) R - COOR'

(Q) reduces HgCl₂

(3) HCOOH

(R) high boiling point

(4) RCOCl

(S) fruit flavour

WORK SHEET - IIB

27. No of positional isomers possible for terephthalicacid are

$$(CH_3)$$

$$H_3C - C - CH_3$$

$$\xrightarrow{\text{acidified} \atop \overline{KMnO_4}} [A] \xrightarrow{SOCl_2} [B] \xrightarrow{CH_2N_2} [C] \xrightarrow{H_2O/Ag_2O} [D]$$

number of carboxylic groups present in compound [D]

- 29. Fructose is oxidised by periodic acid [HIO₄]. The number of moles of HCOOH formed from each mole of fructose are
- The number of isomeric carboxylic acids possible for the formula C₄H₈O₂ are respectively 30.

31.
$$O$$
 conc. HNO_3 $conc.H_2SO_4$

In the above reaction how many nitrated products are possible?

- 32. The number of hydroxyl groups present in tartaricacid are
- 33. During the reaction between formic acid & KMnO₄. The equivalent weight of KMnO₄ obtained by dividing it's molecular weight by a ______ factor

CARBOXYLIC ACIDS

34.
$$CH_3 \xrightarrow{C_6H_5CO_3H} A \xrightarrow{H_3O^{\oplus}} B$$

No. of sp² hybridised carbons in compound (B)

35. Benzoic acid $\frac{1)NH_3/\text{heat}}{2)KOH + Br_2/\text{heat}}$ product

No. of sp² hybridised atoms in product

36. Acid chlorides are converted in to 3^o alcohols with Gariguard reagent. During this convertion number of moles of Gariguard reagent are used

EXERCISE - II / ANSWERS

WORK SHEET - IA

WORK SHEET - IIB

EXERCISE - I

WORK SHEET - I

	WORK 3				
1.	Oil of mirbane is 1) Nitrobenzene 3) Aniline	2) m-dinitrobenzene 4) Benzene sulphona	nmide		
2.	Nitroalkanes are the derivatives of 1) Nitric Acid 2) Nitrous acid	3) Hyponitrous acid	4) Pernitric acid		
3.	Steam distillation method is useful for the 1) Nitrobenzene 3) Aniline	purification of 2) Benzene 4) Both Nitrobenzen	e and Aniline		
4.	NitroBenzene is reduced with LiAIH ₄ . The 1) AzoBenzene 3) N-Phenyl hydroxylamine	product is 2) HydrazoBenzene 4) Aniline			
5.	Nitrobenzene can act as 1) oxidant 2) reductant	3) bleaching agent	4) antichlor		
6.	Among the following which is less reactive 1) Benzene 2) NitroBenzene	e towards electrophilic s 3) Aniline	substitution reactions 4) Toluene		
7.	The following is used in the preparation of 1) Nitrobenzene 3) Benzene diazonium chloride	loor polishes 2) Aniline 4) Phenyl hydroxyl amine			
8.	NitroBenzene is used as a solvent in 1) Wurtz's reaction 3) Friedel - Craft's reaction	2) The Preparation o	2) The Preparation of G.R.4) Diazotisation reaction		
9.	Which is used as a cheap perfume 1) Aniline 2) Ethyl alcohol	3) Acetone	4) NitroBenzene		
10.	IUPAC name of (CH ₃) ₃ C.NH ₂ is 1) trimethyl amine	2) 2-methyl butanam			
11.	3) 2-methyl propanamine-2Which of the following is not a tertiary am1) tri ethyl amine	4) 2-methyl propanaine ?2) tri methyl amine	mine- i		
12.	3) 2-methyl propanamine-2 Which of the following shows optical activ	4) N-ethyl-N-methyl	propanamine-1		
13.	1) butanamine-1 2) butanamine-2 IUPAC name of (C ₂ H ₂) ₃ C-NH ₂ is	3) isopropyl amine	4) ethyl methyl amine		
	1) 3-ethyl propanamine-1 3) 3-ethyl pentanamine-3	2) 3-ethyl pentanami 4) 2-ethyl pentanami			
14.	Number of saturated isomeric primary am 1) zero 2) 3	ines possible for the mol	lecular formula C ₃ H ₅ N is 4) 4		
15.	Chemical formula of Hinsberg's reagent is 1) C ₆ H ₅ SO ₃ H 2) C ₆ H ₅ NHSO ₂ C ₆ H ₅		4) C ₆ H ₅ NHCOC ₆ H ₅		
16.	For carbyl amine reaction, we need alcoholony any primary amine and chloroform	lic KOH and	amine and chloroform		

AMIN					
	3) aliphatic primary a	mine and chloroform	4) any amine and chlo	roform	
17.	Aniline on acetylation 1) phenol	gives 2) acetamide	3) acetanilide	4) benzene	
18.	Treatment of ammoni 1) triethyl amine 3) diethyl amine	a on excess of alkyl hal	ide yields 2) quaternary ammon 4) ethyl amine	ium salt	
19.	Aniline on reaction w	ith con.H ₂ SO ₄ gives X. I	If X is heated, the produ	uct is	
	1) sulphanilic acid		2) sulphonamide		
	3) benzene sulphonyl	chloride	4) m-amino benzene s	sulphonic acid	
20.	In-correct statement among the following is 1) methanamine is more basic than ammonia 2) ammonia forms H-bonds 3) boiling point of ethyl amine is higher than propane 4) dimethyl amine is less basic than aniline				
21.	A primary amine on re 1) isocyanide	eaction with alc.KOH a 2) aldehyde	nd chloroform yields 3) cyanide	4) alcohol	
22.	Primary amines have lower boiling points than 1) corresponding alkanes 2) corresponding 2° and 3° amines 3) corresponding esters 4) corresponding alcohols				
23.	(A): N-methyl ethanamine is more basic than N,N-dimethyl ethanamine (R): +I effect is more in former than the later 1) A and R are true and R explains A 2) A and R are true but R does not explains A 3) A is true but R is false 4) A is false but R is true			t R does not explainA	
24.	Molecular association 1) n-propyl amine	is highest in 2) trimethyl amine	3) ethyl methyl amine	4) equal in all	
25.	Among isomeric amines possible for molecular formula C ₃ H ₉ N, correct order of basic sis given by I) propanamine-1 II) N-methyl ethanamine IV) N-methyl propanamine-1			iine	
26.	1) III > I > II Aniline is less basic th 1) NH,	2) IV > III > I > II nan 2) CH ₃ NH ₃	3) II > III > I 3) N - methyl Aniline		
27.	Which of the followin	J 2	5) 11 1110th 1317 th 11111	1,7 th thouseve	
21.	1) Tert. butylamine aniline	2) dimethyl amine	3) N - methylaniline	4) N, N-dimethyl	
28.	Which functional grou	up responds to carbyla	mine test		
	1) -NH ₂	2) NH	3) -CONH ₂	4) N	
29.	Among the following	which is more basic	-	A 11 11 1	

1) n - butyl amine 2) isobutylamine 4) diethylamine 3) Sec. butylamine Impure Aniline is purified by 30. 1) distillation 2) steam distillation 3) distillation under reduced pressure 4) fractional crystallisation 31. Towards litmus, Aniline is 2) Basic 1) Acidic 3) Neutral 4) Bleaching agent

32. Which of the following can react with an alkyl halide

342

	1) 10 amina	2) 2° amina	2) 2° amina	AMINIS	
	1) 1° amine	2) 2° amine	3) 3° amine	4) All the above	
33.	The substance with n 1) C ₆ H ₅ CN	auseating smell is 2) C ₆ H ₅ NO ₂	3) C ₆ H ₅ NH ₂	4) C ₆ H ₅ NC	
34.	Aniline doesn't react 1) dil. HCl	with 2) dil.NaOH	3) CH ₃ . CHO	4) Br ₂ water	
35.	Nitrobenzene on redu 1) Azobenzene	uction with Hydrogen i 2) Hydrazobenzene	n presence of Nickel giv 3) Phenyl hydroxyl ami		
36.	Schiffs base is used as 1) Oxidant	s a 2) Reductant	3) Antichlor	4) Antioxidant	
37.	Aniline is obtained by	the destructive distilla	ation of		
	1) Coal Tar	2) Molasses	3) Indigo	4) Proteins	
38.	Aniline is soluble in 1) dil.HCl	2) dil.NaOH	3) Water	4) Na ₂ CO ₃ solution	
39.	Aniline is treated with	h excess of CH ₃ I. The fi	nal product is		
	1) C ₆ H ₅ NHCH ₃	2) C ₆ H ₅ N(CH ₃) ₂	3) $C_6H_5N(CH_3)_3I$	4) C ₆ H ₅ I	
40.	The reagent which ge 1) CH ₃ I	ts attached to the nucle 2) C ₆ H ₅ COCI	eus when added to anil 3) CH ₃ COCI	ine 4) Br ₂	
41.	Which of the following is not a property of aniline 1) It is basic in nature 2) It gives carbylamine test 3) It can react with 3 moles of alkylhalide 4) It turns blue litmus red				
42.	Which of the followin	ng is a mixed 2° amine 2) N - Methylaniline	3) Dimethylamine	4) Methyldiethyl amine	
43.	The general formula o	of amines is			
	1) C _n H _{2n+1} N	2) $C_n H_{2n+2} N$	3) $C_n H_{2n+3} N$	4) $C_nH_{2n}N$	
44.	The general formula of 1) RNH_2	of quaternary ammonia 2) R ₂ NH	m salt is 3) R ₃ N	4) R ₄ NX	
45.	Which of the followin	ng contains imino group	o [>NH]		
	1) Aniline	2) O - Toludine	3) Benzylamine	4) N - methyl aniline	
46.	The number of mole: hydrazobenzene is	s of hydrogen atoms r	required to convert 1 r	mole of nitrobenzene to	
	1) 5	2) 10	3) 4	4) 8	
47.	Freshly prepared anil 1) Colourless	ine is ? 2) Brown	3) Yellow	4) Pale Yellow	

48. Which of the following is true

- 1) aniline forms salts with aqueous alkali $\,$
- 2) aniline is more basic than ammonia
- 3) aniline forms benzene diazonium chloride with nitric acid
- 4) aniline is less basic than ammonia
- 49. Bromination of Aniline with bromine water mainly gives
 - 1) Red precipitate of 2, 4, 6 tribromo aniline 2) Ortho and Para bromo anilines
 - 3) 2, 4 Dibromo aniline

AMIN	FS				
AWIII		f 2, 4, 6 – Tribromo anil	ine		
50.	Aniline forms aniliniu 1) An alkyl halide'	um salt when it reacts v 2) Acetyl chloride	vith 3) Sulphuric acid	4) Benzoyl chloride	
51.	The amine that does not 1) Isopropyl amine 3) Tertiary butyl amin	ot form hydrogen bonds e	s is 2) Neopentyl amine 4) N, N – Dimethyl an	nino ethane	
52.	with formula $C_4H_{11}N$	are	ary amine isomers pos 3) 3, 2, 1	ssible for the compound	
53.	1) 4, 3, 1 2) 4, 3, 2 3) 3, 2, 1 4) 4, 2, 1 In the diazotisation of Aniline, the reagent or reagents used 1) HNO ₃ , HCl 2) NaNO ₂ , HCl at0–5°C 3) NaNO ₂ , HNO ₂ at 0–5°C 4) HNO ₂ only				
54.	In benzene diazonium 1) –N=N=CI	n chloride, the function 2) -N=N+-Cl-	al group is 3) –N+=N–Cl-	4) none	
55.	Diazonium salts are fo 1) aliphatic primary a 3) alicyclic primary ar	mines	2) aromatic primary amines 4) heterocycli aromatic nitrogen compounds		
56.	Diazotisation means the conversion of 1) any primary amine into diazonium salt using NaNO ₃ +HCl at ice cold temperature 2) aromatic primary amine into diazonium salt using NaNO ₂ +HCl at 60-70°C 3) aromatic primary amine into diazonium salt using NaNO ₂ +HCl at ice cold temperatur 4) any primary amine into diazonium salt using NaNO ₃ +HCl at ice cold temperature				
57.	Aniline can be converted into Benzene by 1) diazotization 2) diazotization followed by treating with H ₃ PO ₂ 3) treating with H ₃ PO ₂ 4) diazotization followed by treating with steam				
58.	Which of the followin 1) Benzenamine	g does not give diazon 2) Benzyl amine	ium salt with nitrous a 3) p-hydroxy aniline		
59.	Which diazonium salt 1) Benzene diazonium 3) Benzene diazonium		erature 2) Benzene diazonium 4) Benzene diazonium		
60.	Replacement of -N ₂ ⁺ X 1) Diazo coupling	group by -Cl or -Br or 2) Hoffmann reaction		4) Perkin reaction	
61.			le in the presence of cop 2) o-chloro benzene d	· · ·	

WORK SHEET - II

4) o-dichloro benzene

1.	NitroBenzene ——— HydrazoBenzene.						
	Here the reagent is						
	1) Sn + HCl	2) Zn + NH ₄ CI	3) Zn + NaOH	4) LiAIH ₄			

3) Chloro benzene

The equivalent weight of NitroBenzene is

- 1) M O
- 2) $\frac{M}{2}$
- 3) $\frac{M}{4}$
- 4) $\frac{M}{6}$

- 3. $R \stackrel{\parallel}{N} \rightarrow O$ and R O N = O are a pair of
 - 1) Chain Isomers
- 2) Metamers
- 3) Functional Isomers 4) Tautomers

Here the reagent is

- 1) Zn + NH,CI
- 2) Zn + NaOH
- 3) Sn + HCI
- 4) LiAIH,

The ratio of the number of moles of Hydrogen atoms required to get 1 mole of azobenzene and 1 mole of hydrazobenzene

- 1) 4:5
- 2) 5:4
- 3) 1:1
- 4) 2:3

6.
$$\frac{\text{O}}{100^{0} \text{C}} + \text{HNO}_{3} \xrightarrow{\text{H}_{2}\text{SO}_{4} \text{ conc.}}$$
 the main product of the reaction

- 1) Nitrobenzene
- 2) O dinitrobenzene 3) m dinitrobenzene 4) P dinitrobenzene
- 7. Which of the following statements is wrong?
 - I) amines possess pyramidal shape
- II) amines act as Bronsted bases
- III) 1º amines show metamerism
- IV) 2º amines show metamerism

- 1) I, II and III
- 2) II, III and IV
- 3) III only
- 4) I, II and IV

- 8. N,N-dimethyl butanamine-2 contains
 - 1) six sp³ hybridised carbon atoms
- 2) seven sp³ hybridised atoms
- 3) two sp³ hybridised nitrogen atoms
- 4) 1 and 2 are correct
- 9. Primary amino group is absent in
 - 1) p-amino phenol
- 2) o-amino phenol
- 3) N-methyl ethanamine 4) phenyl amine
- 10. A): n-propyl amine is 1° but isopropyl amine is 2° amine
 - R): n-propyl amine and isopropyl amine are position isomers
 - 1) A and R are true and R explains A
- 2) A and R are true but R does not explain A

3) A is true but R is false

- 4) A is false and R is true
- 11. N,N-dimethyl butanamine-2 is the functional isomer of
 - 1) N-butanamine-2

2) N-methyl-2-ethyl butanamine-2

AMINES

1) 4

- 3) trimethyl amine 4) triethyl amine
 12. n-butyl amine and isobutyl amine are --- isomers
 1) optical 2) functional 3) chain
- 13. How many primary amine structural isomers with the molecular formula $C_4H_{11}N$. 1) 1 2) 2 3) 3 4) 4

4) position

4) 1

NHCH₃

can react with a maximum of moles of CH₃I

2) 3

15. In the nitration of aniline the amino group is protected by conversion into 1) Tribromoderivative 2) Isocyanide 3) Diazonium salt 4) Acetyl derivative

3) 2

- 16. The following turns brown on exposure to air and light1) Nitrobenzene 2) m-dinitrobenzene 3) Aniline 4) Benzene diazonium chloride
- 17. In the preparation of N-phenyl benzene sulphonamide from aniline, the reagent used is 1) H_2SO_4 2) $SOCI_2$ 3) C_6H_5CI 4) $C_6H_5SO_2CI$
- 18. Which of the following is correct with respect to the order of basic natures of different amines given below?

1)
$$C_6H_5NH_2 > NH_3 > CH_3NH_2 > (CH_3)_2NH$$

2)
$$(CH_3)_2$$
 NH> CH_3 NH $_2$ > C_6 H $_5$ NH $_2$ >NH $_3$

3)
$$CH_3NH_2 > (CH_3)_2 NH > C_6H_5NH_2 > NH_3$$

4)
$$(CH_3)_2NH > CH_3NH_2 > NH_3 > C_6H_5NH_2$$

19. Which of the following methods is used to prepare Aniline on large scale?

A)
$$C_6H_5NO_2 + 6(H) \xrightarrow{Fe/H_3O^+} C_6H_5NH_2 + 2H_2O$$

B)
$$C_6H_5NO_2+6(H) \xrightarrow{Sn/HCl} C_6H_5NH_2 + 2H_2O$$

C)
$$C_6H_5OH_2+NH_3 \xrightarrow{ZnCl_2} C_6H_5NH_2+H_2O$$

D)
$$C_6H_5CI + 2NH_3 \xrightarrow{Cu_2O, 200^0C} C_6H_5NH_2 + NH_4CI$$

1) A only 2) B or C 3) C only 4) A or D

EXERCISE - I / ANSWERS

WORK SHEET - I

			•	VOICIC	JIILL				
1) 1	2) 2	3) 4	4) 1	5) 1	6) 2	7) 1	8) 3	9) 4	10) 3
11) 3	12) 2	13) 3	14) 1	15) 3	16) 1	17) 3	18) 2	19) 1	20) 4
21) 1	22) 4	23) 3	24) 1	25) 3	26) 4	27) 1	28) 1	29) 4	30) 2
31) 3	32) 4	33) 4	34) 2	35) 4	36) 4	37) 3	38) 1	39) 3	40) 4
41) 4	42) 2	43) 3	44) 4	45) 4	46) 1	47) 1	48) 4	49) 4	50) 3
51) 4	52) 1	53) 2	54) 4	55) 2	56) 3	57) 2	58) 2	59) 2	60) 3
61) 3									
			V	VORK	SHEE	Γ - ΙΙ			
1) 3	2) 4	3) 3	4) 3	5) 1	6) 3	7) 3	8) 4	9) 3	10) 4

WORKSHEET-IA

EXERCISE - II

11) 4

12) 3

13) 4

14) 3

1)
$$C_6H_5 - NO_2 \rightarrow C_6H_5 - NH_2$$

2)
$$C_6H_5 - NO_2 \rightarrow C_6H_5 - N = N - C_6H_5$$
 (Q) Glucose in NaOH

3)
$$C_6H_5 - NO_2 \rightarrow C_6H_5 - NH - NH - C_6H_5$$

(R) Sn/HCI in acidic medium

4)
$$C_6H_5 - NO_2 \rightarrow C_6H_5 - NON - C_6H_5$$

(S) Alkaline sodium stannite in basic medium

2. Column - I

Column - II

15) 4 16) 3 17) 4 18) 4 19) 1

- 1) Hofmann's reagent
- (P) Primary amines
- 2) Hinsberg's reagent

(Q) Carbondisulphide

3) Mustard oil smell

(R) Oxayl chloride

4) Thiourea

(S) Separation of 1^0 2^0 and 3^0 amines

3. Column - I

Column - II

- 1) The compound gives violet colour with
- (P) Urea

NaOH and few drops of CuSO₄

- 2) A compound gives white ppt with oxalic acid (Q) Carbamic acid
- 3) A compound produced by the reaction of (R) Amide linkage primary amine & carboxylic acid
- 4) A compound gives diazo coupling in strong alkaline medium
- (S) Phenol

AMINES

- 4. Column I
 - 1) CH₂CH₂CN
 - 2) CH₂CH₂NC
 - 3) NC

- Column II
- (P) Undergoes electrophilic substitution
- (Q) Hydrolysis give primary amine
- (R) Reduction give a primary amine

- 4) CN
- (S) Hydrolysis give formic acid
- (T) Reduction give a secondary amine
- 5. Column I
- Column II
- 1) OH
- (P) Reacts with nitrous acid
- 2) NH₂
- (Q) Undergoes azo conpline reaction with diazoniam salts
- 3) NHCH₃
- (R) Undergoes electrophilic substitution
- 4) N(CH₃)
- (S) Reacts with hydrochloric acid to form salt
- 6. Column I

Column II

- 1) CH₂CH₂CH₂NH₂
- (P) Exhibits isomerism
- 2) NH₂
- (Q) Reacts with HNO, to give yellow only liquid

compounds

- 3) NHCH₃
- (R) Reacts with Hinsbeng reasent to give compound soluble in NaOH
- 4) CH₃CH₂NHCH₃
- (S) Least basic of all the compounds
- (T) Reach with CH₃I to give quaternary salt as the final product

EXERCISE - II / ANSWERS

WORKSHEET-IA

- 1) 1-QR; 2-QSQS; 3-Q; 4-P
- 2) 1-R; 2-S; 3-P; 4-PQ
- 3) 1-RS; 2-S; 3-PQ; 4-PQ
- 4) 1-PR; 2-PR; 3-PQR; 4-S
- 5) 1-R; 2-Q,S,T; 3-P,Q,S,T; 4-P,R
- 6) 1-Q,R; 2-P,Q,R,S,T; 3-P,Q,R,S; 4-P,Q,R,S

BIOMOLECULES (CARBOSYDRATES) EXERCISE - I

WORK SHEET - I

Biomolecules	Carbo	hyc	irat	tes:
--------------	-------	-----	------	------

1.	The smallest units in 1) Organelle	living organism is 2) Tissue	2) Organ	4) Biomolecule	
2.	Oxygen balance in that 1) Photosynthesis	ne atmosphere is main 2) Protein synthesis	tained by a process cal 3) Respiration	lled 4) Fat synthesis	
3.	The materials require 1) CO_2 and H_2O 3) CO_2 , H_2O and sun	ed for photosynthesis a light	nre 2) Chlorophyll only 4) CO ₂ , H ₂ O, sunligh	nt and cholrophyll	
4.	Biological reactions a 1) Exergonic	nssociated with positive 2) Endergonic	e Δ G are called 3) Exothermic	4) Endothermic	
5.	Which one of the foll 1) Ribose	owing is a pentose sug 2) Arabinose	ar? 3) Lyxose	4) All the three	
6.	Monosaccharides con 1) Six carbon atoms on 3) Four carbon atoms	only	2) Five carbon atoms 4) May contain 3 to 7	•	
7.	Raffinose on hydroly 1) glucose, fructose a 3) fructose, glucose a	nd lactose	2) glucose, fructose and galactose 4) glucose, fructose and mannose		
8.	Which of the following 1) Xylose	ng is not an oligosacch 2) Maltose	aride 3) Raffinose	4) Sucrose	
9.	A Laevorotatory sug 1) Glucose	,	3) Sucrose	4) Lactose	
10.	Glucose is not 1) a hexose	2) a carbohydrate	3) an oligosaccharide	e 4) an aldose	
11.	On heating glucose w 1) Orange	vith Fehling solution, v 2) Red	ve get a precipitate wh 3) Black	ose colour is 4) White	
12.	O	mirror test with Tollen' 2) Alcoholic group	0		
13.	The reagent which for 1) Fehling solution	orms crystalline osazon 2) Phenyl hydrazine	e derivatives with glu 3) Benedict's solution		
14.	When glucose is heat 1) Lactic acid	ted with nitric acid the 2) Saccharic acid	product is 3) Glycollic acid	4) oxalic acid	
15.	Glucose when heate glycosides because it 1) a -CHO group			gives α and β methyl 4) Five -OH groups	
16.	When hemiacetal rea 1) dihemiacetal	acts with alcohol the pr 2) alcohol	oduct is 3) acetal	4) Peptide	
17.	Freshly prepared α becomes	-D-glucose solution h	as specific rotation +1:	11° and after sometime it	

BION	MOLECULES (CAR	BOHYDRATES)		
	1) +52°	2) +99°	3) -92°	4) None
18. 19.	Which does not show 1) Glucose Ring structure of gluc 1) C_1 and C_5	2) Fructose	3) Maltose of hemiacetal and ring 3) C ₁ and C ₃	4) Sucrose formation is in between 4) C_2 and C_4
20.	The wrong statement	about glucose is		
	1) It has one 1°- alcoh 3) It has one aldehydi	-	2) It has four 2° - alcol 4) It has one 3° - alcol	
21.	Fructose contains 1) 3 secondary alcohol 3) 2 primary alcoholic	· -	2) One ketonic group 4) All the above	
22.	Glucose and mannose 1) Mirror images	e are 2) Anomers	3) Functional isomers	s 4) Isomers
23.	Anomers have differe 1) Physical Properties	nt s 2) Melting points	3) Specific rotation	4) All of these
24	The fischer projection & S and d & I designated 1) D, R, d		esents correct configura	ation in terms of D & L, R
	2) D, R, 1 3) D, S, d 4) D, S, 1	H——OH CH ₂ OH		
25.	Which of the followir 1) Glucose	ng is called as Laevulos 2) Fructose	se? 3) Lactose	4) Maltose
26.	The sweetest sugar ar	mong the following is		
	1) Fructose	2) Glucose	3) Sucrose	4) Galactose
27. 28.	1) D, –	fructose, the configurat 2) D, + rihydroxy acetone are	3) L, –	rotation respectively 4) L,+
20.	1) Anomers		3) Functional isomers	s 4) Epimers
29.	According to CIP rule 1) R	es, the configuration of 2) S	(+) – glyceraldehyde (3) D	can be designed as 4) L
30.	Accroding to CIP rule 1) 2S, 3S, 4R, 5R	es, the configuration of 2) 2S, 3R, 4S, 5R	chiral carbon atoms in 3) 2R, 3R, 4S, 5S	D -(+) - glucose are 4) 2R, 3S, 4R, 5R
31.	Glucose and cane suga 1) Fehling's solution	ar can't be distinguished 2) Baeyer's reagent	l by 3) Tollen's reagent	4) Benedict's solution
32.	In which of the follow 1) Maltose, Sucrose, L 3) Glycogen, Lactose,		es ? 2) Maltose, Lactose, C 4) Starch, Maltose, La	
33.	2) Two differnt mono	he same monosacchari		

${\bf BIOMOLECULES} \, ({\bf CARBOSYDRATES})$

	4) Two molecules of	the same or different r	nonosaccharides.			
34.	Change in optical ro 1) Specific rotation	tation of sucrose solut 2) Inversion	ion due to hydrolysis is 3) Rotatory motion	s called 4) Mutarotation		
35.	Inverted sugar is 1) Optically inactive fructose 3) Mixture of glucose	-	2) Equimolecular 1 4) A variety of canes	mixture of glucose and		
36.		ng is not a reducing su	•	6		
50.	1) Glucose	2) Sucrose	3) Lactose	4) Maltose		
37.	The glycosidic linka; 1) Link between two 2) Link between a ca 3) Link between carbo of water. 4) None of these	t bond com formed by elemination				
38.	hydrolysis	_		ner three belong based on		
	1) Sucrose	2) Fructose	3) Lactose	4) Maltose		
39.	Which among the foll 1) Fructose	llowing does not give 2) Glucose	a silver mirror test with 3) Galactose	n Tollen's reagent ? 4) Sucrose		
40.41.	2) a glucopyranose a3) a glucopyranose a	nd a fructopyranose und a fructofuranose und a fructofuranose und a fructopyranose und a fructofuranose und	nits units			
41.			2) or 1 0 D C1			
	1) Only α -D glucose		2) α and β - D Glucose units			
	3) Glucose and fructo		4) Fructose only			
42.	Which of the following 1) Amylopectin	ng is animal polysaccha 2) Glycogen	aride ? 3) Amylose	4) Cellulose		
43.	Amylose consists of					
	1) Branched chain of	α -D-glucose units	2) Unbranched chair	n of β -D-glucose units		
44.	3) Units of sucrose Amylopectin is a pol	ymer of	4) Unbranched chair	n of α -D-glucose units		
	1) β-D glucose	2) α -D glucose	3) β -D fructose	4) α - D fructose		
45.	In Amylopectin the l	inkage absent is				
	1) C ₁ & C ₄	<u> </u>	2) C ₁ & C ₆	2) C ₁ & C ₄		
	3) C ₁ & C ₂		4) Both C_1 & C_6 and C_1 & C_4			
46.	Direct conversion of	starch into glucose ma	ay be carried out by			
	1) fermentation with	•	•	2) fermentation with zymase		
	3) heating it with dil	HCl	4) fermentation with maltase			

BIOMOLECULES (CARBOHYDRATES)

47.	The intermediate 1) Lactose	e compound in the conv 2) Maltose	ersion of starch to glud 3) Fructose	cose is 4) Sucrose		
48.	Starch is turned 1) Maltase	to disaccharide in prese 2) Zymase	ence of 3) Diastase	4) Lactase		
49.	1) It occurs in the2) It is a disaccha3) It gives a dark	following statements a e cell wall of plants	bout starch is correct?			
50.	Saliva helps in that	ne digestion of 2) Starch	3) Proteins	4) Vitamins		
51.	Which of the fol 1) Starch	lowing carbohydrates is 2) Maltose	s the essential constitu 3) Cellulose	ent of cell wall ? 4) Sucrose		
52.	Cellulose is the p 1) L- fructose	oolymer of 2) D-fructose	3) D-glucose	4) Amylose		
53.	Cellulose is rigid 1) Hydrogen Bor 3) cell wall mate	nding		2) β (1,4) glycosidic linkage4) vegetable matter		
		WORK S	SHEET - II			
1.	In majority of the are	cells, the principle bion	nolecules undergoing o	oxidation during respiration		
	1) Vitamins	2) Fats	3) Proteins	4) Carbohydrates		
2.	Which of the foll 1) Glucose	owing monosaccharide 2) Frutose	es is a pentose 3) Ribose	4) Galactose		
3.	,	on in photosynthesis is o	•	•		
4.	(R): For dark rea 1) Both (A) and (2) Both (A) and (3) (A) is true but 4) (A) is false but Reactants → pro	ctions $\Delta G = -Ve$ R) are true and (R) is the R) are true and (R) is no (R) is false (R) is true	e correct explanation of t the correct explanation	f (A)		
	with	ADD 2) ATD H ₂ 0 \ A	2) ATD H ₂ 0 , A	MD 4) ADD H ₂ 0 > A		
5.	1) ATP ———————————————————————————————————	HCN Hl/P th HNO ₃	List -II Structure elucida 1) Presence of car	bonyl group ns straight chain. alcohol group		

					RI	OMOL	ECILI	ES (CA	RROSY	DRATES)
	A	В	С	D	DI	A	В	C	D	Dianies
1)	1	2	3	4	2)	4	1	2	3	
3)	3	1	2	4	4)	3	2	1	4	
		_			,	-	_		nd fructo	
1) Tollen's reagent 2) Fehling's solution 3) Benedict's solution 4) All of these										
	ion of glu luconic a		02	O gives ıcaric aci	d 3) L-Gluc	onic aci	d 4) 1	L-Glucari	ic acid
Fructose gives the silver mirror test because it 1) Contains an aldehyde group 2) Contains a keto group 3) Undergoes rearrangement under the alkaline conditions of the reagent to form a mixture of glucose and mannose 4) It has pyranose structure										
α -D-C to its?	Glucose a	ndβ-D	-glucose	differ fro	m each o	other due	to differ	ence in o	ne carbon	with respect
1) Size of hemiacetal ring3) Configuration) Numbe) Confor	er of OH mation	groups		
In an a	quouse s	solution	of D-G	lucose th	ne perce	entages (of α an	dβano	mers at e	equilibrium
conditi	on are re	spectiv	ely							
1) 80 aı	nd 20		2) 20 an	d 80	3) 36 and	64	4)	64 and 36	5
Which	of the fol	lowing	stateme	ent is corr	ect abo	ut D - Gl	ucose &	D - Gala	actose con	npounds?
1) They	are dias	tereom	ers		2) Both aı	re compo	onents o	f lactose	
3) They	are C - 4	l epime	ers		4) All the	above a	re correc	et	
1) it is c	lextrorot	atory		on becaus						
•	_								ranose st	
•	0					• ` ′	Glucop	yranose	structure	es
4) it un	dergoes	interco	nversio	n with D(–) fruct	ose				
The nu 1) 3	mber of		entres iı 2) 4	n the ope		n structu) 5	ire of Gl	ucose is 4) (6	
The nu	mber of	chiral c	entres ir	n the cycl	lic hemi	iacetal fo	orm of G	lucose is	3	
1) 3			2) 4		3) 5		4)	6	
The specific rotation of a freshly prepared solution of α – D – Glucose changes from a value of x° to a constant value of y°. The values of x and y are respectively 1) 19°, 52.5° 2) 111°, 52.5° 3) 52.5°, 19° 4) 52.5°, 111°										
•			,			•		,		
The end	d produc	et (B) fo	rmed in	the react	tion seq	uence. C	Glucose -	H ₃ O ⁺	$\rightarrow A \frac{HI}{\Delta}$	$\xrightarrow{r} B$.

3) heptane

3) 5

With how many molecules of acetic anhydride does one molecule of glucose react?

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

1) hexanoic acid

2) hexane

B) Two $\,\alpha$ -D- glucose units in maltose are linked by 1,4 - linkage.

2) 4

Incorrect statements among the following

A) Sucrose is reducing sugar

4) heptanoic acid

4) 6

BIOMOLECULES (CARBOHYDRATES)

- C) β D glucose and β D fructose units are linked by 1,4 linkage in lactose
- D) All polysaccharides are reducing nonsugars
- 1) Only AB
- 2) A, B, C, D
- 3) A, C, D only
- 4) A, B, C only
- 19. Which one of the following statements is not true for glucose?
 - 1) α -D(+)-glucose undergoes mutarotation
 - 2) It has four asymmetric carbons in Fischer projection formula
 - 3) It gives saccharic acid with Tollen's reagent
 - 4) It reacts with hydroxyl amine
- 20. Regarding lactose some statements are given below
 - A) On hydrolysis lactose gives β D galactose and β D glucose
 - B) In lactose C_1 of β D galactose has acetal structure and C_1 of β D glucose has hemiacetal structure
 - C) In lactose molecule β -D galactose is a nonreducing unit and β D glucose is a reducing unit

The correct statements are

- 1) A, C
- 2) A, B
- 3) B, C
- 4) A, B, C

21. List-I

- List II
- A) α and β D Glucose

1) Mutarotation

B) (+) and (-) Glucose

2) Enantiomers

C) D and L-notations

3) Anomers

D) α from $\rightleftharpoons \beta$ -form

4) configurational isomers A B C

3

2

- 1)
- A B 2 3
- C D 4 1
- A 2
- C 1 1
- D 4 4

- 3) 3 2
- 1
- 3
- 4

WORK SHEET - III

2)

4)

- 1. Which of the following is not a polysaccharide?
 - 1) Cellulose
- 2) Glycogen
- 3) Lactose
- 4) Starch
- 2. The structure pictured is the Haworth structure of

1) β -D- galactose

2) β -D- glucose

3) α – D–galactose

- 4) α D–glucose
- 3. Which of the following statements is right
 - 1) Reduction of glucose gives only sorbitol
 - 2) Reduction of fructose gives only mannitol

BIOMOLECULES (CARBOSYDRATES)

- 3) Reduction of fructose gives only sorbitol
- 4) Reduction of glucose gives both sorbitol and mannitol
- 4. Which of the following on oxidation to give a dicarboxylic acid becomes a meso compound.

5. Chiral centres are found in

- 1) C1, C2, C3, C4, C5 and C6
- 3) C2 and C3 only

- 2) C1 and C4 only
- 4) C1, C2, C3, C4 and C5
- 6. At room temperature, the lowest energy conformation of this molecule is
 - 1) In chair form, all bulky groups occupy equitorial positions
 - 2) In chair form all bulky groups occupy axial positions
 - 3) In chair form, groups at C1, C3, C5 occupy axial
 - 4) In chair form, groups at C1, C4 occupy axial position

7. Which of the following compounds is a β - aldopentofuranose?

BIOMOLECULES (CARBOHYDRATES)

8. Which of the following compounds is a β -ketohexafuranose?

- 9. The optical rotation of the α form of a pyranose is +150.70, that of the β form is +52.80. In solution an equilibrium mixture of the anomers has an optical rotation of +80.20. The percentage of the α form at equilibrium is
 - 1) 28 %
- 2) 32 %
- 3) 68 %
- 4) 72 %

- 10. A pyranose ring consists of a skeleton of
 - 1) 5 carbon atoms and one oxygen atom
 - 3) 6 carbon atoms and one oxygen atom
- 2) 6 carbon atoms
- 4) 4 carbon atoms and one oxygen atom.

EXERCISE - I / ANSWERS

WORK SHEET - I

01) 4	02) 1	03) 4	04) 2	05) 4	06) 4	07) 2	08) 1	09) 2	10) 3
11) 2	12) 4	13) 2	14) 2	15) 3	16) 3	17) 1	18) 4	19) 1	20) 4
21) 4	22) 4	23) 4	24) 1	25) 2	26) 1	27) 1	28) 3	29) 1	30) 4
31) 2	32) 1	33) 4	34) 2	35) 2	36) 2	37) 3	38) 2	39) 4	40) 2
41) 1	42) 2	43) 4	44) 2	45) 3	46) 3	47) 2	48) 3	49) 3	50) 2
51) 3	52) 3	53) 1							
			W	ORK 9	SHEET	- II			
1) 4	2) 3	3) 3	4) 2	5) 2	6) 4	7) 1	8) 3	9) 3	10) 3
11) 4	12) 3	13) 2	14) 3	15) 2	16) 3	17) 3	18) 3	19) 3	20) 4
	WORK SHEET - III								
01) 2	02) 2	03) 2	04) 1	05) 3	06) 4	07) 1	08) 2	09) 2	10) 1

BIOMOLECULES (CARBOSYDRATES)

EXERCISE - II

WORK SHEET-IA

01.	Carbohydrate are: 1) hydrates of carb 3) polyhydroxy ald			polyhydroxy alde polyhydroxy keto	•			
02.		as well as most abund	ent i	n nature ?	in manufacture of many 4) Sucrose			
	,	2) Glucose	3)	Starch	4) Sucrose			
03.	Carbohydrate cont a)- OH group	ains: 2) - CHO group	3)	C = O group	4) -COOH group			
04.	_	of carbohydrate with 2 t the junction. The colo 2) green	our of		tion of $lpha$ - naphthol and $4)$ red			
05.	Which reagent is used for detection of sug 1) Baeyer's reagent 3) Fehling's reagent			ar in urine ? 2) Ozonolysis 4) Benedicts solution				
06.	The carbohydrates are important constitution 1) bio fuels to provide energy 3) heat insulator			ent of our diet; they function as: 2) shock absorbing pad 4) none of the above				
07.	Which molecule possess the general form1) Glyceraldehyde3) Acetic acid			ula of carbohydrates, but is not a carbohydrate? 2) Arabinose 4) All of these				
08.	Which does not con 1) Cellulose	ntain carbohydrate ? 2) Wax	3)	Fats	4) Oils			
09.	Artificial sweetener 1) glucose 3) cellulose	used in soft drinks is :	: 2) fructose 4) asparatame					
10.	The letter 'D' in carl 1) its direct synthe 3) its mutarotation	oohydrates represents sis	2) its dextrorotation 4) its configuration					
11.	Glucose reacts with methyl alcohol to give 1) α - methyl glucoside 2) β - methyl glucoside 3) an ester 4) an amide				side			
12.	Glucose and fructos 1) taste 3) action of Toller	se posses the following	2)	larities: action of heat direction of optic	cal rotation			
13.	Glucose is Convert	ed by zymase into						
	1) dicarboxylic acid	d	2)	2) alcohol				
	3) amino acids		4)	aromatic acids				
14.	Glucose gives many reactions of aldehyde because :							

BIOMOLECULES (CARBOHYDRATES) 1) it is hydrolysed to acetaldehyde 2) it is a polyhydroxy ketone 3) it is a cyclic aldehyde 4) it is a hemiacetal in equilibrium with its aldehyde form in solution 15. Osazone formation involves only 2 carbon atoms of glucose because of 1) chelation 2) oxidation 3) reduction 4) hydrolysis 16. Sugars are characterised by the preparation of osazone derivatives. Which sugar have identical osazones? 1) Glucose and lactose 2) Glucose and fructose 3) Glucose and arabinose 4) Glucose and maltose 17. Glucose reacts with acetyl chloride to form pentacetyl glucose, it indicates presence of 1) five primary alcoholic groups 2) five secondary alcoholic groups 3) aldehydes as well as alcoholic group 4) five - OH groups 18. When glucose reacts with bromine water, the major product is: 1) gluconic acid 2) saccharic acid 3) sorbitol 4) galactose Common table sugar is more formally described as: 19. 4) sucrose 1) glucose 2) lactose 3) maltose 20. The sugar present in fruits is: 1) fructose 2) glucose 3) sucrose 4) galactose 21. The sugar present in honey is: 1) sucrose 2) glucose 3) fructose 4) maltose 22. Which of the following is dextro rotatory? 1) Glucose 2) Fructose 3) Sucrose 4) None of these 23. A certain compound gives negative test with ninhydrin, but positive test with Benedict's solution. The compound is: 1) protein 2) monosaccharide 3) lipid 4) amino acid 24. Colour of osazone of glucose is 2) brown 1) red 3) yello 4) orange 25. On heating with conc. H₂SO₄ sucrose gives: 2) SO₂ 1) CO 3) CO₂ 4) none of these 26. Invert sugar is 1) chemically inactive form of sugar 2) equimolecular mixture of glucose and fructose 3) mixture of glucose and sucrose 4) a variety of cane sugar 27. The disaccharide having two glucose units is: 2) maltose 1) lactose 3) sucrose 4) ribose Glycogen is: 28. 1) monosaccharide 2) disaccharide 3) trisaccharide 4) polysaccharide

An example of disaccharide made up of two units of the same monosaccharides is

3) lactose

4) none

2) sucrose

1) maltose

Cane sugar is made of

29.

30.

BIOMOLECULES (CARBOSYDRATES)

1) 5 membered glucose ring and 5 membered fructose ring 2) 6 membered glucose ring and 6 membered fructose ring 3) 6 membered glucose ring and 5 membered fructose ring 4) 6 membered galactose ring and 6 membered fructose ring 31. Raffinose on hydrolysis gives 1) Glucose 2) Mannose 3) Fructose 4) Galactose. 32. Starch can be used as an indicator for the detection of the traces of: 1) glucose in aqueous solution 2) Proteins in blood 3) iodine in aqueous solution 4) urea in blood 33. The ultimate product of the hydrolysis of starch is: 1) glucose 2) fructose 3) sucrose 4) None of these 34. Cellulose is a linear polymer of 1) α -D-glucose 2) β -D-glucose 3) α -fructose 4) None of these 35. Starch is polymer of: 2) glucose 3) lactose 4) None of these 1) fructose Starch is changed into disaccharides in presence of: 36. 1) diastase 2) maltase 3) lactase 4) zymase Which is used for making rayon (artificial silk)? 37. 1) Starch 2) Cellulose 3) terephthalic acid 4) Adipic acid 38. After digestion, starch is converted into: 1) glucose 2) fructose 3) lactose 4) sucrose 39. An essential constituent of plant is: 1) cellulose 2) glucose 3) sugar 4) raffinose Which of the following is/are soluble in water 40. 2) Cellulose 4) Sucrose 1) Glucose 3) Fructose Human digestive system does not hydrolyse: 41. 2) maltose 3) glycogen 4) cellulose 1) starch 42. Starch is made up of: 1) glucose and fructose (2) amylose and amylopectin 3) amylose and glycogen 4) amylopectin and glycogen

EXERCISE - II / ANSWER

WORK SHEET-IA

01) 2	02) 2	03) 3	04) 2	05) 1	06) 3	07) 3	08) 1	09) 2	10) 3
1) 234	2) 1	3) 123	4) 3	5) 34	6) 1	7) 3	8) 234	9) 4	10) 4
11) 1,2	12) 123	13) 2	14) 4	15) 2	16) 2	17) 4	18) 1	19) 4	20) 1
21) 3	22) 1,3	23) 2	24) 3	25) 123	26) 2	27) 2	28) 4	29) 1	30) 3
31) 134	32) 3	33) 1	34) 2	35) 2	36) 1	37) 2	38) 1	39) 1	40) 134
41) 4	42) 2								

BIOCHEMICALS (ACIDS, PROTEINS, ENZYMES, VITAMINS & NUCLIC ACID) EXERCISE - I

WORK SHEET - I

Amino acids & Proteins:

1.	The functional group which found in amino acid is							
	1) -COOH group	2) -NH ₂ group	3) -CH ₃ group	4) both 1 & 2				
2.	The peptide linkage i	S	I					
	1) - CH - COO - NH		2) - CH - CO - NH -	2) – CH – CO – NH –				
	3) -CH-CH ₂ -CO-NH	\mathbf{H}_{2}	4) – CH – NH – NH -	-CO-				
3.	-	ng contains nitrogen?	,					
	1) Fats	2) Proteins	3) Carbohydrates	4) Hydrocarbons				
4.	The building unit of all proteins are							
	1) monosaccharides	2) lipids	3) amino acids	4) primary amines				
5.	A tripeptide contains	s peptide links						
	1) 3	2) 2	3) 6	4) 4				
6.	The structural feature	e which distinguishes _l	proline from $lpha$ - amino	o acids is				
	1) It is optically inact	ive	2) It contains aromat	ic group				
	3) It is a dicarboxylic	acid	4) It is a secondary a	mine				
7.	Which of the following	ng amino acids possess	ses a non-polar side ch	ain				
	1) isoleucine	2) serine	3) cysteine	4) glutamic acid				
8.	Which of following amino acids contains a thiol group in the side chain							
	1) methionine	2) cysteine	3) valine	4) serine				
9.	The amino acid whic	h contain a hydroxy gi	oup in the side chain					
	1) cysteine	2) glutamine	3) serine	4) leucine				
10.	Essential amino acid	among the following i	s					
	1) Glycine	2) Tryptophan	3) Alanine	4) Proline				
11.	Imino acid among the	ese compounds is						
	1) Serine	2) Proline	3) Tyrosine	4) Lysine				
12.	The number of amino	o acids found in protei	ns that a human body c	an synthesize is				
	1) 20	2) 10	3) 5	4) 14				
13.	Which one of the foll	owing is not an essent	ial anino acid ?					
	1) Valine	2) Leucine	3) Lysine	4) Alanine				
14.	Among the following	the basic amino acid i	S					

	1) Glycine	2) Argenine	3) Proline	4) Cysteine				
15.	 proteins are pol except glycine, natural protein 	wing statement is not colyamides formed from a all other amino acids so s are made up of L -ison ds, - NH ₂ and - COOH	amino aicds how optical activity mers of amino acids	to different carbon atoms				
16.	For an aminoacid 1) Acidic amino a 3) Neutral amino		nt is 6.1. Then 'X' is 2) Basic amino a 4) Acidic or basi					
17.	Which of the following statement is not correct? 1) amino acid can exist as inner salt 2) each polypeptide has one C - terminal and other N - terminal 3) Enzymes are naturally occurring simple proteins 4) The union of two amino acids produces two peptide linkages							
18.	The primary structure of a protein tells about 1) 3D arrangement of all atoms 2) shape of poly peptide chain 3) specific sequence of amino acids 4) 3D arrangement of oligo peptide chains							
19.	The dipeptide gly 1) glycine as C-ter 3) alanine as N-te		2) glycine as N-t 4) either (1) or (b	rerminal residue o)				
20.	β-pleated structu 1) Primary structu structure	-	cture 3) Tertiary struc	ture 4) Quaternary				
21.	The back bone for 1) α -helix	different segments in a 2) α -pleated	protein is in the follo 3) coil	owing form 4) 1 or 3				
22.	The helical structors: 1) H-bonding 3) ionic bond	are of proteins is stabili	zed by 2) Van der Waal: 4) peptide bond					
23.	 Mainly denatur Three-dimension from each other in Linear sequence 	ed protein refers to ed proteins and structur nal structure, especially the polypeptide chain e of amino acid residues patterns of continuous	the bond between amin	no acid residues that are distinct ain				
24.		ermines the secondary nd 2) Covalent bond	structure of a protein 3) Hydrogen bor					
25.	•	wing is a globular prot	rein?	nd Haemoglobin				
26.	Tertiary structure 1) linear, octahed:	=	ne polypeptide chains edral 3) fibrous, globu	s to get the following shapes tlar 4) fibrous, planar				

 $Maximum\ possible\ hydrogen\ bonds\ are\ present\ in$

27.

BIOC	HEMICALS (ACI	DS, PROTEINS, EN	ZYMES, VITAMINS	& NUCLIC ACID)				
	1) 3.6 ₁₃ Helix	2) Keratin	3) Silk fibroin	4) β - D - fructose				
28.	 The primary structur Globular proteins at Fibrous proteins ar 	ement about denaturation of the protein does not chaster converted into fibrouse converted into globulary of the protein is canc	inge sproteins r					
29.	The restriction of the called 1) dehydration	e biological nature and a 2) denaturation	activity of proteins by l 3) deamination	neat or chemical agent is 4) denitrogenation				
30.	Addition of an electrolyte such as sodium dodecyl sulphate causes 1) renaturation of proteins since it stabilises hydrophobic interactions 2) denaturation of proteins since it disturbs hydrophobic interactions 3) renaturation of proteins since it maintains necessary isoelectric point 4) denaturation of proteins since it causes cleavage of O = C - N - H bonds							
31.	Which of the followi 1) boiling egg 3) enzymatic action	ng is an example of "irre	eversible denaturation" of a protein ? 2) change of amino acid 4) its synthesis					
32.	Enzymes are 1) Complex nitrogene 3) Living organisms	ous substances produced	l in living cells	2) Steroids 4) Dead organisms				
33.	The non-protein portion of a protein is called 1) Functional 2) Characteristic group 3) Prosthetic 4) Enolic group							
34.	The prosthetic group attached to the enzymes of vitamin B_{12} at the time of reaction is							
	1) cellulose	2) 5 - deoxy adenosyl	3) β -methly aspartic as	cid 4) glutamic acid				
35.	The function of enzy 1) transport oxygen 3) catalyse biochemi	mes in the living system	is to 2) provide immunity 4) provide energy					
36.	Which one of the following 1) Wool	lowing is not a protein? 2) Nail	3) Hair	4) DNA				
37.	Enzymes belong to v	which class of compound	ds?					
	1) Polysaccharides		2) Polypeptides					
	3) Polynitro heterocyc		4) Hydrocarbons					
38.	Enzymes are made u	p of	a \ B	C				
	1) Edible proteins	a a comb observeduration	2) Proteins with speci4) Carbohydrates	fic structure				
20	3) Nitrogen containin		4) Carbonyurates					
39.		incorrect statement is	2) an anzuma mau ha	a conjugated protein				
	1) an enzyme is gene	ivated during reactions	2) an enzyme may be4) enzyme gets activa					
40.	Water soluble vitam	•	i, cizyine gets activa	ea during reactions				
	1) A,D	2) E,K	3) D,E	4) C,B				
41.	•	lowing is a source of vit	•	, -,				

1) Milk

2) Liver

3) Yeast

4) Egg

BIOCHEMICALS (ACIDS, PROTEINS, ENZYMES, VITAMINS & NUCLIC ACID) 42. Night blindness is due to the deficiency of 1) Vitamin A 2) Hormones 3) Vitamin B₁₂ 4) Riboflavin 43. The chief source of vitamin D is 1) Fish liver oil 3) Cow dung 4) Citrous fruit 2) Spinach 44. Antiricketic Vitamin is 3) Vitamin C 1) Vitamin A 2) Vitamin B₁₂ 4) Vitamin D Sterol, the basic unit of vitamin D, consists of 4 rings they are 45. 1) Three 6-carbon rings one five carbon ring 2) Three 5-carbon rings one six carbon ring 3) Four 6-carbon rings only 4) Four 5-carbon rings only 46. Calcium absorption in intestine is the function of 1) Vitamin A 2) Vitamin B 3) Vitamin C 4) Vitamin D Anti sterility factor which is necessary for fertility of men and birth process of the female is 47. 1) Vitamin E 2) Vitamin A 3) Vitamin C 4) Vitamin D 48. Deficiency of Vitamin E leads to 1) Neurosis of heart muscles 2) Degeneration of lacrymal gland 3) Beri-Beri 4) Dermatitis 49. In all green leaves and vegetables which of the following vitamin is available? 1) Vitamin A 2) Vitamin D 3) Vitamin K 4) Vitamin B₁₂ 50. Which of the following vitamin is Naphthaguinone derivative? 2) B 3) D 4) K 51. Anti haemorrhagic vitamin is 1) A 2) B 3) D 4) K 52. Deficiency of Vitamin B₂ leads to 1) Bow legs 3) Pellegra 2) Cheilosis 4) Vision loss 53. Which of the following vitamin is known as Nicotinic acid? 2) B₂ 1) B₁ 3) B_3 4) B₅ 54. Defficiency of the following vitamin leads to pellagra 2) B₂ 3) B₅ 4) C 55. Which of the following vitamin acts as important component of NADP (&) DPN? 1) A 2) D 3) B_E 4) B₁₂ The following vitamin plays a role in transportation of amino acids across the cell membrane. 56. 1) B₁ 2) B₂ 3) B_3 4) B₆ 57. Convulsion is due to deficiency of vitamin 1) B₁ 3) B₅ 4) B₆ The cheaf source of vitamin "H" is 58. 1) Yeast 2) Citrous fruit 3) Rice polish 4) Cereals 59. Deficiency of vitamin "H" leads to

1) Dermatitis

2) Loss of hair

BIO	CHEM	IICALS	S (ACII	DS, PR	OTEIN	S, EN	ZYMES,	VITAM	INS &	NUCLIC ACI	D)
	3) In	crease of	blood c	holester	ol		4) All of t	hese			
60.	Whi	ch of the	followi	ng vitam	in invol	ves in	the synthe	sis of RN	JA?		
	1) A			2) B			3) C		4)	B_9	
61.	Vita	min B ₁₂ i	is rich ir	າ							
	1) Se	wage slu	ıdge	2) Live	er of pig		3) Egg		4)	all	
62.	Forn	nation of	RBC is	because	of						
	1) M	ucoprote	ein	2) Vita	min B ₁₂		3) Vitami	in C	4)	Both 1 & 2	
63.	Asco	Ascorbic acid resembles the structure of									
	1) Vi	tamin A		2) Glu	cose		3) Cellulo	ose	4)	Vitamin D	
64.	Defi	Deficiency of Vitamin "C" leads to									
	1) gu	ım swell	ing				2) blead	easily an	d teeth b	ecome loose	
	3) de	elay in w	ound he	ealing			4) all	ı) all			
65.	Dark	red tong	gue, fiss	uring at o	corners o	h and lips	are the s	ymptom	s of the deficier	ncy of	
		h vitam	_	Ü			-				•
	1) C			2) A			3) B ₂		4)	D	
66.		e examp i st - I	les are g	given in I	List - II a	nd thei	ir type is g List - II	iven in I	List - I		
	1) Li	1) Lipid						ine			
	2) Pr	2) Protein						oic acid			
	3) A	3) Amino acid						ılin			
	4) H	4) Hormone						4) Insulin			
	5) Vi	tamin									
		A	В	С	D		A	В	С	D	
	1)	4	1	2	5	2)	3	2	5	1	
	3)	3	5	1	4	4)	3	4	1	2	
67.		min B ₆ is ridoxine		as 2) Thia	amine		3) Tocop	herol	4)	Riboflavin	
68.	Vita	min D is	called								
	1) As	scorbic a	cid				2) Calcife	erol or er	gocalcife	erol	
	3) Tł	3) Thiamine						avin			
69.	Vita	min E is	also call	led							
	1) Cy	anocoba	alamin	2) Toco	opherol		3) Lactof	lavin	4)	Ascorbic acid	
70.	Whi 1) C	ch of the	followi	ng vitam 2) B ₁	nins is no	ot solul	ole in wate 3) B ₂	er?	4)	D	
71.		best sou: odeliver (tamin C 2) Egg			3) Citrou	s fruits	4)	Fish liver oil	
72.	The deficiency of vitamin K causes										

BIO	CHEMICALS (A) 1) Haemorrhage	CIDS, PROTEINS, I	ENZYMES, VITAMINS & NUCLIC ACID) 2) Lengthening time of blood clotting					
	3) Inflammation o	f tunge	4) Both (1) and (b)					
73.	Milk contains vita	nmins						
	1) A, D and E	2) A, B ₁₂ and D	3) C, D and K	4) B_1 , B_2 and D				
74.	Nervousness ana	emia is caused by the d	eficiency of vitamin	ciency of vitamin				
	1) B ₁	2) B ₂	3) B ₆	4) B ₁₂				
75.	Deficiency of vita	min E causes						
	1) Scurvy		2) Loss of appetite	2) Loss of appetite				
	3) Loss of sexual p	ower and reproduction	n 4) Beri Beri	,				
76.	Which of the follo	wing is a fat soluble vit	tamin ?	nin ?				
	1) Vitamin A	2) Riboflavin	3) Pyridoxine	4) Thiamine				
77.	The metal present	in vitamin B ₁₂ is		·				
	1) Iron	2) Manganese	3) Cobalt	4) Magnesium				
78.	The deficiency of	which of the following	vitamins adverselv aff	ects eve sight?				
	1) A	2) D	3) B ₁₂	4) E				
79.	,	I with those in List - II	. 12	,				
	I. Saliva		A. Genetic materi	al				
	II. Nucleic acid		B. Digestive enzyr					
	III. Ascorbic acid		C. Antibiotic					
	IV. Testosterone		D. Sex hormone	D. Sex hormone				
			E. Vitamin					
	1) I - B; II - A; III - C		·	2) I - B; II - A; III - E; IV - D				
	3) I - A; II - B; III - E		•	4) I - C; II - B; III - A; IV - D				
80.		List - II and select the	ě.	he codes given below.				
	List-I	La m	List - II					
	I.Anti-beriberi fact II. Pancreas	tor	A. Vitamin C B. Glycerides					
	III. Palm oil		C. Vitamin B ₁	·				
	IV. L (+)-Ascorbic	acid	D. Insulin					
	1) I - C; II - D; III - H		2) I - C; II - D; III - A	A : IV - B				
	3) I - A; II - B; III - I		4) I - A; II - B; III - C					
81.	•	ne of vitamin) with List - codes given below.	- II (deficiency result/d	isease) and select the correct				
	List - I		List - II					
	I) Ascorbic acid		1) Beri-beri					
	II) Retinol		2) Cracked lips					
	III) Riboflavin		3) Scurvy	, <u>-</u>				

BIOCHEMICALS (ACIDS, PROTEINS, ENZYMES, VITAMINS & NUCLIC ACID) IV) Thiamine 4) Night blindness 1) I - B; II - A; III - C; IV - D 2) I - A; II - B; III - C; IV - D 3) I - D; II - C; III - B; IV - A 4) I - C; II - D; III - B; IV - A 82. Match the following List I List II I) Riboflavin 1) B₁ II) Pantothenic acid 2) B₂ III) Niacin 3) B_3 4) B₅ IV) Thiamine The correct match is Α В C D A В C D 1) IV Ι IIIII2) IV Ш Ι Π Ш IV IIIV Π Ш 3) Ι 4) Ι 83. Which of the following constitutes the genetic material of the cell? 1) Nucleic acids 2) Proteins 3) Lipids 4) Carbohydrates 84. Nuclic acids are called acids mainly because of the presence of 1) -COOH group 2) -OH group of sugar unit 3) -OH group of the heterocyclic base 4) -OH group of phosphate unit 85. Which of the following is not a pyrimidine base 1) Uracil 2) Thymine 3) Cytosine 4) Guanine 86. The following does not belong to either purines or pyrimidines 1) Tryptophan 2) Cytosine 3) Uracil 4) Adenine 87. Purine without ketonic group is 1) adenine 2) adenosine 3) cytidine 4) thymidine 88. The purine base present in RNA is 1) Guanine 2) Thymine 3) Cytosine 4) Uracil 89. 6 - amino purine is 1) Adenosine 2) Adenine 3) Cytosine 4) Thymine The bases that are common in both RNA and DNA are 90. 1) adenine, guanine, cytosine 2) adenine, guanine, thymine 3) adenine, uracil, cytosine 4) guanine, uracil, thymine 91. The pyrimidine bases present in RNA are

2) Thymine and Uracil

4) Uracil and Guanine

4) antibacterial

4) Cytidine

3) insecticide

3) Cytosine

92.

93.

1) Cytosine and Thymine

Adenosine monophosphae (AMP) is a

An example for N - glycoside is

2) nucleoside

2) Guanine

3) Cytosine and Uracil

1) nucleotide

1) Adenine

BIOCHEMICALS (ACIDS, PROTEINS, ENZYMES, VITAMINS & NUCLIC ACID)

94. Which one of the following is not present in DNA? 1) adenine 2) ribose 4) guanine 3) cytosine 95. A nitrogenous base which is present in the structure of RNA but not in DNA is 1) Uracil 2) Thymine 3) Cytosine 4) Guanine The pentose sugar in DNA and RNA has 96. 1) Open chain structure 2) Pyranose structure 3) Furanose structure 4) None of the above 97. Adenosine is an example of a 1) Nucleotide 2) Nucleoside 3) Purine base 4) Pyridine base 98. Nucleoside on hydrolysis gives 1) Pentose sugar and purine base 2) Pentose sugar, phosphoric acid, purine or pyrimidine base 3) Pentose sugar and a heterocyclic base 4) Heterocyclic base and phosphoric acid 99. In nucleic acids, the sequence is represented as 1) Phosphate - base - sugar 2) Sugar - base - phosphate 3) Base - sugar - phosphate 4) Base - phosphate - sugar 100. In nucleic acids, the nucleotides are linked to one another through 1) Hydrogen bond 2) Peptide bond 3) Glycosidic linkage 4) Phosphate groups 101. In a nucleotide the phosphate linkage is generally attached to 1) C - 1 of sugar 2) C - 2 of sugar 3) C - 5 of sugar 4) N - of base 102. In both DNA and RNA, heterocyclic base and phosphate ester linkages are at 1) C'₅ and C'₂ respectively of the sugar molecule 2) C'_{2} and C'_{5} respectively of the sugar molecule 3) C'_1 and C'_5 respectively of the sugar molecule 4) C'₅ and C'₁ respectively of the sugar molecule 103. Adenine pairs with thymine through 1) two hydrogen bonds 2) one hydrogen bond 3) three hydrogen bonds 4) four hydrogen bonds 104. How many base pairs are present in each full turn of the DNA double helix? 1)4 2) 6 3)8 4) 10 105. The base present in Cytidine: 1) Hydrolysis of adenosine triphosphate involves rupture of 106. 1) Base-sugar bond 2) Sugar-phosphate bond 3) P-O-P bond 4) P-N-P bond

BIO	CHEMICALS (ACI	DS, PROTEINS, E	NZYMES, VITAMIN	S & NUCLIC ACID)
	1) Base-Sugar	2) Sugar-Phosphat	e 3) Base-Phosphate	4) Base ₁ -Base ₂
108.	Number of base pairs present in total DNA of human cell (human genome) is around			
	1) 2.9×10^5	2) 2.9×10^8	3) 2.9×10^7	4) 2.9×10^9
109.	AT/GC value for human beings is			
	1) 1.52	2) 1.25	3) 0.93	4) 1
110.	The ratio of number of A+G to the number of C+T in DNA of E. Coli species is			
	1) 1 : 1	2) 0.93	3) 1.52	4) 1.8
111.	The couplings between base units of DNA is through:			
	1) Hydrogen bonding 2) Electrostatic bonding			o .
	3) Covalent bonding 4) Vander Waals forces			
112.	The main role of DNA in a living system is 1) It is the structural material of call walls			
	1) It is the structural material of cell walls2) It is an enzyme			
	3) It carries the hereditary characteristics of the organism			
	4) It participates in cellular respiration			
113.114.	Synthesis of identical copies of DNA is called			
	1) transcription	2) replication	3) translation	4) reverse transcription
	, -	, -	,	4) reverse transcription
	Which of the following statements about RNA is incorrect? 1) It has a single strand 2) It does not undergo replication			
	,		,	, -
115	3) It contain any pyridimine base 4) It controls the synthesis of proteins If the sequence of bases in DNA is TGAACCCTT, the sequence of bases in m-RNA is			
115.	-		-	
	1) ACUUGGGAA	2) TCUUGGGTT	3) ACUUCCCAA	4) TUCUGTUTU
116.	The synthesis of m RNA will be in the direction of 1) $3^1 \rightarrow 5^1$ 2) $5^1 \rightarrow 3^1$ 3) by both 4) none			
	,	,	, ,	4) none
117.	_		ontained in of chi	
	· -	2) 23 pairs		4) 23
118.		ing processes is "semi		4)
	1) translation	2) transcription	3) replication	4) reverse transciption
119.	During the replication of DNA, one of the two strands is synthesized in pieces and are joined latter in the presence of enzyme called			
	1) RNA ligase	2) DNA ligase	3) r-RNA	4) m-RNA
120		,	•	4) III-IXIA
120.	Which of the following statements about DNA is not correct?			
	1) It has a double helix structure 2) It undergoes replication.			
	2) It undergoes replication 2) The true strands in a DNA molecule are exactly similar.			
	3) The two strands in a DNA molecule are exactly similar 4) It contains the pentose sugar, 2-deoxyribose			
121.	The RNAs which take part in the synthesis of proteins is/are			
121.		2) r- RNA	•	4) All the three above
	1) m-RNA	2) r- RNA	3) t-RNA	4) All the three above

- 122. Each codon consists of _____ nitrogen bases
 - 1) four
- 2) twenty
- 3) three
- 4) sixty four

- 123. Transcription is a process when
 - 1) messenger RNA is formed from DNA
- 2) ribosome RNA is formed from DNA
- 3) protein is synthesised at the ribosomes
- 4) none of the above
- 124. The chemical change in DNA molecule that could lead to synthesis of protein with an altered amino acid sequence is called
 - 1) Replication
- 2) Lipid formation
- 3) Cellular membrane 4) Mutation
- 125. The relationship between the nucleotide triplets and the amino acids is called
 - 1) Translation
- 2) Transcription
- 3) Replication
- 4) A genetic code

EXERCISE - I /ANSWERS

WORK SHEET - I

1) 4	2) 2	3) 2	4) 3	5) 2	6) 4	7) 1	8) 2	9) 3	10) 2
11) 2	12) 2	13) 4	14) 2	15) 4	16) 3	17) 4	18) 3	19) 2	20) 2
21) 4	22) 1	23) 4	24) 3	25) 2	26) 3	27) 1	28) 4	29) 2	30) 2
31) 1	32) 1	33) 3	34) 2	35) 3	36) 4	37) 2	38) 2	39) 4	40) 4
41) 2	42) 1	43) 1	44) 4	45) 1	46) 4	47) 1	48) 1	49) 3	50) 4
51) 4	52) 2	53) 4	54) 3	55) 3	56) 4	57) 4	58) 1	59) 4	60) 4
61) 2	62) 2	63) 2	64) 3	65) 3	66) 3	67) 1	68) 2	69) 2	70) 4
71) 3	72) 4	73) 4	74) 4	75) 3	76) 1	77) 3	78) 1	79) 2	80) 1
81) 4	82) 4	83) 1	84) 4	85) 4	86) 1	87) 1	88) 1	89) 2	90) 1
91) 3	92) 1	93) 4	94) 2	95) 1	96) 3	97) 2	98) 3	99) 3	100) 4
101) 3	102) 3	103) 1	104) 4	105) 4	106) 3	107) 2	108) 3	109) 1	110) 1
111) 1	112) 3	113) 2	114) 3	115) 1	116) 2	117) 2	118) 3	119) 2	120) 3
121) 4	122) 3	123) 1	124) 4	125) 4					

		WORK SI	ILLI-IA		
01.	The simplest amir	no acid is			
	1) Crysteine	2) alanine	3) glycine	4) histidine	
02.	Amino acids usua	lly exist in the form of Z	witter ions. This me	ans that they consist of	
	1) the basic NH_2	group and acidic COOH	group		
	-	roup and the acidic COO			
	_	oup and acidic NH ₃ + gro	oup		
	4) no acidic or ba	sic group as such			
03.	Consider in the coof the positions X,	mpound given: H ₃ N Y. Z is		correct order of acidic nature	
	1) Z > X > Y	Y, Z is $C(X)$ $2) X > Y > Z$	3) $X > Z > Y$	4) $Y > X > Z$	
04.	One of the the ess	ential alpha amino acids	sis		
	1) Iysine	2) glycine	3) serine	4) proline	
05.	The pH value of a of an electric field	-	ar amino acid doesn't	t migrate under the influence	
	1) isoelectronic po	oint 2) isoelectric point	3) neutralisation	point 4) None of these	
06.	An amino acid what 1) serine	nich contain secondary a 2) proline	nmine group is 3) tyrosine	4) lysine	
07.	The structural fea	ture which distinguishe	s proline from natura	α all α – amino acids is that	
	 proline is optic proline is a dic 	•	2) proline contai4) proline is a sec	ins an aromatiac group condary amine	
08.	Which amino acid 1) Alanine	l is achiral? 2) Valine	3) Proline	4) None of these	
09.	 Which is not a true statement? 1) α -carabon atom of α -amino acids is asymmetric except in glycine 2) All proteins contain α -amino acids of L-configuration 3) Human body can synthesize all proteins they need 4) At pH=7 both amino group and carboxylic group exists in the ionised form 				
10.	The acid showing 1) acetic acid	salt-like character in aq 2) benzoic acid	eous solutions is 3) formic acid	4) α -amino acetic acid	
11.	Which of the follo	wing structure represen	ts the peptide chain?		
	1) $-\stackrel{\text{H}}{\overset{\text{I}}}{\overset{\text{I}}{\overset{\text{I}}{\overset{\text{I}}{\overset{\text{I}}}{\overset{\text{I}}{\overset{\text{I}}{\overset{\text{I}}{\overset{\text{I}}{\overset{\text{I}}{\overset{\text{I}}{\overset{\text{I}}{\overset{\text{I}}{\overset{\text{I}}{\overset{\text{I}}{\overset{\text{I}}{\overset{\text{I}}{\overset{\text{I}}{\overset{\text{I}}}{\overset{\text{I}}{\overset{\text{I}}{\overset{\text{I}}}{\overset{\text{I}}{\overset{\text{I}}}{\overset{\text{I}}}{\overset{\text{I}}}{\overset{\text{I}}}{\overset{\text{I}}}{\overset{\text{I}}{\overset{\text{I}}}{\overset{\text{I}}{\overset{\text{I}}}{\overset{\text{I}}{\overset{\text{I}}}{\overset{\text{I}}}}}{\overset{\text{I}}{\overset{\text{I}}{\overset{\text{I}}{\overset{\text{I}}}{\overset{\text{I}}{\overset{\text{I}}}{\overset{\text{I}}{\overset{\text{I}}}{\overset{\text{I}}}{\overset{\text{I}}}}}{\overset{\text{I}}{\overset{\text{I}}}{\overset{\text{I}}}{\overset{\text{I}}{\overset{\text{I}}}{\overset{\text{I}}}{\overset{\text{I}}}{\overset{\text{I}}}}}{\overset{\text{I}}}{\overset{\text{I}}}{\overset{\text{I}}{\overset{\text{I}}}{\overset{\text{I}}{\overset{\text{I}}}}{\overset{\text{I}}}}{\overset{\text{I}}}}{\overset{\text{I}}}{\overset{\text{I}}{\overset{\text{I}}}}{\overset{\text{I}}}{\overset{\text{I}}}}{\overset{\text{I}}}}{\overset{\text{I}}}{\overset{\text{I}}{\overset{\text{I}}}{\overset{\text{I}}}}{\overset{\text{I}}}}}{\overset{\text{I}}}{\overset{\text{I}}}{\overset{\text{I}}}{\overset{\text{I}}}{\overset{\text{I}}}}{\overset{\text{I}}}}}{\overset{\text{I}}}{\overset{\text{I}}}{\overset{\text{I}}}}{\overset{\text{I}}}}}{\overset{\text{I}}}}{\overset{\text{I}}}}{\overset{\text{I}}}}{\overset{\text{I}}}}}{\overset{\text{I}}}{\overset{\text{I}}}{\overset{\text{I}}}}}{\overset{\text{I}}}}{\overset{\text{I}}}}{\overset{\text{I}}}}}{\overset{I}}{\overset{\text{I}}}}}{\overset{I}}{\overset{I}}}{\overset{I}}}{\overset{I}}{\overset{I}}}}}}}}$	NH - C- NH - - C- C- N- C- C-	2) $-N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-$	$-\frac{1}{C} - \frac{1}{N} - \frac{1}{C} - 1$	

All common amino acids except one react with cold nitrous acid (HNO₂) and evolve nitrogen 12.

gas, that amino acid is

- 1) cysteine
- 2) proline
- 3) histidine
- 4) None of these
- 13. The amino acid cysteine often forms a disulphide bond with another nearby cysteine. The reaction is best classified as
 - 1) an addition
- 2) a substitution
- 3) an oxidation
- 4) a reduction

- 14. Which of the following is not an amino acid?
 - 1) Glycine
- 2) Alanine
- 3) Histidine
- 4) Benzidine

- 15. Peptides on hydrolysis gives
 - 1) amines
- 2) amino acids
- 3) ammonia
- 4) alcohols
- Peptides are composed of amino acids joined by amide bonds. Which of the following 16. statemaents is not correct?
 - 1) Amide groups are more resistant to hydrolysis than are similar ester groups
 - 2) p- π resonance stabilises the amide bond
 - 3) Stable conformations of peptide are restricted to those having planar amide groups
 - 4) Amide groups does not participate in hydrogen bonding
- 17. A tripeptide is composed equally of L-valine, L-tyrosine and L-alanine (one molecule of each). How many isomeric tripeptides of this kind may exist?
 - 1) Three
- 2) four
- 4) Eight
- 18. Threonine is (2S, 3R)-2-amino-3-hydroxybutanoic acid. Which of the following is threonine?

- 19. The methyl and ethyl esters of many amino acids are sold commercially as their hydrochloride salts. Why are these derivatives not sold in the form of the neutral amino esters?
 - 1) The salts are solids, whereas many amino esters are liquids and are difficult to package
 - 2) Rearrangement to the N-alkyalmino acid takes place
 - 3) Polymerisation takes place by acylation of amine groups by an ester
 - 4) An extra step in their preparation would be required
- 20. Which of the following is used in a colour test of amino acid?
 - 1) Ninhydrin

COOH

- 2) Cyanogen bromide 3) Trypsin
- 4) Chymotrypsin

- 21. Isoelectric point is
 - 1) the pH at which all molecular species are ionised and that carry the same charge
 - 2) the pH at which all molecular species are neutral and uncharged
 - 3) the pH at which half the molecular species are ionised (charge4) and other half unionised
 - 4) the pH at which negataively and positively charged molecular species are present in equal concentration

22.

Histidine has pK_{a1}=1.8, pK_{a2}=9.2 and pK_{a3}=6.0. The isoelectric point, PI of histidine is likely to be

1) in between 1.8 and 6.0

2) in between 6.0 and 9.2

3) below 1.8

4) above 9.2

23. Glutamic acid, $H_2N - CH(CH_2CH_2COOH)$.COOH has $pK_{al'}(\alpha - COOH) = 2.2$,

 $pK_{a2}(\alpha - NH_3) = 9.8$ and $pK_{a3}(R \text{ group COOH}) = 4.3$. The isoelectric point of glutamic acid is

- 1) 5.9
- 2) 7
- 3) 10.2
- 4) 3.25
- 24. Which of the following is the major solute species in a solution of lysine at pH = 10.5(pI=9.6)?

25. Which of the following is the major solute species in a solution of glutamic acid at pH=4.3?

- 26. In an electric field, if an amino acid migrates towards cathode, the pH of the solution is said to be
 - 1) less than pI
- 2) more than pI
- 3) equal than pI
- 4) 7 (seven)

- 27. Deamination of proteins occurs mainly in the
 - 1) small intestine
- 2) liver
- 3) spleen
- 4) pancreas
- 28. During the process of digestion, the proteins present in food materials are hydrolysed to amino acids. The two enzymes are involved in the process.

Proteins $\xrightarrow{\text{Enzyme-A}}$ polypeptides $\xrightarrow{\text{Enzyme-B}}$ amino acids are respectively.

1) pepsin and trypsin

2) invertase and zymase

3) amylase and maltase

- 4) diastase and lipase
- 29. The helical structure or a secondary structure of proteins is stabilised by
 - 1) peptide bonds
- 2) dipeptide bonds
- 3) H-bond
- 4) ether bonds

- 30. Proteins give
 - 1) a violet colour with alkaline CuSO₄ solution
 - 2) a purple colour on boiling with dilute ninhydrin solution
 - 3) yellow colour on boiling with HNO₃
 - 4) All the above
- 31. The destruction of the biological nature and activity of proteins by heat or chemical agent is called
 - 1) dehydrataion
- 2) denaturation
- 3) denitrogenation
- 4) deamination

- 32. Which of the following is not an important secondary structural feature in large peptides and proteins?
 - 1) The α -helix
- 2) The β -turn
- 3) Chair conformation 4) The β -pleatead sheet
- The primary structure of protein is based upon the 33.
 - 1) hydrogen bonding

2) van der Waal's attraction

3) ionic bonding

- 4) covalent bonding
- Which of the following forces are responsible for tertiary structure? 34.
 - 1) Ionic bonding linkage
- 2) H-bonding
- 3) Covalent bonding 4) Disulphide cross-
- 35. Denaturation is the alteration or loss of the unique three-dimensional structure. Which of the following, can cause denaturation?
 - 1) UV radiation

- 2) Changes in pH
- 3) Addition of heavy metals
- 4) Addition of alcohol or detergents

WORK SHEET-IIB

46. Match the following:

COLUMN I

(1) CH₂-CH(OH)-CHO

- (2) HOCH₂ CH(OH).CHO
- (3) $CH_3 CH(NH_2).COOH$
- (4) Ph.CH(CH₂NH₂).COOH

- **COLUMNII**
- (P) Carbohydrate
- (Q) Amino acid
- (R) Positive Tollen's test
- (S) Ninhydrint test

47. Match the following:

COLUMNI

COLUMN II

- СООН (1) H₂N-Glycine
- - proline
- COOH (3) H_2N_1 Histidine

(Q) Suitable for van slyke estimation

(P) Optically active amino acid

(R) Neutral amino acid

$\textbf{BIOCHEMICALS}(\textbf{ACIDS}, \ \textbf{PROTEINS}, \ \textbf{ENZYMES}, \ \textbf{VITAMINS} \ \& \ \textbf{NUCLIC} \ \textbf{ACID})$

(S) Basic amino acid

EXERCISE - II / ANSWERS

WORK SHEET-IA

1) 3	2) 4	3) 1	4) 4	5) 1	6) 4	7) 2	8) 1	9) 4	10) 4
1) 3	2) 3	3) 2	4) 1	5) 2	6) 2	7) 4	8) 4	9) 4	10) 4
11) 3	12) 2	13) 3	14) 4	15) 1	16) 4	17) 3	18) 3	19) 3	20) 1
21) 4	22) 2	23) 4	24) 4	25) 2	26) 1	27) 1	28) 1	29) 3	
31) 4	31) 2	32) 3	33) 4	34) 2	35) 24	4			

WORK SHEET-IIB

46) 1 - R; 2 - P,R; 3 - Q,S; 4 - Q 47) 1 - Q,R; 2 - P,R; 3 - P,Q,S; 4 - P,Q

PRINCIPALS RELATED TO PRACTICAL CHEMISTRY

(B) 3-Ethylhex-1-en-4-yne & 2-Methylhept-2-en-4-yne (C) 3-Ethylcycloprop-1-ene & 1,2-Dimethylcycloprop-1-ene

Which of the following hydrocarbons give same product on hydrogenation?

Number of moles of hydrogen will required for complete hydrogenation of one mole of follow-

Section (A): Catalytic hydrogenation and Monohalogenation

(A) 2-Methylhex-1-ene & 3-Methylhex-3-ene

(D) 2-Methylbut-2-ene & 3-Methylbut-1-ene

2.

	ing compound?	1		
	CH ₂			
	(A) 6	(B) 7	(C) 5	(D) 3
3.	If 1 mole H ₂ is reacted whydrogenated?	with 1 mole of the followi	ng compound, which do	ouble bond will be
	a d			
	(A) a	(B) b	(C) c	(D) d
4.	(A) n-Pentane (chloro derivatives are poss (B) 2,4-Dimethyl pentane (D) 2,3-Dimethyl butane	sible for -	
5.		nonochloro derivatives of	2,2,3,3-Tetramethylbuta	ne is -
	(A) 2	(B) 3	(C) 4	(D) 1
6.	drogenation?	alkene gives four monochl	oro (structurai isomers)	products after ny-
	(A) Pent-2-ene		(B) 2-Methylbut-2-ene	;
	(C) 3-Methylhex-2-ene		(D) 2,3-Dimethylbut-2	
7.	Which of the following monochlorination?	g compound will give fo		
	(A) X	$(B) \bigcup_{CH_3}^{CH_3}$	(C) CH_3 CH_3	$(D) \bigcup^{CH_3} CH_3$
8.	How many products (strepound?	uctural isomers only) are f	formed by monochlorinate	tion of given com-
	CH ₃ CH ₃			
	(A) 4	(B) 3	(C) 5	(D) 6

Section (B): Ozonolysis reactions

$$X \xrightarrow{O_3/Zn} + \bigcirc$$

The IUPAC name of compound Y is:

(A) 2-Cyclohexylbutane

(B) 1-Methylpropylcyclohexane

(C) Butylcyclohexane

(D) 1-Cyclohexylbutane

An alkene give two moles of HCHO, one mole of CO₂ and one mole of CH₃—C—CHO on 10. ozonolysis. What is structure of alkene?

(A)
$$CH_2 = CH - CH - CH = CH_2$$

$$(B) CH_2 = CH - CH - CH = CH_2$$

$$CH$$

$$(C)$$
 $CH_3 - C = CH - CH = CH_2$
 CH_3

(A)
$$CH_2 = CH - CH = CH_2$$

 CH_3
(B) $CH_2 = CH - CH = CH_2$
 CH_3
(C) $CH_3 - C = CH - CH = CH_2$
 CH_3
(D) $CH_2 = C = CH - CH = CH_2$
 CH_3

An unknown compound on ozonolysis to give acid C₂ and a ketone CO. From this information, 11. identifiy structure of unknown compound.

(B)
$$CH_3CH_2$$
 $C = CHCH_2CH_3$

(D) CH₃CH₂CH₂CH=CHCH₂CH₃

The chemical reactions of an unsaturated compund 'M' are given below. Determine the pos-12. sible structural formula of 'M'

$$(M) C_8H_{14} - \underbrace{\begin{array}{c} O_3 \\ \\ \\ H_2/Ni \\ \end{array}} C_8H_{16}(O) \xrightarrow{CI_2/h_0} C_8H_{15}CI(P) \text{ (only one monochloro product)}$$

Section (C): Test for acidic hydrogen and unsaturation

When one mole of the given compound reacts with sodium metal then how many moles of H 13. gas will release?

- (A) 1 mole
- (B) 1.5 mole
- (C) 2 mole
- (D) 0.5 mole

22. The following two compounds I and II can be distinguished by using reagents-

- (a) aq. NaHCO₃
- (b) Neutral FeCl₃
- (c) Blue litmus solution

- (d) Na metal
- (e) (e) HCl/ZnCl, anhydrous
- (A) a or c
- (B) b or e
- (C) d or e

Соон

(D) c or d

23. Structure of an organic compound (C5H12O), which responds with Lucas reagent immediately?

$$\begin{array}{c} CH_3 \\ (A) \ CH_3 - CH - CH - CH_3 \\ OH \\ CH_3 \\ (C) \ CH_3 - CH - CH_2 - CH_2 - OH \\ \end{array}$$

$$\begin{array}{c} CH_3 \\ (B) \ CH_3 - C - CH_2 - CH_3 \\ OH \\ OH \\ \end{array}$$

$$\begin{array}{c} OH \\ OH \\ (D) \ CH_3 - CH - CH_2 - CH_2 - CH_3 \\ \end{array}$$

24. A compound is heated with zinc dust and ammonium chloride followed by addition of the Tollen's reagent. Formation of silver mirror indicates the presence of following group-

- (A) **-**CHO (B) II
 - (C) **–**NO₂
- (D) -NH₂

25. During determination of degree of alcohol by Victor Meyer test, red colour is obtained by -

- (A) OH
- (B) OH
- (C) HO
- (D) \(\frac{O}{1}

26. Which can give yellow precipatate with aqueous silver nitrate solution?

- (A) ___I
- (C)
- (D) CH₃

Section (E): Test for aldehydes and ketones (carbonyl compounds)

27. Which of the following compound will not react with I₂/OH-?

28. The compound A gives following reactions.

Its structure can be

(A)
$$CH_2 = CH - (CH_2)_2 - C - CH_2OH$$

29. A unsaturated hydrocarbon (P) on reductive ozonolysis produces a dicarbonyl compound (Q). (Q) forms precipitate with 2,4-DNP but no reaction with Tollen's reagent. Identify the structure of (P).

- An organic compound C_oH_oO gives positive 2,4-DNP test and positive iodoform test. What is 30. the common name of compound amongst the following which satisfies this criteria?
 - (A) Benzophenone

(B) Acetophenone

(C) Benzylalcohol

(D) para-ethyl phenol

Section (F): Test for acids, esters and amides

An oragnic compound $X(C_4H_8O_2)$ gives positive test with NaOH and phenolpthalein. Structure of X will be:

(A)
$$CH_3^-CH_2^-CH_2^-C-OH_2^-C-OH_2^-$$

(C) $CH_3^-C-C-C_2H_5$

(C)
$$CH_3 - C - C - C_2H_0$$

32. Which of the following would produce effervescence with sodium bicarbonate?

(D) All of these

Which of the following compound will give smell of NH₃ with conc. NaOH? 33.

$$(C) \bigcirc \overset{\mathsf{NH}_2}{\bigcirc} \mathsf{CH}_3$$

An aromatic organic compound with 68.9% of C and 4.92% of H gives CO, with NaHCO₃. The 34. organic compound is:

Find the isomer of P which fails to give above tests?

Section (G): Test for amines

- 36. Which of the following will not give positive test with CHCl₃ / KOH?
 - (A) CH_3 – CH_2 –NH– CH_3

(B) CH_3 – CH_2 – CH_2 – NH_2

$$\begin{array}{c} \text{CH}_3 \\ \mid \\ \text{(D) CH}_3 - \text{CH-NH}_2 \end{array}$$

- 37. A positive carbylamine test is given by :
 - (A) N,N-dimethylaniline

(B) 2,4-dimethylaniline

(C) N-methyl-o-methylaniline

- (D) N-methylaniline
- 38. The Hinsberg's method is used for :
 - (A) preparation of primary amines

(B) preparation of secondary amines

(C) preparation of tertiary amines

- (D) separation of amine mixtures
- 39. Which of the following amine does not react with Hinsberg's reagent?
 - (A) CH₂CH₂NH₂
- $(B) (CH_2CH_2)_2NH$
- $(C) (CH_3CH_2)_3N$
- (D) All of these

Section (H): Qualitative analysis of elements

- 40. In the Lassaigne's test, one of the organic compounds gave red colour with FeCl₃. Compound can be:
 - (A) Na₂S
- (B) NH₂CSNH₂
- $(C) C_6 H_5 Cl$
- (D) NaCN
- 41. The compound that does not give a blue colour in Lassaigne's test is
 - $(A) C_6 H_5 NH_7$
- (B) CH₂CONH₂
- (C) NH₂-NH₂
- (D) $C_6H_5-NO_7$
- 42. Nitrogen containing organic compound when fused with sodium metal forms:
 - (A) NaNO₂
- (B) NaCN
- (C) NaNH,
- (D) NaNC
- 43. The sodium extract of an organic compound on acidification with acetic acid and addition of lead acetate solution gives a black precipitate. The organic compound contains-
 - (A) Nitrogen
- (B) Halogen
- (C) Sulphur
- (D) Phosphorus
- 44. The sodium extract of an organic compound on treatment with FeSO₄ solution, FeCl₃ and HCl gives red solution. The Red colour of:
 - $(A) \text{ Fe}(CN)_{2}$
- (B) $Fe_{1}[Fe(CN)_{6}]_{3}$
- (C) [Fe(SCN)]²⁺
- (D) FeS

Section (I): Quantitative analysis of elements

- 45. In Kjeldahlik method, nitrogen present in the sample is estimated as:
 - $(A) N_2$

- $(B) NH_{a}$
- (C) NO,
- (D) None of these

46.	Catalyst used in Kjeldahl	s method for the estimation	on of nitrogen is:			
	(A) Sodium	(B) Magnesium	(C) Mercury	(D) Copper		
47.	The dessicants used for a	bsorbing water during Lie	bigils method for estima			
	hydrogen are:					
	(A) CaCl ₂	$(B) Na_2SO_4$	$(C) MgSO_4.7H_2O$	(D) $Mg(ClO_4)_2$		
48.	The equivalent weight of	an acid is equal to	7 2	7 2		
	(A) Molecular weight ×	acidity	(B) Molecular weight	× basicity		
	(C) Molecular weight/bas	sicity	(D) Molecular weight/s	acidity		
49.	Liebig test is used to estimate	mate:				
	(A) H	(B) C	(C) C and H both	(D) N		
50.	In Carius method of estim	ation of halogen, 0.15 g of	an organic compound ga	ve 0.12 g of AgBr.		
	What is the percentage of	f bromine in the compound	1?			
	(A) 18.05	(B) 53.19	(C) 63.10	(D) 34.04		
51.	An organic compound ha	ving molecular mass 60 is	found to contain $C = 20^{\circ}$	%, H = 6.67% and		
	N = 46.67%. The compound	and is				
	(A) CH ₃ NCO		(B) CH ₃ CONH ₂			
	(C) (NH ₂) ₂ CO		(D) CH ₃ CH ₂ CONH ₂			
52.		as 85% carbon and vapour	r density of 28. The poss	ible formula of the		
	hydrocarbon will be.					
	$(A) C_3H_6$	$(B) C_2 H_4$	$(C) C_2H_2$	(D) C_4H_8		
53.	Quantitative measuremen	t of nitrogen in an organic	compounds is done by t	he which method?		
	(A) Berthelot method (B) Beilstein method (C) Lassaigne test (D) Kjeldahl's method					
54.	Kjeldahl; s method of est	imation for nitrogen is not				
	(A) Acetamide	(B) Aliphatic amines	(C) Diazo compounds	(D) Amino acids		
	n (A) : I st Group					
55.		h KI solution to give yellov				
		on (6 M) of KI dissolves for	rming a solution. The cati	ion of metal nitrate		
	is:			_		
	(A) Hg_2^{2+}	$(B) Ag^+$	$(C) Pb^{2+}$	(D) Cu^{2+}		
56.	Three separate samples of a solution of a single salt gave these results. One formed a white					
	precipitate with excess ammonia solution, one formed a white precipitate with dilute NaCl					
		a black precipitate with H2				
	$(A) AgNO_3$	(B) $Pb(NO_3)_2$	$(C) \operatorname{Hg}(NO_3)_2$	(D) $Mn(NO_3)_2$		
57.	Consider the following of	bservation:				
	$M^{n+} + HCl (dilute) \longrightarrow$	white precipitate $\xrightarrow{\Delta}$ w	vater soluble $\xrightarrow{\operatorname{CrO}_4^{2-}}$ ye	llow precipitate.		
	The metal ion M ⁿ⁺ will be	2:				
	(A) Hg^{2+}	$(B) Ag^+$	(C) Pb ²⁺	(D) Sn ²⁺		
58.		n NH ₄ OH solution the con	npound formed is:	` '		
	(A) Hg ₂ Cl ₂	(B) Hg(NH ₂)Cl	(C) $Hg(NH_3)_2Cl$	(D) HgCl ₂ .NH ₃		
59.	Consider the following e	<u>-</u>	3, 2			
	Λ «CI . 2NII	- Mar(NIII) 1+ . CI- White m	ent of AcClampage on a	ddina		
		$(NH_3)_2$] ⁺ + CI ⁻ White p				
- 0	$(A) NH_3$	(B) aq. NaBr	(C) aq. HNO_3	(D) aq. NH ₄ I		
60.	AgCl with NH ₃ forms a c		(2) [1 (3) - 1 (3) - 1	(-		
	$(A) [Ag(NH_2)_2]Cl$	$(B) AgNO_{2}$	$(C) [Ag(NH_2)_2]Cl$	(D) Ag mirror		

Section (R) · IIA Group

Secu	лі (b) : HA Group									
61.			assing H ₂ S gas even in slig	htly acidic medium in						
		the absence of II group radicals. This is because:								
	(A) sulphur is present in the mixture as impurity.									
		ls are precipitated as sulp								
	(C) of the oxidation	of H ₂ S gas by some acid	radicals.							
	(D) III group radical	ls are precipitated as hydr	oxides.							
62.	H_2S in the presence	of HCl precipitates II gro	up but not IV group becaus	se:						
	(A) HCl activates H	$_{2}$ S								
	(B) HCl increases co	oncentration of Cl ⁻								
	(C) HCl decreases co	oncentration of S ²⁻								
	(D) HCl lowers the	solubility of H ₂ S in soluti	on							
63.	When small amount	of SnCl2 is added to a se	olution of Hg2+ ions, a sill	xy white precipitate is						
	obtained. The silky v	white precipitate is due to	the formation of:							
	$(A) \operatorname{Hg_2Cl_2}$		(C) Sn	(D) Hg						
64.	When excess of dilu	te NH ₄ OH is added to an	n aqueous solution of copp	er sulphate an intense						
	blue colour is develo	pped. This is due to the fo								
		(B) $Cu(OH)_2$		(D) $(NH_4)_2SO_4$						
65.	A black sulphide is f	formed by the action of H	S_2 S on:							
	(A) cupric chloride	(B) cadmium chlor	ride (C) zinc chloride	(D) ferric chloride.						
66.		Which one of the following salts will produce clear and transparent original solution in								
	2M HCl?									
	$(A) Ag_2CO_3$	(B) $Pb(CO_3)$		(D) $CuCO_3$						
67.	When bismuth chloride is poured into a large volume of water the white precipitate produced is									
	of:									
	(A) BiO.OH	(B) Bi2 O3 (C) BiOCl	3						
68.			s are red and black coloured	respectively and both						
	precipitates are soluble in excess KI solution?									
	(A) HgI2, Hg2I2		(C) Cu_2I_2 , Agl							
69.	A metal chloride original solution (i.e. O.S) on mixing with K2CrO4 solution gives a yellow									
	precipitate soluble in aqueous sodium hydroxide. The metal may be:									
~ .	•	(B) iron	(C) silver	(D) lead						
	on (C): IIB Group									
70.		•	able in YAS (yellow ammo	•						
	(A) HgS	(B) PbS	(C) $\operatorname{Bi}_{2}S_{3}$	(D) Sb_2S_3						
72.		When white crystalline precipitate of magnesium ammonium arsenate is treated with acidified								
			enate is formed. The colou	r of precipitate is:						
	(A) Yellow	(B) Brownish red								
a	(C) White	(D) Brownish black	K							
	on (D): IIIrd Group	1 CATTLOT	· T							
73.		ed to a solution of NH ₄ OI	1:							
		of NH ₄ OH increases.								
	(B) the concentration									
		ns of both OH^- an NH_4^+ ir	icrease.							
	(D) the concentratio	n of OH ⁻ ion decreases.		(D) the concentration of OH ⁻ ion decreases.						

74.	To avoid the precipitat	ion of Hydrovides of 7r	2 ²⁺ , Mn ²⁺ and Ni ²⁺ along w	with those of Ee3+ A13+		
/4.	and Cr ³⁺ the third group	-	i , will allu ivi along w	illi lilose of re, Ai		
	(A) Concentrated HNC		(B) Treated with ex	cass of NH Cl		
	(C) Concentrated H ₂ SC		(D) Treated with ex			
75.			r, and intensity of fumes	4		
13.			idic solution of (X) on a			
			NaOH solution. A solution			
			vaO11 solution. A solution	i of (A) does not give		
	precipitate with H ₂ S H ₀ (A) FeCl ₂	(B) AlCl,	(C) 7nCl	(D) None of these		
75.	` ′ 3	` ′ 3	(C) ZnCl ₂ ate HCl gives a brown co	, ,		
13.			n colouration with sodium			
	cation of the salt is:	e (III) and reduish brown	ii colouration with souluii	acetate solution. The		
	(A) Ni ²⁺	(B) Fe ³⁺	(C) Cu ²⁺	(D) none		
76.	` '	precipitates can be comp	` '	(D) none		
70.	3	(B) HCl		(D) H SO		
Contin	(A) Aq. NH ₃ n (E) : IVth Group	(D) IICI	(C) NaOH/ H_2O_2	(D) H_2SO_4		
	` ′	a salt gives following re	actions			
77.		a salt gives following re		un on overosives to sie		
	(i) It gives white precipitate with sodium hydroxide which becomes brown on exposure to air.(ii) It gives white precipitate with ammonia solution which is soluble in ammonium salts.					
				(D) Ni ²⁺		
70	(A) Mn ²⁺	(B) Zn ²⁺	(C) Al ³⁺	\ /		
78.	A metal salt form precipitate with H2S in presence of (NH ₄ OH + NH ₄ Cl) and this precipitate is soluble in acetic acid then metal sulphide could be:					
		-		(D) Nic		
70	(A) ZnS	(B) CoS	(C) MnS	(D) NiS		
79.		ly the concentration of	free Zn ²⁺ ion in a solutio	ii of the complex ion		
	$[Zn(NH_3)4]^{2+}$					
		$Zn^{2+}(aq) + 4NH_3(aq)$	$(Zn(NH_3)_4]^{2+}$ (aq)			
	add to the solution som	ne:				
	$(A) H_2O$	(B) HCl (aq)	$(C) NH_3(aq)$	(D) NH ₄ Cl (aq)		
80.	An aqueous solution o	f colourless metal sulph	ate M, gives a white pred			
	This was soluble in excess of NH ₄ OH. On passing H ₂ S gas through this solution a white precipi-					
	tate is formed. The met	•				
	(A) Ca	(B) Ba	(C) Al	(D) Zn		
81.	A metal salt solution w	hen treated with dimeth	yl glyoxime and NH4OH	gives a rose red com-		
	plex. The metal is :					
	(A) Ni	(B) Zn	(C) Co	(D) Mn.		
82.		precipited by H2S in pr	resence of dil. HCl.			
	$(A) Pb^{2+}$	(B) Bi ³⁺	(C) Cu ²⁺	(D) Ni ²⁺		
Section	n (F): Vth, VIth and Z	ero Group				
83.		aBr2 gives yellow preci	pitate with:			
	$(A) K_2 CrO_4$	(B) AgNO ₃	•			
	2 4	(D) (A) and (B) both				
84.	3 2		solution is expected to pro-	oduce a precipitate in		
		which does not produce		1 1		
	(A) BaCl ₂ (aq)	(B) $CaBr_2(aq)$				
	(C) Na.SO (aq)	2				

85.	An aqueous solution	s well as with dilute						
	H_2SO_4 . It may be (A) $Pb(NO_3)_2$	(B) $Ba(NO_3)_2$	(C) BaCl ₂	(D) CuCl ₂				
86.		d in V group because:	2	2				
	(A) MgCO ₃ is solubl		(B) Ksp of MgCO ₃ is	high.				
	(C) MgCO ₃ is soluble		(D) None.					
87.	3	form a yellow ppt with potas	` '	cid, a white ppt with				
07.		but gives no ppt with sodium						
	(A) Lead carbonate		(B) Basic lead carbon	ate				
	(C) Barium nitrate		(D) Strontium nitrate					
88.	A white crystalline si	ubstance dissolves in water.	On passing H2 _s in this so	olution, a black pre-				
	cipitate is obtained.	The black precipitate dissolv	es completely in hot HNC	O ₃ . On adding a few				
	drops of concentrate	d H ₂ SO ₄ , a white precipitate	is obtained. This precipita	ate is that of:				
	(A) $BaSO_4$	(B) SrSO ₄	(C) PbSO ₄					
89.	The brown precipitat	e formed by passing ammor	nia into Nessler's reagent i	in due to the forma-				
	tion of							
	(A) Hgl_4^{2-}	(B) NH ₂ O-Hg-Hgl	$(C) NH_2-Hg-O-Hg-$	$I (D) NH_3-Hg-I$				
Section	on (A) : Heating in dr		2	3				
90.	When a metal sulpha	te is heated in dry test tube,	the colour changes from	blue to white. Then				
	metal sulphate may be:							
	(A) $BaSO_4$	(B) $CuSO_4.5H_2O$	(C) Na ₂ SO ₄	(D) None of these				
91.		ng can not evolve more thar	n one gas (vapour) if heate	ed in dry test tube.				
	$(A) NaNO_3(s)$			•				
	(C) $FeSO_4(s)$	(D) $(NH_4)2Cr_2O_7(s)$						
92.		On heating, a white amorphous inorganic compound becomes yellow and on cooling, turns						
	white again. The salt may be							
	(A) PbCO ₃		(C) ZnCO ₂	(D) K_2CO_3				
93.		ng metal carbonates liberate		2 3				
	(A) Na ₂ CO ₃	$(B) K_2CO_3$	(C) Rb ₂ CO ₂	$(D) Ag_2CO_3$				
94.	2 3	wing reactions a brown colo	2 3					
	(A) KBr (s) + dil. H_2	=	(B) $NH_4NO_2 \xrightarrow{\Delta}$					
				11.50				
	(C) NaNO ₃ $\xrightarrow{\Delta}$ $\xrightarrow{800^{\circ}\text{C}}$		(D) $AgNO_3(s) + conc$	$. H_2SO_4 \longrightarrow$				
	on (B): Flame and bo							
95.	Why is concentrated HCl used to dissolve the given metal salt in the flame test?							
	(A) strong acids prod	luce better flame test.						
	(B) HCl is volatile	(B) HCl is volatile						
	(C) Volatile metal chloride produce better flame test.							
	(D) sharper coloured are seen in the flame in presence of Cl ⁻ ions.							
96.	The hottest part of the	ne flame of a Bunsen burner	is the					
	(A) Blue Zone		(B) Zone of complete	combustion				
	(C) Zone fo partial c	ombustion	(D) All parts of the fla	ame are equally hot.				
97.		mson red colour in flame tes	at and its halide is deliques	cent then metal (M)				
	could be:	(D) 1.6	(G) G	(D) D				
0.0	(A) Li	(B) Mg	(C) Ca	(D) Ba				
98.		netal oxides react with B ₂ O ₃						
	(A) orthoborate ion	(B) metaborate ion	(C) double oxide	(L)) tetrahorate ion				

99.		ing ions does not give bor	ax bead test:	
	(A) Cr^{3+}	(B) Cu^{2+}	(C) Mn^{2+}	(D) Zn^{2+}
100.		f Co ²⁺ , the blue colour of b		
101	(A) B2O3	$(B) \operatorname{Co_3B_2}$	(C) Co(BO ₂) ₂	(D) CoO
101.		e in charcoal cavity test bu	it in cobalt nitrate test it	gives pink mass. It
	represents:	(D) A1+3	(C) M ₂ +2	(D) DO -3
C4.	(A) Zn ⁺²	(B) Al^{+3}	$(C) Mg^{+2}$	(D) PO_4^{-3}
	n (C): dil. HCl / dil. H2		HCl.	
102.		anions are identified by dil		_
	(A) NO ₂ ⁻ , NO ₃ ²⁻ , CO ₃ ²⁻		(B) NO_2^- , NO_3^- , SO_{32}^-	
103.	(C) S ²⁻ , SO ₃ ²⁻ , NO ₂ ⁻ Two inorganic compoun	ds A and B were heated in	(D) CH ₃ COO ⁻ , I ⁻ , CC	
103.		e paper black and ${f B}$ evolve		
	(A) SO_3^{2-}, CO_3^{2-}	(B) SO^{2-}, CO_3^{2-}	(C) PO_4^{3-}, HSO_3^{-}	(D) S^{2-} , NO_3^-
104.		O ₄ is made to an unknown following can be present for		dourless gas is pro-
	(A) CO_3^{2-}	(B) \$ ²⁻	(C) CI ⁻	(D) NO_3^-
105.	A gas turns lime water r	nilky and acidified K2Cr2O	, solution green then ga	s is:
	(A) HCl	(B) H2S	(C) SO ₂	(D) CO ₂
106.		en egg and turns lead aceta		
	$(A) NO_2$	$(B) H_2 S$	$(C) CO_2$	(D) SO ₂
		Rotten egg smell		
		(P) †		
		Δ dil. H₂SO₄		
	Yellow ppt ↓ CdCO ₃ suspensi	ion Salt with X ⁻² anion (CH	3COO)₂Pb → Black ppt ↓	
106.	(S)	1	(Q)	
		Sodium Nitroprussid	e	
		Violet		
		(R)		
	Anion (X2;V) is:			
	(A) CO_3^{2-}	(B) SO_3^{2-}	(C) SO ²⁻	(D) $S_2O_3^{2-}$
107.	3	salt produces blue colour	with KI starch solution	- 3
	cates the presence of:	1		
	(A) Sulphite	(B) Bromide	(C) Nitrite	(D) Chloride
108.	Sulphide ion reacts with	Na ₂ [Fe(CN) ₅ NO] to form	n a purple coloured cor	npound (X). In this
	reaction oxidation state	of iron.		
	(A) changes from +2 to		(B) changes from $+3$	to +2
a	(C) changes from +2 to		(D) does not change.	
	n (D): Conc. H2SO4 gro	_	11 11 00	
109.		pair of anions are identified	- '	
	(A) NO_3^-, CO_3^{2-}	(B) CI^-, NO_3^-	(C) Br^{-}, CO_{3}^{2-} (D) C	$30\frac{2}{3}$, CH $_3$ COO $^-$
		385		

110.	Which of the following a H ₂ SO ₄ ?	anion behaves in a differen	nt manner than other on	heating with conc.		
	(A) CI ⁻	(B) I ⁻				
	(C) Br ⁻	(D) All behave in a simi	lar manner			
111.	Which of the following r	eagents turns white precip	pitate of AgCl yellow?			
	(A) NaNO ₃	(B) Na ₃ AsO ₃		(D) NaCN		
112.						
	(A) NO_2^-	(B) NO_3^-	(C) I ⁻	(D) Br^-		
113.	When a mixture of solid NaCl and solid K ₂ Cr ₂ O ₇ is heated with concentrated H ₂ SO ₄ , deep re vapours are obtained. This is due to the formation of: (A) chromous chloride (B) chromyl chloride (C) chromic chloride (D) chromic sulphat					
114.	AgCl dissolves in ammo	•	(-)	,		
	(A) Ag+, NH_4^+ and Cl^-		(B) $[Ag(NH_3)]^+$ and C	<u>-</u>		
	(C) $[Ag_2(NH_3)]^{2+}$ and C ⁻		(D) $[Ag(NH_3)_2]^+$ and (
115.	A mixture upon adding conc. H ₂ SO ₄ gives deep red fumes. Mixture may contain the anions					
	pair:	2 4				
	(A) $\operatorname{Cr_2O_7^{2-}}$ and $\operatorname{Cl^-}$		(B) Br ⁻ and Cr ₂ O ₇ 2 ⁻ (D) CrO ₄ 2 ⁻ and NO ₃ 2 ⁻			
	(C) NO_3^- and Cl^-	-				
116.	A solution of a salt in concentrated H ₂ SO ₄ produced a deep blue colour with starch iodide					
	solution. The salt may co	ontain :				
	(A) chloride	(B) carbonate	(C) acetate	(D) bromide		
117.	with a solution of Na ₂ C	on compound gives a precipe O ₃ . The action of concerning gas. The compound is: (B) CaCl ₂				
118.	Which of the following g	gas turn starch iodide pape	er blue?			
	$(A) CO_2$	(B) SO ₂	(C) NO ₂	$(D) H_2S$		
119.	Nitrate is confirmed by r	ing test. The brown colour	_			
	(A) ferrous nitrite		(B) nitroso ferrous sulphate			
	(C) ferrous nitrate		(D) $FeSO_4$. NO_2			
	n (E) : Precipitation Rea					
120.		ing phosphate is heated w				
		precipitate is formed. The				
	$(A) (NH_4)_3 PO_4$		(B) (NH ₄)3PO ₄ .12Mo	O_4		
	$(C) (NH_4)_3 PO_4.12 MoO_3$		(D) $(NH_4)3PO_4.(NH_4)$	•		
121.	9	es a yellow precipitate wit	*	cipitate dissolves in		
		in ammonium hydroxide.		(D) (Q) 2		
	$(A) Br^{-}$	(B) I ⁻	(C) PO_4^{3-}	(D) SO_4^2		