II YEAR

1. SOLID STATE

Synopsis

- 1. Solids have definite structure and shape.
- 2. Solids are rigid due to strong binding forces between the atoms (or) ions (or) molecules.
- 3. The effect of pressure is negligible on the volume of a solid.
- 4. Solids are mainly of two types: crystalline solids and amorphous solids
- 5. Crystalline solids have definite shape due to orderly arrangement of atoms or molecules or ions in three dimensional network, while amorphous solids do not have definite geometry due to irregular arrangement of constituent units.
- 6. Amorphous solids do not give any diffraction bands and they do not have definite melting temperature, eg. Fine powder, glass, pitch, plastics.
- 7. Gelatinous $Al(OH)_3$ can be considered as a tme amorphous substance. Amorphous silicon can be used as photovoltaic material.
- 8. Crystalline solids have long range order where as amorphous solids have short range order.
- 9. Quartz is a constalline substance, which has infinite chain of regular SiO₄ tetrahedra. Quartz glass is amorphous.
- 10. Crystalline solids are anisotropic, while : rphous solids are isotropic in nature.
- 11. Depending upon the constituent particles or nature of bonding, there are four types of cry sialline solids: Molecular, ionic, covalent and metallic solids.

 The four categories differ in physical properites Ike standard molar enthalpy of fusion, electrical i! and thermal conductivities.
- 12. Metallic bond is explained by Electron sea model, Valence bond theory and Molecular orbital theory.
- 13. The force that binds the metal ion to the mobile electrons with in its sphere of influence is known as metallic bond.
- 14. Electron sea theory can successfully explain the properties like electrical and thermal conducitivity, lustre etc, but it fails to explain the lattice energies of ionic compounds.
- 15. According to valence bond theory the metallic bond is essentially a polar (or) non polar covalent bond.
- 16. It fails to explain conduction of heat in solids, lustre, retention of metallic properties in liquid solution state.
- 17. A regular arrangement of the constituent particles of a crystal in the three dimensional space is called crystal lattice.
- 18. The pattern of points which indicates the arrangement of particles in the crystal is known as space lattice.

- 19. The space lattice of sodium chloride is obtained by joining the space lattices of Na^+ and Cl^- ions.
- 20. The smallest three dimensional portion of the space lattice which when repeated again and again in different directions produces the complete space lattice is called the unit cell.
- 21. Unit cells are two types: The unit cell without a point inside is known as 'primitive unit cell'. The particles are present only at the corners of the unit cell. Centered unit cell contains a point inside.
- 22. In Face-centred unit cell in addition to the particles at the corners, there is one particle present at the centre of every face. It has 14 lattice points (8 comers and 6 face centres)
- 23. In End face centered unit cell: in addition to the particles at the comers, there is one particle in the centre of two opposite faces. It has 10 lattice points (8 comers and 2 face centres)
- 24. In Body-centred unit cell in addition to the particles at the corners, there is one particle present within the body of the unit cell. It has 9 lattice points (8 corners and body centre)
- 25. On the basis of symmetry and set of crystallographic parameters, crystals are classified into 14 types of crystal lattices (Bravais lattices) and 7 different types of crystal systems.
- 26. The intercepts on the X,Y and Z axes are designated as a, b and c respectively. The angle between the Y and Z axes is α , that between X and Z axes is (3 and that between X and Y axes is γ .
- 27. X- rays produce diffraction pattern with crystalline substances because the interatomic distance in a crystal is in the same order as the wave length of X rays $(1 A^0)$.
- 28. Bragg's equation is given as : $2d \sin \theta = n \lambda$, where d is distance between successive atomic planes, 0 is angle of the incident X-rays with the crystal surface, λ is wavelength of the X-rays used and n is order of diffraction maxima.
- 29. In NaCl crystal the 'd' values are in the ratio of 1:0.703:1.134. It confirms the F.C.C structure of NaCl.
- 30. Coordination Number is the number of nearest neighbours of an atom, molecule or ion in a crystal.
- 31. In metal lattices the coordination number of metal atom is usually 8 (or) 12.
- 32. Co-ordination of number depends on the limiting radius ratio. Radius ratio (ρ) = r_{cation} / r_{anjon}
- 33. The vacant space between the three dimensional layers is known as void.
- 34. Tetrahedral void is a triangular void surrounded by four spheres arranged tetrahedrally around it. Octahedral void is a combination of two triangular voids surrounded by six spheres.
- 35. Number of octahedral voids is equal to number of atoms in the close packed arrangement.
- 36. Number of tetrahedral voids is twice the number of atoms or octahedral voids.
- 37. In two dimensional square close packing the co-ordination number is 4. In two dimensional hexagonal close packing and in simple cubic structure the co-

- ordination number is 6. In body centered cubic arrangement the coordination number is 8.
- 38. In three dimensional close packing, if the tetrahedral voids of second layer are occupied by the spheres of third layer it leads to hexagonal close packing (HCP) or AB AB AB ... type of packing. If the octahedral voids of second layer are occupied by the spheres of third layer it leads to cubic close packing (CCP) or ABC ABC ABC type of packing.
- 39. In both H.C.P and C.C.P structures, the co-ordination number is 12.
- 40. The covalent solids have low co-ordination number than in ionic solids and metallic solids.
- 41. Structural motif is a strucutural unit present in crystal. The basis may be a single atom (or) a group of atoms (or)a molecule (or) an ion.
- 42. Density of unit cell,

$$\rho = \frac{z \times M}{a^3 x N_0 x 10^{-30}} g/cm^3$$

z = Number of atoms present per unit cell,

M = Atomic mass of element, a = Edge of the cube crystal in pm,

 N_0 = Avogadro number,

- 43. Thermodynamically all solids possess a tendency to acquire defects to increase the entropy of the system..
- 44. The properties of the crystalline solids like mechanical strength, electrical conductivity, chemical activity, catalytic activity are profoundly affected and the properties like density, heat capacity or entropy are slightly affected by crystal defects.
- 45. The stoichiometric solids are also called as 'daltonide compounds', The defects in these solids are Schottky defect (vacancy defect) and Frenkel defect (dislocation defect)
- 46. Both schottky and frenkel defects increases with increasing temperature. Hence they are also known as 'thermodynamic defects'.
- 47. Schottky defect arises due to the missing of constituent particles from their normal lattice sites. NaCl, KCl, CsCl and AgBr can show Schottky defect.
- 48. Since some of the ions are missing from their lattice sites, the density of the solid decrease due to Schottky defect.
- 49. When a 'hole' or 'vacancy' exists in the crystal lattice because an ion occupies an interstitial lattice site, it gives rise to Frenkel defect. AgCl, Agl, AgBr and ZnS can show this defect.
- 50. Frenkel defect has no effect on density of solid.
- 51. AgBr contains Schottky defect and Frenkel defect.
- 52. There is a close relationship between the properties of a solid, its structure and composition. Examples of these properties are electrical and magnetic properties.
- 53. Based on their electrical conductivity, solids can be broadly classified into three types: Metals (conductors), Insulators or Non-conductors and Semi-conductors.

- 54. The metals which allows the passage of electric current through them are called conductors.
- 55. Their conductivities of metals value is in the order of 10³ 10⁸ ohm⁻¹ cm⁻¹ at room temperature, which decreases with rise in temperature due to increase in lattice vibrations.
- 56. At laboratory temperatures the conductivity of metals is almost independent of impurities and defects.
- 57. At low temperatures the lattice vibrations are negligible and hence the conductivity should be large, however it is not true because of lattice imperfections and impurities.
- Non-metals like diamond, P and S, solutions of non-electrolytes like sugar and urea, substances like wood, rubber and plastics are all examples of insulators.
- 59. Conductivity of insulators is extremely low and is in the order of 10^{-1} to 10^{-22} ohm⁻¹cm⁻¹ at room temperature.
- 60. The solids possess conductivity values which are intermediate between those of typical metals and insulators i.e. in the range 10^{-6} to 10^{-6} to 10^{4} ohm⁻¹cm⁻¹ are called semi conductors.
- 61. The conductivity of semiconductors increases with temperature, because there is a small energy gap between valence and conduction bands.
- 62. Pure semi conductors are called intrinsic semi conductors, eg. pure Si, pure Ge.
- 63. The process in which a small amount of foreign impurity is added to a crystal is called doping.
- 64. The conductivity of semiconductors abnormally increases because of doping.
- 65. If Si (or) Ge is doped with a pentavalnet atom (P,As,Sb), n-type of semiconductors are formed.
- 66. If Si (or) Ge is doped with a trivalent atom (B, Al, Ga, In), p-type of semiconductors are formed.
- 67. Materials can be divided into different classes depending upon the behaviour of substances towards magnetic field.
- 68. Diamagnetic materials are weakly repelled by a magnetic field. Examples are ZrO₂, NaCl and benzene.
- 69. The property of diamagnetism is associated with completely filled electronic subshells.
- 70. Paramagnetic materials are weakly attracted by a magnetic field. Examples are $(O_2,Cu^{2+},Ti_2O_3,VO_2,NO,Na vapour.$
- 71. Paramagnetism is observed due to the presence of permanent magnetic dipoles as a result of unpaired electrons in atoms, ions or molecules.
- 72. Ferromagnetism occurs due to spontaneous alignment of magnetic moments associated with unpaired electrons in the same direction, eg. Fe, Co, Ni, CrO₂.
- 73. The antiferromagnetism is shown when the alignments of magnetic moments are equal and in opposite direction so as to give the net magnetic moment zero. eg. MnO, V₂O₃, NiO.

- 74. Ferrimagnetism arises due to the alignment of magnetic moments are in parallel and antiparallel direction in unequal number. As a result the material has net magnetic moment and shows ferrimagnetism.
- 75. Ferrimagnetic materials show small paramagnetic character. Examples are Fe_3O_4 , ferrites of the formula M^{2+} Fe_2O_4 , where M = Mg, Cu, Zn.

Question Bank – I

- 1. Which of the following is not a characteristic of crystalline solids?
 - 1) they have a regular geometry
 - 2) they have sharp melting points
 - 3) they are isotropic
 - 4) they undergo a clean cleavage
- 2. Which among the following will show anisotropy?
 - 1) glass
 - 2) barium chloride
 - 3) wood
 - 4) paper
- 3. Which of the following is not a crystalline solid?
 - 1) common salt
 - 2) sugar
 - 3) iron
 - 4) rubber
- 4. An amorphous solids
 - 1) NaCI
- 2) CsCI
- 3) Tar
- 4) CaF₂
- 5. A pseudo solid is
 - 1) glass
 - 2) pitch
 - 3) KCI
 - 4) glass and pitch both
- 6. An example of a covalent crystalline solid is
 - 1) Si
- 2) NaF
- 3) Ar
- 4) AI

- 7. Iodine crystal are
 - 1) metalline
- 2) ionic
- 3) molecular
- 4) covalent
- 8. Ionic solids are characterised by
 - 1) good conductivity in solid state
 - 2) high vapour pressure
 - 3) low melting point
 - 4) solubility in polar solvents
- 9. Among the following which crystal will be soft and have low melting point?
 - 1) covalent
- 2) ionic
- 3) metallic
- 4) molecular
- 10. Which one of the following will have a low heat of fusion?
 - 1) a covalent solid
 - 2) an ionic solsid
 - 3) a metallic solid
 - 4) a molecular solid
- 11. The number of atoms present in a unit cell of a monoatomic substance (element) of a simple cubic respectively are
 - 1) 8,9 and 14
- 2) 1,2 and 4
- 3) 4,5 and 6
- 4) 2,3 and 5
- Which of the following does not represent a type of crystal?
 - 1) Isomorphous
 - 2) Triclinic
 - 3) Hexagonal
 - 4) Rhombohedral

- 13. TeO_2 is an example of
 - 1) monoclinic system
 - 2) rhombic system
 - 3) teragonal system
 - 4) triclinic system
- 14. Diamond belongs to the crystal system
 - 1) cubic
- 2) triclinic
- 3) tetragonal
- 4)hexagonal
- 15. In a simple cubic cell, each point on a corner is shared by
 - 1) 2 unit cells
- 2) 1unit cell
- 3) 8 unit cell
- 4) 4 unit cells
- 16. In fact centred cubic cell, an atom at the face centres is shared by
 - 1) 4 unit cells 2) 2 unit cells
 - 3) one unit cell 4) 6 unit cells
- 17. In a body centred cubic cell, an atom at the body centre is shared by
 - 1) 1 unit cell 2) 2 unit cells
 - 3) 3 unit cells 4) 4 unit cells
- 18. Which one of the following is a primitive unit cell?
 - 1) simple cubic
 - 2) body-centred cubic
 - 3) face-centred cubic
 - 4) both body-centred and face-centred cubic
- 19. The maximum proportion of available volume that can be filled by hard spheres in diamond is
 - 1) 0.52
- 2) 0.34
- 3) 0.32
- 4) 0.68
- 20. The more efficient mode of packing of identical atoms in one layer is
 - 1) square close packing pattern

- 2) hexagonal close packing pattern
- 3) both (1) and (2)
- 4) none of the two
- 21. ccp tallies with
 - 1) bcc
- 2) fcc
- 3) hcp
- 4) none of these
- 22. In a closest packed lattice, the number of tetrahedral voids formed will be
 - 1) equal to the number of spheres in the lattice
 - 2) half than that of the number of spheres
 - 3) double than that of the number of spheres
 - 4) none of these
- 23. The soze of an octahedral void fromed in a closest packed lattice as compared to tetrahedral void is
 - 1) equal
- 2) smaller
- 3) large
- 4) not definite
- 24. The number of octahedral void formed in a closest packed lattice as compared to tetrahedral void is
 - 1) 1 2) 2
- 2
- 3) 4 4) 8
- 25. If R is the radius of the spheres in the close packed arrangement and r is the radius of the octahedral void, then
- 26. The available space occupied by spheres of equal size in the dimensions in both hcp and ccp arrtangement is
 - 1) 74%
- 2) 70%
- 3) 60.4%
- 4) 52.4%
- 27. Close packing is maximum in the crystal lattice of

- 1) Simple cubic 2) Face centred
- 3) Body centred 4) None
- 28. The type of structure assumed by an ionic compound is determined by
 - 1) relative number of each kind of the ions
 - 2) relative sizes of each kind of the ions
 - 3) both (1) and (2)
 - 4) none of these

- 29. If the dradius ratio is in the range of 0.414 -0.732, then coordination number will be 4) 8
 - 2) 4 3)6 1) 2
- 30. At the limiting value of radius ratio r_+/r_- ,
 - 1) Forces of attraction are larger than the forces of repulsion
 - attraction 2) Forces of smaller than the forces of repulsion
 - 3) Forces of attraction and repulsion are just equal
 - 4) none of these

KEY

1) 3	2) 2	3) 4	4) 3	5) 4	6) 1	7) 3	8) 4	9) 4	10) 4
11) 2	12) 3	13) 1	14) 3	15) 2	16) 1	17) 2	18) 2	19) 2	20) 3
21) 3	22) 3	23) 3	24) 2	25) 3	26) 2	27) 3	28) 3	29) 3	30) 2

Question Bank – II

1.

l	Jnit Cell	No	o. of Atoms per unit	t
A)	Simple cube	1)	4	
B)	F.C.C.	2)	2	
C)	B.C.C.	3)	1	

The correct match is

В	C
3	1
1	3
1	2
2	3
	1

- 2. At zero Kelvin, most of the ionic crystals possess
 - (1) Frenkel Defect
 - (2) Schottky defect
 - (3) Metal excess defected
 - (4) no defect

- A: Schottky and Frenkel defects 3. are also called as 'thermo dynamic defects'
 - R: Both Schottky and Frenkel defects increases with increase in temperature
 - (1) Both \mathbf{A} and \mathbf{R} are true and \mathbf{R} is the correct explanation of \mathbf{A}
 - (2) Both **A** and **R** are true and **R** is not the correct explanation of A
 - (3) \mathbf{A} is true but \mathbf{R} is false
 - (4) **A** is false but **R** is true
- 4. Which among the following is likely to have Schottky defect?
 - (1) AgCl
- (2) NaCl
- (3) TiCl
- (4) MgCl₂

- Schottky defect in crystals is 5. observed when
 - (1) Unequal number of cations and anions are missing from the lattice
 - (2) Equal number of cations and anions are missing from the lattice
 - (3) An ion leaves its normal site and occupies an interstitial cells
 - (4) Density of the crystal is increased
- 6. Which of the following is correct statement?
 - (1) Silicon doped with boron is n-type semiconductor
 - (2) Silicon doped with arsenic is a *p*-type semiconductor
 - (3) Metals are good conductors of electricity
 - (4) Electrical conductivity semiconductors decreases with increasing temperature
- 7. Which substance shows antiferromagnetism
 - $(1) ZrO_2$
- (2) CdO
- (3) CrO₂
- $(4) V_2O_3$

8.

(C	List-I rystal System)		List-II (Example)
A)	Orthorhombic	1)	Graphite
B)	Monoclinic	2)	MgSO ₄ .7H ₂ O
C)	Triclinic	3)	FeSO ₄ .7H ₂ O
D)	Hexagonal	4)	H ₃ BO ₃

The correct match is

A	В	\mathbf{C}	D
(1) 2	3	4	1
(2) 2	3	1	4
(3) 1	2	3	4
(4) 1	2	4	3

- The constituent particles 9. in carborundum
 - (1) Atoms
 - (2) Molecules
 - (3) Positive ions
 - (4) Negative ions in a sea of electrons
- The crystal system without any 10. element of symmetry is
 - (1) monoclinic (2) hexagonal
 - (3) triclinic
- (4) cubic

KEY

1) 3	2) 4	3) 1	4) 3	5) 1
6) 3	7) 4	8) 1	9) 1	10) 3

Question Bank - III

Types of Solids and Crystal structures

1)	In which of	the following nun	nbers all zeros are si	gnificant?
	1) 0.00004	2) 0.0060	3) 20.000	4) 0.800
2)	On dividing	0.46 by 15.374, th	e actual answer is 0.	.029236. The correctly reported answer
	will be			
	1) 0.02	2) 0.029	3) 0.0292	4) 0.02924
1.	Which of th	e following is not	true about crystallin	ne solids
	1) They are	rigid and hard		
	2) They pos	sess plane surface	S	
	3) They are	obtained by rapid	cooling of motten s	ubstances
	4) They hav	e definite geometr	ric configuration.	
2.	The consitu	tent particles in ca	rborundum	
	1) atoms	2) molecules	3) +ve ions	4) +ve ions in a sea of electrons
3.	Among the	following highest	melting point is asso	ociated with
	1) NaCl _(s)	2) graphite	3) P ₄	4) K
4.	A point that	is located at the c	omer of a unit cell is	s shared by how many unit cells *?
	1) 2	2) 4	3) 6	4) 8
5.	The number	of lattice points p	er unit cell in B.C.C	and end centered lattice respectively
	1) 6, 6	2) 9, 10	3) 6, 8	4) 6, 10
6.	The minimu	m radius ratio that	can give a specific c	coordination number to the compound is
	1) 6.225	2) 0.15	3) 0.414	4) 0.73
7.	The coordin	ation numbers of	oxygen and silicon i	in SiO ₂ respectively
	1) 1, 2	2) 2, 1	3) 2, 4	4) 4, 2
8.	In metal latt	ices the co-ordina	tion number of meta	al atom is usually
	1) 2 (or) 4	2) 4 (or) 6	3) 6 (or) 8	4) 8 (or) 12.
9.	Which is no	t correct about ele	ectron sea model?	
	a) It was pro	posed by Lorentz	•	
	b) It explain	s the lattice energ	ies of ionic compour	nds
	c) It cau exp	plain the electrical	conductivity of met	cals
	1) a	2) b	3) c	4) all
10.	The crystal	system having rec	tangular prisms is	
	1) Triclinic	2) rhombic	3) trigonal	4) Hexagonal
11.	The crystal s	system without an	y element of symme	etry is
	1) monoclin	ic 2) hexagonal	3) triclinic	4) cubic
12.	White Sn be	elongs to one of	the seven crystal sy	stems. The number of Bravis lattices
	possible for	that crystal system	n	
	1) 2	2) 1	3) 4	4) 3

13.	Crystallographic parameters in KMnO ₄ are							
	1) $\alpha = \beta = \gamma$	$\neq 90^{\circ}$	$2) \alpha = \beta = \gamma = 90^{\circ}$					
	3) $\alpha \neq \beta \neq \gamma$	$\neq 90^{\circ}$	4) $\alpha = \beta = \gamma = 90$	$^{0} \beta > 90^{0}$				
14.	Among the	unit cells given be	cells given below, which are highly symmetric and unsymmetric					
	respectively							
	1) Hexagonal	l, cubic	2) Orthorhombic,	cubic				
	3) Cubic, tric	linic	4) Monoclinic, cu	bic				
15.	For a crystal t	he angle of diffracti	on (2θ) is 90° and th	ne second order line has a 'd' value of				
	2.28A ⁰ . The v	wave length (in A ⁰)	of x-rays used for B	Bragg's diffraction is:				
	1) 1.71 A°	2) $1.14 A^0$	$3) 2.28 A^0 \%$	4) $2.0 A^0$				
16.	If two waves	with the amplitude of	fE_0 each undergo co	nstructive interference, the amplitude				
	of the resulting	ng wave is						
	1) 0	$2) < 2E_0$	3) $2E_0$	4) E_0^2				
Close	e packed stru	ctures and voids						
17.	Among the fo	ollowing which has	a different structure	e from others?				
	1) Ba	2) Cr	3) Mo	4) TI				
18.	List - I		List II					
	(Metal)		(Co-ordination nu	mber)				
	A) Po		1) 6					
	B) K		2) 8					
	C) Co		3) 12					
	D) Pb		4) 4					
	1) 1 2 3 3	2) 1 2 3 4	3) 2 1 3 4	4) 2 1 4 3				
19.	In a hexagona	al closest packing in	two layers one abov	ve the other, the coordination number				
	of each spher	e will be						
	1) 4	2) 6	3) 8	4) 9				
20.	In a close pac	ked lattice containir	ng 'n' particles, the r	number of tetrahedral and octahedral				
	voids respect	ively						
	1) n, 2n	2) n, n	3) 2n, n	4) 2n, n/2				
21.	The number of	of octahedral voids	in a unit cll of cubic	c close packed structure is				
	1) 1	2) 2	3) 4	4) 8				
22.	In which of the	ne following crystal	the void efficiency	is 32%?				
	1) Zn 2) Po 3) Cu 4) Rb							
23.	The intermeta	allic compound LiA	g crystallizes; in cu	bic lattice in which both lithium and				
	silver have co	o-ordination number	r of eight. The cryst	al class is				
	1) simple cub	pic	2) body centered of	cubic				
	3) face-center	red cubic	4) none of these					

24.	In the crystals of which of the	ne following ionic com	pounds would you expect maximum				
	distance between the centres	of the cations and anio	on				
	1) LiF 2) CsF 3) Csl	4) Lil					
25.	Gold crystallizes with a						
	1) fee 2) bec	3) simple cubic	4) orthorhombic				
26.	When molten zinc is cooled	to solid state, it assume	s HCP structure. Then the number of				
neare	est neightbours of zinc atom w	vill be					
	1) 4 2) 8	3) 6	4) 12				
27.	Sodium crystallizes in a bec	lattice, hence the coord	ination number of sodium in sodium				
	metal is						
	1) 0 2) 4	3) 6	4) 8				
28.	The metal having 26\$- voidI	Lspace in its crystal stru	icture is				
	1) Cs 2) Po	3) Mo	4) Be				
29.	In modern periodic table, the	e position of the elemen	t with atomic number '84' is				
	1) 6th group, 6th period	2) IVA group, 6th	period				
	3) 16th group, 6th period	4) VIA group, 5th	n period				
30.	The percentage of void space	e of a metallic element	t crystallising in a ABCABCtype				
	lattice pattern is						
	1) 24% 2) 26% 3) 34%	4) 74%					
31.	If the radius of K^+ and F arc 1	33 pm and 136 pm resp	ectively, the distance between K ⁺ and				
	F in KF is pm						
	1) 269 2) 134.5	3) 136	4) 3 Crystal defects				
32.	Schottky defect causes						
	1) Increase in the density of	solid 2) Decrease in	the density of solid				
	3) No change in the density of	of solid 4) Decrease in	the conductivity of solid.				
33.	What type of crystal defect is	s indicated in the diagra	am below				
	Na ⁺ Cl ⁻ Na ⁺ CF Na ⁺ Cl ⁻						
	$Cl^ \Box$ $Cl^ \Box$ Na^+ \Box	Na^+					
	Na ⁺ Cl [−] □ Cl [−] Na ⁺ Cl [−]						
	1) Frenkel defect	2) Frenkel and Sc	chottky defects				
	3) Interstitial defect	4) Schottky defec	et				
34.	Which among the following	•	ky detect.				
	1) AgCl 2) NaCl	3) TiCl	4) MgCl ₂				
35.	Schottky defect in crystals is						
	1) Unequal number of cation						
	2) Equal number of cations a						
	3) An ion leaves its normal s	ite and occupies an inte	erstitial cells				
	4) Density of the crystal is increased						

36.	List - I		Lis	List - II					
	A) Crystal defectB) Carborundum			1) Amorphous					
				2) Frenkel					
	C) Pitch		3) (Cova	ale	nt c	erystal		
	The correct	match is ABC							
	A B	C		A	В	C			
	1) 3 2	2	2)	2	1	3			
	3) 2 1	3	4)	1	2	3			
37.	Which of the	e following is a "Ber	tholli	ide (Co	mp	ound"?		
	1) MgO	$2) Al_2O_3$	3) 1	Na ₂ C	C		4) ZrH		
38.	The formula	of an oxide of iron i	s Fe _{0.}	.93 O	1.00 °	If t	the compound has hundred CH tons, then		
	it contains								
	1) 93Fe ⁺² ion	s 2) 93Fe ⁺³ ions	3) 7	79Fe	e ⁺² 1	4F	Fe^{+3} 4) $93Fe^{+2}$, $14Fe^{+3}$		
Prop	perties of solid	ds							
39.	To get n-type	e semiconductor, imp	purity	y to	be	ado	ded to silicon should have the following		
numl	ber of valence	electrons							
	1) 2	2) 3	3) 1	l			4) 5		
40.	The mechan	ism of electrical con-	ducti	vity	m	ay l	be given in terms of		
	1) vacancy n	nechanism	2) I	nter	sti	tial	mechanism		
	3) Interstitia	lcy mechanism	4) a	ıll					
41.	The oxide th	at is insulator is							
	1) VO	2) MnO	3) I	ReO	3		4) Ti_2O_3		
42.	In which of	the following the cor	nduct	ivit	y w	ou!	ald be in the order of 10 ⁻⁴ ohm ⁻¹ cm ⁻¹		
	1) NaCl _(s)	$2)Na_{(s)}$	3) (lian	non	d	4) Ge		
43.	Which one o	of the following ratio	give	s the	e pı	urit	ty of the metal ($ ho$ -resistivity (or) specific		
	resistance)								
		$ ho_{ m 300K}$		ρ_{27V}			$ ho_{300K}$		
	1)	2) $\frac{\rho_{300K}}{\rho_{4.2^0K}}$	3)	ρ_{4K}	-		4) $\frac{\rho_{300K}}{\rho_{4^0C}}$		
44.	Germanium	can be made n-type							
	1) silicon	2) arsenic							
45.	,	1) silicon 2) arsenic 3) gallium 4) either As (or) Ga The magnetic behavior is different from others in							
		2) VO ₂ 3) ZrO ₂							
46.	2	e following is correct	•		5				
10.		ped with boron is n-				ndı	uctor		
	·	ped with arsenic is a	• 1						
		e good conductors of		•		пСО	/ilductoi		
	·					4	aranga with increasing tomography		
	4) electrical	conductivity of semi	cond	ucto	ors	aec	creases with increasing temperature		

The general formula of ferrites is MFe₂0₄. Where 'M' would not be 47. 3) Al 4) Zn 1) Mg 2) Cu Which substance shows anti ferro magnetism? 48. 2) CdO 3) CrO₂ 1) ZrO_2 4) $V_{2}O_{3}$ The alignment of magnetic dipoles shown below $\uparrow \downarrow \downarrow \uparrow \downarrow \downarrow$ represents which of the 49. following? 2) Ferri magnetism 1) Diamagnetism 3) Ferro magnetism 4) Anti-ferromagnetism List-II 50. List -I A) Antiferromagnetic 1) ZnFe₂O₄ B) Covalent crystal 2) NiO C) Ferrimagnetic 3) Diamond The correct match is A B C A B C 1) 2 2) 3 2 1 3 1 3) 1 4) 1 3 2 2 3

			— KE	$\overline{\mathbf{Y}}$			
1) 3	2)1	3) 2	4)4	5) 2	6) 2	7) 3	8) 4
9) 3	10) 2	11) 3	12) 1	13) 1	14) 3	15) 1	16) 3
17) 4	18) 1	19) 4	20) 3	21) 3	22) 4	23) 2	24) 3
25) 1	26) 4	27) 4	28) 4	29) 3	30) 2	31) 1	32) 2
33) 4	34) 2	35) 2	36) 3	37) 4	38) 3	39) 4	40) 4
41) 2	42) 4	43) 2	44) 2	45) 3	46) 3	47) 3	48) 4
49) 2	50) 1						

2. SOLUTIONS

Synopsis:

- 1. A solution is a homogeneous mixture of two or oore n: --reacting components. Formation of solution is a physical process.
- 2. A solution of a solid in another solid is known a solid solution. Many alloys are solid sciutions. An alloy of a metal with mercury is called an amalgam.
- 3. Aqueous solutions are those prepared using water. Non aqueous solutions have other solvents.
- 4. The components do not lose their identity during the formation of a solution. Dynamic equilibrium is established between dissolved solute and undissolved solute.
- 5. During formation of solution entropy of system increases due to greater disorder.
- 6. A solution whose molar concentration is definitely known a standard solution. The most ideal-method of expressing concentration is the molality (m). The commonly used method of expressing concentration is molarity (M).
- 7. Mass by volume percentage (w/v) indicates the mass of a solute in 100 ml of solution. Mass by weight indicates the mass of a solute in 100g of solution.
- 8. Molarity indicates the number of moles of the solute dissolved in one litre of the solution.lt also indicates the number of millimoles of the solute dissolved in one millilitre of the solution.
- 9. Number of millimoles of the solute present in V ml of the solution = Volume x Molarity = V x M. Number of moles of solute present in V litres of solution = MV.
- 10. When a solution is diluted its molarity decreases. $V_1M_1 = V_2M_2$, where $V_1 = V_2M_2$ volume of the solution before dilution, $V_2 = V_2M_2$ volume of the solution after dilution and $V_2 = M_2M_2$ volume of the solution after dilution and $V_2 = M_2M_2$ volume of the solution after dilution and $V_2 = M_2M_2$ volume of the solution after dilution.

11. Molarity,
$$\frac{W}{GMW} \times \frac{100}{V}$$

w = weight of the solute in grams and

V = volume of the solution in millilitres

$$M = \frac{10(\%w/v)}{GMW}$$
 $M = \frac{(10)(d)(\%w/w)}{GMW}$

where d is density in grams per ml.

12. Equivalent weight of a substance expressed in grams is known as gram-equivalent weight or gram-equivalent or equivalent.

Number of gram-equivalents =
$$\frac{\text{weight}}{\text{GEW}}$$

- 13. Equivalent weight = $\frac{\text{Molecular weight}}{n}$
 - where n is acidity of a base or basicity of an acid or valency or charge of ion or number of electrons transfered or number of faradays.
- 14. Normality indicates the number of gram- equivalents of solute present in one litre of the solution.
- 15. Number of gram equivalents of solute in V litres of solution = NV
- 16. A normal solution means IN solution. A decinormal solution is N/10 or 0.1 N solution. A centinormal solution is N/100 or 0.01 N solution.
- 17. Normality, $N = \frac{W}{GEW} \times \frac{1000}{V}$

$$N = \frac{10(\%w/v)}{GEM}$$
 $N = \frac{10(d)(\%w/v)}{GMW}$

 $N = Molarity \times N$

18. When a solution is diluted, its normality decreases.

 V_1, N_1 (Before dilution) = V_2, N_2 After dilution)

- 19. Molarity and Normality decrease with increase in temperature, except from 0^0 to 4^0 C.
- 20. Normality of the mixture when two solutions of same solute are mixed.

$$N = \frac{N_1 V_1 + N_2 V_2}{V_1 + V_2}$$

21. Molality (m) indicates the number of moles of a solute dissolved in 1000 grams or one kilogram of the solvent.

Molality (m) =
$$\frac{w \times 1000}{GMW \times W}$$

where w is weight of the solvent in grams.

- 22. Mole fraction of the solute = $\frac{n_1}{n_1 + n_2} = X_{\text{solute}}$
- 23. Mole fraction of the solvent = $\frac{n_2}{n_1 + n_2} = X_{\text{solvent}}$

where n_1 and n_2 are number of moles of solute and solvent.

- 24. For a binary solution $X_{\text{solute}} + X_{\text{solvent}} = 1$.
- 25. Weight percentage, molality and mole fraction are independent of temperature.
- 26. The process of escape of liquid molecules into space is called evaporation or vapourisation.
- 27. Rate of evaporation depends on : Nature of liquid, Surface area of liquid, Temperature and Flow of air current over the surface.
- 28. Rapid evaporation results in decrease in temperature leading to intense cooling.

- 29. When a liquid and its vapour are in equilibrium with each other, the pressure exerted by the vapour over the liquid surface is known as the vapour pressure of the liquid.
- 30. Volatile liquids with high vapour pressure at a given temperature have low boiling point. Less volatile liquids have high boiling point.
- 31. The vapour molecules have a higher potential energy than the liquid molecules at the same temperature.
- 32. The vapour pressure of a liquid depends upon the nature of the liquid and temperature. With an increase in temperature the vapour pressure of a liquid increases exponentially.
- 33. A liquid boils at that temperature when its vapour pressure becomes equal to the atmospheric pressure. When the external pressure is decreased, the boiling point decreases.
- 34. The vapour pressure of a solution of a nonvolatile solute is less than the vapour pressure of the pure solvent at the same temperature.
- 35. If P_0 is the vapour pressure of the pure solvent and P_s is the vapour pressure of the solution at the same temperature then, lowering of vapour pressure is P_0 P_s .
- 36. The vapour pressure of a solution of a non-volatile solute, is directly proportional to the mole fraction of the solvent in the solution.

$$P_s = P_0 X_{solvent}$$

- 37. Lowering of vapour pressure is directly proportional to mole fraction of solute
- 38. Raoul't Law states that the relative lowering of vapour pressure of a solution is equal to the mole fraction of the solute in the solution.

$$\frac{P_0 - P_s}{P_0} = \frac{n}{N+n}$$

- 39. Relative lowering of vapour pressure is independent of temperature.
- 40. An ideal solution is one which obey Raoult's law at all concentrations and temperatures. In an ideal solution the volume changes are additive. In the formation of an ideal solution no heat is evolved or absorbed.
- 41. Chemically similar liquids form ideal solutions. An ideal solution can be separated into two pure components by fractional distillation.
- 42. Raoults law is applicable to dilute solutions only.
- When the solute is non-volatile, if the solute does not undergo either ionisation (or) association and if the solution behaves as an ideal solution Raoult's law is good to apply.
- 44. Relative lowering of vapour pressure is determined by Ostwald and Walkers method.
- 45. In a solution n is very small compared to

$$N. \frac{P_0 - P_s}{P_0} \frac{n}{N} = \frac{w/m}{W/M} = \frac{w.M}{M.w}$$

w = v -weight of the solute,

m = me lecular weight of the solute,

W = Weight of the solvent and

M - molecular weight of the solvent

- 46. The properties which depend on the number of particles of the solute but not on the nature of v solute are called colligative properties.
- 47. Lowering of vapour pressure, Elevation of boiling point, Depression of freezing point and Osmotic pressure are four colligative properties.
- 48. All the colligative properties can be used to determine the molecular weight of non-volatile solute. Bui the best method by using Osmotic pressure.
- 49. When a non-volatile solute is dissolved in the pure solvent its boiling point increases, eg. sea water boils at greater than 100°C.
- 50. The difference between boiling points of solution containing a non-volatile solute (T_b) and the pure solvent T_o is called elevation of boiling point $\Delta T_b = T_b T_0$.
- 51. Liquids with high boiling point have low vapour pressures and are less volatile.
- 52. Elevation of boiling point is directly proportional to molality of the solution.

53.
$$\Delta T_b = K_b \cdot m = K_b \left[\frac{W}{GMW} \times \frac{1000}{W} \right]$$

where K_b is molal elevation constant of the solvent or ebuliioscopic constant

54. K_b value changes from one solvent to another soh em. For water, K_b = 0.52 degree.Kg/mole. Units of K_b : $K.K_b$ mole⁻¹

55.
$$K_b = \frac{RT_b^2}{1000.L_v}$$

where, L_v is Latent heat of vapourisation per cram of the solvent.

- 56. Elevation in boiling point is determined by Landsberger's method and Cottrell's method.
- 57. The temperature at which the pressure of a liquid is equal to that of the solid is called freezing point.
- 58. When a non volatile solute is dissolved in a solvent, the freezing point of the solvent decreases, eg. Sea water freezes below 0°C.
- Water taken in automobile radiators is mixed with glycerol (or) glycol to decrease its Freezing point (F.P.) to prevent the formation of ice when surroungding temperature falls.
- 60. $T_0 = F.P$ of pure solvent and T = F.P. of solution. Then the depression in Freezing point is given by $\Delta T f = T_O T_s$.
- 61. Depression in freezing point is directly proportional to molality of the solution.

$$\Delta Tf = Kf.m = Kf \left[\frac{W}{GMW} \times \frac{1000}{W} \right]$$

where K_f is molal depression constant of the solvent or cryoscopic constant

62.
$$Kf = \frac{RT_f^2}{1000L_f}$$

- where, L_f = Latent heat of fusion.
- 63. Depression in freezing point is determined by Beckmann's method and Rast's camphor method, and the method is applicable for solid in solid type of solution.
- 64. The passage of solvent molecules from a solution of low concentration into a solution of higher concentration through a semipermeable membrane is known as osmosis.
- 65. Semipermeable membrane is one which allows the solvent molecules to pass through but not solute particles, eg. Cellophane paper, cell walls, pig's gall blader, Copper ferrocyanide Cu_2 [Fe(CN)₆] etc.
- Egg free from outer shell placed in distilled water enlarges (haemolysis) and when placed in NaCl solution shrinks (plasmolysis) due to endomosis and exosmosis respectively.
- 67. Pressure developed due to osmosis is called osmotic pressure. It is the excess pressure which must be applied to a solution to prevent the flow of the solvent into the solution.
- 68. Osmotic pressure is directly related to molar concentration and temperature.
- 69. Osmotic pressure in terms of concentration (c) is, π CRT
- 70. Molecular weight of solute = $\frac{\text{wRT}}{\pi \text{V}}$
- 71. Solutions having same osmotic pressure are known isotonic solutions. Isotonic solutions generally have the same molar concentrations at a given temperature.
- 72. The solution having lower osmotic pressure is known as hypotonic solution and that having higher osmotic pressure is known as hypertonic solution.
- 73. Osmotic pressure method is widely used to determine molecular massses of proteins, polymers and other macro molecules.
- 74. Osmotic pressure is determined by Morse and Frazers method and Berkeley and Hartley's method.
- 75. The colligative properties of solutions depend on the total number of solute particles present in solution.
- 76. For different molar concentrations of the same solute, the colligative property has greater value for the more concentrated solution.
- 77. For solutions of different solutes having same percentage strength, the colligative property has greater value for the solute with least molecular weight.
- 78. For different solutes of same molar concentration, the colligative properties have the greater value for the solution which gives more number of particles on ionization.
- 79. Certain solutes in solution are found to associate, leads to a decrease in the number of particles in the solutions. Thus, it results in a decrease in the values of colligative properties. The colligative properties are inversely related to the molecular mass.

- 80. Electrolytes dissociate in solution to give two or more particles (ions). Such solutions exhibit higher values of colligative properties. The molecular masses of such substances as calculated from colligative properties will be less than their normal values.
- 81. Certain solutes that undergo dissociation (or) association in solution are found to show abnormal molecular mass. The extent of dissociation (or) association of solutes in solution is determined by Van't Hoff factor.
- 82. Van't Hoff factor (i) = $\frac{\text{Normal molar mass}}{\text{Observed molar mass}}$
- 83. $i = \frac{\text{Observed colligative property}}{\text{Normal colligative property}}$
- 84. For ideal solutions with no association or dissociation of solute the Van't Hoff factor i = 1. For solutes showing association, i < 1 and showing dissociation, i > 1.
- 85. If a molecule of solute on dissociation gives 'n' ions and a is the degree of dissociation, i = 1 + a (n 1)

Degree of dissociation $(\alpha) = \frac{i-1}{n-1}$

86. If a solute from associated molecules $(A)_n$ and α is the degree of association,

$$i = 1 - \alpha \left[1 - \frac{1}{n} \right]$$

Degree of association $\alpha = \frac{(1-i)n}{n-1}$

87. In terms of Van't Hoff factor (i)

Elevation of boliling point, $\Delta T_b = iK_b m$

Depression of freezing point, $\Delta T_f = iK_f m$

Osmotic pressure freezing point $\pi = iCRT$

Question Bank – I

- 1. If 5.85g of NaCl is dissolved in 90g of water, the mole fraction of NaCl is 1) 0.1 2) 0.01 3) 0.2 4) 0.0196
- 2. How many grams of CH₃OH would have to be added to water to prepare 150ml of a solution that is 2M CH₃OH?
 - 1) 9.6 2) 2.4 3) 9.6×10^4 4) 4.3×10^2
- 3. 10ml of conc. H₂SO₄ (18molar) is diluted to 1litre. the approximate strength of dilute acid could be
 - 1) 0.18N 2) 0.09N 3) 0.36N 4) 18N
- 4. 100ml of 0.3N HCl is mixed with 200ml of 0.6N H₂SO₄. The final normality of the resulting solution will be
 - 1) 0.1N 2) 0.2N 3) 0.3N 4) 0.5N

5.		y of the acid 800ml of N/10 I		ned by mixing 100ml of N/2 H ₂ SO ₄
	1) 0.2	2) 0.5	3) 0.6	4) 0.3
6.	The concentra	ation of a 100r	nl solution con	ntaining 'x' grams of Na ₂ CO ₃ is y M.
	The values of	x and y are		
	1) 2.12, 0.05	2) 1.06, 0.2	3) 1.06, 0.1	4) 2.12, 0.1
7.	3.65g of HCl resulting solu		16.2grams of v	water. The mole fraction of HCl in the
		2) 0.3	3) 0 2	4) 0 1
8.				be needed to react with one mole of
0.		n acidic solution		to needed to react with one more of
	1) 2/5		3) 4/5	4) 1
9.	,	,	•	of sulphuric acid are 11.07 and 21.91
<i>)</i> .	•	The density of t		•
	1) 4.36	•	3) 2.18	
10.	,	ŕ	•	xing 50ml of 0.01N HCl and 25ml of
10.	0.01N NaOH		obtained by im	Aing John of 0.0114 fiel and 25mi of
	1) 0.025	2) 0.0666	3) 0.125	4) 0
11.	The normality	of 0.3M Phos	phorous acid (H	I_3PO_3) is
	1) 0.1	2) 0.8	3) 0.3	4) 0.6
12.	The number of	of milli equivale	ents in 100ml or	f 0.5N HCl solution is
	1) 200	, and the second	3) 50	2
13.	The volume concentration		added to 100c	m ³ of 0.5N H ₂ SO ₄ to get decinormal
	1) 400cm^3	$2) 450 \text{cm}^3$	$3) 100 \text{cm}^3$	4) 500cm ³
14.				are of 7gms of Nitrogen and 8gms of
	• •	2) 16	3) 21	4) 50
15.		of 4% (w/v) o		7) 30
13.	•	(0.1 + 70)(w/v)(0.0)		4) 0.01
16.	ŕ	,	•	ned when 100ml of 0.1M H ₂ SO ₄ reacts
10.	with excess or	_	Tr will be form	ned when 100mm of 0.11vi 112504 reacts
		2) 2.24	3) 0 224	1) 5 6
17.				25°C. What is the vapour pressure (in
17.				pressure of water at 25°C is 24mm
	1) 2.4	2) 21.6	3) 0.5	4) 10
18.			s) of $0.1M H_2S$	O ₄ required to completely neutralize 1
	litre of 0.5M 1		3) 0.5	4) 10

19.	250ml of a solution contains 2.65grams of Na ₂ CO ₃ .10ml of this solution is added to 'x' ml of water to obtain 0.001 M Na ₂ CO ₃ solution. What is the value of 'x' in ml?
	1) 1000 2) 990 3) 9990 4) 90
20.	250ml of sodium carbonate solution contains 2.65grams of Na ₂ CO ₃ . If 10ml of this solution is diluted to one litre, what is the concentration of the resultant solution? 1) 0.1M 2) 0.001M 3) 0.01M 4) 10 ⁻⁴ M
21.	Equal volumes of 0.1M AgNO ₃ and 0.2M NaCl solutions are mixed. The concentration of nitrate ions in the resultant mixture would be 1) 0.1M 2) 0.05M 3) 0.2M 4) 0.15M
22.	The physical change among the following is 1) burning of coal 2) burning of sulphur 3) dissolution of Glucose in water 4) burning of white phosphorous
23.	100gm of an aqueous solution contains 10grams of Glucose. Then solute and solvent are
	1) Water and Glucose 2) Glucose and Water
	3) Alcohol and Glucose 4) Glucose and Alcohol
24.	The ratio of the number of moles of solute to the total number of moles of solute
	and solvent is known as
	1) Molarity 2) molality
~ -	3) mole fraction of solute 4) mole fraction of solvent
25.	The number of gram moles of solute present per litre of the solution is known as
26	1) Molarity 2) Molality 3) Normality 4) Mole fraction The purples of william also of colute present in 10 ml of decimal an election is
26.	The number of milli moles of solute present in 10ml of decimolar solution is 1)1 2) 10 ⁻³ 3) 10 ⁻² 4) 10 ⁻¹
27.	The number of moles of solute present in 0.5dm^3 of 0.5M solution is 1) 0.5 2) 5×10^{-3} 3) 5×10^{-2} 4) 0.25
20	
28.	The weight of H_2SO_4 present in 400ml of 0.125M solution is
20	1) 2.45g 2) 3.92g 3) 4.9g 4) 9.8g The growth are of well-as of WCl growth in 250ml of 0.01M solution is
29.	The number of moles of KCl present in 250ml of 0.01M solution is $\frac{1}{2} \cdot \frac{2}{5} = \frac{10^{-1}}{2} = \frac{2}{5} \cdot \frac{2}{5} = \frac{10^{-3}}{2} = \frac{4}{5} \cdot \frac{2}{5} = \frac{10^{-4}}{2}$
20	1) 2.5×10^{-1} 2) 2.5×10^{-2} 3) 2.5×10^{-3} 4) 2.5×10^{-4}
30.	5 millimoles of solute present in how many litres of the solution will have 0.1M
2.1	1) 5 2) 0.5 3) 50 4) 0.05
31.	The volume of water to be added to 100ml of 0.5M NaCl solution in order to make it decimolar is 1) 500ml 2) 400ml 3) 600ml 4) 50ml
32.	HCl is labelled as 3.65% (w/v) 10ml of the solution is diluted to 1lit. The proton
	concentration in the resulting solution is
	1) 10^{-3} M 2) 2.5×10^{-2} M 3) 7.5×10^{-2} M 4) 10^{-2} M
33.	0.1
	is diluted to 1 lit. The number of solute molecules present in 10ml of the dilute solution is
	1) $6.0x10^{20}$ 2) $6.0x10^{19}$ 3) $6.0x10^{18}$ 4) $6.0x10^{17}$
34.	Molarity of 100ml HCl than can neutralise 200ml of 0.5M Na ₂ CO ₃ solution is
	1) 1M 2) 2M 3) 0.5M 4) 1.5M

35.	In an aqueous solution is	solution, the	e mole fractio	n of ethanol is 0.8. The molarity of the
	1) 0.54m	2) 0.68m	3) 6.8m	4) 5.4m
36.	,	0.1M with re ions in the se	espect to KCl olution is	and 0.2M with respect to MgCl ₂ . The
37.	A sample of H Normality is	2SO4 is labe	elled as 49% (W/W) and has a density of 1.5g.ml ⁻¹ . Its
38.		volatile solu	te is dissolve	4) 18N d in 900g water of water such that the 0019. The molecular weight of the solute
	1) 60	2) 342	3) 180	4) 18
39.	mm, the vapou	r pressure of	the solution a	If vapour pressure of pure water is 100 t the same temperature 4) 101.2mm
40.	The relative lo Benzene is 1) 15.6x10 ⁻⁴			of 0.2molal solution in which solvent is 4) 0.05
41.	*	ce of 22NaCl	l solution is 23	Storr. That of 32NaCl solution as maybe
42.	The Molarity of solution is	of solution of	btained by dis	ssolving 0.01moles of NaCl in 500ml of
43.	Assertion: Mol	le fraction ha		4) 0.1M r of moles of solute to number of moles
	of solvent. 1) Both A and	R are true an R are true an at R is false	d R is the cor	rect explanation of A correct explanation of A
44.	2) Both A and3) A is true bu4) A is false b	olvent in Ama R are true ar R are true ar at R is false ut R is true	algam is mercind R is the cornd R is not the	rect explanation of A correct explanation of A
45.	Reason: Water atmospheric pr 1) Both A and	boils at 3731 ressure. R are true and R are true	K as the vapound R is the cor	is than 1.013Bar at 373K. It pressure at this temperature is equal to rect explanation of A correct explanation of A

46.	Asse:		The phy	ysical a	and chem	ical properties of any part of solution are		
	Reason: Solution is a homogenous mixture.							
		1) Both A and R are true and R is the correct explanation of A						
						d R is not the correct explanation of A		
					is false			
		,			R is true			
47.	Asse	,				ltiple of Molarity.		
• / •				•	elated to n	•		
	reas			•		R is the correct explanation of A		
						R is not the correct explanation of A		
			is true			The is not the correct explanation of the		
		,	is false					
48.		List		out IX	15 11 40	List-II		
- 10.	Δ) 4		-1 H in 100	ml soli	ition	1) 1m		
			cose in			2) 2N		
	•	00			solution	3) 0.1M		
	•	•	OH in 1			4) 1M		
	D) 48	g of Iva		oo giii	Sorvent	5) 0.2 mole fraction		
	The	a corre	ct match	16		5) 0.2 mole fraction		
	1 110	A	B	C	D			
	1)		2	1	5			
	1)	4 2	4	1	3			
	2)			2				
	3)	2 4	5 3	3 2	4			
	4)	4	3	2	1			
49.		List-	·I			List-II		
	A) G	aseous	solution	1	1) Ger	man silver		
	B) Li	iquid so	olution		2) Mill	2) Milk		
	C) So	olid sol	ution		3) San	3) Sand in water		
	D) C	olloida	l solutic	n	4) Aqu	4) Aqueous alcoholic solution		
					5) air.	5) air.		
	The	e corre	et match	ı is				
		A	В	C	D			
	1)	5	4	1	2			
	2)	2	4	1	3			
	3)	2	5	3	4			
	4)	4	3	2	1			
50.		List-	.Ţ			List-II		
20.	A) 0		SO ₄ solı	ution		1) 0.1N		
	ŕ	_	.Cl solut			2) 1N		
	•		Cl ₃ solu			3) 1.5N		
			PO ₄ sol			4) 2N		
	<i>D</i> , 0.	O 1 1 1 1 1 3	2 04 501			5) 0.6N		
						2, 0,01		

The	correct	matah	•
11116	correct	match	-18

	A	В	C	D
1)	4	2	1	5
1) 2) 3)	2	4	1	3
3)	2	1	5	3
4)	4	3	2	1

KEY

1 /	2. 1	3 1	1 1	5 1	6 3	7 1	Q 1	9 1	10.2
11.4	12. 3	13. 1	14. 4	15. 1	16. 3	17. 2	18. 2	19. 2	20. 2
21. 2	22. 1	23. 2	24. 3	25. 1	26. 1	27.4	28.3	29.3	30. 4
31. 2	32. 4	33. 2	34. 2	35. 4	36. 4	37.3	38. 4	39. 2	40. 2
41.3	42. 3	43.3	44. 3	45.4	46. 1	47.3	48.4	49.1	50.3

Question Bank – II

- 1. Which of the following is a colligative property
 - (1) vapour pressure of a liquid
 - (2) boilint point
 - (3) freezing point
 - (4) relative lowering of vapour pressure of a solution
- 2. The freezing point of equ molar ageoud solution will be highest for
 - (1) $C_6H_5NH_3Cl$ (2) $Ca(No_3)_2$ (3) $Ca(No_3)_2$ (4) $C_6H_2O_6$
- 3. An aqeous solution containing one gram of urea boils at 100.25°C. The aqeous solution containing 3gm of glucose in the same volume will boil at
 - $(1) 100^{\circ} C$
- $(2) 100.25^{\circ}C$
- $(3) 100.5^{\circ}C$
- $(4) 100.75^{\circ}C$
- 4. The molar freezing point constant for water is 1.86 K Kg mole⁻¹. The freezing point of 0.1m NaCl solution is
 - $(1) -1.86^{\circ}C$
- $(2) -0.372^{\circ}C$
- (3) -0.186°C
- $(4) 0.372^{\circ}C$
- 5. The osmotic pressure of solution containing 4 gm of solute (molar mess 246) per litre at 27° C (R = 0.0821 atm K⁻¹ mole ⁻¹)
 - (1) 0.1 atm
- (2) 0.2 atm
- (3) 0.4 atm
- (4) 0.8 atm
- 6. 10 gm of solute with molecul mass 100gm mole-1 is dissolved in 100g solvent to show 0.3 elevation in boiling point. The value of molar ebullioscopic constant will be
 - (1) 10
- (2) 3
- (3) 0.3
- (4) unpredictable
- 7. The latent heat of vapourisation of water is 9700 cal / mole and if the boiling point is 100°C, the ebullioscopic constant of water is
 - (1) 0.513
- (2) 1.026°
- (3) 1.832°
- (4) 10.26°
- 8. The freezing point of the solution containing 0.3 gm acetic acid in 30 gm of benzene is lowere by 0.45°C, then the Vant Hoff factor is (Kg for benzene = 5.12 Kg mol⁻¹)
 - (1) 1/2
- $(2) \frac{3}{4}$
- $(3) \frac{1}{4}$
- (4) 1/3

9.	Two solutions of glucose have osmotic pressures 1.5 and 2.5 atm. 1L of first is mixed with 2L of second solution, the osmotic pressure of resultant solution is $\Pi_1 V_1 + \Pi(V_1 + V_2)$				
			atm (3) $\frac{2.5+1.5}{2}$ a		. 1 2
10.	The osmotic pless than experimental phenol is 2	pressure of a pheno ected, it is due to	ol solution in an orga 2) phenol is 20%	nic solvent is determined	d to be 20%
	1) 4 2 9) 4 1	0) 4 3) 2 4	KEY () 2 5) 3 6) 3	3 7) 1 8) 1	
		Que	stion Bank -	Ш	
Mola	arity				
1.			les present in 10 ml o 3) 6.0 x 10 ²¹	of decimolar solution is 4) 6.0 x 10 ²²	
2.			l ml of 0.1M CaCl ₂ s 3) 1.8 x 10 ¹⁹		
3.	diluted to 1 li	t. The number of se		solute molecules. The ent in 10ml of the dilute $4) 6.0 \times 10^{17}$	
4.	11.1 g. of CaC	\mathbf{l}_2 is present in 100 m	nl of the aqueous solu	tion. The chloride ion con	cen-tration is
	1) 1M	2) 2M	3) 0.5M	4) 0.2M	
5.	100 ml each or resulting solu	5	1M NaCl are mixed.	The nitrate ion concent	ration in the
	1) 1M	2) 0.5M	3) 0.75M	4) 0.25 M	
6.	acid to be take	en to prepare 1000	ml of 0.18M solution		olume of the
7.		2) 100ml led as 3.65% (w/v in the resulting so	7) 10ml of the solut	tion is diluted to 1 lit.	The proton
			3) 7.5 x 10 ⁻² M	4) 10 ⁻² M ⁻	
8.	,	I HCl, 200 ml 2M l	,	HCl are mixed. The Mo	larity of the

3) 2.33 M.

4) 4.25 M

2) 2.66M

1) 1M

9.	The volumes of 1M HCl and 5M HCl to be mixed to get 2 lit of 2M HCl are					
	1) 1 lit and 1	lit	2) 1.5 lit and 0.5 lit			
	3) 1.25 lit and	d 0.75 lit	4) 1.33 lit and 0.66 lit			
10.	A 20% (W/W	V) solution of NaOH	I is 5 M. The density	y of the solution is		
11.	Zinc reacts w	rith CuSO ₄ according		4) 0.25 g.ml ⁻¹ $+ \text{CuSO}_4 \rightarrow \text{ZnSO}_4 + \text{Cu. If excess}$ unt of copper formed		
	1) 0.6354 g.	2) 0.3177g.	3) 3.177 g.	4) 6.354 g.		
12.	10.6 g of a substance of molecular weight 106 was dissolved in 100 ml. 10 ml of this solution was pipetted out into a 1000 ml flask and made up to the mark with distilled water. The molarity of the resulting solution is					
	1) 1 M	2) 10 ⁻² M	3) 10-3	4) 10 ⁻⁴ M		
13.		of decamolar aquou HCl solution is	s solutions of hydro	ochloric Acid is required to prepare		
	1) 0.5ML	2) 1 L	3) 2 L	4) 3 L		
14.	The concentr of x and y are		lution containing 'x'	grams of Na ₂ CO ₃ is yM. The values		
	1) 2.12, 0.05	2) 1.06, 0.2	3) 1.06, 0. 1	4) 2.12, 0.1		
Nori	nality					
15.	The number of	of millimoles of H ₂ S	SO ₄ present in 5 litre	es of 0.2N H ₂ SO ₄ solution is		
	1) 500	<i>2)</i> 1000	3) 250	4) 0.5 x 10 ⁻³		
16.		2 '	I HCl and 100 ml of in the resulting solu	f 2M HCl are mixed and made up to ation is		
	1) 1.25M	2) 1.5M ⁻	3) 2.5M	. 4) 0.75M		
17.	The volumne 1) 10 ml	of 0.025M Cat (OH 2) 60 ml	0_2 solution which can 3) 0.6 ml	n neutralise 100 ml of 10^{-4} M H_3 PO ₄ is 4) 2.8 ml		
18.	The Molarity is	of 200 ml of HCl so	lution which can net	utralise 10.6 g. of anhydrous Na ₂ CO ₃		
	1) 0.1M	2) 1M	3) 0.6M	4) 0.75M		
19.	10 millimoles of that acid is		exactly neutralises 10	00ml of an acid. Then the Normality		
	1) 0.2 N	2) 0.1 N	3) 0.4 N	4) 0.5N		

20.	100 ml of 0.	1N FeSO ₄ solution	will be completely	oxidised by 'x' gms of K ₂ Cr ₂ O ₇ in
	acidic mediui	m (Mol.wt = 294).	The value of x is	
	1) 4.9	2) 2.94	3) 0.49	4) 1.47
21.	100 ml of 2N	A HCl solution com	pletely neutralises 1	0 g. of a metal carbonate. Then the
	equivalent we	eight of the metal is	5	
	1) 50	2) 20	3) 12	4) 100
22.	What is the vo	olume (in ml) of 0.1 I	M potasium permang	ganate solution required to completely
			sulphate solution in	
2.2	1) 20	,	,	4) 100
23.		ty of 0.98 (w/v) H_2 S	·	4) 4) 7
2.4		2) 0.2N	Ź	4) 1N
24.		3N H ₃ PO ₄ solution i		4) 1 1 4
Mala	,	2) 1.5 M	3) 6M	4) 1 M
Mola	•	1 6 ' 1' 1	1: 100 6 4	
25.	0.1 gram mo	le of urea is dissolve	ed in 100g. of water.	The molality of the solution is
	1) 1 m	2) 0.01 M	3) 0.01 m	4) 1.0 M
26.	The molality	of 2% (W/W) NaC	l solution nearly	
	1) 0.02m	2) 0.35 m	3) 0.25 m	4) 0.45 m
21.	100 ml of eth	$\frac{1}{2}$ yl alcohol [d = 0.92	g/ml] and 900 ml of	f water $[d = 1 \text{ g/ml}]$ are mixed to form
	1 lit solution.	. The Molarity and	molality of the resul	ting solution are
	1) 2M and 21	m	2) 2M and 2.22m	
	3) 2.2M and	1.1 m	4) 2M and lm	
28.	Which of the	following aqueous	solutions is more c	concentrated [Assume the density of
	the solution a	as 1g/ml]		
	1) 1M Gluco	se	2) lm Glucose	
	3) 0.5m Gluc	cose	4) 0.5M Glucose	
29.	Which of the	following solution	is more concentrate	ed
	1) 03% H ₃ PC	O_4	2) $0.3M H_{3}PO_{4}$	
	3) $0.3 \text{ m H}_{3} \text{PO}$	O_4	4) $0.3N H_3PO_4$	
30.	Molarity of la	m aqueous NaOH s	olution [density of t	he solution is 1.02 g/ml]
	1) 1M	2) 1.02 M	3) 1.2 M	4) 0.98 M
Mole	e fraction			
31.	6 g. of Urea	is dissolved in 90 g.	of water. The mole	fraction of solute is
	1) 1/5	2) 1/50	3) 1/51	4) 1/501

A gaseous mixture contain four gases A, B, C and D. The mole fraction of "B" is 0.5. The mole fraction of "A" is				
1) 0.525	2) 0.375	3) 0.625	4) 0.732	
1) 0.05	2) 0.0476	3) 0.052	4) 0.52	
			4) $50^{\rm N}$	
,	,	,	,	
		•		
NaOH aqueo	ous solution is labelled le fraction of the solution	led as 10% (w/v). I lute in the solution i	Density of the solution is 1.02 g/ml. s	
,	2) 0.0466	3) 0.53	4) 0.053	
If 0.05 mole		•	•	
1) Graham's	Law	2) Dalton's Law		
3) Henry's La	aw	4) Boyle's Law		
2			2	
	2) 0 0 5	3) 0.1	4) 0.2	
1) 0.025	2) 0.05	3) 0.1	1) 0.2	
H_2S a toxic gas of H_2S in war	,	e smell is used for the mole. kg ¹ , the Henry	e qualetative analysis, if the solubility y's jaw constant is	
H_2S a toxic gas of H_2S in war 1) 285.6 bar Air contains 0	as with rottenegg like ter, at STP is 0.195 2) 324.8 bar O_2 and N_2 in the ratio	e smell is used for the mole. kg ¹ , the Henry 3) 462.9 bar o 0.2 : 0.8. If Henry	e qualetative analysis, if the solubility y's jaw constant is	
H_2S a toxic gas of H_2S in war 1) 285.6 bar Air contains 0	as with rottenegg like ter, at STP is 0.195 2) 324.8 bar O_2 and N_2 in the ratio 0.6×10^7 torr respects bar pressure is	e smell is used for the mole. kg ¹ , the Henry 3) 462.9 bar o 0.2 : 0.8. If Henry	e qualetative analysis, if the solubility y's jaw constant is 4) 534.8 bar law constant for O ₂ and N, are 3.3 x	
H_2S a toxic gas of H_2S in war 1) 285.6 bar Air contains 10^7 torr and 6 in water at 1 1) 1 : 1 The quantity	as with rottenegg like ter, at STP is 0.195 2) 324.8 bar O_2 and N_2 in the ratio 5.6×10^7 torr respects bar pressure is 2) 2:1	e smell is used for the mole. kg ¹ , the Henry 3) 462.9 bar o 0.2 : 0.8. If Henry ively, then the ratio o 3) 1 : 2	e qualetative analysis, if the solubility y's jaw constant is 4) 534.8 bar law constant for O_2 and N , are 3.3 x of mole fractions of O_2 to N_2 dissolved 4) 1:3 acked under 2.5 atm CO_2 pressure at	
	Aqueous Nac 1) 0.05 The mole per 1) 8 The mole fra 1) 0.9982 NaOH aqueous Then the mod 1) 0.05 bility If 0.05 mole of will be dissolated will be dissolated at the solution of the s	1) 0.05 2) 0.0476 The mole percentage of oxygen 1) 8 2) 16 The mole fraction of solvent in 0 1) 0.9982 2) 0.0017 NaOH aqueous solution is label. Then the mole fraction of the solution 1) 0.05 2) 0.0466 bility If 0.05 mole of gas are dissolved will be dissolved if the pressure 1 1) Graham's Law 3) Henry's Law O ₂ is bubbled through water at 2 bar, the solubility of O ₂ in gm.L ⁻¹	Aqueous NaOH solution is labelled as 10% by weight 1) 0.05 2) 0.0476 3) 0.052 The mole percentage of oxygen in a mixture of 7 gm 1) 8 2) 16 3) 21 The mole fraction of solvent in 0.1 moial aqueous solution is labelled as 10% (w/v). If then the mole fraction of the solute in the solution in 1) 0.05 2) 0.0466 3) 0.53 bility If 0.05 mole of gas are dissolved in 500 grams of wat will be dissolved if the pressure is 2atm. It illustrates 1) Graham's Law 2) Dalton's Law 3) Henry's Law 4) Boyle's Law O_2 is bubbled through water at 293K. assuming that bar, the solubility of O_2 in gm.L ⁻¹ is (Henry's law cores.)	

Vapo	our pressure -	Raoult's law		
43.	6 g. of urea is	s dissolved in 90 g. o	of boiling water. The	e vapour pressure of the solution is
	1) 744.8 mm	2) 758 mm	3) 761 mm	4) 760 mm
44.	At 20°C, the	vapour pressure of	diethyl ether is 442	2mm. When 6.4 g. of a non-volatile
	solute is disse	olved in 50g. of ethe	er, the vapour press	sure falls to 410mm. Trie Molecular
	weight of the	solute is		
	1) 150	2) 130.832	3) 160	4) 180
45.	The vapour p	ressure of pure wate	er at 25°C is 30 mm.	The vapour pressure of 10% (W/V)
	glucose solut	ion at 25°C is		
	1) 31.5 mm	2) 30.6 mm	3) 29.67 mm	4) 26.56 mm
46.	The weight o	f urea to be dissolve	ed in 100 g. of water	r to decrease the vapour pressure of
	water by 5%	is		
	1) 20 g	2) 14.66 g	3) 15.24 g	4) 16.66 g
47.	139.18 g of g	glucose is added to	178.2 g of water th	ne vapour pressure of water for this
	aqueous solu	tion at 100° C is		
	1) 704 torr	2) 759 torr	3) 7.6 torr	4) 76 torr
48.	The relative	lowering of vapour	pressure of 0.2 mo	olal solution in which the solvent is
	Benzene is			
	1) 15.6 x 10 ⁻⁴	⁴ 2) 15.6 x 10 ⁻³	3) 15.6 x 10 ⁻¹	4) 0.05
49.	Vapour press	ure of an aqueous so	lution is 2% less tha	n that of the solvent. The molality of
	the solution i	S		
	1) 2m	2) 1.5 m	3) 1.13 m	4) 0.2 m
50.	The amount	of Glucose to be di	ssolved in 300 g. c	of water so as to produce the same
	lowering in v	apour pressure as th	at of 0.2 molal aque	eous urea solution
	1) 9 g.	2) 18 g.	3) 36 g.	4) 1.8 g.
51.	A Current of	dry air was first pas	sed through the bul	b containing solution of 'A' in water
	and then thro	oush the bulb contain	ning pure water. Th	ne loss in mass of a solution bulb is
	1.92g gm Wh	nere as that in pure v	water bulb is 0.08g,	then mole fraction of 'A' is
	1) 0.86	2) 0.2	3) 0.96	4) 0.04
Eleva	ation of B.P.			
52.	An aqueous s	olution containing of	ne gram of urea boil	s at 100.25°C. The aqueous solution
	containing 3g	gm of glucose in the	same volume will b	poil at

point elevation of 0.4° C. A 1.24 g of an un-known solute in same amount of $CC1_4$ produced boiling point elevation of 0.62° C. then molar mass of un-known solute is 1) 25g $^{\circ}$ 2) 50g $^{\circ}$ 3) 75g $^{\circ}$ 4) 128g

3) 100.5°C

A solution prepared by dissolving 0.8gm of naphthalene in l00g of CC1₄ has a boiling

4) 100.75°C

2) 100.25°C

1) 100°C

53.

54.	Molality of an aqueous solution that produces an elevation of boiling point of 1.00 K at 1 atm pressure. (K_b tor water = 0.512 K. kg. mol ⁻¹)				
		b	3) 1.95 m	4) 5.12 M	
Doni	ression of F.P.	<u></u>	<i>c)</i> 1130 111	., 0.12	
55.		containing 6.8g of r	non-ionic solute in 10	00g of water was found to freeze at	
55.			he molar Mass of so		
	1) 13.6	•		4) 136	
56.		eezing point constar	,	K.kg mole ⁻¹ . The freezing point of	
	1) -1.86°C	2) -0.372°C	3) -0.186°C	4) 0.372°C	
57.	molal solution	n of a non electrolyt		mole ⁻¹ . The freezing point of a 0.05 4) 0.93°C	
58.		on in freezing point of ate is in the ratio	of 0.01 m aqueous se	olution of urea, sodium chloride and	
	1) 1:1:1	2) 1:2:3	3) 1:2:4	4) 2:2:3	
Osm	otic Pressure				
59.		pressure of solution 0.082L atm k ⁻¹ mol		solute (molar mass 246) per litre at	
	1) 0.1 atm	2) 0.2 atm	3) 0.4 atm	4) 0.8 atm	
60.	Average osmovarious soluto	•	nan blood is 7.4 atm	at 27°C. then total concentration of	
	1) 0.1 molL ⁻¹	2) 0.2 molL ⁻¹	3) 0.3 molL ⁻¹	4) 0.4 molL ⁻¹	
61.	At 10°C, the osmotic pressure of urea solution was formed to be 500 mm. The solution is diluted 'x' times and the temperature raised to 25°C when the osmotic prssure was noticed to be 105.3mm, then V is 1) 3 2) 4 3) 5 4) 12				
62.	,	,	,	ar (mol. Mass 342) at 15°C is	
			3) 3.75 atm		
63.	,	,	,	X. The molecular weight of substance	
		2) 119.96	3) 95.58	4) 126.98	
64.			containing 3gm of containing 3gm of the	f an unidentified solute exhibits an e solute is	
	1) 88gmol ⁻¹	2) 188gmol ⁻¹	3) 300gmol ⁻¹	4) 388gmol ⁻¹	

Ther osmotic pressure of the solution obtained by mixing 200cm³ of 2% (mass-volume) 65. solution of urea with 200cm³ of 3.42% solution of sucrose at 20°C is 1) 4 bar 2) 1.2 bar 3) 5.2 bar 4) 15.4 bar Abnormal Molecular Masses - Vant Hoffs factor A decimolar solution of $K_2[Fe(CN)_6]$ at 300K is 50% dissociated, then, osmotic pressure 66. of the solution is 3) 12.32 atm 1) 3.61 atm 2) 7.38 atm 4) 21.34 atm A solution containing 25.6gm of sulphur dissolved in 1000gm of asphithalence gave a 67. freezing point lowering of 0.680, then molecular formula of sulphur is $[K_p \text{ for naphthalence} = 6.8 \text{K kg mol}^{-1})$ 1) S₂ 4) S_8 2) S₄ 3) S_{6} Two elements A and B form compounds having molecular formula AB₂ and AB₃. When 68. dissolved in 25gm of benzene 1gm of AB₂ lowers the freezing point by 1.6K, where as 1gm at AB_4 lowers it by 1.25K, then atomic masses of A & B respectively. $[K_p \text{ for benzene} = 5.12 \text{ K.m}^{-1})$ 1) 64.4, 128.2 2) 25.5, 42.6 3) 56, 35.7 4) 101.3, 186.5 Van't Hoff's factor for 0.01M aqueous solution acetic acid is 1.04, the pH of tht solution 69. 1) 3.4 2) 6.4 3) 9.6 4) 10.6 If BaCl₂ ionizes to an extent of 89% in aqueous solution, the volue of Van't Hoff factor 70. is 1) 2.6 2) 0.4 3) 0.8 4) 2.4 KEY 4) 2 5) 2 2) 1 3) 2 6) 2 7) 4 8) 3 1) 1 9) 2 10) 1 11) 2 12) 2 13) 2 14) 3 15) 1 16) 2 17) 3 18) 2 19) 1 20) 3 22) 4 21) 2 23) 2 24) 4

25) 1

33) 2

41) 2

49) 3

57) 3

65) 3

26) 2

34) 4

42) 4

50) 2

58) 2

66) 2

27) 2

35) 1

43) 1

51) 4

59) 3

67) 4

28) 1

36) 2

44) 2

52) 2

60) 3

68) 3

29) 2

37) 3

45) 3

53) 4

61) 3

69) 1

30) 4

38) 2

46) 4

54) 3

62) 2

70) 1

31) 3

39) 1

47) 1

55) 4

63) 1

32) 2

40) 3

48) 2

56) 2

3a. ELECTROCHEMISTRY

Synopsis

- 1. The substance which allows the flow of electricity through it is called electric conductor. Electrical conducters are of two types
- 2. Electronic conductors conduct electricity due to mobility of free electrons. eg.Graphite, gas carbon, petroleum coke, metals, alloys, solid salts like CdS, CuS, etc.,
- 3. Electrolytic conductors conduct electricity due to mobility of free ions. eg. Aqueous solutions of salts, acids and bases, fused salts like NaCl, KCl, etc.,
- 4. Solutions of alkali metals in liquid ammonia are mixed conductors. They contain solvated cations and solvated electrons.
- Substances which do not conduct electric current in the molten state or in solution are called non-electrolytes.eg. Sugar, Glucose, Urea, Fructose, etc.,
- 6. Non-electrolytes are non-polar covalent substances. They do not undergo ionization.
- 7. All electrolytes spontaneously dissociate into charged particles (ions) when dissolved in water.
 - $MA \rightleftharpoons M^+A^-$
- 8. The degree of ionisation, (a) is the fraction of the total number of ionised molecules in solution.
- 9. The extent of ionisation is different for differe n: electrolytes and depends on the nature of electrolyte, concentration of electrolyte and temperature.
- 10. The degree of ionisation increases with increase of dilution and at infinite dilution it approaches unity.
- 11. Strong electrolytes ionise to a greater extent eg. Strong acids, strong bases and soluble salts
- 12. Weak electrolytes ionise to a lesser extent eg. Weak acids, weak bases and sparingly soluble salts.
- 13. Degree of ionisation of electrolytes increases with increase of temperature.
- 14. Arrhenius theory is applicable to only weak electrolytes.
- 15. The chemical decomposition of an electrolyte by the influence of electric current is called electrolysis.
- 16. In electrolytic cell, electrical energy is converted in to chemical energy.
- 17. During eletrolysis, reduction (electronation) takes place at cathode and oxidation (de electronation) takes place at anode.
- 18. During electrolysis, electrons flow from anode to cathode in the external circuit.

- 19. When a solution contains different kinds of cations and anions, during electrolysis, the cation of least electropositive element and the anion of least electronegative element are discharged first.
- 20. Preferential discharge of cations : $K^+ < Ca^{2+} < Na^+ < Mg^{2+} < Al^{3+} < Zn^{2+} < Fe^{2+} < H^+ < Cu^{2+} < Ag^+ < Au^+$.
- 21. Preferential discharge of anions : $F^- < PO_4^{3-} < SO_4^{2-} < NO_3^{-} < OH^- < HSO_4^{-} < Cl^- < Br < I^-$.
- 22. Electrodes which do not involve in chemical reaction during electrolysis are called inert electrodes, eg. Graphite, Platinum, Gold etc.
- 23. Active electrodes involve in chemical reaction during the electrolysis. In general anodic metal dissolves in solution, eg. Cu anode in aqueous CuSO₄.
- 24. Quantitative relationship of electrolysis was given by Faraday. There are two Faraday's laws.
- 25. The mass of the substance evolved, deposited or dissolved at an electrode is directly proportional to the quantity of electricity passed through the electrolyte. m = e Q, where, e is electrochemical equivalent
- Quantity of electricity (Q) = current strength in amperes (c) \times time in seconds (t). Coulomb is amp-sec.
- 27. If same quantity of electricity is passed into different electrolytes (connected in series), the ratio of the amount of substances deposited at respective electrode is equal to the ratio of their equivalent weights.
 - $\frac{m_1}{m_2} = \frac{E_1}{E_2}$, where m,, m, are masses of elements and E_1 E_2 are chemical equivalents
- 28. Resistance to the flow of electricity in a solution is directly proportional to the length and inversely proportional to the area of the tube in which solution is taken.
- 29. Resistivity is the resistance of a conductor of lm length and lm² area of cross section.
- 30. Units of specific resistance are : ohm.metre $(\Omega.m)$
- 31. For a given electrolytic cell, the quantity $\frac{1}{6}$ is constant which is called cell constant. Units of cell constant are nr⁻¹ (or) cm-1
- 32. Conductance is the ease of flow of electric current through the conductor. Conductance is the reciprocal of resistance. Units of conductance are ohm⁻¹ (or) Ω^{-1} (or) mho. In SI system it is seimen (S).
- 33. Specific conductance or conductivity (k , kappa) is the coductance of a conductor of lm length and lm² area of cross section. It is the reciprocal of resistivity.

 Units of k are ohm-fm⁻¹ (or) Sun⁻¹
- 34. Conductance of all the ions produced by one gram equivalent weight of an electrolyte in Vml of solution is called equivalent conductance, $A_{eq} = \kappa . V$

$$A_{eq} = \frac{\kappa \times 1000}{N}$$
, where N is normality

- 35. Units of equivalent conductivity are Ω^{-1} . cm² equi⁻¹ (or) S.cm². eq⁻¹.
- 36. Conductance of all the ions produced by one gram mole of an electrolyte in Vml of solution is called molar conductivity, $A_m = \kappa V$

$$\Lambda_{\rm m} = \frac{\kappa \times 1000}{\rm M}$$
, where M is molarity.

- 37. Units of Λ_m are Ω^{-1} . cm², mol⁻¹ (or) S.m². mol⁻¹
- 38. The conductance of increase in all electrolyte; increases with temperature.
- 39. With decrease in concentration of solution o increase in dilution, $\Lambda_{\rm m}$ increases, $\Lambda_{\rm eq}$ increases and κ decreases.
- 40. At infinite dilution, concentration approache zero. Molar conductance at this dilution is callei limiting molar conductivity μ_0 .
- 41. Equivalent conductance at this dilution is called limiting equivalent conductivity Λ_0 .
- 42. In case of strong electrolytes A_{eq} or p increases to less extent with dilution. Strong electrolytes are almost completely ionised at all concentrations increases in A_{eq} or μ , with dilution is only due to decrease in the inter ionic forces.
- 43. For stron electrolytes, variation of conductance with dilution is given by Huckel-Onsagar equation

$$\Lambda_{\rm C} = \Lambda_0 - A\sqrt{C}$$

44. Kohlrausch law: Limiting equivalent conductance of an electrolyte is the sum of equivalent conductivities of cations and anions.

$$\Lambda_m^0 = x\lambda_+^0 + y\lambda_-^0$$

- 45. The cell in which chemical energy is converted to electrical energy is called as Galvanic or Voltaic cell.
- 46. In Galvanic cell oxidation takes place at anode and electrons are released, reduction takes place at cathode and electrons are used up.
- 47. Electrons travel along external circuit from anode to cathode. Cathode is +ve electrode and anode is -ve electrode. These are connected by salt bridge.
- 48. Salt bridge is U-shaped glass tube containing KCl or NH₄NO₃ solution impregnated in a gelatin gel.
- 49. KCl solution is used in salt bridge, because the speeds of cation and anion are almost equal in them (transport numbers are same).
- 50. Salt bridge provides electrical contact between the solutions of half cells. It prevents the accumulation of charges in half cells. It allows the passage of charge.

- 51. Salt bridge prevents the physical mixing of the solutions of half cells. It completes the electrical circuit.
- 52. Daniel cell is an example of Galvanic cell. It is constructed using Zn and Cu electrodes and a poms partition.
- 53. The representation of the Daniel cell is $^{(-)}$ Zn_(s) / Zn²⁺_(aq) //Cu²⁺_(aq) //Cu_(s) (+). The emf of Daniel cell is 1.10 volt
- 54. Single electrode potential is the developed at metal and metal ion intense or non metal and non metal ion interface.
- Non metallic element is generally gas. Therefore single electrode of non- metal non metal ion needs an inert metal rod like Pi. eg. Pt, $H_{2 \text{ (g)}}$ / $H^+_{\text{ (aq)}}$
- 56. The magnitude of potential developed by a single electrode depends on the nature cf mem or non metal, number of electrons in\ olved in half cell reaction, concentration of ions in solution and temperature. These four factors are related by Nernst equation.
- Normal hydroge electrode, N.H.E. or S.H.E. is represented as : Pt, $H_{2(g)}(latm)$ / $H^+(1M)$.
- 58. The potential of SHE is assumed to be volts.
- 59. A saturated calomel electrode is now used as secondary reference electrode. It is represented as Hg/ Hg₂C $l_{2(s)}$, KCl (saturated) and potential of saturated calomel electrode is -0.2422 volts.
- 60. Standard electrode potential (E°) is the potential developed by single electrode if concentration of ions is 1 M(unit cone.) at 298 K arc 1 atmosphere pressure.
- 61. The potentials are standard reduction potentials only (SRP).
- 62. Standard oxidation potential (SOP) is equal:: SRP in magnitude, but with opposite sign.
- 63. Electrochemical series is the arrangement of various electrode systems in the ascending order of their SRP values. It is also called activity series.
- 64. All the metals which are present above the hydrogen in the electrochemical series are called active metals. They have -ve SRP values. They liberate hydrogen from dilute mineral acids.
- 65. All the elements which are present below the hydrogen in the activity series have +ve SRP values. They do not liberate H₂ from acid.
- Metal with less SRP, has high tendency to lose electrons, undergoes oxidation and acts as reducing agent, is represented on LHS in tgalvanic cell and replaces other metal ions which have more SRP from their salt solution.
- 67. Metal with more SRP, has high tendency to gain electrons, undergoes reduction and acts as oxidant, is represented on RHS in galvanic cell and is replaced by other metals which have less SRP from its salt solution.
- 68. An element with a lower reduction potential is a more powerful reducing agent.

- 69. An element with a higher reduction potential is a more powerful oxidising agent. $F_2 > C/_2 > Br_2 > I_2$
- 70. The potential difference between the two electrodes when no current is drawn from the cell is known as the E.M.F. (electromotive force) of the cell.
- 71. If the emf of the cell is negative, the cell reaction is non-spontaneous and that cell cannot be constructed.
- 72. If the salt bridge is removed, the cell reaction stops, the E.M.F. of the cell becomes zero and ions move randomly.
- 73. Nernst equation gives the dependence of the electrode potential on the concentration of ion. Nernst equation holds good for reversible electrodes.
- 74. For metal electrodes, the half-cell reaction is

$$M^{n+} + ne^{-} \rightleftharpoons M$$

$$E = E^{0} - \frac{2.303RT}{nF} log \frac{[M]}{[M^{n+}]} or$$

$$E = E^{0} + \frac{0.059}{n} log C$$

75. For non - metal electrodes, the half cell reaction is $A + ne^- \rightleftharpoons A^{n-}$

$$E = E^{0} - \frac{2.303RT}{nF} log \frac{[A^{n-}]}{[A]} or$$

$$E = E^{0} - \frac{0.059}{n} \log C$$

For hydrogen electrode, E = -0.059 pH

76. Concentration cell is galvanic cell in which both the electrodes are of same type but the electrolyte have different concentration.

$$CulCuSO_4(C_1)$$
II $CuSO_4(C_2)$ I Cu

77. The cell potential of the concentration cell can be calculated using the equations

$$E_{cell} = \frac{2.303RT}{nF} \log \frac{C_2}{C_1} = \frac{0.0591}{n} \log \frac{C_2}{C_1}$$

78. When the cell reaction is in equlibrium, the cell EMF (E) is zero. So the Nernst Equation is

$$E^{0} = \frac{2.303RT}{nF} \log K_{c} \text{ (or) } E^{0} = \frac{0.0591}{n} \log K_{c}$$

79. The change in free energy is represented by ΔG .

For spontaneous reaction, ΔG will have negative value ($\Delta G = -ve$)

- 80. Electrical work done in one second is the product of electrical potential and total charge passed.
- 81. To obtain maximum work from a galvanic cell, the charge has to be passed reversibly.

- 82. The reversible work done by a galvanic cell is the decrease in its free energy. $w_{max} = -\Delta G$
- When no current is drawn from the cell, the EMF of the cell is E, the amount of charge passed is nF (n = number of electrons and F = Faraday). $\Delta G = -nEE$
- 84. If the activity of reacting species is unity, then E and E° are same, we have, $\Delta G^0 = -nEE^0$
- 85. From standard free energy, the equilibrium constant can be calculated $\Delta G^0 = -RT \ln k_c$ (or) $\Delta G^0 \Delta G = -2.303RT \log k_c$
- 86. Battery is a single galvanic cell (or) more than one cell connected in series. Commercial batteries are of two types.
- 87. **Primary battery:** This cell becomes dead after some time and can not be used again, eg. Dry cell, Mercury cell.
- 88. **Secondary battery:** After its use, can be recharged and can be used again, eg. Lead storage battery, Nickel cadmium cell, Alkali storage cell (Edison's battery)
- 89. Dry cell isalso called Leclanche cell. It is a Zn container. Cathode is a Graphite rod, surrounded by powdered MnO₂ and carbon. Gap between cathode and anode is filled with moist paste of NH₄Cl and ZnCl₂ which acts as electrolyte.
- 90. Reactions in dry cell

Anode:
$$Zn_{(s)} \rightarrow Zn^{2+}_{(aq)} + 2^{e-}$$

Cathode:
$$MnO_2(s) + NH_{4(aq)}^+ + e^- \rightarrow MnO(OH) + NH_3$$

Zn is reductant and MnO₂ is oxidant. NH₃ produced at cathode forms complex with Zn^{2+} , [Zn(H₃)₂C l_2]. Cell potential is 1.5 volt.

91. Mercury cell is used for low current devices. Anode is ZnHg. Cathode is a paste of HgO and Carbon. Electrolyte is a paste of KOH and ZnO. Anode reaction is

ZnHg +20H"—» ZnO_(s)+H₂0 + Hg_(/) + 26- Cathode reaction is
HgO + H₂O + 2e⁻
$$\rightarrow$$
 Hg_(/) + 2OH⁻

Zn is reductant and HgO is oxidant

- 92. Overall cell reaction in mercury cell is $Zn + HgO_{(s)} -> \bullet ZnO_{(s)} + Hg_{(/)}$. Overall reaction does not involve any ion.
 - Cell potential remains constant during its life. Cell potential is 1.35 volt.
- 93. Lead storage battery is used in automobiles and vinvertors. Anode is Lead grids of filled with spongy lead. Cathode is Lead grids of filled L with PbO, Cathode and anode are arranged alternately and are separated by thin fibre glass sheets. Electrolyte is 38% (by weight) solution of H₂SO₄.
- 94. Reactions in storage battery: Anode reaction,

$$Pb + SO_4^{2-}_{(aq)} \rightarrow PbSO_{4(s)} + 2e^{-}$$

Cathode reaction,

$$Pb + SO_{4(aq)}^{2-} + 4H^{+} + 2e^{-} \rightarrow PbSO_{4(s)} + 2H_{2}O_{(l)}$$

Overall cell reaction,

$$Pb_{(s)} + PbO_{2(s)} + 2H_2SO_{4(aq)} \xrightarrow{\frac{discharging}{charging}} 2PbSO_{4(s)} + 2H_2O_{(l)}$$

- 95. During working storage of cell. H₂SO₄ is used (during discharge). The cell reactions ae reversed. Each set of anode and cathode produces a potential of 2 volts.
- Nickel Cadmium cell has longer life than lean storage battery. Anode is $Cd_{(s)}$, Cathode $-Ni(OH)_{3(s)}$ and Electrolyte is moist NaOH or KOH. Cd reductant and $Ni(OH)_3$ oxidant
- 97. Fuel cells are Galvanic cells that convert energy, of combustion of fuels like hydrogen, methane, methanol etc., directly into electrical energy are called fuel cells.
- 98. Fuel cell is used to supply electrical power in the Apollo space program. Porous carbon electrodes are used with catalysts like finely divided platinum or palladium. H, and 0₇ are bubbled through concentrated aqueous NaOH solution.
- 99. Cathode reaction in fuel cell is: $O_{2(g)} + 2H_2O_{(l)} + 4e^- \rightarrow 4OH^-_{(aq)}$ Anode reaction is: $2H_{2(g)} + 4OH^-_{(aq)} \rightarrow 4H_2O_{(l)} + 4e^-$ Overall reaction is: $2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(l)}$
- 100. Fuel cell runs continuously as long as reactants are supplied. Fuel cells are pollution free Efficiency of fuel cell is about 70%.
- 101. Corrosion is the process of gradual destruction of metal by environment is called corrosion eg: Rusting of iron, tarnishing of silver and green coating on copper.
- 102. More active metals are corroded more easily
- 103. Corrosion is due to the formation of oxide or other salts on the metal. Corrosion is electrochemical phenomenon galvanic cell formation)
- During rusting of iron, at a particular place, iron undergoes oxidation forming hydrated ferric oxide (rust).

$$Fe_2O_3 + x H_2O \rightarrow Fe_2O_3.xH_2O$$

- 105. Prevention of corrosion of iron can be prevented by painting iron surface, by electroplating the iron with corrosion resistant metals, like chromium, by coating of iron surface with zinc metal (is called galvanization), by connecting iron with a sacrificial anide (electro + ve metals)
- 106. Metals which are used as sacrificial anode are more electropositive elements like Zn, Mg, A1 and their alloys.

107. A state of non-reactivity reached with time of action after an initial state of reactivity is called E passivity.

Question Bank - I

1.	The best conductor of electricity is 1M solution of						
	1) H ₂ SO ₄ 2) H ₃ PO ₄ 3) CH ₃ COOH 4) H ₃ BO ₃						
2.	A solution of Sodium metal in liquid Ammonia is strongly reducing due to						
	1) Sodium atoms 2) Sodium hydride						
	3) Sodamine 4) Solvated electrons						
3.	Which one of the following is not a strong electrolyte?						
	1) Acetic acid 2) Aqueous NaOH solution						
	3) Molten NaCl 4) Sulphuric acid						
4.	With increase in temperature the electrical conductivity of metallic conductor						
	1) increases 2) remains same						
	3) decreases 4) changes irregularly						
5.	The reason for increase in electrical conduction of electrolyte with increase in						
	temperature is						
	1) increase in the number of ions						
	2) increase in the speed of ions						
	3) increase in the degree of dissociation of electrolyte						
	4) all the three						
6.	Electrical conduction of fused electrolyte depends upon						
	1) the number of ions in it						
	2) the charge of the ions						
	3) the velocity of the ions						
	4) all the above						
7.	The degree of dissociation of an electrolyte in aqueous solution depends on						
	1) temperature 2) concentration of the electrolyte						
	3) nature of the electrolyte 4) all the three						
8.	Arrhenius theory of electrolytic conduction does not apply to an aqueous solution						
	of						
	1) CH ₃ COOH 2) HCN 3) NaCl 4) NH ₄ OH						
9.	The electrolyte through which the electrons enter the electrolytic solution is						
	1) cathode 2) anode						
	3) may be anode and cathode 4) neither anode and cathode						
10.	The reactions taking place at anode and cathode are						
	1) Oxidation and Reduction 2) Reduction and Oxidation						
	3) Oxidation and Hydrolysis 4) Reduction and Hydrolysis						

	1) move in the same direction								
	2) move towards the oppositely charged electrodes								
	3) do not move								
	4) none of the above								
12.	According to Faraday's law of e	electrolysis the	e amount of chemical change						
	produced by the passage of an electronic	•							
		•	of the substance						
	, , , , , , , , , , , , , , , , , , ,	antity of electri							
13.	The electric charge for electrode deposition of one gram equivalent weight of a substance is								
	1) one ampere for one second	2) 96500 cou	lombs per sec						
	3) charge of one mole of electrons								
14.	Unit of electro chemical equivalent	, .							
	1) gram 2) gram/ampere	3) gram/col	4) col/gram						
15.	According to Faraday's first law of	. •	,						
	1) ZC 2) ZQ	3) Zt	•						
16.	One Faraday is equal to	,	,						
	1) 96.5c mol ⁻¹ 2) 96500c mol ⁻¹								
	3) $6.023 \times 10^{23} \text{ mol}^{-1}$ 4) 96.5×10^{23}	c mol ⁻¹							
17.	Which of the following ions is discharged at the anode when an aqueous solution								
	of sulphuric acid is electrolysed?								
	1) Hydrogen 2) Hydroxyl 3) Ox	ygen 4) So	dium						
18.	Which of the following ions is o	discharged at	the cathode when an aqueous						
	solution of sodium hydroxide is electrolysed?								
	1) Hydrogen 2) Hydroxyl 3) Ox	ygen 4) So	dium						
19.	An electrolysis is in progress, if the	cathode plate i	s removed						
	1) the movement of ions stopped	_							
	2) the ions moves at random								
	3) all ion move towards anode								
	4) only anions move towards the ar	node							
20.	During the electrolysis of cryolite, Aluminium and Fluorine are formed in the								
	molar ratio of								
	1) 3:1 2) 1:3 3) 2:3	4) 3:2							
21.	Which of the following electrode is	used as standa	rd reference electrode						
	1) Cu electrode	2) Zn electro	de						
	3) normal Hydrogen electrode	4) Chlorine e	electrode						
22.	The following statements is correct	w.r.t both elect	trolytic cell and Galvanic cell						
	1) in both cells, anode is shown by	+ve sign							
	2) in both cells, cathode is shown b	y –ve sign							

During electrolysis all ions

11.

23.	In a Daniel cell when Cu and Zn electrodes are connected current flows from
	1) Cut to Zn with in the cell 2) Cu to Zn outside the cell
	3) Zn to Cu outside the cell 4) All the above
24.	Which of the following statements is wrong about galvanic cells
	1) cathode is the positive electrode
	2) cathode is the negative electrode
	3) electrons flow from anode to cathode in the external circuit
	4) reduction occurs at cathode
25.	The difference of potential of two electrodes in a galvanic cell is known as
	1) EMF 2) Potential difference
	3) Electrode difference 4) Ionic difference
26.	The number of grams of copper deposited from a solution of CuSO ₄ by 0.5F of
	electricity is (At . wt of $Cu = 64$)
	1) 64g 2) 6.4g 3) 32g 4) 16g
27.	$Cu-2e^{-} \rightarrow Cu^{2+}$; $E^{0} = +0.377V$
	$\text{Sn-2e}^- \to \text{Sn}^{2+}$; $\text{E}^0 = -0.143\text{V}$
	The E.M.F of the cell constructed with these electrodes is
	1) $+0.066V$ 2) $-0.0066V$ 3) $+0.520V$ 4) $0.54V$
28.	The weight of Ag deposited by passing 241.25 coulombs of current through
	AgNO ₃ solution is
	1) 0.27g 2) 2.7g 3) 27g 4) 0.54g
29.	The weight of copper deposited when a Daniel cell produced 0.5F of electricity is
	1) 3.175g 2) 0.3175g 3) 15.875g 4) 6.35g
30.	Copper rod dipped in AgNO ₃ solution gives blue colour to the solution. In this
	process
	1) copper is oxidised 2) copper is reduced
	3) silver is oxidised 4) silver is reduced
31.	3amperes of current is passed for 4 hours through copper salt solution. The
	amount of copper deposited is (At. wt of $Cu = 63.54$)
	1) 1.43g 2) 14.3g 3) 16g 4) 143g
32.	The reaction takes place at anode when an aqueous solution of CuSO ₄ is
	electrolysed using Pt electrodes is
	1) $2SO_4^{2-} \rightarrow S_2O_8^{2-} + 2e^-$ 2) $Cu^{2+} + 2e^- \rightarrow Cu$
	3) $2H_2O \rightarrow 4H^+ + O_2 + 4e^-$ 4) $2H^+ + 2e^- \rightarrow H_2$
33.	The reaction taking place at anode is
	1) oxidation 2) reduction 3) ionisation 4) hydrolysis
34.	When zinc metal is added to CuSO ₄ solution, copper is precipitated. It is due to
	1) oxidation of Cu ²⁺ 2) reduction of Cu ²⁺

3) in both cells, reduction reaction takes place at the cathode

4) in both cells, oxidation reaction takes place at the cathode

	3) hydrolysis of CuSO ₄ 4) ionisation of CuSO ₄
35.	Which of the following metals will not reduce H ₂ O
	1) Ca 2) Fe 3) Cu 4) Li
36.	Normal aluminium electrode coupled with normal hydrogen electrode gives an
	emf of 1.66volts. So the standard electrode potential of aluminium is
	1) $-1.66V$ 2) $+1.66V$ 3) $-0.83V$ 4) $+0.83V$
37.	Other things being equal, the emf of a Daniel cell may be increased by
	1) keeping low temperature 2) using large copper electrodes
	3) using large zinc electrodes 4) decreasing concentration of Cu ²⁺ ions
38.	On the basis of position in the electrochemical series, the metal which does not
	displace hydrogen from water and acids
	1) Hg 2) Al 3) Pb 4) Ba
39.	The cathode reaction in electrolysis of dilute H ₂ SO ₄ with platinum electrodes is
	1) Oxidation 2) reduction 3) both 4) neutralisation
40.	Conductivity of a solution is directly proportional to
	1) dilution 2) number of ions
	3) current density 4) volume of the solution
41.	Of the following metals that cannot be obtained by electrolysis of the aqueous
	solution of their salts are
	1) Ag and Mg 2) Ag and Al 3) Mg and Al 4) Cu and Cr
42.	If the number of moles of electrons involved in a reaction is doubled by
	multiplying all of the species appearing in the overall reaction by 2 then the
	1) potential is halved 2) potential is doubled
40	3) potential is unchanged 4) potential is unchanged
43.	Pure water does not conduct electricity because it
	1) has low boiling point 2) is almost unionised
4.4	3) is neutral 4) is readily decomposed Which of the fallowing will form the earth of a with more at the increased in an
44.	Which of the following will form the cathode with respect to iron anode in an
	electrolyte cell?
45.	1) Mg 2) Al 3) Cu 4) Zn How many a a of overan will be liberated by 2 amore current flowing for 3
43.	How many c.c of oxygen will be liberated by 2 ampere current flowing for 3 minutes and 13 seconds through acidulated water?
	1) 11.2sec 2) 33.6sec 3) 44.8sec 4) 22.4sec
46.	Assertion: Copper sulphate solution can be stored in a silver bowl
40.	Reason: Metal having higher S.R.P value can displace another metal having lower
	S.R.P value from its salt solution
	1) A and R are true and R is the correct explanation of A
	2) Both A and R are true and R is not the correct explanation of A
	3) A is true but R is false
	4) A is false but R is true
	.,

47. Assertion: The conductivity of an aqueous solution of NaCl is greater than that of pure solvent

Reason: Conductivity depends upon the number of ions in solution

- 1) Both A and R are true and R is the correct explanation of A
- 2) Both A and R are true and R is not the correct explanation of A
- 3) A is true but R is false
- 4) A is false but R is true
- 48. Assertion: Iron is protected from corrosion by connecting magnesium metal with it.

Reason: Iron acts as a cathode and magnesium acts as anode which gradually disappears.

- 1) Both A and R are true and R is the correct explanation of A
- 2) Both A and R are true and R is not the correct explanation of A
- 3) A is true but R is false
- 4) A is false but R is true

49.

List –I	List –II
A) Cathode	1) Reference electrode
B) Anode	2) KCl, KNO $_3$ or NH $_4$ NO $_3$
C) Standard hydrogen	with gelatin
D) Salt bridge	3) Oxidation electrode
_	4) Reduction electrode

The correct match is

\mathbf{A}	В	C	D

1) 3 4 2 1

3) 3 4 1 2

ABCD

2) 4 3 1 2

4) 4 3 2 1

50.

List –I	List –II
A) One faraday	1) Reduction
B) Anode	2) 96500coulomb
C) Cathode	3) 6.24×10^{18} electrons
D) 1 coulomb	4) Oxidation
,	5) Z x 96 500

The correct match is

	A	В	C	D
1	_	1	2	2

1) 5 4 2 3 3) 2 4 1 5 A B C D

2) 2 4 1 3

4) 5 2 1 **KEY**

1. 1	2.4	3. 1	4. 3	5.4	6. 4	7. 4	8.3	9.1	10.1
11.2	12.4	13.3	14.3	15.4	16.2	17.2	18.1	19.2	20.3
21.3	22.3	23. 2	24. 2	25. 1	26.2	27.3	28. 1	29.1	30.4
31.3	32.2	33.2	34.2	35.4	36.4	37. 2	38.1	39.3	40.2
41.3	42. 3	43.3	44. 1	45. 3	46.3	47.1	48.1	49.2	50.2

Question Bank - II

1. Which of the following has highest equivalent conductance

2.	(1) 0.5M NaCl (2) .05 M NaCl (3) .005 M NaCl (4) .02 M NaCl Two electrodes are fitted in conductance cell at 1.5 cm apart while the area of cross section of each electrode 0.75 cm ² . The cell constant is
3.]	(1) 1.125 cm (2) 0.5 cm (3) $2cm^{-1}$ (4) $.2cm^{-1}$ f x is the specific resistance of the solution and N is the normality of the solution then equivalent conductivity of the solution is (1) $\frac{1000x}{N}$ (2) $\frac{1000}{Nx}$ (3) $\frac{1000N}{x}$ (4) $\frac{Nx}{1000}$
	The increase in the molar conductivity of acetic acid with dilution is due to (1) decrease in interionic forces (2) increase in degree of ionisation (3) increase in self ionization of water (4) decrease in interionic forces
5.	The expression relating molar and equivalent conductivities is (1) $\lambda_m = \lambda_{eq} / v^+ z^+$ (2) $\lambda_m = v^+ z^+ \lambda_{eq}$
	(3) $\lambda_m = v + \lambda_{eq} / z^+$ (4) $\lambda_m = z^+ \lambda_{eq} / v^+$
6.	If λ_c of NH_4OH is 115.52^{-1} cm ² mole ⁻¹ its degree of dissociation would be
	$(\lambda^{\alpha} N H_4 = 73.4 \ \Omega^{-1} cm^2 \ mol^{-1} \ \lambda_{OH^-} = 197.6 \ \Omega^{-1} cm^2 mol^{-1})$
7.	(1) 0.157 (2) 0.58 (3) 0.424 (4) 0.0848 The correct order of equivalent conduct once at infinite dilution of Li Cl, NaCl & KCl is
	(1) $Li Cl > NaCl > KCl$ (2) $KCl > NaCl > Li Cl$ (3) $NaCl > KCl > Li Cl$ (4) $Li Cl > KCl > NaCl$
8.	The molar ionic conductors at infinite dilution of $Ag^+61.92\times10^4 Smol^{-1}m^2$ at $25^{\circ}C$ the ionic mobility of Ag^+ will be
9.	(1) 6.4×10^{-8} (2) 6.192 (3) 6.192×10^{-8} (4) 3.2×10^{-4} Which expression can be used to calculate degree of ionization of weak electrolyte of
	type A^+B^- (1) \sqrt{K}/C (2) $\lambda_m/\lambda_n^{\alpha}$ (3) Both 1 and 2 (4) Neither 1 and 2
10.	Which lead accumulator is charged (1) Electrolytic cell (2) Galvanic cell (3) Daniel cell (4) None of the above
11.	Hydrogen – oxygen fuel cells are used in space craft to supply
	 (1) Power for heat and light (2) Power for pressure (3) Oxygen (4) Water
12.	Corrosion is (1) Physical change (2) Neutralisation (3) Flactre chamical change (4) None
13.	(3) Electro chemical change (4) None In electrochemical corrosion of metals, the metal undergoing corrosion
	(1) becomes anode(2) becomes cathode(3) becomes inert(4) None is correct
	(3) becomes their (4) None is correct

h	nalf imme	rsed in KC	l solution.	The part cor	roded is				
				ir (2)		e rod imm	ersed in K	Cl solutio	on
	3) Both 1		_	(4)					
15. T	The hydro	gen electro	de potentia	als depends	on				
`			used as ano	de					
`		H of solution							
•				ed as anode					
(4) Nature	e of the me	tal used as	cathode and	the P ^H of	the solutio	n.		
16. Т	The specif	ic conduct	ivity of $\frac{N}{10}$	KCl solutio	on at $20^{o}C$	is 0.212 d	ohm ⁻¹ cm	⁻¹ and the	;
resis	tance. The	e cell const	tant is $[K, -$	$\frac{1}{R} \frac{l}{a}$]					
(1) 4.6160	cm ⁻¹	(2) 1	.166cm ⁻¹	(3) 2	.173 cm ⁻¹	(4)	3.324 cm	n-1
17. N	Molar con	ductivity o	f a solution	1.26×10^2	$\Omega^{-1}cm^2m$	ol^{-1} its mo	larity is 0	.01 its spe	cific
C	onductivit	ty will be	$\lambda_m = \frac{K \times 1}{N}$	$\left[\frac{1000}{M}\right]$					
18. T	The molar	ionic cond lity of Ag^{-1}	uctance at		tion of Ag^2 $\begin{array}{c} 0 & 6.192 \times 1 \end{array}$	+ 6.192×1	$0^4 s mol$	1 mat 25^{o}	C the
					EY]
	1) 3			4) 2					
	9) 2	10) 1	11) 2	12) 3	13) 1	14) 2	15) 4	16) 2	
	17) 2	18) 1							
			Qı	uestion]	Bank -	III			
Fara	aday's La	ws							
1.	•		vsis of cro	lite, alumini	um and flu	orine4 are	formed in	ı molar	ratio
		2) 2	•	3) 1 : 1		4) 1 : 3			10010
2.	,	,		,		,	Foredove	of alastri	oitu is
۷.			oric salt sol	ic mass 63.5	o) deposite	d when 2	Taradays	or electri	City is
	•				·	4) 2a			
2	, ,		•	3) 1278		, ,	. 1 1		1 '
3.	• 1	C	iday of elec	tricity throu	gh fused so	dium chlor	ide, the an	nount of ch	llorine
	liberated	d is							
	1) 35.45	5 g 2) 7	0.9 g	3) 3.54	·5 g	4) 17.77	g		
4.	The nun	nber of cou	lombs requ	ired to depos	sit 5.4 g. of	Alunumun	n when the	e given ele	ctrode
	reaction	is represen	nted as Al34	$-\frac{9}{6} + 3e^{-}$	\longrightarrow A1				
	1) 1.05 2	$\times 10^5 \mathrm{C}$		2) 5790	00 C				
	3) 5.86			2) 5790 4) 3F	00 C				

14. Iron rod is immersed in KCl solution such that half its length is exposed to air and the other

5.	The number of electrons involved in the electro deposition of 63.5 g. of Cu from a solution				
	of CuSO ₄ is	2) 2 0 1 1 2 2 2	2) 12 21 122	10.00	
		$2) \ 3.011 10^{23}$			
6.		nemical equivalent	of a metal is " x " g.	coulomb ⁻¹ . The equivalent weight of	
	metal is	2)	•	A) 4 6 40 10	
				4) $1.6 \times 10^{-19} \times$	
7.		•		0067.35 g/C. Its equivalent weight is	
_	1) 65	,	3) 130	4) 32.5	
8.		strength required to	_		
	,	2) 1.988 amp	•	,	
9.	•	-		ml of hydrogen was obtained. The	
	volume of ox	xygen in ml obtained	d is		
		2) 44.8	,	,	
10.	One coulomb	of charge passes the	nrough solutions of	AgNO ₃ , and CuSO ₄ . The ratio of the	
	amounts of s	ilver and copper dep	posited on platinum	electrodes used for electrolysis is	
	1) 108 : 63.5	2) 54 : 31.75	3) 108 : 31.75	4) 215.8 : 31.75	
11.	When electri	city is passed through	gh molten $AlCl_3$, 13	3.5 g. of Al is deposited. The number	
	of Faradays 1	nust be			
	1) 0.5 2)	1.0	3) 1.5	4) 2.0	
12.	The weight in	n grams of O_2 forme	ed at Pt anode during	g the electrolys of aq. K_2SO_4 solution	
	during the pa	issage of one coulor	mb of electricity is		
	1)	2)8	3) $\frac{32}{96500}$	4)64	
	1)	$\frac{2)}{96500}$	$\frac{3)}{96500}$	$\frac{4)}{96500}$	
13.	How many c	oulombs of electric	city are required for	the reduction of 1 mol of MnO ₄ -to	
	Mn^{2+} ?				
	1) 96.500 C	2) 1.93 x 10 ⁵ C	$3) 4.83 \times 10^5 \mathrm{C}$	4) $9.65 \times 10^6 \mathrm{C}$	
14.	Electric char	ge on lgm ion of N ^{3.}	is - is		
	1) 4.8 x 10 ⁻¹⁹	C	2) 10 x 1.6 x 10 ⁻¹⁹	⁹ C	
	3) 1.6 x 10 ⁻¹⁹	С	4) 2.89 x 10 ⁵ C		
15.	Time required	d to deposit one mill	imole of aluminium	metal by the passage of 9.65 amperes	
	•	ous solution of alur			
	•	2) 10 s		4) 10 000 s	
16.		,		f K is deposited. The amount of Al	
10.				bassed through molten AZCl, is	
	•	•	•		
17	1) 4.5 g	,	3) 13.5 g		
17.		•	•	ted water, 112 ml of hydrogen gas at	
				current passed in amperes is	
	1) 1.0	2) 0.5	3) 0.1	4) 2.0	

18.	The amount of chlorine evolved when 2 amperes of current is passed for 30 minutes in an						
	aqueous solution of NaCl						
	1) 66 g 2) 1.32 g	3) 33 g	4) 99 g				
Elec	trolytic conductance						
19.	The conductivity of 0.001 M ace	etic acid is 5×10^{-5}	S cm ⁻¹ and 0 is 390.5 S cm ² mol ⁻¹				
	then the calculated value of disso	ociation constant of	acetic acid would be (H.P.P.M.T)				
	1) 81.78 10 ⁻⁴	2) 81.78 10 ⁻⁵					
	3) $18.78 10^{-6}$	4) 18.78 10 ⁻⁵					
20.	The distance between two electrons	odes of a cell is 2.5 c	m and area of each electrode is 5 cm ²				
	the cell constant (in cm ⁻¹) is						
•	1) 2 2) 12.5	3) 7.5	4) 0.5				
21.	The limiting molar conductivities	es $\binom{0}{0}$ for NaCl, K	Br an <i>KCl</i> are 126, 152 and 150 S.				
	cm ² mol ⁻¹ respectively. Then A ⁰ for NaBr is						
	1) 128 S cm ² mol ⁻¹	2) 302 S cm ² mol ⁻¹					
	3) 278 S cm ² mol ⁻¹	4) 176 S cm ² mol ⁻¹	-3				
22.	Which of the following solutions	s of NaCl has the hi	gher specific conductance?				
	1) 0.00IN 2) 0.01N	3) 0.1 N	4) 1 N				
23.	Molar conductivity of a solution	n is $1.26 \times 10^2 \Omega^{-1}$ cm	n^2 mol – 1 · Its molarity is 0.01M. Its				
	specific conductivity will be						
	1) 1.26 x 10 ⁻⁵ 2) 1.26 x 10 ⁻³	3) 1.26 x 10 ⁻⁴	4) 0.0063				
24.	The values of equivalent conduct	ivity at inflate diluti	ions for NH ₄ Cl, NaOH and NaCl are				
	respectively 149.74. 248.1 and 1	26.4 ohm ⁻¹ cm ² equ	i^{-1} . The value of λ_{eq}^{∞} of NH ₄ OH is				
	1) 371.44	2) 271.44					
	3) 71.44	4) It cannot be cal	culated from the data given				
25.	Specific conductance, of 0.1 M N	itric acid is 6.3 x 10	² ohm ⁻¹ cm ⁻¹ . The molar conductance				
	of the solution is						
	1) 630 ohm ⁻¹ cm ²	2) 315 ohm ⁻¹ cm ²					
	3) 100 ohm ⁻¹ cm ²	4) 6300 ohm ⁻¹ cm ²	2				
	e) 63.0 ohm ⁻¹ cm ²						
26.	For an electrolytic solution of 0	.05 mole litre ⁻¹ . the	e conductivity has been found to be				
	0.0110 Scm ⁻¹ . The molar conduc	etivity (in Scm ² mole	(z^{-1}) is				
	1) 0.055 2) 550	3) 0.22	4) 220				
27.	Molar ionic conductivities of a bi	valent electrolyte ar	e 57 and 73. The molar con-ductivity				
	of die solution will be						
	1) 130 S cm ² mol ⁻¹	2) 65 S cm ² mol ⁻¹					
	3) 260 S cm ² mol ⁻¹	4) 187 S cm ² mol ⁻	-1				

Nernst equation and EMF

1) 0.80 V

2) 0.12 V

Nern	ist equation a	na ENIF						
28.	At a certain temperature and at infinite dilation, the equivalent conductances of sodium							
	benzoate. hyd	drochloric acid and	sodium chloride are	240, 349 and 229 ohm ⁻¹ cm ² cquiv ⁻¹				
	respectively.	The equivalent con	ductance of benzoic	acid in ohm ⁻¹ cm ² equiv at the same				
	conditions is							
	1) 80	2) 328	3) 360	4) 408				
29.	EMF of a cel	l in terms of reduct	ion potential of its le	eft and right electrodes is				
	$1) E = E_{left} -$	$\mathrm{E}_{\mathrm{right}}$	$2) E = E_{left} + E_{right}$					
	3) $E = E_{right}$	-E _{left}	4) $E = -(E_{right} + E$	left)				
30.	E^0 for the ha			$1 \text{ Zn/Zn}^{2+}(1\text{M})//\text{H}^{+}(1\text{M})/\text{H}_{2}$ at 1 atm				
	is							
	1) - 0.76 V	2) + 0.76 V	3) - 0.38 V	4) + 0.38 V				
31.	If the standar	d electrode protenl	ial of Cu ²⁺ /Cu elect	rode is 0.34 V, what is the electrode				
	potential at 0	.01 M concentration	n of CU^{2+} ? ($T = 298$	0 K)				
	1) 0.399 V	2) 0.281 V	3) 0.222 V	4) 0.176 V				
32.	The potential	l of hydrogen electr	ode is-118 mV. The	H ⁺ concentration of the solution is				
	3) 0.01M	2) 2M	3) 10 ⁻⁴ M	4) 1M				
33.	The standard	potentials (E°) for	the half reactions ar	e as				
	$Zn Zn^{2+} +$	$2e, E^0 = +076V$						
	Fe Fe ²⁺ +	$2e^{-}$ $E^{\circ} = +0.41$	V					
	the emf for the	ne cell reaction						
	$Fe^{2+} Zn \qquad Z$	$2n^{2+}$ + Fe is						
	1) – 0.35 V	2) + 0.35 V	3) + 1.17 V	4) -1.17 V				
34.	E° for $F_2 + 2e^{-}$	2F ⁻ is 2.8 V						
	E° for $1/2$ F_2	+2e ⁻ 2F ⁻ is						
	1) 2.8 V	2) 1.4 V	3) – 2.8 V	4) -1.4 V				
35.	Consider the	fallowing E° value	S					
	$E^{\circ} Fe^{2+} / Fe^{2+}$	= + 0.77 V						
	$E^{\circ}Sn^{2+}/Sn = -0.14 \text{ V}$							
	under standar	rd conditions the po	otential for the reacti	on				
	$Sn_{(s)} + 2Fe^{3+}$	$2Fe^{2+}_{(aq)} + Sn^2$	+ is					
	1) 1.68 V	2)0.63 V	3) 0.91 V	4) 1.40 V				
36.	E ⁰ for the rea	action Fe $+$ Zn ²⁺	$+ Zn + Fe^{2+}$ is -0.35	V. The given cell reaction is				
	1) feasible	2) not feasible	3) explosive	4) slow				
37.	E.M.F of the	cell reaction.						
	•	$2Ag + Co^{2+}$ is $04c$						
	If $is + 0.34 \text{ V}$, $E^0_{Ag^+/Ag}$ is							

3) 0.40 V 4) 1.60 V

The EMF of the cell Ni/Ni²⁺/ (0.01M) // $Cl^{-}(0.01M)Cl_{2}$, pt is --- V if the SRP of nickel and 38. chlorine electrodes are -0.25V and +I.36V respectively 1)+1.612) -1.613) + 1.79The standard electrode potential of the two half cells are given below: 39. $Ni^{+2} + 2e^{-} \rightarrow Ni ; E^{\circ} = -0.25 \text{ Volt}$ $Zn^{+2} + 2e^{-} \rightarrow Zn \; ; E^{\circ} = -0.77 \; Volt$ The voltage of cell formed by combining the two half cells would be 1) -1.022) +0.52 volt3) +1.02 volt 4) -0.52 volt Aluminium displaces hydrogen from dilute HCl whereas silver does not. The e.m.f. of a 40. cell prepared by combining A1/A13+ and Ag/Ag+ is 2.46 V. The reduction potential of silver electrode is + 0.80 V. The reduction potential of aluminium electrode is (K.C.E.T) 1) + 1.66 V2) -3.26 V3) + 3.26 V4) - 1.66 VA cell constructed by coupling a standard copper electrode and a standard magnesium 41. electrode has emf of 2.7 volts. If the standard reduction potential of copper electrode is +0.34 volt, that of magnesium electrode is 1) +3.04 volts 2) -3.04 volts 3) +2.36 volts 4) -2.36 volts 42. The solution of nickel sulphate in which nickel rod is dipped is diluted 10 times. The potential of nickel 1) decreases by 60 mV 2) increases by 30V 3) decreases by 30 mV 4) decreases by 60V The standard reduction potentials for the twol half-cell reactions are given below: 43. Cd^2 (aq) 2e $Cd_{(s)}$; E^{o} 0.40V $Ag^{+}_{(aq)} + e^{-} \rightarrow Ag_{(s)}$; $E^{o} = -0.80V$ The standard free energy change for the reaction $2Ag^{+}_{(aq)} + Cd^{-}_{(s)} \rightarrow Ag^{+}_{(s)} + Cd^{2+}_{(aq)}$ is given by 1) 115.8 kJ 4) 231.6 kJ 2) -115.8 kJ 3) -231.6 kJ Normal aluminium electrode coupled with normal hydrogen electrode gives an emf of 44. 1.66volts. So the standard electrode potential of aluminium is 1) -1.66 V 2) + 1.66 V3) -0.83 V4) +0.83 VThe standard EMF For the cell reaction, $Zn + Cu^{2+} \rightarrow Cu + Zn^{2+}$ is 1.1 volt at 25°C. The 45. EMF for the cell reaction, when 0.1 M Cu²⁺ and 0.1 M Zn²⁺ solutions are used, at 25°C is 1) 1.10 V 2) 0.10 V 3) -1.10 V 4) -0.110 V**KEY** 2) 1 3)3 6) 2 7) 1 8) 4 5) 3 1) 2 4) 2 10) 3 11) 3 12) 2 13) 3 14) 4 15) 1 16) 1 9) 3 17) 1 18) 2 19) 3 20) 4 21) 1 23) 2 22) 4 24) 2 25) 1 26) 4 27) 1 28) 3 29) 3 30) 2 31) 2 32) 1 33) 2 35) 3 36) 2 34) 1 37) 1 38) 3 39) 2 40) 4

45) 1

44) 1

41) 4

42) 3

43) 3

3b. CHEMICAL KINETICS

Synopsis

- 1. When a chemical reaction is in progress, the concentration of the reactants decreases and the concentration of the products increases with the progress of time.
- 2. There is a change in the macroscopic properties (detectable properties like colour, concentration M etc.,) of the system during a reaction.
- 3. The rate of a reaction is defined as the decrease in the concentration of the reactant or the increase in the concentration of the product in unit time.
- 4. The units of rate of a reaction are : mole lit⁴s⁻¹. In gaseous reaction the units of rate of reaction are: atm s⁻¹.
- 5. Rate of reaction generally decreases non uniformly as time proceeds.
- 6. For a reaction $A \rightarrow B$

The rate in terms of the concentration of rectant

$$A = \frac{-d[A]}{dt}$$

The rate in terms of the concentration of product

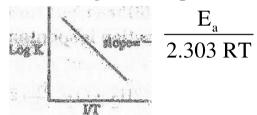
$$B = \frac{+d[B]}{dt}$$

7. In the reaction $N_2 + 3H_2 \rightarrow 2NH_3$, the rate =

$$\frac{-d[N_2]}{dt} = \frac{1}{3} \frac{d[H_2]}{dt} = +\frac{1}{2} \frac{d[NH_3]}{dt}$$

- 8. The slope of the tangent of the concentrati:n time curve at any point gives the rate of the reaction at that time.
- 9. The rate of a reaction depends upon the nature of the reactants.
- 10. Ionic substances in aqueous solution contain free ions. Ions can directly participate in reaction as bends need not be broken. So ionic reactions are ere fast or instantaneous.
- 11. Reactions between covalent substances are slow because in such reactions breaking of old bonds and formation of new covalent bonds occurs.
- With an increase in the concentration of the reactants, the rate of the reaction increases (except zero order reactions)
- 13. According to law of mass action, rate =K [Reactants]ⁿ where K is rate constant or specific rate and n is order of the reaction
- 14. With an increase in temperature the rate of a reaction always increases, whether the reaction is exothermic or endothermic.
- 15. A catalyst increases the rate of reaction by carrying the rection in a new path

- involving lower activation energy.
- 16. A catalyst alter rate of reacation, path of reaction, activation energy, threshold energy and rate constant.
- 17. Catalyst does not alter ΔH , ΔS , ΔG of reaction, energy of reactants and energy of products
- 18. A catalyst favours both forward and backward reactions equally. Hence it does not affect equilibrium constant.
- 19. For a chemical reaction to take place collisions between the reacting molecules are essential.
- 20. Number of binary collisions per unit time


$$Z = \pi \sigma_{AB}^2 \sqrt{\frac{8KT}{\pi \mu}} n_A . n_B$$

- σ_{AB} is collision diameter, u is reduced mass, n_A and n_B are number of molecules of reactant A and reactant B.
- 21. Only a fraction of the total number of collisions lead to reaction. This fraction is known as effective or fruitful collisions.
- 22. The minimum energy which the molecules should possess so that their collisions lead to chemical reaction is called threshold energy $[E_T]$.
- The minimum extra energy which the molecules should possess, over and above the average energy, to enable them to react is called the energy of activation (Ea). $E_a = E_T E_{Reactants}$
- 24. The greater the energy of activation of a reaction the lesser will be the rate constant and also the rate of the reaction.
- 25. The lesser the energy of activation of a reaction the higher will be the rate constant and also the rate of the reaction.
- 26. Molecules possessing the threshold energy are called activated molecules.
- 27. When activated molecules collide, an activated complex or a transition state is formed which changes into the products.
- 28. The energy of the activated complex is greater than the energy of the reactants and also the energy of the products.
- 29. The fraction of molecules which possess the energy of activation is given by the Boltzmann factor, e^{-Ea/RT}
- With an increase in concentration, the number of activated molecules increases. The number of effective collisions increase due to which the rate of the reaction increases.
- 31. Heat of reaction $_{\Delta}E = (Ea)_f$ - $(Ea)_b$, where $(Ea)_f$ is the energy of activation of the forward reaction and $(Ea)_b$ is the energy of activation of the backward reaction.
- 32. In an exothermic reaction, the energy of activation of the backward reaction is greater than the energy of activation of the forward reaction.
- 33. In an endothermic reaction the energy of activation of the backward reaction is

- less than the energy of activation of the forward reaction.
- 34. The relationship between the rate constant of a reaction and temperature is given by Arrhenius equation.
 - $k = A.e^{\frac{E_a}{RT}}$, where 'A' is frequency factor.
- 35. Frequency factor gives number of collisions per second per unit volume of reactant mixture.
- 36. The frequency factor and energy of activation are constant for a given reaction. They vary very slightly with temperature so that they are almost independent of temperature for a given reaction.

$$\log K = \log A - \frac{E_a}{2.303 \text{ RT}}$$

When a graph is drawn between log K and 1/T a straight line (linear) is obtained with negative slope.

38. At two temperatures T_j and T_2 , the rates constants K, and K_2 are given by

$$\log \frac{K_2}{K_1} = \frac{E_a}{2.303R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$$

- 39. The mathematical dependance of the rate of a reaction on the molar concentrations of the reactants is called the rate law or rate equation. For a reaction, $aA + bB \rightarrow cC + dD$,
 - rate = $K[A]^x[B]^y$, where K is rate constant or specific rate, x is order of reaction w.r.t, A and y is order of reaction w.r.t B.
- 40. The rate constant of a reaction becomes equal to the rate of the reaction when the concentration of all the reactants are unity. Flence the rate constant is also known as the specific reaction rate.
- 41. Rate constant does not change with change of concentration of reactants, products, volume of vesel, and coefficients of reactants.
- 42. The rate constant of a reaction is always a charecteristic value at a given temperature.
- 43. The units of the rate constant of n^{th} order reaction are: $lit^{(n_{-}1)}mole^{(1-n)}sec^{-1}$
- 44. The ratio between the rate constants of a reaction at two temperatures which differ by 10° is called the temperature coefficient of the reaction
- 45. Temperature coefficient = $\frac{K_{(t+10)}}{K_t}$

where K_t is the rate constant of the reaction at $t^{\circ}C$.

- 46. For most of the reactions the value of the temperature coefficient was found to be 2 to 3. This means that the rate constant of a reacdom increases by 100 to 200% with 10°C raise in temperature.
- 47. The slowest of different steps in the reaction mechanism is called rate limiting or rate determining step of a reaction,
- 48. Molecularity of a reaction is sum of number of atoms or ions or molecules in the rate determining step of the reaction.
- 49. Molecularity may be 1 or 2 or 3. It can be neither zero nor fractional.
- 50. The sum of the powers of the concentration terms of the reactants in the rate equation of the reaction is known as the order of the reaction.
- 51. The rate equation is determined experimentally from which we can know the order of the reaction.
- 52. Rate is independent on the concentration of reactant in a zero order reaction.
- 53. For a zero order reaction, rate = rate constant. Units of rate constant are : mol L^{1} s⁻¹
- Fate is dependent on single concentration term in a first order reaction.

 rate = K x Concentration

 Units of rate constant are: s⁻¹.
- 75. Rate is dependent on two concentration terms in a second order ration, rate = $K \times (Concentration)^2$ Units of rate constant are : $L \text{ mol}^{-1} \text{ s}^{-1}$
- 56. If 'a' is initial concentration of the reactant, reduced to (a x) in time t, the rate constant of a first order reaction, $K = \frac{2.303}{t} \log \frac{a}{a x}$
- 57. Time taken for 50% completion of a reaction is called half- life $(t_{J/2})$.
- 58. Half life of a first order reaction is independent on the initial concentration, $t_{1/2} = \frac{0.693}{K}$
- 59. Time required for 75% completion of a first order reaction is 2 half lives, for 87.5% completion is 3 half -lives and 99.9% completion is 10 half-lives.
- 60. Half life of a reaction is directly proportional to a^{1_n}, where 'a' is initial concentration and 'n' is order or reaction.
- 61. For a zero order reaction $t_{1/2} = a/2K$.
- 62. For a second order reaction $t_{1/2} = 1/K$.
- 63. Rate Vs Concentration (C):

Order X-axis Y-axis Nature of graph

- i) Zero C Rate Straight line ll^{el} to X-axis
- ii) 1st C Rate Straightline passing through origin
- iii) nth [C]ⁿ Rate Straightline passing through origin

64. Concentration Vs time:

Order X-axis Y-axis Nature of graph

- i) Zero time C Straight line with -Ve slope
- ii) 1st time log C Straight line with –Ve slope
- iii) nth time 1/C Straight line not (n>1) passing through origin
- 65. Initial concentration Vs half life:

Order X-axis Y-axis Nature of graph

- i) Zero C $t_{1/2}$ Straight line passing through origin
- ii) 1st C $t_{1/2}$ Straight line parallel to X-axis
- iii) n^{th} 1/C $t_{1/2}$ Straight line passing through origin
- 66. The order of reaction is experimentally determined by Integrated equation method, Half life method, Van't Hoff differential method and Ostwald's isolation method.
- 67. Molecularity is obtained for the reaction mechanism and not from stoichiometry.
- 68. Molecularity and order of a reactions are one and the same for an elementary reaction.

Question Bank

1. Wrong statement of the following is

The rate of reaction

- 1) Decreases with time
- 2) Decreases with decrease in concentration of reactant
- 3) Decreases with increase in time and decreases with concentration of reactant
- 4) Is always zero at the beginning and after infinite time
- 2. A catalyst accelerates the reaction, because
 - 1) it brings the reactants closer
 - 2) it lowers the activation energy
 - 3) it changes the heat of reaction
 - 4) it increases the activation energy
- 3. The expression $-d(H_2O_2)$ indicates

dt

- 1) rate of formation of H_2O_2
- 2) rate of decomposition of H_2O_2
- 3) increases in rate of reaction
- 4) decrease in the rate of formation of H_2O_2
- 4. The order of a reaction can be obtained from
 - 1) Chemical equation
- 2) Thermo chemical equation
- 3) Chemical equilibrium
- 4) Rate expression
- 5. Which of the following is correct?
 - 1) Molecularity of a reaction is always same as the order of reaction
 - 2) In some cases molecularity of the reaction is same as the order of reaction

	3) Molecularity of the react	ion is alw	ays more tha	an order of reaction
	4) All the three are correct		C C 1	
5.	Equation for the time of half	•		r reaction is
	1) $t_{1/2} = 0.693/k$ 2) $t_{1/2}$			
_	3) $t_{1/2} = k/0.693$ 4) $t_{1/2}$			
7.	If concentration of reactants			
	1) $e^{k/x}$ 2) k/x			
3.	For a hypothetical reaction A	$A+B \rightarrow$	products, the	e rate law is $R = K [B][A]^0$, the
	order of the reaction is			
	1) 1 2) 2	3) 3		4) 0
9.	The time of completion of 9	90% of a	first order re	action is nearly times that
	of half life			
	1) 10 2) 5			
10.	The velocity constant of a re-	eaction at	290K was f	ound to be 3.2x10 ⁻³ . At 310K it
	will be about			
	1) 1.28×10^{-2} 2) 9.6×10^{-3}	3) 6.4x1	10^{-3}	4) 3.2×10^{-4}
11.	For a chemical reaction A -	\rightarrow B, it is	s observed t	hat the rate of reaction doubles
				es. The order of reaction in A is
		e		
12.			,	ce in 16 minutes. Then fraction
	that would react in 32 minute		1	
	1) 1 /2 2) 1 /4	3) 1 /8	4) 3 /	4
13.		*	·	280k. The rate of constants were
	found to be K_1 and K_2 respec			
	1) $K_2 = 4K_1$ 2) $K_2 = 2K_1$	•		4) $K_2 = 0.5K_1$
14.				in temperature. The increase in
,	reaction rate as a result of ter			
	1) 112 2) 512	_		4) 614
15.	The reaction $2N_2O_5 \rightarrow 2N_2O_5$,		, , , , , , , , , , , , , , , , , , , ,
13.	1) Bimolecular and second o	. –	2) Unimolec	ular and first order
	3) Bimolecular and first orde		,	
16.		,		nst time is a straight line with a
10.	negative slope equal to	piot of to	g (a x) agan	ist time is a straight line with a
	1) K/2.303 2) –2.303k	3) _Fa/	2 303	4) –Ea/2.303R
17.	In Arrhenius plot, intercept is			4) —Lai 2.303K
17.	1) –Ea/R 2) ln A	-	'	4) $\log 10^{a}$
18.		_		of given below will increase the
10.	rate of reaction	iu, uccica	se in which	or given below will increase the
	1) Particle size	2) Cono	antrotion	
	3) Temperature	*		
19.				nical kinetics which one of the
19.			III CHEII	ilear kineties which one of the
	following statement is correct) F :	of optimation
	1) A is adsorption of activation		_	
20	,		•	brium constant
20.	The time taken for the compl			
	1) (2.303 /k) log 3 /4	,	2) (2.303/k) [log 4

	3) (2.303/k) log 1 /4 4) (2.303/0.75) log k					
21.	The rate of reaction has the dimension of					
	1) Moles lit ⁻¹ 2) Moles lit sec ⁻¹ 3) Moles lit ⁻¹ sec ⁻¹ 4) Moles ⁻¹ lit ⁻¹ sec ⁻¹					
22.	The unit of rate constant depends on					
	1) number of reactants 2) concentration terms					
	3) order of reaction 4) molecularity of reaction					
23.	After three half lives, the percentage fraction of amount left is					
	1) 6.25 2) 75 3) 12.5 4) 50					
24.	The overall kinetics of a reaction is governed by					
	1) the main reaction					
	2) the fastest step in the reaction mechanism					
	3) the slowest step in the reaction scheme					
	4) the step involving the maximum number of reactant species					
25.	The order of a reaction whose rate is determined by only one concentration					
	variable is					
	1) Zero2) One 3) Two 4) Three					
26.	The powers to which the concentration of a substance appears in the rate					
	expression is known as					
	1) Order of reaction 2) Molecularity of reaction					
	3) Rate of reaction 4) Order of reaction with respect to that substance					
27.	The inversion of cane sugar into glucose and fructose is					
	1) 1 st order 2) 2 nd order 3) 3 rd order 4) zero order					
28.	If the rate for the chemical reaction is expressed as Rate = $K[A][B]^n$, then					
	1) order of reaction is one 2) order of reaction is n					
• •	3) order of reaction is 1+n 4) order of reaction is 1-n					
29.	The Arhenius equation expressing the effect of temperature on the rate constant of					
	reaction is					
	1) $K = E^{a/RT}$ 2) $K = Ae-E^{a/RT}$ 3) $K = log_e \underline{E}_a$ 4) $K = e-E^{a/RT}$					
20	RT					
30.	The minimum energy required for molecules to enter into chemical reaction is					
	called 1) Kinetic energy 2) Potential energy					
	1) Kinetic energy 2) Potential energy 3) Threshold energy 4) Activation energy					
21	3) Threshold energy 4) Activation energy In a reaction 2A+B > A B the reactant 'A' will disappear at					
31.	In a reaction $2A+B \rightarrow A_2B$, the reactant 'A' will disappear at					
	1) half the rate at which B will decrease					
	 2) the same rate at which B will decrease 3) the same rate at which A₂B will form 					
	4) twice the rate at which B will decrease					
32.	Chemical kinetics is a branch of chemistry which deal with					
<i>J</i> 2.	1) heat changes in a reaction 2) rate of reaction					
	3) bonding 4) electronic structure					
33.	For a reaction to be spontaneous, the free energy change (ΔG) of the reaction is					
55.	1) negative 2) positive 3) zero 4) infinity					
34.	The rate of a chemical reaction					
<i>-</i>	1) increases as the reaction proceeds					
	2) decreases as the reaction proceeds					
	-,					

	3) may increase or decrease during the reaction
	4) remains constant as the reaction proceeds
35.	The effect of a catalyst in a chemical reaction is to change the
	1) heat of reaction 2) final product
	3) equilibrium concentration 4) activation energy
36.	The graph drawn between log k and 1/T gives
	1) a straight line with positive slope
	2) a straight line with negative slope
	3) a straight line passing through the origin
	4) hyperbola
37.	The threshold energy of a chemical reaction depends upon
	1) temperature 2) nature of reactants
	3) concentration 4) pressure
38.	The acid hydrolysis of ethyl acetate is
	1) bimolecular 2) 1 st order 3) pseudo unimolecular 4) all
39.	The product of half life $(t_{1/2})$ and the initial concentration of the reactant (a) is
	constant. Then the ratio of reaction is
	1) 2 2) 3 3) 0 4) 1
40.	The units of rate of reaction are same as the rate constant of order reaction
	1) 1^{st} 2) 2^{nd} 3) 3^{rd} 4) 0
41.	The rate of a chemical reaction depends upon
	1) temperature 2) conc. of reactants
	3) nature of reactants 4) all the above
42.	Half life of first order chemical reaction is independent of
	1) nature of reactants 2) temperature
	3) catalyst 4) initial concentration
43.	Which of the following statements are same as the rate constant of order
	reaction
	1) first order reaction should be bimolecular
	2) order reaction must be positive
	3) order depends upon stiochiometry
	4) order is based on experimental results
44.	In general the rate of a given reaction can be increased by all the factors except
	1) Increasing the temperature
	2) Increasing the concentration of reactants
	3) Increasing the activation energy
	4) Using a catalyst
45.	If the rate of gaseous reaction is independent of pressure, the order of reaction is
	1) 0 2) 1 3) 2 4) 3
46.	Assertion: Order of reaction is evaluated from the mechanism of a reaction
	Reason: Order of reaction can be zero
	1) Both A and R are true and R is the correct explanation of A
	2) Both A and R are true and R is not the correct explanation of A
	3) A is true but R is false
	4) A is false but R is true

- 47. Assertion: Decomposition of H_2O_2 is a first order reaction Reason: For the decomposition of H_2O_2 , the rate of reaction = $K[H_2O_2]$
 - 1) Both A and R are true and R is the correct explanation of A
 - 2) Both A and R are true and R is not the correct explanation of A
 - 3) A is true but R is false
 - 4) A is false but R is true
- 48. Assertion: Base catalysed hydrolysis of ester is a second order reaction Reason: Units for second order rate constants are lit.mol⁻¹.sec⁻¹
 - 1) Both A and R are true and R is the correct explanation of A
 - 2) Both A and R are true and R is not the correct explanation of A
 - 3) A is true but R is false
 - 4) A is false but R is true
- 49. List-I (Rate constant) List-II (Unit)
 A) Zero order 1) mole^{-1/2} litre ^{1/2} sec⁻¹
 B) 3/2 order 2) litre mole⁻¹ sec
 C) 1st order 3) moles litre⁻¹ time⁻¹
 D) 2nd order 4) sec
 - The correct match is

	\mathbf{A}	В	C	D
1)	4	2	1	3
1) 2) 3)	2	4	1	3
3)	2	1	4	3
4)	4	1	2	3

- 50. List-I
 - List-II List-II
 - A) Rate 1) J/mole B) Rate constant 2) 0.5
 - C) Order 3) 1
 - D) Molecularity
 4) mol. Lit⁻¹sec⁻¹
 5) Lit mol⁻¹.sec⁻¹

The correct match is

	A	В	C	D
1)	4	2	1	5
1) 2) 3)	4	5	2	3
3)	2	1	5	4
4)	1	2	5	3

Keys

1.4	2.2	3.2	4.4	5.2	6.1	7.3	8.1	9.4	10.1
11.1	12.4	13.3	14.2	15.3	16.1	17.2	18.1	19.2	20.2
21.3	22.3	23.3	24.3	25.2	26.4	27.1	28.3	29.2	30.3
31.4	32.2	33.1	34.2	35.4	36.2	37.2	38.4	39.1	40.4
41.4	42.4	43.4	44.3	45.1	46. 4	47. 1	48. 2	49. 4	50. 2

Question Bank - II

REACTION RATES AND INFLUENCING FACTORS

Consider the following reaction

	$N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$						
	The rate of the	ne reaction in terms o	of N_2 at T (k) is $-\frac{dl}{dt}$	$\frac{[N_2]}{dt} = 0.02 \text{ mole.lit}^{-1}. \text{ sec}^{-1}. \text{ What is}$			
	the $-\frac{d[H_2]}{dt}$	(in mole.lit ⁻¹ . sec ⁻¹)	at the same tempera	nture ?			
	1) 0.02	2) 50	3) 0.06	4) 0.04			
2.	What is the ra	ate of the following	reaction tor $2A \rightarrow 1$	В			
	$1) - \frac{d[A]}{dt}$	$2) -\frac{1}{2} \frac{d[A]}{dt}$	$3) - \frac{d[B]}{dt}$	$4) -\frac{1}{2} \frac{d[B]}{dt}$			
3.	For the react	ion $4NH_3 + 5G_2 \rightarrow 4$	NO $4 6H_2O$, the rat	e of reaction with respect to NH ₃ is			
	$2 \times 10^{-3} \mathrm{Ms}^{-1}$.	Then the rate of the	e reaction with respe	ect to oxygen is _ Ms ⁻¹			
	1) 2×10^{-3}	2) 1.5×10 ⁻³	3) $.5 \times 10^{-3}$	4) 3×10^{-3}			
4.	Concentration	n off a reactant 'A' i	is changed from 0.0	44 M to 0.032M in 23 minutes, the			
	average rate	of the reaction durin	ng this interval is				
	1) 0.0048 mg	ole/lit/min	2) 0.00048 mole/lit/sec				
	3) 4.8×10 ⁻⁴	mole/lit/min	4) 0.0048 mole/lit	/sec			
5.	In the reactio	$nA \rightarrow 2B$, the conce	entration of A falls fr	om 1.0M to 0.9982M in one minute			
	what is the ra	ate iu moles litre ⁻¹ se	ec^{-1}				
	1) 1.8×10^{-3}	2) 3.0×10^{-5}	3) 3.6×10^{-3}	4) 6.0X10" ⁵			
6.	The rate of for	ormation of SO_3 in t	he reaction $2SO_2 +$	$O_2 \rightarrow 2SO_3$, is 100 g min ⁻¹ . Hence,			
	rate of disapp	pearance of O ₂ is					
	1) 50 g min ⁻¹	2) 100 g min ⁻¹	3) 20 g min ⁻¹	4) 40 g min ⁻¹			
7.	$1 dm^3$ of $2 M$	CH ₃ COOH is mixed	d with 1 dm ³ of 3 M	ethanol to form ester. The decrease			
	in the initial r	rate if each solution	is diluted with an ed	qual volume of water would be			
	1) 2 times	2) 4 times	3) 0.25 times	4) 0.5 times			
8.	The rate law	of the reaction.					
	RCl + NaOH	\rightarrow ROH + NaCl is	s given by				
	Rate - k [RC	I], The rate of this re	eaction				
	A) is doubled by doubling the concentration of NaOH						

B) is halved by reducing the -concentration of RCl to half

D) is unaffected by change in temperature

2) B & C

Which is correct?

1) A & B

C) is increased by increasing the temperature of the reaction

4) B & D

9.	The rate of reaction becomes 2 times for every 10°C rise in temperature. How many times					
	the rate of rea	action will increase	when temperature is	s increased from 30°C to 80°C		
	1) 16	2) 32	3) 64	4) 28		
10.	An endotheni	nic reaction $A \rightarrow B$	B has an activation ϵ	energy 15 kcal/mole and the heat of		
	reaction is 5	kcal/mole. The activ	vation energy of the	reaction $B \rightarrow A$ is		
	1) 20 kcal/mo	ole	2) 15 kcal/mole			
	3) 10 kcal/mo	ole	4) zero			
11.	The activation	n energy of a reactio	n is 58.3 kJ/mole. Th	ne ratio of the rate constants at 305K		
	and 300K is a	about ; R=8.3JK ⁻¹ m	ol ⁻¹)			
	(Antilog 0.16	667=1.468)				
	1) 1.25	2) 1.75	3) 1.5	4) 2.0		
12.	Decomposition	on of NH ₃ on gold s	surface follows zero	order kinetics . If rate constant K is		
	$5 \times 10^{-3} \mathrm{M} - \mathrm{s}^{-1}$, rate of formation of N ₂ will be					
	1) $10^{-3} M - s^{-3}$	-1	2) $2.5 \times 10^{-4} \text{M} - \text{s}^{-1}$			
	3) 280 K		4) Zero			
13.	$X \to Y, \frac{k_{1+10}}{k_t}$	=3. If the rate con	nstant at 300 k is '9	Q' min ⁻¹ , at what temperature rate		
	constant beco	omes '9Q' min ⁻¹ ?				
	1) 47°C	2) 320°C	3) 280 K	4) $\sqrt{9x300}$ K		
14.			•	min is 0.02 S^{-1} , then rate constant at		
		z 310 k will be (in s		(0.02)		
	1) $\frac{0.04}{25}$	2) 0.04×25	3) 0.04	$4)\left(\frac{0.02}{25}\right)$		
15.				O ⁻³ min ⁻¹ . The temperature coefficient		
			`	n ⁻¹) at 17°C for this reaction?		
		2) 5×10^{-4}	3) 2×10^{-3}	4) 10^{-2}		
	sion theory	. 10	1 1			
16.				r into chemical reaction is called		
	1) Kinetic en		2) Potential energy			
17.	,		4) Activation energy $C + D$, the active	gy ation energy for the forward reaction		
17.	•		·	is 15 kcals. mole-1. Which one of the		
		tements is correct?		is 13 kears. More . Which one of the		
		othermic process	2) it is an endoth	nermic process		
	,	•	= 0 4) it is a sublima	•		
	,		,			

Order, molecularity, Half life

18.	18. Sucrose decomposes in acid solution into glucose and fructose according to the first						
	rate law, with	$t_{1/2} = 3.00 \text{ h}$	ours. W	hat fraction of	sample of sucrose remains after 8 hours?		
	1) 1.158M	2) 0.518M		3) 0.158M	4) 3.182M		
19.	For an eleme	ntary reactio	n, 2A+E	$B \rightarrow C+D$, the a	active mass of B is kept constant but that		
	of A is tripled	d. The rate of	f reactio	n will			
	1) decrease b	y 3 times		2) increase by	9 times		
	3) increase b	y 3 times		4) decrease by	y 6 times		
20.	For a chemica	al reaction Y ₂	+2Z -	Product, rate	controlling step is $Y + 1/2 Z \rightarrow Q$. If the		
	concentration	$n ext{ of } Z ext{ is double}$	bled, the	e rate of reaction	e rate of reaction will		
	1) Remain the same			2) Become fo	ur times		
	3) Become 1	.414 times		4) Become do	ouble		
21.	In a reaction	$A \rightarrow B$, whe	en the c	oncentration o	f reactant is made 8 times, the rate got		
	doubled. The	order of rea	ction is				
	1) 1/3	2) 1		3) 1/2	4) 2		
22.	The rate of re	eaction $A + 2$	B → Pr	oducts is giver	by $-\frac{d[A]}{dt} = k[A][B]^2$. If B is present in		
	large excess,	the order of	reaction	n is			
	1) 3	2) 2		3) 1	4) zero		
23.	For the reaction $2A + B \rightarrow Products$, it is found that doubling the concentration of both						
	reactants increases the rate by a factor of 8. But doubling the concentration of B alone,						
	only doubles	the rate. Wh	at is the		eaction w.r.t to A?		
	1) 2	2) 3		3) 0	4) 1		
24.	The increase	The increase in rate constant of a reaction is more when the temperature increases from					
	1) 290K - 30	0K		2) 300K - 310K			
	3) 310K - 32	0K		4) 320K - 330)K		
25.	The initial rat	tes for gase	ous reac	etion? $A + 3B$	\rightarrow AB, are given below		
	[AJ](M)	[B](M)		Rate (M sec			
	0.1	0.1		0.002			
	0.2	0.1		0.002			
	0.3	0.2		0.008			
	0.4	0.3		0.018			
	order of reac	tion is					
	1) zero	2) three		3) one	4) two		
26.	Based on the	following da	ata for a	reaction what	is its order $(A \rightarrow products)$		
	Conc.A	2M 0.2M	0.02M	0.00			
	Time in min.	0 10	20	∞			
	1) 1st	2) 2nd		3) 3rd	4) zero		

27.	[A](M)	[B](M)	Initial rate	e (Ms ⁻¹)			
	0.4	0.3	2×10^{-3}				
	0.8	0.3	$0.8 \times 10^{-}$	2			
	1.2	0.9	0.54×10^{-1}	$)^{-1}$			
	From the	above data	the rate law	for the equation	$A+B \rightarrow product$	s is equal to	
	1) K[A][E	3] 2) K[A	$A]^{2}[B]^{2}$	3) $K[A]^2[B]$	4) $K[A][B]^2$		
28.	If the initial	al concentra	ation is redu	iced to 1/4 th of	the initial value of	a zero order reaction,	
	the half lit	e of the rea	ection				
	1) remain	constant		2) Becomes 1/	'4 th		
	3) become	es double		4) Becomes for	ourfold		
29.	If $\frac{dx}{dt} = k[$	$[H_3O^+]^n$ and	d rate becor	ne 100 times wh	en pH changes for	m 2 to 1. Hence order	
	of reaction	ns is					
	1) 1	2) 2		3) 3	4) 0		
30.	The initial	The initial concentration of cane sugar in presence of an acid was reduced from 0.20 to					
	0.10M in 5 hours and to 0.05M i		in 10 hours, valu	ue of K? (in hr-1)			
	1) 0.693	2) 1.38	36	3) 0.1386	4) 3.465		
31.	50% completion of a first order reaction takes place in 16 minutes. Then fraction that						
	would react in 32 minutes from the begining						
	1) 1/2	2) 1/4		3) 1/8	4) 3/4		
32.	The time needed for the completion of 2/3 of a 1st order reaction, when rate constant is						
	$4.771 \times 10^{-2} \text{ min}^{-1} \text{ is}$						
	1) 23.03 r	min 2) 2.30	03 min	3) 6.93 min	4) 69.3 min		
33.	The rate constant of a first order reaction is 0.0693 mini ⁻¹ . What is the time (in minits)						
	required for	or reducing	an initial co	oncentration of 2	20 mole.lit ⁻¹ , to 2.5	mole. lit ⁻¹ . ?	
	1) 40	2) 10		3) 20	4) 30		
34.	The half-life of a first order reaction: 100 seconds. What is the time required for 90%						
	completion of the reaction?						
	1) 100 sec	2) 200	sec.	3) 333 sec.	4) 500 sec.		
35.	For the reaction $2N_2O_5 \rightarrow 4NO_2+O_2$, rate & rate constant are 1.02 x 10^{-5} mol lit ⁻¹ sec ⁻¹ &						
	3.4×10^{-5}	sec-1 respec	tively. Ther	the cone of N_2	O_5 at that time will	be	
	1) 3M	2) 4M		3) 1M	4) 1.5M		
36.	The half li	fe periods o	of four react	tions labelled by	A.B.C & D are 30	sec, 4.8 min, 180 sec	
	and 16 mi	n, respectiv	ely. The fas	stest reactiot is			
	1) A	2) B		3) C	4) D		
37.	3/4 th of f	irst order re	eaction was	completed in 32	min, 15/16 the par	t will be completed in	
	1) 24 min	2) 64 1	min	3) 16 min	4) 32 min		

38.	Initial concentration of the reactant is 1.0M. The concentration becomes 0.9M. 0.8M an 0.7M in 2 hours, 4 hours and 6 hours respectively. Then the order of reaction is				
	1) 2	2) 1	3) zero	4) 3	
39.	Half-life perio	ods for a reaction at	initial concentration	n of 0.1M and 0.01 M are 5 and 50	
	minutes respe	ectively. Then the or	der of reaction is		
	1) zero	2) 1	3) 2	4) 3	
40.	For a first ord	der reaction $t_{0.75}$ is 13	38.6 sec. Its specific	e rate constant is (in s ⁻¹)	
	1) 10-2		3) 10 ⁻⁵		
41.	20% first ord	er reaction is compl	eted in 50 minutes.	Time required for the completion of	
	60% of the reaction ismin				
	1) 100	2) 150	3) 262	4) 205	
42.	In a first ord	er reaction. 20% re	eaction is completed	d in 24 minutes. The percentage of	
	reactant rema	nining after 48 nunu	tes is		
	1) 60	2) 64	3) 81	4) 80	
43.	A first order r	eaction is half-comp	oleted in 45 minutes.	How long does it need for 99.9% of	
	the reaction t	o be completed?			
	1) 20 hours	2) 10 hours	3) $7\frac{1}{2}$ hours	4) 5 hours	
44.				reactant concentration of 0.01 M is	
	found to be 2	2.0 x 10 ⁻⁵ mol L ⁻¹ s ⁻¹ .	The half life period	of the reaction is	
	1) 220s	2) 30 s	3) 374 s		
45.	99% of a first	t order reaction was	s completed in 32 ra	in. When will 99.9% of the reaction	
	complete ?		_		
	1) 50 min	2) 46 min	3) 49 min	4) 48 min	
46.	For a first ord	er reaction with half	f-life of 150 seconds,	the time taken for the concentration	
	of the reactant to fall from M/10 to M/100 will be approximately			proximately	
	1) 1500 s	2) 500 s	3) 900 s	4) 600 s	
47.	A reaction wh	nich is of first order	w.r.t reactant A, has	a rate constant is 6 min ⁻¹ . If we start	
	with $[A] = 0.5$ mol.L ⁻¹ when would $[A]$ reach the value of 0.05 mol.L ⁻¹ .			ue of 0.05 mol.L ⁻¹ .	
	1) 0.384 min	2) 15 min	3) 20 min	4) 3.84 min	
48.	99% of a 1st	order reaction com	npleted in 2.303 min	nutes. What is the rate constant and	
	half-life of the reaction				
	1) 2.303 and 0.3010		2) 2 and 0.3465		
	3) 2 and 0.69	3	4) 0.3010 and 0.69	93	
49.	In the case of a first order reaction, the ratio of the time required for 99.9% completion			ne required for 99.9% completion of	
	the reaction t	o its half life is near	·ly		
	1) 1	2) 10	3) 20	4) 8	
50.	Out of 300g	substance [decompo	oses as per lsl order],	, how much will remain after 18 hr?	
	$(t_{0.5} = 3hr)$				
	1) 4.6 gm	2) 5.6 gm	3) 9.2 gm	4) 6.4 gm	

51.	75% of a first order process is completed in 30 min. The time required for 93.73			3.75%					
	completion of same process (in hr) '?								
	1)1	2) 12	20	3) 2		4) 0.25			
52.	For a fi	rst order rea	action at 27	′°C, the rati	o of time re	equired for	: 75% cor	npletion t	o 25%
	complet	tion of react	tion is;						
	1) 3.0	2) 2.	303	3) 4.8		4) 0.477			
53.	The hal	f life perio	d of a first	order cher	nical of a	reaction is	6.93 mi	nutes. Th	e time
	required	for the co	mpletion of	99 % of th	e chemical	reaction w	ill be (log	g = 0.30	1)
	1) 23.03	3 minutes		2) 46.0	6 minutes				
	2) 460.6	6 minutes		4) 230.	3 minutes				
54.	In a first	order react	tion, the co	ncentration	of the react	ant. decrea	ases from	0.8M to 0	.4M in
	15 minu	ites. Then, (0.1M becor	nes 0.025M	[in				
	1) 7.5 minutes 2) 15 minutes								
	3) 30 m	3) 30 minutes 4) 60 minutes							
				——KF	Y				7
	1) 3	2) 2	3) 1	4) 3	5) 2	6) 3	7) 3	8) 2	
	9) 2	10) 3	11) 3	12) 3	13) 1	14) 3	15) 2	16) 3	
	17) 2	18) 3	19) 2	20) 3	21) 1	22) 3	23) 1	24) 1	
	25) 4	26) 1	27) 3	28) 2	29) 2	30) 3	31) 4	32) 1	
	33) 4	34) 3	35) 1	36) 1	37) 2	38) 3	39) 3	40) 1	
	41) 4	42) 2	43) 3	44) 4	45) 4	46) 2	47) 1	48) 2	
	49) 2	50) 1	51) 1	52) 3	53) 2	54) 3			

4. SURFACE CHEMISTRY

Synopsis:

- 1. A layer of thickness of about 100nm from the outer surface of substance is considered as surface.
- 2. The phenomenon by which the molecules of a substance are attracted and uniformly distributed into the bulk of another solid or liquid substance is called absorption.
- 3. Ink gets absorbed into the bulk of a piece of chalk. Water molecules are absorbed into anhydrous calcium chloride.
- 4. Absorption of hydrogen into the bulk of palladium is called occlusion.
- 5. The molecules present on the surface of a substance are of greater energy than the molecules present in the bulk of the substance.
- 6. The phenomenon of attracting and subsequently accumulating the molecules of a substance by a liquid or solid on its surface is called adsorption.
- 7. The surface molecules show greater tendency to attract the molecules of other substances and allow them to settle on its surface overcome unbalanced forces.
- 8. The substance getting adsorbed on the surface of other substance is called adsorbate.

 Adsorbate can be solid or liquid or gas
- 9. The substance providing its surface for the phenomenon of adsorption is called adsorbent.

 Adsorbent can be solid or liquid but not gas
- 10. Important adsorbents are activated charcoal, silica gel, alumina gel, clay, colloidal particles.
- 11. During adsorption there is a decrease in the forces on the surface as a result heat is liberated.
- 12. AH is negative and Δ S is negative for the adsorption process.
- 13. The process of removal of impurities from the surface of the catalyst in called activation.
- 14. Charcoal is activated by heating it at 573K 1273K in vaccum (or) in presence of inert gas.
- 15. Concentration of a substance on the surface and in the bulk of another substance is known as sorption.
- 16. The phenomenon by which the adsorbed substance leaves the surface of the adsorbent is called desorption.
- 17. The adsorption that occurs due to weak. Van der waal forces between adsorbate and adsorbent is called physical adsorption or physisorption.
- 18. The adsorption that occurs due to chemical bonding between adsorbent and adsorbate is called chemisorption. Chemisorption involve high energy of activation. Therefore it is referred to as activated adsorption.
- 19. Adsorption is spontaneous and during adsorption AS becomes negative. Hence to make AG negative, AH must be negative.

- 20. Easily liquifiable gases like HCl, CO₂, NH₃ and SO₂ with higher critical temperature can be more easily adsorbed than gases like H2, N2, O2 etc which have lower critical temperature.
- One gram of activated charcoal can adsorb 400 ml of SO₂, 20ml of CH₄ and 5ml of H₂ 21. because T_c values are in the order : $SO_2 > CH_4 > H_2$
- 22. Greater the specific area of adsorbent greater will be its capacity to adsorb the molecules of adsorbate.
- The graphs drawn by taking " $\frac{x}{m}$ " on y -axis and 'pressure' on x axis at constant 23. temperature are called adsorption isotherms.
- Freundlich adsorption Isotherm is given by : $\frac{k}{m} \cdot \overset{\text{x/m}}{K} \cdot \overset{\text{x/m}}{T_3}$ essure only) (n >1) m 24.
- Freundlich adsorption Isotherm gives a graph as 25.

$$T_1 \cdot T_2 \cdot T_3$$

- The logarithmic expression of Freundlich adsorption isotherm is $\log \frac{x}{m} \cdot \log K \cdot \frac{1}{n} \log P$. 26.
- 27. The factor '1/n' can have values between 0 to 1. Thus the equation holds good over a limited range of pressure.
- At high pressure, x/m = constant. Adsorption is independent of pressure. At low pressure, 28. x/m = K.P. Adsorption varies directly with pressure.
- 29. Freundlich adsorption isotherms cannot explain adsorption at high pressures.
- 30. Physical adsorption is generally favourable at low temperature.
- 31. In case of chemisorption high temperature supports adsorptions to certain extent.
- 32. In some cases at low temperature, adsorption is physical and at high temperature it is chemical.
- At 463K N_2 is physically adsorbed on Fe, where as at 723 K it is adsorbed chemically. 33.
- 34. The variation of magnitude of adsorption with temperature (t) for both the physical and the chemical adsorption is shown below. They are called adsorption isobars.
- 35. The solute present in a solution may be adsorbed on the surface of a suitable adsorbent. Activated charcoal can adsorb coloured substance (dye stuff) from cane sugar juice and CH₃COOH from its solution
- Freshly precipitated metal hydroxide can adsorb dye stuffs.
- A catalyst is a substance that increases the rate of a chemical reaction to which it is 37. added, without itself being consumed in the reaction.
- 38. The substance which destroys or reduces the activity of the catalyst is known as catalytic poison. The phenomenon is called catalytic poisoning.
- 39. As₂O₃ acts as a poison for platinum in the Contact process of manufacture of H₂SO₄. H₂S acts as a poison for Fe catalyst in Haber's process. Platinum is poisoned by CO in the oxidation reaction of H₂to H₂O

- 40. A substance which promotes the activity of the catalyst, to which it is added in small amounts is called a promoter or activator. The process is known as activation.
- 41. Molybdenum (Mo) is promoter to the catalyst iron in the Haber process.
- 42. The presence of a foreign substance which retards the rate of a reaction is called a negative catalyst or inhibitor. The pheno-menon is negative catalysis.
- 43.. In a homogeneous catalysis, the catalyst and the reactants are in the same phase. It is not possible in solid state.
- 44. Iu heterogeneous catalysis, the catalyst is in a different phase from that of the reactants.
- 45. The action of a catalyst is explained by two different theories: Intermediate compound formation theory and the adsorption theory.
- 46. A positive catalyst lowers the activation energy of the reaction by providing a new path way.
- 47. Whien one of the intermediates formed in a reaction itself acts as a catalyst for the reaction reaction itself acts as a catalyst for the reaction one of the intermediates formed in a reaction itself acts as a catalyst for the reaction one of the intermediates formed in a reaction itself acts as a catalyst for the reaction one of the intermediates formed in a reaction itself acts as a catalyst for the reaction one of the intermediates formed in a reaction itself acts as a catalyst for the reaction one of the intermediates formed in a reaction itself acts as a catalyst for the reaction of the intermediates formed in a reaction itself acts as a catalyst for the reaction of the intermediates formed in a reaction itself acts as a catalyst for the reaction of the intermediates formed in a reaction itself acts as a catalyst for the reaction of the reaction of the intermediates for the reaction of th
- 48. Mn²⁺ in the oxidation of oxalic acid by acidified KMnO₄ and As in the decomposition of arsene are examples.
- 49. The nature of catalyst to speed up a reaction is called activity. The nature of a catalyst to lead the reaction towards a specific product. is called selectivity
- 50. Enzymes are complex nitrogeneous organic compounds produced by living plants and animals 6) enzymes function effectively at optimum temperature of 298-310 K and in between P^H value 5-7.
- 51. Activity of enzyme can be increased in presence of co-enzymes and activators
- 52. Enzyme catalysed reaction proceed in two steps $E + S \rightarrow ES$ and $ES \rightarrow E + P$
- 53. Colloidal solution is a heterogeneous solution with size of solute particle in the range of one millimicron to a micron.
- 54. Colloidal solution contains two phase. Particles of disperse phase are distributed in continuous disparsion medium.
- 55. Smoke is a colloidal solution of solid in gas sol. It is an aerosol. It is a lyophobic colloid. Carbon particles are dispersed in air. Air (gas) is die dispersion medium.
- Cloud is a colloidal solution of liquid gas sol.] It is an aerosol. It is a lyophobic colloid. It is a colloidal suspension of droplets of water (liquid) in air. Air (gas) is the ispersion medium.
- 57. Blood is a colloidal solution of solid in liquid. It is an aquasol or hydrosol. It is a colloidal suspension of albuminoid substances in water. Water containing some inorganic ions and organic molecules is the dispersion medium.
- 58. Impure blood is purified by kidneys through dialysis. Addition of $FeCl_3$ (or) alum to bleeding wound, causes coagulation of blood to form a clot.
- Milk is liquid in a liquid colloidal solution. Droplets of liquid fat are dispersed in water. Milk is quite stable. Milk on coagulation gives emulsified fat (casein).

- 60. Starch solution is a solid in liquid sol. It is hydrophilic colloid. Starch sol is prepared by adding starch paste to hot water with constant stirring.
- 61. Gold sol is solid in liquid sol. It is an aquasol or hydrosol. It is lyophobic sol. It is a colloidal solution of gold particles (solid) in water. It is prepared by Bredig arc method. Gold sol is stabilised by the presence of an alkali.
- 62. Lyophobic solcan be protected from coagulation by an added electrolyte or by adding a lyophilic colloid to the lyophobic sol solution. This lyophilic sol added is called protective colloid.
- 63. Gold number is Introduced by Zsigmondy. Gold number is inverese to the efficiency of protective act!on.Gelatin is the most efficient protective colloid and starch is least.
- 64. Scattering of light on colloidal particles is called as Tyndal effect.
- 65. Conditions to exhibit tyndall effect are diameter of dispersed particles is not much smaller than ' λ ' of wave length of light rays and refractive indices of dispersed phase and dispersion medium should differ greatly in magnitude.
- 66. Tyndal effect can be used to distinguish between a colloidal and true solution.
- 67. When we observe a colloidal solution under an ultramicroscope we can find that the particles keep on moving with zig zag motion. This is called Brownian movement. It is a kinetic property.
- 68. If electrolyte is added to the colloidal solution, the charge on the colloidal particles is neutralised. Hie uncharged colloidal particles coagulated form bigger particles. These bigger particles settle down as precipitate. This phenomenon is known as coagulation.
- Examples for positively charged sols are : Hydrated metallic oxides like $A1_2O_3$. xH_2O , Fe_2O_3 , xH_2O . Basic dye stuffs, methylene blue sol. Haemoglobin and Oxides like TiO_2 sol.
- 70. Examples for negatively charged sols are: Metal sols like, Cu. Ag, Au Sb, As₂S₃ Sb₂S₃, CdS sol and acidic dye stuff congo red, starch, gelatin, clay sols.
- Hardy Schulze laws: The ion with charge opposite to the charge of the colloidal particle js very effective. Greater the charge of the ion greater is the ability for coagulation.
- 72. Positive colloids are coagulated by negative ions and decreasing order of effect vieness is $[Fe(CN)_6]^{4-} > PO_4^{3-} > SO_4^{2-} > Cl^{-}$
- 73. Negative colloids are coagulated by positive ions. The decreasing order of effectiveness is $Al^{3+} > Ba^{2+} > K^+$.
- 74. The minimum concentration in milli moles/ litre of an electrolyte required for complete coagulation of a sol in two hours is called the coagulation value or precipitation value of that electrolyte.
- 75. Coagulation of lyophilic sol is done, by adding an electrolyte or by adding a suitable solvent.
- When solvents like alcohol and acetone ar added to hydrophilic sols, dehydration of dispersed phase takes place which facilitate coagulation.

- 77. An emulsion is a colloidal system in which both the dispersed phase and the dispersion medium are liquids.
- 78. Emulsions are classified into two classes : Oil in water (O/W) emulsion and water in oil (W/O) emulsion.
- 79. The emulsifying agent is usually a soap or a sulphate detergent (or) a hydrophilic colloid (like gelatin, egg albumin, carbon powder or graphite powder.
- 80. Soap emulsifies kerosene in water emulsion. Egg albumin emulsifies an olive oil in water emulsion. Solid mercuric iodide emulsifies water in benzene emulsion. Caesin emulsifies oil in water (milk) emulsion.
- 81. Emulsions are used in washing process of clothes and crockery, in the digestion of fats in intestines, in metallurgy, as lotions, creams and ointments in pharmaceuticals and cosmetics, as drugs of oily type in the form of emulsions to facilitate their easy absorption.
- 82. Freezing, boiling, centrifugation or addition of chemicals make the emulsion separate into the constituent liquids. This is called deemulsification. Churning of curd is an example.
- 83. Emulsions are used in the conversion of cream into butter by churning. This is breaking of emulsion of fats in water. In natural oil wells, oils and water form emulsions which requires separation of oil from water.

	Quest	tion Bank - I			
1)	is called as	ed substance from the surface on which it is adsorbed			
0)		sorption 4) accumulation			
2)	In adsortion of oxalic acid to activate	ted charcoal, the activated charcoal is called			
	1) adsorbent 2) adsorbate	3) adsorber 4) absorber			
3)	If a poisonous gas is adsorbed on ac	tivated charcoal. Then that gas is termed as			
	1) absorber 2) adsorbate 3) ads	sorbent 4) absorbs			
4)	The bond between the adsorbate and	d absorbent in chemisorption is			
	1) ionic bond	2) covalent bond			
	3) either ionic or covalent bond	4) all of these			
5)	On increase of temperature, physical adsorption				
	1) decreases	2) increases			
	3) neither decrease nor increase	4) first increase and then decreases			
6)	Physical adsorption changes to cher	misorption at			
	1) high temperature	2) low temperature			
	3) low pressure	4) moderate temperature			

7)	The rate of chemisorption				
	decreases with decrease of temperature				
	increase with increase of pressure				
	is independent of pressure				
	is independent of temperature				
8)	The Tyndall effect is not observed in				
,	1) emulsions 2) lyophobic sols 3) true solution 4) starch solution				
9)	The colloidal system in which the dispersed phase and dispersion medium are				
- /	both liquids is known as				
	1) a gel2) an aerosol 3) an emulsion 4) a foam				
10)	Blood is a colloidal solution of water containing				
,	1) liquid fat as dispersed phase 2) albuminoid as dispersed phase				
	3) butter as dispersed phase 4) proteins as dispersed phase				
11)	Micelles contain				
/	1) Discrete particles 2) Discrete ions				
	3) Aggregate of particles 4) Associated water molecules				
12)	The emulsifier for olive oil in water emulsion is				
,	1) soap 2) egg albumin 3) mercuric iodide 4) kerosene				
13)	A substance which altes the rate of reaction is known as				
,	1) promoter 2) catalyst 3) activator 4) initiator				
14)	In contact process of manufacture of H ₂ SO ₄ , the substance which acts as catalytic				
,	poison				
	1) Fe_2O_3 2) As_2O_3 3) CO_2 4) H_2S				
15)	A catalytic poison				
	1) increases the rate of reaction				
	2) increases the amount of the catalyst				
	3) decreases the energy of activation of the catalytic reaction				
	4) decreases the catalytic activity of the catalyst				
16)	Activated charcoal readily absorbs				
	1) H_2 2) CO_2 3) Cl_2 4) N_2				
17)	Amount of gas adsorbed per gram of adsorbent increases with pressure but after				
	certain limit is reached, adsorption becomes constant. It is when				
	1) multi layers are formed 2) desorption takes place				
	3) temperature is increased 4) adsorption also starts				
18)	Weak tyndall effect can be observed with				
	1) Gold sol 2) Super sol 3) Smoke 4) Starch sol				
19)	Which of the following is not a colloidal solution				
	1) smoke 2) ink 3) air 4) blood				
20)	A dispersion of ferric hydroxide in water is				
	1) a hydrophilic colloid 2) an emulsion				
	3) a hydrophobic colloid 4) a reversible colloid				
21)	Gold sol is				
	1) aerosol 2) aquasol 3) lyophilic sol 4) emulsion				
22)	The catalyst used in the dehydration of ethylalcohol to ethene is				
	1) Al_2O_3 2) Sb_2O_3 3) As_2O_3 4) Cu				

23)	The efficiency of a catalyst depends on				
	1) solubility 2) size of the particle				
	3) molecular weight 4) all of these				
24)	Which of the following is not correct?				
	1) Physical adsorption decreases in the increase in temperature				
	2) Physical adsorption is multi layered				
	3) Activaties energy of physical adsorption is very high				
	4) enthalpy change of physical adsorption is about 20Kj mol ⁻¹				
25)	Which of the following is a lyophobic solution?				
	1) aqueous starch solution 2) aqueous protein solution				
	3) gold sol 4) polymer solutions in some organic solvents				
26)	In the hydrogenation of oils, the catalyst used is				
	1) Iron 2) Platinum 3) Nickel 4) Moyebdenum				
27)	When a colloidal solution is observed under an ultra microscope, we can see				
	1) light scattered by colloidal particles				
	2) size of colloidal particles				
	3) shape of the colloidal particles				
	4) relative size of the colloidal particles				
28)	An inhibitor is essentially				
	1) a negative catalyst 2) an auto catalyst				
	3) a homogeneous catalyst 4) a heterogeneous catalyst				
29)	In colloidal state particle size ranges from				
	1) $1-100A^0$ 2) $20-50A^0$ 3) $10-1000A^0$ 4) $1-280A^0$				
30)	A colloidal system in which solid is dispersed in a liquid is called				
0.1	1) precipitate 2) sol 3) emulsion 4) gel				
31)	Cow milk is an example of natural emulsion stabilized by				
0.0\	1) fat 2) water 3) casein 4) Mg ⁺⁺ ions				
32)	On the surface of metallic iron at 500°C, Nitrogen is				
	1) Chemically adsorbed 2) Physically adsorbed 4) Declarate the second control of the sec				
00)	3) Absorbed 4) Desorbed				
33)	Jelly is a colloid in which				
	1) A solid dispersed in liquid 2) A liquid dispersed in liquid				
24)	3) A gas is dispersed in liquid4) A liquid is dispersed in solid				
34)	The size of particle of dispersed phase in colloidal solution is 1) 1 to $10A^0$ 2) $20-50A^0$ 3) $10-100A^0$ 4) $200-500A^0$				
25)					
35)	Adsorption is the phenomenon in which a substance				
	1) accumulates on the surface of other substance				
	2) goes into the body of the other substance3) remains close to the other substance				
	4) does not accumulates on the surface of the other substance				
	1) does not accumulates on the surface of the other substance				

- 36) Sorption is
 - 1) adsorption 2) adsortion
 - 3) chemisorption 4) adsortion followed by adsorption
- 37) Charcoal is activated
 - 1) by heating it from 623°C to 127°C in vacuum
 - 2) by cooling it to 23K in vacuum
 - 3) by heating it from 573K to 1273K in vacuum
 - 4) by heating upto 300K.
- 38) The temperature above which a gas can not be liquefied even on application of high pressure is called
 - 1) boiling point
- 2) freezing point
- 3) critical temperature 4) Boyle's temperature
- 39) Which gas can be adsorbed more?
 - 1) gas with high critical temperature 2) gas with low critical temperature
 - 3) gas which can be liquefied easily 4) both 1 and 3
- 40) Which of the following is a clear solution
 - 1) colloid

- 2) true solution
- 3) suspension
- 4) suspensions of precipitate
- 41) The tyndall effect in colloidal solutions is due
 - 1) scattering of light 2) reflection of light
 - 3) adsorption of light 4) electrically charge of particles
- 42) Assertion: A reaction cannot become fast by it self unless a catalyst is added.

Reason: A catalyst always increases the speed of a reaction

- 1) Both A and R are true and R is the correct explanation of A
- 2) Both A and R are true and R is not the correct explanation of A
- 3) A is true but R is false
- 4) A is false but R is true
- 43) Assertion: Adsorption is a surface phenomenon

Reason: Adsorption is an exothermic process

- 1) Both A and R are true and R is the correct explanation of A
- 2) Both A and R are true and R is not the correct explanation of A
- 3) A is true but R is false
- 4) A is false but R is true
- 44) Assertion: Soap and detergent are macro molecular colloids

Reason: Soap and detergent are molecules of large size

- 1) Both A and R are true and R is the correct explanation of A
- 2) Both A and R are true and R is not the correct explanation of A
- 3) A is true but R is false
- 4) A is false but R is true

45)

List-I	List-II
A) Liquid gas	1) Milk
B) Solid in gas	2) Boot polish
C) Liquid in liquid	3) Smoke
D) Solid in liquid	4) Cloud
	5) Gold sol

The correct match is

A B C D

1) 4 3 1 2

2) 2 1 5 4

3) 4 3 2 5

4) 1 4 3 2

46) Assertion: Small quantity of soap is used to prepare a stable emulsion.

Reason: Soap lowers the interfacial tension between oil and water.

- 1) Both A and R are true and R is the correct explanation of A
- 2) Both A and R are true and R is not the correct explanation of A
- 3) A is true but R is false
- 4) A is false but R is true
- Assertion: Heat of physical adsorption is low while that of chemical adsorption is high.

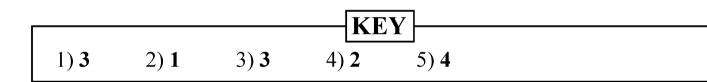
Reason: Physical adsorption is weak while chemical adsorption is strong.

- 1) Both A and R are true and R is the correct explanation of A
- 2) Both A and R are true and R is not the correct explanation of A
- 3) A is true but R is false
- 4) A is false but R is true
- 48) Assertion: Colloidal solutions are stable but the colloidal particles do not settle down.

Reason: Colloidal sols are homogeneous.

- 1) Both A and R are true and R is the correct explanation of A
- 2) Both A and R are true and R is not the correct explanation of A
- 3) A is true but R is false
- 4) A is false but R is true
- The disperse phase, dispersion medium and nature of colloidal solution. lyophillic (or) lyophosic of gold sol respectively are
 - 1) Solid, solid, lyophobic
- 2) Liquid, liquid, lyophobic
- 3) Solid, liquid, lyophobic
- 4) Solid, liquid, lyophilic
- 50) Which of the following is not correct?
 - 1) Enthalpy of physical adsorption is less compared to enthalpy of chemical adsorption.
 - 2) Milk is an example of emulsion.
 - 3) Physical adsorption increases with increase of temperature
 - 4) Smoke is a aerosol

KEY


1.3	2.1	3.2	4.3	5.1	6.1	7.1	8.4	9.3	10.2
11.3	12.2	13.2	14.2	15.4	16.2	17.1	18.4	19.3	20.3
21.2	22.1	23.2	24.3	25.3	26.3	27.1	28.2	29.3	30.2
31.3	32.1	33.4	34.3	35.1	36.4	37.3	38.3	39.4	40.2
41.1	42.4	43.2	44.4	45. 1	46. 1	47. 1	48.3	49.3	50.3

Question Bank - II

- 1. Gold number is associated with
 - (1) electrophoresis
- (2) pruple of cassius
- (3) protective colloids
- (4) amount of pure gold
- 2. Gold number is used to show

 - (1) protective power of lyophilic colloids (2) protective power of lyophobic colloid
 - (3) preptisation power of a colloid
- (4) precipitation power of a colloid
- 3. The cause of Brownian movement is
 - (1) heat changes in liquid
 - (2) conventional currents
 - (3) impact of molecules of the dispersion medium of colloidal particles
 - (4) attractive forces between colloidal particles and molecules of dispersion medium.
- 4. In Brownian movement, the path followed by particles is
 - (1) Linear
- (2) Zig-Zig
- (3) Uncertain
- (4) curved

- 5. Gelatin protects
 - (1) gold sol
- (2) AS_2S_3Sol (3) $Fe(OH)_3Sol$
- (4) All

Question Bank - III

- In an adsorption experiment a graph between log x/m vs. log p is round to be linear with 1. a slope of 45° . The intercept on the log x/m axis was found to be 0.3010. What is x/m if pressure is 0.6 bar (tan $45^{\circ} = 1$)
 - 1) 0.6
- 2) 1.2
- 3) 2.4
- 4) 0.3
- 2. Which are of the following is a case of adsorption?
 - 1) Anhydrous CaCl₂ in contact with water vapour
 - 2) Silica gel in contact with water vapours
 - 3) Ammonia gas in contact with water
 - 4) Cotton clothes dipped in a dye solution
- The volumes of gases H₂,CH₄, CO₂ and NH₃ adsorbed by Igr of charcoal at 288K are in 3. the order
- 1) $H_2 > CH_4 > CO_2 > NH_3$
 - 2) $CO_2 > NH_3 > H_2 > CH_4$
 - 3) $NH_3 > CO_2 > CH_4 > H_2$
 - 4) $CH_4 > CO_2 > NH_3 > H_2$

4.	Which one	of the following is	s not an application of	of adsorption?				
	1) Ion excha	ange process in so	oftening of hard wate	r				
	2) Chromotographic analysis							
	3) Clarificat	tion of sugar						
	4) Theory o	of homogeneous ca	atalysis					
5.	Which of th	e following is less	s than zero during ad	Isorption?				
	2) ΔG	$2) \Delta S$	3) ΔH	4) All the above				
6.	Arsenic (III) sulphide forms	a sol with a negative	e charge which of the following ionic				
	substances	should be most ef	fective in coagulating	g the sol				
	1) KC1	2) MgCl ₂	3) $Al_2(SO_4)_3$	4) Na_2PO_4				
7.	A negativel	y charged suspens	sion of clay in water	needs for precipitation the minimum				
	amount of							
	1) AlCl ₃	2) K2SO4	3) NaOH	4) HC1				
8.	A colloidal	sol of Fe(OH) ₃ in	water is					
	1) A hydrop	philic colloid	2) A hydrophob	pic colloid				
	3) An emul	sion	4) Not a colloid					
9.	Ultra micro	Ultra microscope works on the principle of						
	1) Light ref	lection	2) Light absorp	tion				
	3) Light sca	ttering	4) Light polariz	zation				
10.	Ferric chlor	ide on rubbing to	a bleeding wound ca	nuses				
	1) coagulati	ion	2) peptisation					
	3) emulsific	eation	4) de-emulsifica	ation				
11.	Hardy - Sch	nulz rules are base	d on of electrolyte io	ons coagulating the colloid				
	1) Size	2) Charge	3) Magnetic nat	ture 4) Molar mass				
12.	Which of th	e following is a k	inetic property of so	ls?				
	1) Electropl	horesis	2) Brownian m	ovement				
	3) Tyndal e	ffect	4) Peptisation					
13.	Brownian n	novement is mainl	y is due to					
	1) Attraction between dispersion medium and dispersed phase particles							
	2) Unbalanced impact of the dispersion medium on colloidal particles							
	3) Scattering of light on sol particles							
	4) Repulsion of colloidal particles by protective colloids							
14.	, 1	•	to a colloidal sol it					
		•	nised 3) Becomes sta	able 4) Gets purified				
15.		Ź	,	the charge opposite to the sol particles				
13.	has been illi	•	checure for earrying	the charge opposite to the sor particles				
		•	2) Cold number	p.				
	,	n movement	2) Gold number					
	3) Tyndal ei	пест	4) Hardy-Schul	z ruie				

16.	Which electrolyte is leas	t effectiv	e in causing coagui	lation of +ve ferric hydroxide sol?				
	1) KBr 2) K ₂ SO ₄		$3) K_2 CrO_4$	4) $K_3[Fe(CN)_6]$				
17.	The capacity of an ion to	coagula	ate a colloidal sol de	epends on				
	1) Its shape		2) Magnitude of it	ts charge				
	3) The sign of charge		4) Both magnitude	e and sign of the charge				
18.	Lyophilic sols are more s	stable tha	an lyophobic sols bo	ecause				
	1) The colloidal particles	s have po	ositive charge					
	2) The colloidal particles	s have ne	egative charge					
	3) The colloidal particles	are solv	vated					
	4) There are strong electron	static rep	oulsions between the	negativley charged colloidal particles				
19.	A liquid is found to scatte	er a beam	n of light but leaves i	no residude when passed through the				
	filter paper. The liquid ca	an be des	scribed as					
	1) A suspension 2) (Oil	3) A colloidal sol	4) True solution				
20.	Cellulose dispersed in et							
	1) emulsion 2) micelle		3) collodion	4) hydrophilic sol				
21.	At CMC the surfactant r	nolecule	es					
	1) decomposes		2) becomes completely soluble					
	3) associates		4) dissociates					
22.	Alum helps in purifying	Alum helps in purifying water by						
	1) forming Si complex with clay particles							
	2) sulphate part which combines with dirt and removes it							
	3) aluminium which coas	gulates t	he mud particle					
	4) making mud water so	luble.						
23.	On addition of 1ml soluti	on of 10°	% NaCl to 10ml gol	ld sol in the presence of 0.0250gm of				
	starch, the coagulation is just prevented Starch has the following gold number							
	1) 0.025 2) 0.25		3) 2.5	4) 25				
24.	Gelatin protects							
	1) Gold sol 2) As_2S_3 so	ol	3) $Fe(OH)_3$	4) All the above				
25.	The coagulation of colloidal particles of the sol can be caused by							
	1) Heating		2) Adding opposit	ly charged sol				
	3) Adding electrolyte 4) All the above							
26.	Gelatin is used as an ingr	redient in	n the manu facture	of ice creame for				
	1) Causing the mixture to	o solidly	2) Improving the	flavour				
	3) Stabilising the colloid	dal solut	ion and preventing	the crystal growth				
	4) preventing formation	of colloi	d					
27.	Gold number is minimum	n in case	e of					
	1) Egg albumin		2) Gelatin					
	3) Heamoglobin		4) Starch					

28.	Gold number of a lyophilic solut	ion is such property that
	1) The larger its value, the great	er is the peptising power
	2) The lower its value, the great	er is the peptising power
	3) The lower its value, the greate	er is the protecting power
	4) The lower its value, the greate	er is the protecting power
29.	In the coagulation of a positive sol	, floccula-tion powers of Cl-, SO_4^{-2} and PO_4^{-3} are in the order
	1) $Cl > SO_4^{-2} > PO_4^{-3}$	·
	3) $PO_4^{-3} > SO_4^{-2} > C1^{-1}$	·
30.	A colloidal solution is subjected	to an electrical field. The particles move towards anode.
	The coagulation of same sol is	studied using NaCl, BaCl, and A1C, solutions. Their
	coasgulating power should be	
	1) NaCl > BaCl ₂ > A1Cl ₃	2) $BaCl_2 > A1Cl_3 > NaCl$
	3) $AlCl_3 > BaCl_2 > NaCl$	4) $BaCl_2 > NaCl > A1Cl_3$
31.	Which is used for ending charge	on colloidal solution
	1) Electrons 2) Electrolytes	3) The Charged ions 4) Compounds
32.	The coagulating power of an ele	ctrolyte for arsenious sulphide decreases in the order
	1) Na+ > A l^{3+} > B a^{2+}	2) $PO_4^{3-} > SO_4^{2-} > CI^-$
	3) $Cl^- > SO_4^{2-} > PO_4^{3-}$	4) $Al^{3+} > Be^{2+} > Na^+$
33.	Which of the following forms ca	ationic micellus
	1) Sod - stearate	2) Urea
	3) Cetyl trimethyl ammonium br	romide
	4) Sod. dodecyl sulphate	
34.	"Lock-keyrlt theory is for	
	1) homogeneous catalysis	2) heterogenous catalysis
	3) enzyme action	4) none of these
35.	Which of the following is correct	et about lyophillic sol?
	1) They are irreversible	
	2) They are formed by inorganic	susbstances
	3) They are readily co-ogulated	by addition of electrolytes.
	4) They are self stablised.	
36.	The dispersed phase in colloida	l iron (iii) hydroxide and colloidal gold positively and
	negatively charged respectively	which of the following statement is not correct
	1) MgCl ₂ soltuion can coagulate	the gold sol more readily than the iron (III) hydroxide sol
	2) Na ₂ SO ₄ causes coagulation in	both sols.
	3) Mixing the two sols has no ef	fect
	4) Coagulation of both the sols of	can be brought about by electrophresis
37.	The Magnetic moment of Autoc	catalyst formed in the reaction between Acidified oxalic
	acid and potassiumpermanganat	e

3) 3.9 B.M

4) 2.8 B.M

2) 4.9 B.M

1) 5.9 B.M

- 38. Colloidal sols are not purified by
 - 1) Dialysis 2) Electro dialysis 3) Electrophoresis 4) Ultra filtration
- 39. The zeolites have shape selectivity depending on
 - 1) Atomic structure 2) Pore structure 3) Molecular structure 4) None
- 40. Which of the following is an example of zeolite
 - 1) MgCl, 2) Ca(OH),
- 3) ZSM 5
- 4) CAN
- 41. The process of removing dissolved impurities from a colloidal system, by means of diffusion through suitable membrane under the influence of an electric field is called
 - 1) Electro osmosis
- 2) Electrophoresis
- 3) Electrodialysis
- 4) Peptisation
- 42. Peptization denotes
 - 1) Digestion of food
- 2) Hydrolysis of proteins
- 3) Breaking and dispersion into the colloidal state
- 4) Precipitation of solid from colloidal dispersion
- 43. The migration of colloidal solute particles in a colloidal solution, when an electric current is applied to the solution is known as
 - 1) Brownian movement
- 2) Electro osmosis
- 3) Electrophoresis
- 4) Electrodialysis
- 44. Sols of metals like Cu, Ag, Au are prepared by
 - 1) Peptisation

- 2) Oxidation
- 3) Bredig's arc method
- 4) Mechanical grinding
- 45. Blue colour of sky is due to
 - 1) Scattering of blue light by dust particles
 - 2) Scattering of blue light by water
 - 3) scattering of blue light by dust particles and water
 - 4) None of the above

			KE	E Y			
1) 2	2) 2	3) 3	4) 4	5) 4	6) 3	7) 1	8) 2
9) 3	10) 1	11) 2	12) 2	13) 2	14) 1	15) 4	16) 1
17) 4	18) 3	19) 3	20) 3	21) 3	22) 3	23) 4	24) 4
25) 4	26) 3	27) 2	28) 3	29) 3	30) 3	31) 2	32) 4
33) 3	34) 3	35) 4	36) 3	37) 1	38) 3	39) 2	40) 3
41) 3	42) 3	43) 3	44) 3	45) 3			

5. GENERAL PRINCIPLES OF METTALURGY

Synopsis:

- 1. Elements like carbon, sulphur, iron, copper, silver, gold, platinum, palladium and nobel gases can occur in free state.
- 2. Gold and Platinum are called noble metals. Most of the reactive elements occure in combind state.
- 3. A1 and Fe are the first and second most abundant metals in earth crust.
- 4. The compound of a metal occurring in nature is called a mineral.
- 5. The mineral from which a metal can be extracted econimically and conveniently is called ore.
- 6. All ores are minerals but all minerals are not ores. Among all minarels of Al, bauxite is the ore of Al. For Iron, haematite (Fe₂O₃) is considered as ore instead of iron pyrites.
- 7. Suitablity of a mineral for extraction of metal depends on: Percentage of metal in the ore. Nature and magnitude of impurities in the mineral. The expenditure involved in the extraction. The industrial utility of the by products in the extraction.
- 8. Extraction of metals from ores involves there major steps: Concentration of ore, isolation of metal from its concentrated ore and refining of crude metal.
- 9. External substance added to the ore to lower its melting point is known as flux.
- 10. Flux combines with the gangue impurities in the ore) chemically and forms easily fusible products, called slag.
- 11. Acidic flux like SiO₂, P₂O₅ is used to remove basic impurities like FeO, CaO etc. Basic flux like CaO, CaCO₃, MgCO₃ are used to remove acidic impurities like SiO₂.
- 12. Partial purification of ore by removing the gangue from the ore is called ore concentration.
- 13. Methods of ore concentration are: Hand picking, Gravity separation, Froth flotation, Electromagnetic method, Liquation and Leaching. Except leaching, remaining ore concentration methods are physical methods only.
- 14. Sand and small stones are removed in hand picking.
- 15. Hydraulic washing or gravity separation or levigation is used if the ore particle and gangue particles differ in denisty. Wilfley tables are specially made table for washing of ores.
- 16. Froth flotation method is used for concentration of sulphide ores, based on the difference in wetting properties of ore and gangue.

- 17. Magnetic separation is useful if the ore and gangue differ in their magnetic properties. Tinstone (cassiterite, SnO₂) a non magnetic ore, is separated from magnetic wolframite, FeWO₄.
- 18. Liquation is useful for such ores which contain easily fusible mineral particles and high melting gangue. This method is used with stibinite, an antimony mineral.
- 19. Leaching is useful if the gangue and ore particles differ in their solubilities in a specific substance. Silver and gold ores are purified by leaching with a dilute solution of NaCN.
- 20. Substances which can withstand at high temperature are called refractory materials. Examples are : SiO₂, MgO, Graphite, SiC, etc.
- 21. Reverboratory furnace, Muffle furnace, Electric furnace, Blast furnace, Open hearth furnace are used in industry.
- 22. Mixture of ore, fuel, reductant and flux introduced into the furnace is called charge.
- 23. The principle involved in reverboratory furnace is indirect heating. Heat efficiency of reverboratory furnace is less because hot waste gases leave the furnace through the chimney.
- 24. Reverboratory furnace used in the metallurgy of copper, steel and lead.
- 25. Blast furnace is made of wrough iron. It is mainly divided into 3 zones depending on the temperature attained; zone of combustion (bottom), zone of fusion (middle) and zone of reduction (upper part).
- 26. The process of heating ore just below its melting point in absence of air to remove volatile compounds in it is called calcination.
- 27. Carbonate and bicarbonate ores are subjected to calcination. During calcination, mass becomes porous, volatile impurities are removed and carbonate ores decompose to oxides
- 28. The process of heating ore alone or by mixing with some other substances just below its melting point in a current of air is called roasting. Generally sulphide ores are subjected to roasting.
- 29. Oxidizing roasting is used for sulphide ores. At high temperatures of roasting, the sulphides change to oxides.
- 30. Sulphatizing roasting takes place under controlled conditions. If sulphide ores are used, sulphates will be formed under these conditions.
- 31. In chloridizing roasting the sulphide mineral is converted into a chloride.
- 32. Both calcination and roasting are performed in a reverberatory furnace.
- 33. Smelting is the thermochemical reaction in which the ores are converted into the metals directly or a mixture of sulphides in the molten state.
- 34. Smelting is performed in blast furnace. Ore is heated with reducing agent and flux durig smelting

- 35. The commonly used reducing agents in metallurgy are : H₂, CO, water gas, coke, Al, Ca, etc.
- 36. When aluminium is used as reducing agent, the process is referred as Goldschmidt alumino thermic process. Since this reduction is highly exothermic, metals formed in the reaction are in molten state.
- 37. Metals like Fe, Cr, Mn are obtained by thermite process
- 38. Alkali metals and aluminium can be extracted by the electrolysis of their molten chlorides.
- 39. Purification of metals is called refining of crude metals.
- 40. Various methods used for refining of metals are : Liquation, poling, Cupellation, Electrolysis and Zone refining
- 41. Poling method is used when metal has metai oxide as impurities. Metals purified by poling are Cu, Sn.
- 42. Cupellation is used when the metal has easih oxidisable impurities. Metal purified by cupellation is Ag.
- 43. Distilation is very useful for the purification of metals with low boiling point like Zn, Cc and Hg.
- 44. Liquation method is based on difference in melting points of metal and its impurities. Sr and Pb can be purified by liquation.
- 45. Metals of highest purity can be obtained in large quantities by electrolysis method.
- 46. In electrolytic refining, anode is impure metai which is to be purified, cathode is pure metai and solution of the metal ions acts as electrolyte.
- 47. Zone refining method is based on the difference in solubility of impurities in molten and solic state of the metals. Ge, Si, B, Ga and In can be purified by this method.
- 48. Commercially most important ore of copper for its extraction is copper pyrites or chalcopyrite- (CuFeS₂).
- 49. Copper pyrites is purified or concentrated b; froth floatation process.
- 50. During roasting of copper pyrites a part of the sulphide ore is converted to oxide.
- 51. The roasted ore is subjected to smelting with *a* little coke and slilica in a blast furnace.
- 52. The gangue present in copper glance is main/ FeS. During smelting FeS is converted to FeO and then converted to slag (FeSiO₃) using SiC as flux.
- 53. The molten mixture of cuprous sulphide and small amount of ferrous sulphide obtained a smelting is called as matte.
- Matte is subjected to bessemerisation, to variety of copper obtained after bessemerisatic of matte is called blister copper which is a 98% pure copper.
- 55. The blisters of blister copper are caused by- escape of SO, from molten metal

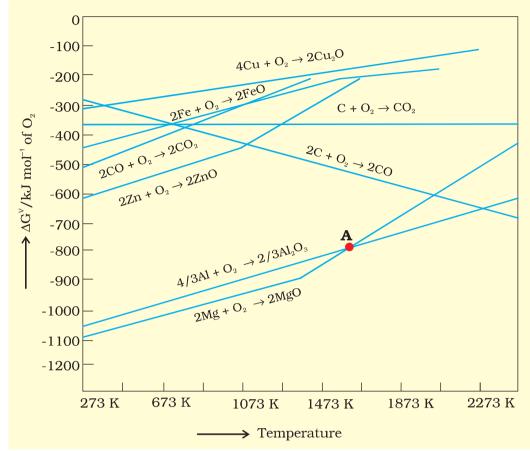
- 56. Copper is purified by poling and electrolysis. The electrolyte used in the electrolytic purification of Cu is CuSO₄ and dil. H₂SO₄.
- 57. The principal ore of zinc is zinc blende, which is chemically zinc sulphide.
- 58. Zinc blende ore is crushed to a fine powder in ball mills and partially concentrated in gravity separation process by using wilfley's table.
- 59. The partially concentrated ore is further concentrated by froth flotation process.
- 60. Roasting zinc blende gives zinc oxide.
- 61. If calamine ($ZnCO_3$) is the starting material, the ore is calcined to get zinc oxide.
- 62. In Belgian process ZnO is reduced by coke.
- 63. 98 % pure zinc metal is called spelter.
- 64. Crude zinc metal can be purified by distillation or electrolytic process.
- 65. Cast iron is prepared from haematite or magnetite.
- Roasted ore, coke (free from sulphur) and lime stone are mixed in the weight ratio 8:4:1. It is called charge and it is fed into the blast furnace.
- 67. Iron obtained in the blast furnace is pig iron. It is the most impure form of iron.
- 68. Cast iron is prepared by melting the pig iron and solidify in the moulds. Cast iron contains 3% of carbon.
- 69. Wrought iron is the purest form of iron containing about 0.2% of carbon. It is prepared by heating cast iron in a reverboratory furnace.
- 70. Steel contains a lower percentage of carbon and _v other impurities than the pig iron, Pig iron contains carbon as Fe₃C.
- 71. Steel can be prepared by purification of pig iron by bessemer converter process and open-hearth furnace process.
- 72. Silver is extracted from argentite ore by Mac Arthur forest cyanide process.
- 73. Concentrated ore is agitated with a dilute solution of NaCN. Silver in the ore goes into solution in the form of soluble complex, sodium dicyanoargentate (I)
- 74. The soluble silver complex is treated with zinc dust, then silver get precipitated and is fused with KNO₃ to oxidise any zinc impurity.
- 75. The impure silver thus obtained is purified by electrolysis of a solution of AgNO₃ containing dil.HNO₃ using impure Ag as the anode and pure Ag as the cathode.
- 76. Alkali metals can not be extracted from aqueous solutions by displacement reactions, since they are highly electropositive metal compounds are thermally most stable.
- 77. In the extraction of "Na" metal by Down's process, $CaCl_2$ (or) KCl and KF are added to the electrolyte NaCl to decrease the melting point.
- 78. In the Cashier's process, the cell is continuously heated to keep the electrolyte NaOH in fused state.
- 79. "Mg" can not be extracted from hydrated MgC l_2 , because it hydrolyses to form MgO and Mg(OH)Cl.

- 80. Carnallite on strong heating loses 4 water molecules forming MgC l_2 .2H₂O. This on heating in a current of dry HCl gas at 350°C gives anhydrous MgC l_2 .
- 81. Anhydrous $MgCl_2$ is mixed with KCl (or) NaCl to prevent hydrolysis and to increase electrical conductivity of the electrolyte.
- Magnesium is extracted by the electrolysis of fused anhydrous $MgCl_2$ or of fused MgO.
- 83. Mg metal can also be obtained by reducing MgO with Si or Fe-Si or CaC₂.
- 84. Sea water contains small quantities of $MgCl_2$ and $MgSO_4$. Sea water is treated with slaked lime to precipitate the dissolved salts as $Mg(OH)_2$. It is then converted to $MgCl_2$ or MgO and Mg is extracted.
- 85. Bauxite containing FeO and Fe₂O₃ impurities is known as red bauxite. It can be concentrated either by Bayer's process (or) by Hall's process.
- 86. Bauxite containing silica (SiO₂) impurity is known as white bauxite. It can be purified by Serpeck's process.
- 87. At metal can be extracted by the electrolysis of alumina by Hall-Heroult's process. Alumina is mixed with cryolite to increase the conductivity and a little amount of flourspar to reduce the fusion temperature of alumina.
- 88. A1 metal containing the impurities like Si, Cu, Mn etc., can be refined by Hoope's process to get 99.99% pure metal.

Thermodynamic Principles of Metallurgy

Some basic concepts of thermodynamics help understanding the theory of metallurgical transformations. Gibbs energy is the most significant factor. The change in Gibbs energy, (ΔG) for any process at any specified temperature, is described by the equation:

$$\Delta G = \Delta H - T \Delta S \tag{1}$$


where, ΔH is the enthalpy change and ΔS is the entropy change for the process. For any reaction, this change (ΔG^{\bigcirc}) could also be explained through the equation:

$$\Delta G^{\bigcirc} = - RT ln K \tag{2}$$

where, K is the equilibrium constant of the 'reactant - product' system at the temperature, T. A negative ΔG implies a +ve K in the equation 2. And this can happen only when reaction proceeds towards products. From these facts we can make the following conclusions:

- 1. The reaction proceeds forward if the value of ΔG is negative in equation 1, only then the reaction will proceed. If ΔS and ΔH are positive, on increasing the temperature (T), the value of T ΔS would increase greatly and then ΔG will become –ve ($\Delta H < T\Delta S$).
- 2. If two reactions are occurring together in a system and the net sum of ΔG of the two reactions is -ve, the overall reaction will occur. So the process involves coupling of the two reactions, getting the sum of their ΔG values and arriving at its magnitude and *sign*.

Such coupling is easily understood through Gibbs energy (ΔG^{\bigcirc}) vs T plots for formation of the oxides (Fig.).

Fig. : Gibbs energy (ΔG°) vs T plots (schematic) for formation of some oxides (Ellingham diagram)

The reducing agent forms its oxide when the metal oxide is reduced. The role of reducing agent is to make the sum of ΔG^{\ominus} values of the two reactions (oxidation of the reducing agent and reduction of the metal oxide) negative.

During reduction, the oxide of a metal decomposes first to give O2 gas:

$$M_XO(s) \rightarrow xM \text{ (solid or liq)} + O_2 \text{ (g)}$$
 (3)

The reducing agent takes away the oxygen. The reaction of equation 5.3 can be visualised as reverse of the oxidation of the metal. And then, the $\Delta f G^{\ominus}$ value is written in the usual way:

$$xM(s \text{ or } l) + O_2(g) \rightarrow M_XO(s)$$
 $[\Delta G^{\bigcirc}(M, M_XO)]$ (4)

If reduction is being carried out through equation 3, the oxidation of the reducing agent (e.g., C or CO) will be there:

$$C(s) + O_2(g) \rightarrow CO(g)$$
 [$\Delta G(C, CO)$]
 $CO(g) + O_2(g) \rightarrow CO_2(g)$ [$\Delta G(CO, CO2)$]

If carbon is taken, there may also be complete oxidation of the element to CO2:

$$C(s) + O_2(g) \rightarrow CO_2(g)$$
 [$\Delta G(C, CO_2)$]

On subtracting equation 5.4 [it means adding its negative or the reverse form as in equation 3] from each of the above three equations respectively, we get:

$$M_XO(s) + C(s) \rightarrow xM(s \text{ or } l) + CO(g)$$

$$M_XO(s) + CO(g) \rightarrow xM(s \text{ or } l) + CO_2(g)$$

 $M_XO(s) + C(s) \rightarrow xM(s \text{ or } l) + CO_2(g)$

These reactions describe the actual reduction of the metal oxide, M_XO that we want to accomplish. The Δ_IG^{\ominus} values for these reactions in general, can be obtained by similar subtraction of the corresponding Δ_fG^{\ominus} values.

As we have seen, heating (i.e., increasing T) favours a negative value of $\Delta_r G^\ominus$. Therefore, the temperature is chosen such that the sum of $\Delta_r G^\ominus$ in the two combined redox process is negative. In $\Delta_r G^\ominus$ vsT plots, this is indicated by the point of intersection of the two curves (curve for M_XO and that for the oxidation of the reducing substance). After that point, the $\Delta_r G^\ominus$ value becomes more negative for the combined process including the reduction of M_XO . The difference in the two $\Delta_r G^\ominus$ values after that point determines whether reductions of the oxide of the upper line is feasible by the element represented by the lower line. If the difference is large, the reduction is easier.

Question Bank - I

1 Which is a hy	drated oxide mineral.				
	(2) Cassiter		3) bauxite	(4) haemati	ite
	method is used for th			(4) nacman	
	te (2) Haematite			elone	
, ,	for concentration of t	` '	mme (+) G	Cione	
	king (2) Froth lo		3) Magnetic	separation	(4) Leaching
	impurity present in C		3) Wagnetie	separation	(+) Leaching
	(2) Wolfrai		3) SnO ₂	(A) Clay	
	f heating on ore in the				nt is known as
	on (2) roasting				it is known as
	ating in limited supply				
	(2) calcination				roasting
7. Copper matte		(3) 3011	reduction (-	+) surphaning	Toasting
		C_{11} S \perp E_{0} C	(2) Cu O	$0 \pm F_0 O$ ($A)$ $Cu \circ + F \circ S$
	FeS(little) (2)		· · ·	r+reo (+) $Cu_20 + res$
	ce haematite is reduce	•		(4)	4
` '	(2) H2 gas		(3) Co gas	$s \qquad (4)$	water gas
	by cupellation proces			(4) 0	
` '	(2) Fe		.1 1.1		
	ains metal oxide as in				
_	(2) Liquation	(3) Cup	ellation	(4) Distilla	tion
11. Formula of ru	aby copper is	,	a >		~ - ~
	(2) Cu ₂ S		3) $CuCo_3(O$	$H)_2$ (4)	Cu FeS ₂
	cocess is used for extr			(A) =	
(1) Cu	(2) Ag	(3) Zn		(4) Fe	

- 13. Spelter is impure form of
 - (1) Zn
- (2) Ag
- (3) Cu
- (4) Fe
- 14. The most impure form of iron is
 - (1) wrought iron
- (2) mild steel (3) hard steel (4) cast iron
- 15. Mac Arthur Forrest process is used for extraction of
 - (1) Cu
- (2) Ag
- (3) Fe
- (4) Zn
- 16. Cast iron contains phosphorus as impurity in bessemrisation of cast iron, the slag formed is
 - (1) Fe Po_{$_{1}$}
- (2) $Ca_3(Po_4)_2$ (3) Mn Po_4 (4) $Zn_3(Po_4)_2$
- 17. In the blast furnace the reaction that occur in the zone of heat adsorption is
 - $(1) Co_2 + C \rightarrow 2Co$
- $(2) Fe_2O_3 + 3Co \rightarrow 2Se + 3Co_2 -$
- $(3) C + O_2 \rightarrow Co_2$
- (4) $Feo + Sio_2 \rightarrow Fe SiO_3$
- 18. Which is a wrong statement.
 - (1) Wrought iron is fibrous due to the slag in it
 - (2) The loss of iron is due to Fe Sio₃ formation in Bessemer process-
 - (3) In blast furnace Fe₂O₃ is reduced to iron by coke
 - (4) In Bessemer process Co burns with blue flame at the mouth.
- 19. Parkes process is used to separate silver form
 - $(1) Ag_{2}S$
- (2) AgCl-
- (3) Argenti ferrous lead
- (4) Alluvial soil

- 20. 100% copper obtained from crude copper by
 - (1) An Arkel method
- (2) Liquation-(3) Electro refining (4) Poling

					KEY				
1)	3	2)	2	3)	1	4)	2	5)	1
6)	1	7)	1	8)	1	9)	1	10)	1
11)	1	12)	3	13)			4	15)	2
	2		2	18)	3	19)	3	20)	2

Question Bank - II

Occurance and general principles

- List I (mineral) 1.
 - List II (type of mineral)
 - 1) Zircon
- a) Sulphate
- 2) Monite
- b) Silicate
- 3) Pentlandite
- c) Sulphide
- 4) Anglesite
- d) Phosphate

Correct match is

1 2 3 4

2 3 4

1) b d c a

2) a b c d

3) b c d a

4) a d c b

2.	'X' is substance which comb	ines chemically with impurities ass	sociated with the ore to				
	form easily fusible mass 'Y' I	Here X and Y are					
	1) Flux, slag 2) Slag, t	flux 3) Gangue, slag	4) Reductant. flux				
3.	In Goldsmith thermite proces	s reductant is					
	1) Coke 2) Alumi	nium 3) Water gas	4) Carbonmonoxide				
4.	In which of the following pro	oducts are in the molten state					
	1) Calcination 2) Oxidiz	zing roasting 3) Sulphatizing roastir	ng 4) Smelting				
5.	Match the following						
	List - I List - II						
	1) liquation a) Volatil	e metals with non volatile impurity					
	2) Poling b) Metal	with its metal oxides as impurity					
	3) Cupellation c) Metal	with easily oxidisable impurities					
	4) Distillation d) Metal	and impurities differ in M.P.					
	1 2 3 4	1 2 3 4					
	1) a b c d	2) d c b a					
	3) d b c a	4) a b d c					
6.	Various types of zone in the b	plast furnace are given in the list and	d reactions take place in				
	the extraction of iron are give	en in list - II.					
	List -1	List - II					
	1) Zone of reduction	a) $C + O_2 \rightarrow CO_2$					
	2) Zone of heat absorption	b) $CO_2 + C \rightarrow 2CO$					
	3) Zone of fusion	c) $Fe_2O_3 + 2Fe \rightarrow 3CO$	2				
	1 2 3 1 2 3	1 2 3 1 2 3	3				
	1) a b c 2) c b a	3) b c a 4) c a b)				
7.	List -I	List -II					
	A) vanArkel method	1) Manufacture of caustic soda					
	B) Solvay process	2) Purification of Titanium	2) Purification of Titanium				
	C) Cupellation	3) Manufarure of Na ₂ CO ₃	3) Manufarure of Na ₂ CO ₃				
	D) Poling	4) Purification of copper	4) Purification of copper				
		5) Refining of silver					
	The correct match is						
	A B C D	A B C D					
	1) 2 1 3 4	2) 3 3 2 5					
	3) 2 3 5 4	4) 5 1 3 4					
8.	List -I (Type of mineral.)	List - II					
	1) Oxide	a) Kaolinite					
	2) Carbonate	b) Calamine					
	3) Sulphide	c) Copper glance					
	4) Silicate	d) Cuprite					

The correct match is

1 2 3 4

2 3 4

1) d b c a

2) b d a c

3) a b c d

4) b a c d

9. List -I Ust-II

1) Argentite

a) KCl

2) Horn silver

b) AgCl

3) Ruby silver

c) Ag₂S

4) Sylvine

d) 3Ag₂S.Sb₂S₃

The correct match is

1 2 3 4

1 2 3 4

1) c a d b

2) d b c a

3) c d b a

- 4) d c b a
- Match the following: 10.

List - I

List - II

- I. Cyanide process
- a) Ultrapure Ge
- II. Floatation proces
- b) Pine oil
- III. Electrolytic reduction
- c) Extraction of Al
- IV. Zone refining
- d) Extraction of Au
- 1) I (c), II (a), III (d), IV (b)
- 2) I (d), II (b), III (c), IV (a)
- 3) I (c), II (b), III (d), IV (a) 4) I (d), II (a), III (c), IV (b)
- Which of the following is not a characteristic of open hearth process 15.
 - 1) The quality of steel obtained is very high
 - 2) Composition of steel can be controlled
 - 3) A blast of air is used in the furnace
 - 4) Iron scrap and lower grade pig iron can be used
- Formation of metallic copper from the sulphide ore in the normal thermo-metallurgical 16. process essentially involves which one of the following reaction?

1)
$$CuS + \frac{3}{2}O_2 \longrightarrow CuO \cdot SO_2$$
; $CuS \cdot C \longrightarrow Cu \cdot CO$

2)
$$CuS + \frac{3}{2}O_2 \longrightarrow CuO \cdot SO_2$$
; $2CuO \cdot CuS \longrightarrow 3Cu \cdot SO_2$

- Which of the following reagent is used to seperate the impurity from red bauxite 17.
 - 1) Conc. HCl 2) H₂SO₄
- 3) NaOH
- A mixture of Al₂O₃ and Fe₂O₃ can be separated by using 18.
 - 1) Sodium hydroxide
- 2) Cold water
- 3) Ethyl alcohol
- 4) Boiling water
- Percentages of copper and zinc present in a alloy brass are respectively 19.
 - 1) 60 % and 40%
- 2) 40% and 60%

3) 0 % and 100%

4) 100 % and 0%

In the blast furnace, the reaction that is taking place at the temperature zone of 900K to 20. 1500K is

1) FeO + CO \longrightarrow Fe + CO₂ 2) Fe₂O₃ + CO \longrightarrow 2FeO + CO₂

3) $Fe_3O_4 + CO \longrightarrow 3Fe + CO_2$ 4) All the above reactions

Metal used in the extraction of Mn and Cr from their oxides is 21.

1) Ag

2) Cu

3) Al

4) Fe

Impurity present in red bauxite is 22.

1) ZnO

2) Fe₂O₃

3) SiO₂

4) Al₂O₃

Metal extracted from molten cryolite is 23.

1) Al

2) Fe

3) Zn

4) Ag

Uses of metals

Metal commonly present in bronze, brass and German silver is

1) Cu

2) Ag

3) Zn

4) Fe

Nickel steel is used in making 25.

1) Cycles

2) utensils

3) Cutting tools

4) Cables

KEY								
1) 1	2) 1	3) 2	4) 4		6) 2	7) 3	8) 1	
$\begin{vmatrix} 1 & 1 \\ 9 & 3 \end{vmatrix}$	10) 2	11) 4	12) 3	13) 1	,		,	
17) 3	2) 1 10) 2 18) 1	19) 1	20) 1	,	,	,	,	
25) 4	,	,	,	,	,	,	,	

6. p-BLOCK ELEMENTS

(a) GROUP-15 ELEMENTS

Synopsis:

- 1. Nitrogen (N); Phosphorus (P), Arsenic (As), Antimony (Sb) and Bismuth (Bi) are the elements of group VA.
- 2. These elements are called pnicogens. The percentage abundance in the earth crust is: P > N > As > Sb > Bi.
- 3. The valency shell configuration of VA group elements is $ns^2 np^3$.
- 4. Nitrogen is diatomic. P, As and Sb are tetra-atomic. Bismuth is monoatomic.
- 5. Nitrogen can form two $P^{\pi} P^{\pi}$ bonds due to small size and greater overlaping character, while others can't due to their large size.
- 6. In P₄ molecule, all the four atoms lie at the corners of a tetrahedron. The P-P-P bond angle is 60°, oxidation state of P is zero and covalency of P is 3.
- 7. Most abundant gas in the earth's atmosphere is nitrogen. About 75% by mass and 78% by volume in air is nitrogen. In combined state 'N' is available as KNO₃ (Indian salt petre) and NaNO₃ (Chile salt petre)
- 8. Phosphorous is the eleventh most abundant element in the earth's crust and the most abundant in the VA group.
- 9. Sources of phosphorus minerals in the earth's crust are: Phosphorite $Ca_3(PO_4)_2$, Fluorapatite $3Ca_3(PO_4)_2$. CaF_2 and Chlorapatite $3Ca_3(PO_4)_2$. $CaCl_2$. Hydroxyaptite is $3Ca_3(PO_4)_2$. $Ca(OH)_2$.
- 10. Asm Sb and Bi are abundant and are available as sulphide minerals. Realgar As_4S_4 red colour. Orpiment- As_2S_3 -Yellow colour, Sribimte Sb_2S_3 and Bismuth glance Bi_2S_3
- 11. Except Bi. all elements of VA group exhibit allotropy.
- 12. Nitrogen has two allotropes in the solid state, a) a nitrogen and b) β nitrogen
- 13. Allotropes of phosphorus are yellow or white phosphorus, red phosphorus, scarlet phosphorus, α , β black phosphorus and violet phosphorus.
- 14. White phosphorous molecule has a regular tetrahedral structure. It has 6 P-P bonds. White phosphorus is more reactive, due to high bond angle strain.
- 15. Metallic character of the VA group elements increases as the atomic number increases. N and P are non metals! As and Sb are metalloids. Bi is a true metal.
- 16. Electronegativity decreases from N to Bi. As and Bi have same electronegativity values.
- 17. The common oxidation states of these elements are-3,+3 and+5.

- 18. Nitrogen exhibits a wide range of oxidation states. $NH_3(-3)$, N_2H_4 (-2), NH_2OH (-1), N_3H (-X), $N_2(O)$, $N_2O(+1)$, NO(+2), $HNO_2(+3)$, $NO_2(+4)$ and $HNO_3(+5)$
- 19. The exhibition of -3 oxidation state decreases from N to Bi, due to decreasing non metallic character and electronegativity.
- 20. The tendency of exhibiting +5 oxidation state decreases from N to Bi, due to inert pair effect. Due to inert pair effect, Bismuth has more stable +3 oxidation state.
- 21. Nitrogen is gas and other elements are solids. Dinitrogen is inert due to high bond dissociation energy, 945.4 kJ/mol. 1 σ and 2 π bonds present in N₀ molecule.
- 22. Catenation power decreases from N to As with decreasing bond energies from N to As.
- 23. Catenation of nitrogen is observed in azide. Tetrazenes having organic substitutents give chains with 8 atoms of nitrogen.
- Group VA elements form MH₃ type hydrides. They are prepared by the action of water or dil.acid on Mg₃N₂, Ca₃P₂, Zn₃As₂ and Mg₃Sb₂.
- 25. Shape of MH₃ is pyramidal with one lone pair on the central atom. From NH₃ to BiH₃ ease of formation of hydrides, stability, ease of replacing hydrogen atom by Cl or methyl group decrease.
- 26. Basic nature, bond angle, water solubility and ionic character decrease from NH₃ to BiH₃.
- 27. The basic character of hydrides can be increased by replacing the hydrogen atoms with alkyl groups. P(CH₃)₃ is more basic than PH₃.
- NH₃ and PH₃ are volatile and colourless gases. The boiling points of VA group hydrides is in the order: $SbH_3 > NH_3 > AsH_3 > PH$,. The volatility is in the reverse order of their boiling points. The order of melting points is: $NH_3 > SbH_3 > AsH_3 > PH_3$.
- As the atomic size of the central atom increases the lone pair is spread over a large surface area, as the result electron density decreses. Hence basic nature decreases. Order of Basic nature is: NH₃>PH₃>AsH₃.
- 30. Ammonia is the only VA hydride which has hydrogen bonds in liquid state.
- 31. Ammonia is more readily formed and more stable than PH_r Ammonia forms coordinate bonds readly. PH_3 acts as an electron pair donor and can form complexes.
- 32. Due to decrease in M-H bond energy the thermal stability of these hydrides decreases from NH₃ to BiH₃.
- 33. The central atom in NH₃ molecule undergoes sp³ hybridization, a lone pair of electrons present at one of the vertices.
- 34. The bond angles in the hydrides of group VA decrease from NH₃ to BiH₃ due to increase in size of central atom and pure 'p' orbitals are involved in the formation of other hydrides except in NH.

- 35. Other hydrides formed by nitrogen are : hydrazine (N_2H_4) and hydrazoic acid (N_3H) . N_3H is the acidic hydride of nitrogen.
- 36. Other hydride of phosphorus is, P_2H_4 diphosphine. Polyphosphines are unstable.
- Reducing property of hydrides increases from NH₃ to BiH₃ due to decrease in M-H bond energy. PH₃ catches fire on heating to 150°C because it is contaminated with traces of P₉H₄.
- 38. Group VA elements form M_2O_3 , M_2O_4 and M_2O_5 type oxides.
- 39. Nitrogen alone forms many oxides. This is due to pp -pp multiple bonding between N and O atoms.
- 40. Pentoxides are more acidic than trioxides. The oxide of an element with higher oxidation state is more acidic. Among VA oxides, N_9O_5 is the most acidic oxide.
- 41. Acidic nature of oxides decreases with increase in atomic number. The oxides of As and Sb are amphoteric.
- 42. N_2O_3 is more acidic than Bi_2O_3 . The basic nature increases from N_2O_3 to Bi_2O_3 because of increase in the size of central atom, which influences the metallic properties.
- 43. Trioxides dissolve in water to form -ous acids. Pentoxides dissolve in water to form -ic acids. The -ic acids are more acidic than -ous acids
- 44. The oxidising nature of oxides decreases from N_2O_3 to Bi_2O_3
- 45. The VA oxide which acts as dehydrating agent is P_2O_5 . The oxides of nitrogen and phosphorus "are chemically similar although their structures are different.
- 46. Trioxide of P_4 , As_4 , Sb_4 and Bi are prepared by direct action with air (or) oxygen. P_4O_{10} is prepared by burining P_4 in excess of air.
- 47. The stability of pentoxides decreases down the group and basic nature increases.
- 48. The oxides nitrogen and bismuth can exist only as monomers (except NO and NO₂, which can exist also as dimers).
- 49. Trioxides and pentoxides of P. As and Sb are dimeric. P_4O_6 , As_4O_6 and Sb_4O_6 Trioxides. P_4O_6 , As_4O_6 and Sb_4O_6 -Pentoxides.

50. Oxides of nitrogen

Name	Formula	Oxidation state of Nitrogen	Nature
Nitrous oxide	N_2O	+1	Neutral
Nitric Oxide	ΝO	+2	Neutral
Nitrogen sesquioxide	N 203	+ 3	Acidic
Nitrogen dioxide	No_2	+ 4	Acidic
Dinitrogen tetroxide	N_2O_4	+ 4	Acidic
Nitrogen pentoxide	N_2O_5	+ 5	Acidic

- Nitrous oxide N₂O is colourless and odourless is called laughing gas. It is prepared by heating a mixture of NH₄Cl and NaNO₃. It is stable, relatively unreactive and neutral.
- 52. Nitric oxide (NO) is formed as an intermediate in the manufacture of nitric acid by the catalytic oxidation of ammonia. It is a colourless gas, paramagnetic and very reactive.
- 53. Nitric oxide readily reacts with O₂ to form reddish brown NO₂ gas. NO is absorbed by cold FeSO₄ solution to form brown coloured FeSO₄NO.
- Nitrogen sesquioxide or dinitrogen trioxide (N_2O_3) is the anhydride of nitrous acid. It is prepared by cooling a mixture of NO and NO, to 250 K. In the pure state N_2O , exists only as a pale blue solid that melts to a deep blue liquid.
- 55. Nitrogen dioxide (NO₂) is reddish brown gas and paramagnetic. It is obtained by heating lead nitrate. It is an odd electron molecule and very reactive.
- 56. N₁0₄ is a <u>mi</u>xed anhydride of HNO₂ and HNO₃ N₂O₄ has no unpaired electron and hence it is colourless and diamagnetic.
- Nitrogen pentoxide (N_2O_5) is obtained by dehydration of HNO₃ by P_4O_{10} . It is the anhydride of nitric acid
- 58. N_2O molecule is linear

$$: \overset{-}{N} :: \overset{+}{N} :: O : \longleftrightarrow : N :: \overset{-}{N} :: \overset{+}{N} : O :$$

59. NO is linear with ood electron bonding

$$: N = O \text{ or } : N : : O \text{ or } : N = O :$$

60. N_2O_3 has only covalent bonds and exists as

$$O = N$$
 $N = 0$
 O

- NO_2 is trigonal planar molecule. It is stable due to resonating structures.
- 62. In N_2O_5 each nitrogen atom is surrounded by three oxygen atoms. N_2O_5 has both covalent and dative bonds.
- 63. P_4O_6 and P_4O_{10} are dimers. Oxygen atoms act as bridges in both the oxides. In both the oxides, number of bridge oxygen atoms is six. Number of oxygen atoms surrounded by 'P' atom in P_4O_6 is three and in P_4O_{10} is four. P_4O_6 and P_4O_{10} both have no P-P bonds.
- 64. Group VA elements form trihalides MX_3 and pentahalides MX_5 .
- 65. M is sp^3 hybridised in MX_3 and is sp^3 d hybridised in MX_3 . Shape of MX_3 is trigonal pyramidal and MX_5 is trigonal bipyramidal
- 66. Hydrolysis of MX₃ gives -ous acids and MX₅ gives -ic acids.

- 67. The elements react directly (except N) with required quantity of the halogen forming trihalide. Trihalides hydrolyse easily except PF₃.
- 68. NCl_3 is not formed due to the absence of d- orbitals in the valency shell of 'N'.
- 69. Hydrolysis of NCl_3 gives NH_3 and HOCl. Hydolysis of PCl_3 gives HCl and H_3PO_3 . PCl_5 on hydrolysis gives HCl and H_3PO_4 . The extent of hydrolysis decreases from NCl_3 to $BiCl_3$. $BiCl_3$ hydrolysis to give pearl white BiOCl.
- 70. Nitrogen differs from other VA group elements due to high electronegativity high bond dissociation energy and absence of vacant d orbitals.
- 71. Oxides of VA group except those of Sb and Bi dissolve in water and form oxyacids.
- 72. HNO₂ is unstable except in dilute cold conditions. It is prepared by the action of dil H₂SO₄ on nitrites. On long standing it undergoes auto oxidation auto reduction to give HNO₃ and NO.
- 73. With stronger oxidants nitrous acid functions as reductant. With stronger reductants if function as oxidant.
- 74. With aromatic primary amines nitrous acid gives diazonium compounds at ice temperature.

75. Oxyacids of nitrogen

	1	1
Name	Formula	Oxidation state of N
Hyponitrous acid	HNO (or) $H_2N_2O_2$	+1
Nitrous acid,	HNO_2	+3
Nitric acid	HNO ₃	+ 5
Pernitric acid	HNO ₄	+5

- 76. Phosphorus forms two series of oxoacids. In all oxoacids phosphorous atom is tetrahedrally surrounded by other atoms. In these acids at least one P-OH bond is present. These ionisable 'H' are responsible for basicity of the the acid.
- 77. Phosphorous series of acids have P H bonds, these H atoms are responsible reducing properties.
- Orthophosphorous acid H_3PO_3 is prepared by dissolving P_4O_6 in water. It gives two series of salts primary phosphites $(H_2PO_3^{-1})$ and secondary phosphites (HPO_3^{-2}) . Primary phosphite are acidic salts.
- Phosphorus acid and orthophosphites are strong reducing agents in basic solution. These can reduce Hg^{2+} , Ag^{+} and Cu^{2+} to give metals. In these reaction H_3P0_3 is oxidised to H_3P0_4 .
- 80. Metaphosphorous acid (HPO₂) normally exists as cyclic compound.
- 81. Phosphoric series of acids not contain P H bonds in their structure. The oxidation state of principal element 'P' in these acids is + 5.
- 82. Orthophosphoric acid (H_3PO_4) is prepared by dissolving P_4O_{10} in water. Solid acid absorbs water and forms a colourless syrupy liquid. It forms 3 series of salts :

- $H_2PO_4^{-3}$ dihydrogen phosphates. HPO_4^{-2} monohydrogen phosphates and PO_4^{-3} phosphates.
- 83. Orthophosphoric acid loses water readily on heating.

$$H_3PO_4 \frac{\text{gentle}}{\text{heat}} > H_4P_2O_7 \frac{\text{strong}}{\text{heat}} > HPO_3$$

- Ortho phosphates are identifed in qualitative analysis by ammonium phosphomolybdate test ^L where a canary yellow precipitate is formed.
- 84. Metaphosphoric acid (HPO₃) is obtained by heating H₃PO₄ (or) H₄P₂O₇ to red hot. It is also called glacial phosphoric acid. It is a transparent glassy solid.
- Pyrophosphoric acid (H₄P₂O₇) is prepared by the action of H₂PO₄ and HPO₃ at 100°C. Pyrophosphates also will respond to molybdate test. Basicity is 4, but has only two common types of salts.
- 86. Hypophosphoric acid (H₄P₂O₆) has P P linkage. Basicity is 4. Peroxyphosphoric acid (H₃PO₅) has peroxy bond. Basicity is 3.
- 87. Heating an <u>a</u>mmonium salt with NaOH gives NH₃. In laboratory NH₃ gas is identified by its smell (or) with a glass rod dipped in HCl solution. On large scale NH₃ is prepared from coal, by Haber's process and by cyanamide process
- 88. Haber synthesised ammonia from elements. It is a reversible exothermic process. The reaction proceeds with a decrease in volume. According to Lechatlier principle the favourable conditions are low temperature and high pressure. For Habers process
- 89. Optimum conditions are: Temperature 725 775 K, Pressure 200 300 atm. Finely divided iron as catalyst and molybdenum as promoter.
- 90. Raw materials in the cyanamide process are lime stone, coke and N_9 gas. The catalyst is powdered anhydrous $CaCl_2$.
- 91. Mixture of CaCN₂ and graphit e i s nitrolim and is used as fertilizer. Hydrolysis of nitrolim using steam at high pressure gives CaCO, and NH₃.
- 92. Ammonia is used as refrigerant. It is used to produce fertilisers and for the manufacture of HNO₃. Liquid NH₃ is a good solvent for both ionic and covalent compounds. It is used in the manufacture of Na₂CO₃ by Solvay process and in the preparation of rayon and artificial silks.
- 93. The only stable and most important oxyacid of 'N¹ is nitric acid. It is called aqua fortis. In the laboratory nitric acid is prepared by heating NaNO₃ and cone. H₂SO₄. in a glass retort.
- 94. On a large scale, nitric acid is manufactured by Ostwald's process, which is based on oxidation of NH₃ by atmospheric oxygen, Pt or Rh is used as catalyst.
- 95. HNO₃ obtained by ostwald's process is about 61 %. If is further concentrated by distillation until 68 % is obtained distillation by mixing with cone. H₂SO₄ to get 98 % and cooling in freezing mixture to get 100% acid.
- 96. HNO₃ is also prepared by Brikland and Eyde process from air at an electric arc.

- 97. Nitric acid is a colourless liquid. It exists as a planar molecule in gaseous state. In aqueous solutions, it behaves as a strong acid giving hydronium and nitrate ions.
- 98. A mixture of cone HNO₃ and cone H₂SQ₄ in 1 : 1 volume ratio is called nitration mixture. It is used to convert benzene to nitrobenzene.
- 99. HNO₃ is a plannar molecule with N O bond length of $1.22 \,_{\text{A}}^{\circ}$; ONO_t bond angle is 115° & O_tNO_t bond angle is 130° .
- 100. HNO₃ is used in manufacturing of fertilizers like {CaO. Ca(NO₃)₂}, manufacturing of explosives like T.N.T. nitroglycerine etc, perfumes, dyes and drugs.
- 101. Nitric acid is used as an oxidant to oxidise cyclohexanol or cyclohexanone to adipic acid and p Xylene to terepthalic acid. It is used in the preparation of cellulose nitrate from where artificial silk is prepared.

SYNOPSIS - II

- 1. Nitrogen (N); Phosphorus (P), Arsenic (As), Antimony (Sb) and Bismuth (Bi) are the elements of group VA.
- 2. These elements are called pnicogens. The percentage abundance in the earth crust is : P > N > As > Sb > Bi.
- 3. The valency shell configuration of VA group elements is ns² np³.
- 4. Nitrogen is diatomic. P, As and Sb are tetra-atomic. Bismuth is monoatomic.
- 5. Nitrogen can form two p^{π} _ p^{π} bonds due to small size and greater overlaping character, while others can't due to their large size.
- 6. In P_4 molecule, all the four atoms lie at the corners of a tetrahedron. The P-P-P bond angle is 60° , oxidation state of P is zero and covalency of P is 3.
- 7. Most abundant gas in the earth's atmosphere is nitrogen. About 75% by mass and 78% by volume in air is nitrogen. In combined state 'N' is available as KNO₃ (Indian salt petre) and NaNO₃ (Chile salt petre)
- 8. Phosphorus is the eleventh most abundant element in the earth's crust and the most abundant in the VA group.
- 9. Sources of phosphorus minerals in the earth's crust are: Phosphorite $Ca_3(PO_4)_2$, Fluorapatite $3Ca_3(PO_4)_2$. CaF_2 and Chlorapatite $3Ca_3(PO_4)_2$. CaZ_2 .
- 10. Except Bi, all elements of VA group exhibit allotropy.
- 11. Allotropes of phosphorus are yellow or white phosphorus, red phosphorus, scarlet phosphorus, α , β black phosphorus and violet phosphorus.
- 12. White phosphorus molecule has a regular tetrahedral structure. It has 6 P-P bonds. White phosphorus is more reactive, due to high bond angle strain.
- 13. Metallic character of the VA group elements increases as the atomic number increases. N and P are non metals, As and Sb are metalloids. Bi is a true metal.
- 14. Electronegativity decreases from N to Bi. As and Bi have same electronegativity values.
- 15. The common oxidation states of these elements are -3, +3 and +5.
- 16. Nitrogen is gas and other elements are solids. Dinitrogen is inert due to high bond dissociation energy, 945.4 kJ/mol. 1, 2 and 3 bonds present in N₂ molecule.

- 17. Catenation power decreases from N to As with decreasing bond energies from N to As.
- 18. Catenation of nitrogen is observed in azide. Tetrazenes having organic substitutents give chains with 8 atoms of nitrogen.
- 19. Group VA elements form MH₃ type hydrides. Shape of MH₃ is pyramidal with one lone pair on the central atom.
- 20. From NH₃ to BiH₃ ease of formation of hydrides, stability, ease of replacing hydrogen atom by Cl or methyl group decrease.
- 21. Basic nature, bond angle, water solubility and ionic character decrease from NH₃ to BiH₃.
- 22. NH_3 and PH_3 are volatile and colourless gases. The boiling points of VA group hydrides is in the order: $SbH_3 > NH_3 > AsH_3 > PH_3$. The volatility is in the reverse order of their boiling points.
- 23. As the atomic size of the central atom increases the lone pair is spread over a large surface area, as the result electron density decreases. Hence basic nature decreases. Order of Basic nature is: NH₃>PH₃>AsH₃.
- 24. Ammonia is the only VA hydride which has hydrogen bonds in liquid state.
- 25. Ammonia is more readily formed and more stable than PH₃. Ammonia forms co-ordinate bonds readly. PH₃ acts as an electron pair donor and can form complexes.
- 26. The central atom in NH₃ molecule undergoes sp³ hybridization, a lone pair of electrons present at one of the vertices.
- 27. The bond angles in the hydrides of group VA decrease from NH₃ to BiH₃ due to increase in size of central atom and pure 'p' orbitals are involved in the formation of other hydrides except in NH₃.
- 28. Group VA elements form M_2O_3 , M_2O_4 and M_2O_5 type oxides.
- 29. Nitrogen alone forms many oxides. This is due to $p\pi$ $p\pi$ multiple bonding between N and O atoms.
- Pentoxides are more acidic than trioxides. The oxide of an element with higher oxidation state is more acidic. Among VA oxides. N_2O_5 is the most acidic oxide
- 31. Acidic nature of oxides decreases with increase in atomic number. The oxides of As and Sb are amphoteric.
- 32. N_2O_3 is more acidic than Bi_2O_3 . The basic nature increases from N_2O_3 to Bi_2O_3 because of increase in the size of central atom, which influences the metallic properties.
- 33. Trioxides dissolve in water to form 'ous' acids. Pentoxides dissolve in water to form -ic acids. The -ic acids are more acidic than -ous acids
- 34. The oxidising nature of oxides decreases from N_2O_3 to Bi_2O_3
- 35. The VA oxide which acts as dehydrating agent is P₂O₅. The oxides of nitrogen and phosphorus are chemically similar although their structures are different.
- 36. Trioxides and pentoxides of P. As and Sb are dimeric. P_4O_6 . As $_4O_6$ and Sb $_4O_6$ -Trioxides. P_4O_{10} . As $_4O_{10}$ and Sb $_4O_{10}$ -Pentoxides.
- 37. Nitrous oxide N₂O is colourless and odourless is called laughing gas. It is prepared by

- heating a mixture of NH₄Cl and NaNO₃. It is stable, relatively unreactive and neutral.
- 38. Nitric oxide (NO) is formed as an intermediate in the manufacture of nitric acid by the catalytic oxidation of ammonia. It is a colourless gas. paramagnetic and very reactive.
- 39. Nitric oxide readily reacts with O₂ to form reddish brown NO₂ gas. NO is absorbed by cold FeSO₄ solution to form brown coloured FeSO₄NO.
- 40. Nitrogen dioxide (NO₂) is reddish brown gas and paramagnetic. It is obtained by beating lead nitrate. It is an odd electron molecule and very reactive,
- 41. N_2O_4 is a mixed anhydride of HNO_2 and HNO_3 . N_2O_4 has no unpaired electron and hence it is colourless and diamagnetic.
- 42. Nitrogen pentoxide (N_2O_5) is obtained by dehydration of HNO₃ by P_4O_{10} . It is the anhydride of nitric acid
- 43. N₂O₄ molecule is linear. NO is linear with odd electron bonding
- 44. NO₂ is trigonal planar molecule. It is stable due to resonating structures.
- 45. In N_2O_5 each nitrogen atom is surrounded by three oxygen atoms. N_2O_5 has both covalent and dative bonds.
- 46. P_4O_6 and P_4O_{10} are dimers. Oxygen atoms act as bridges in both the oxides. In both the oxides, number of bridge oxygen atoms is six. Number of oxygen atoms surrounded by 'P' atom in P_4O_6 is three and in P_4O_{10} is four.
- 47. Group VA elements form trihalides MX_3 and pentahalides MX_5 .
- 48. M is sp³ hybridised in MX_3 and is sp³d hybridised in MX_5 . Shape of MX_3 is trigonal pyramidal and MX_5 is trigonal bipyramidal
- 49. Hydrolysis of MX₃ gives -ous acids and MX₅ gives -ic acids.
- 50. NCl_5 is not formed due to the absence of d-orbitals in the valency shell of 'N'.
- 51. Hydrolysis of NCl₃ gives NH₃ and HOCl. Hydolysis of PCl₃ gives HCl and H₃PO₃. PCl₅ on hydrolysis gives HCl and H₃PO₄.
- 52. Phosphorus forms two series of oxoacids. In all oxoacids phosphorous atom is tetrahedrally surrounded by other atoms. In these acids at least one P-OH bond is present. These ionisable 'H' are responsible for basicity of the acid.
- 53. Phosphorous series of acids have P H bonds, these H atoms are responsible for reducing properties.
- 54. Metaphosphorous acid (HPO₂) normally exists as cyclic compound.
- 55. Phosphoric series of acids not contain P H bonds in their structure. The oxidation state of principal element P in these acids is + 5.
- Heating an ammonium salt with NaOH gives NH₃. In laboratory NH₃ gas is identified by its smell (or) with a glass rod dipped in HCl solution. On large scale NH₃ is prepared from coal, by Haber's process and by cyanamide process
- 57. Haber synthesised ammonia from elements. It is a reversible exothermic process. The reaction proceeds with a decrease in volume. According to Lechatlier principle the favourable conditions are low temperature and high pressure.

- 58. For Habers process, Optimum conditions are: Temperature 725 775 K, Pressure 200 300 atm. Finely divided iron as catalyst and molybdenum as promoter.
- 59. Ammonia is used as refrigerant. It is used to produce fertilisers and for the manufacture of HNO₃. Liquid NH₃ is a good solvent for both ionic and covalent compounds. It is used in the manufacture of Na₂CO₃ by Solvay process and in the preparation of rayon and artificial silks.
- 60. On a large scale, nitric acid is manufactured by Ostwald's process, which is based on oxidation of NH₃ by atmospheric oxygen. Pt or Rh is used as catalyst.
- 61. HNO₃ obtained by ostwald's process is about 61 %. If is further concentrated by distillation until 68 % is obtained distillation by mixing with conc. H₂SO₄ to get 98 % and cooling in freezing mixture to get 100% acid.
- 62. Nitric acid is a colourless liquid. It exists as a planar molecule in gaseous state. In aqueous solutions, it behaves as a strong acid giving hydronium and nitrate ions.

	solutions, it beh	aves as a stron	g acid giving hy	ydronium and nitrate ions.					
63.	A mixture of co	$nc HNO_3$ and c	onc H ₂ SO ₄ in 1	: 1 volume ratio is called nitration mixture.					
	It is used to con	vert benzene to	nitrobenzene.						
64.	HNO ₃ is used in	n manufacturin	g of fertilizers	like {CaO. Ca(NO ₃) ₂ }, manufacturing of					
				imes, dyes and drugs.					
		Ω 114	estion B	onk _ I					
		Que	csuon D	ank - 1					
1.	The element v	vith more caten	ation power is						
	1) N	2) P	3) As	4) Bi					
2.	The number o	f unpaired elec	trons present in	excited state of Phosphorous atom are					
	1) 3	2) 5	3) 10	4) 2					
3.	The stable oxi	idation state of	Bismuth is						
	1)+1	2) +5	3) –3	4) +3					
4.	Thermally mo	st stable hydric	le is						
	1) NH ₃	2) PH ₃	3) AsH_3	4) BiH ₃					
5.	The oxide inve	olved in the for	mation of brow	n ring in the test for the nitrate					
	1) N2O	2) NO	3) NO ₂	4) N2O3					
6.	The arrangem	ent of oxygen a	atoms around ea	ach phosphorous in P ₄ O ₁₀					
	1) Pyramidal	2) Octahedral	3) Tetrahedral	4) Square planar					
7.	Aqueous solut	Aqueous solution of PCl ₃ conducts electricity due to the presence of							
	1) HOCl	2) HCl	3) H ₃ PO ₄	4) H ₂ O					
8.	Lead nitrate o	n strong heatin	g gives						
	1) PbO, NO ₂ ,	O_2	2) PbO ₂ , PbO ₃	, NO ₂					
	3) PbO, NO, 0	O_2	4) PbO, NO, 1	NO_2					
9.	White phospho	orous reacts wit	h caustic soda to	give phosphine and sodium hypophosphite.					
	In this reaction	n phosphorous	undergoes						
	1) Oxidation	2) Reduction	3) Both	4) None of these					

- 58. For Habers process, Optimum conditions are: Temperature 725 775 K, Pressure 200 300 atm. Finely divided iron as catalyst and molybdenum as promoter.
- 59. Ammonia is used as refrigerant. It is used to produce fertilisers and for the manufacture of HNO₃. Liquid NH₃ is a good solvent for both ionic and covalent compounds. It is used in the manufacture of Na₂CO₃ by Solvay process and in the preparation of rayon and artificial silks.

Question Bank – I

1.	The elemer	nt with more c	atenation powe	er is		
	1) N	2) P	3) As	4) Bi		
2.	The number	er of unpaired	electrons pres	sent in excited st	ate of Phosphorou	ıs atom
	are	•	•		-	
	1) 3	2) 5	3) 10	4) 2		
3.	The stable	oxidation state	e of Bismuth is			
	1)+1	2) +5	3) –3	4) +3		
4.	,	most stable hy	·	,		
	•	•	3) AsH ₃	4) BiH ₃		
5.	The oxide i	involved in the	e formation of	brown ring in the	test for the nitrate	
	$1) N_2O$	2) NO	$3) NO_2$	4) N_2O_3		
6.	The arrange	ement of oxyg	en atoms arou	nd each phosphor	ous in P ₄ O ₁₀	
	•	al 2) Octahed			4) Square planar	
7.	Aqueous so	olution of PCl ₃	conducts elec	tricity due to the		
	1) HOCl		$3) H_3PO_4$	•	L	
8.	Lead nitrate	e on strong he	ating gives	,		
	1) PbO, NO		2) PbO ₂ , 1	PbO, NO_2		
	3) PbO, NO		4) PbO, N			
9.	White pho	sphorous read	cts with causi	tic soda to give	phosphine and	sodium
	hypophosphite. In this reaction phosphorous undergoes					
			ion 3) Both	_	these	
10.	The numbe	er of oxygen at	oms bonded to	one phosphorous	s atom is P_4O_6 is	
	1) 4	2) 3	3) 6	4) 5		
11.	Which one	of the followi	ng elements oc	cur free in nature	:?	
	1) Nitroger	n 2) Phosph	orous 3)	Arsenic 4) ar	ntimony	
12.	Which of tl	he following o	xides of nitrog	en is a brown col	ured gas?	
	1) NO ₂	2) NO	$3) N_2O$	4) N_2O_5		
13.	The reddish	The reddish brown coloured gas formed when nitric oxide is oxidised by air is				
			3) NO ₂		•	

14.	Which one has the lowest boiling point?						
	1) NH ₃ 2) PH ₃ 3) AsH ₃ 4) SbH ₃						
15.	Which of the following fluorides does not exist?						
	1) NF ₅ 2) PF ₅ 3) AsF ₅ 4) SbF ₅						
16.	Which of the following oxides of nitrogen is the anhydride of nitrous acid?						
	1) NO 2) N_2O_3 3) N_2O_4 4) N_2O_5						
17.	The formula of complex ion produced when Ag ⁺ is treated with NH ₃ is						
	1) $[AgNH_3]^+$ 2) $[Ag(NH_3)_2]$ 3) $[Ag_2(NH_3)]^+$ 4) $[Ag(NH_3)_2]^+$						
18.	The oxide of nitrogen which is solid at room temperature and its composition is:						
	1) N_2O_5 and $NO_2^+NO_3^-$ 2) N_2O_4 and $NO_2 + NO_2$						
	3) N_2O_3 and NO and NO_2 4) none						
19.	The form of P that is highly reactive due to strained tetrahedral structure is						
	1) red 2) white 3) black 4) scarlet						
20.	Nitrogen is produced by heating a mixture of						
	1) $CaCN_2 + C$ 2) $(NH_4)_2Cr_2O_7$ 3) $NH_3 + CuO$ 4) all the above						
21.	Nitric oxide has unpaired electron and hence it is						
	1) Paramagnetic 2) Ferromagnetic 3) Anti ferromagnetic 4) all the above						
22.	The form of P that is semiconductor						
	1) red 2) white 3) black 4) all the above						
23.	Aquafortis is the name given to						
	1) phosphorus acid 2) nitrous acid 3) nitric acid 4) phosphoric acid						
24.	The oxy acid of phosphorous, which contain peroxy linkage is						
	1) metaphosphoric acid 2) pyrophosphoric acid						
	3) orthophosphoric acid 4) phosphorous acid						
25.	Iron gets passive in						
26.	1) Conc. HNO ₃ 2) HNO ₂ 3) Dil HNO ₃ 4) Fuming HNO ₃ The decrease in tendency of extension from Nitrogen to Riemuth is due to						
20.	The decrease in tendency of catenation from Nitrogen to Bismuth is due to 1) Atomic radius increase 2) increasing M.P						
	3) increasing metallic nature 4) decrease in M-M bond energy						
27.	The total number of electrons in the oxide of Nitrogen with molecular weight 30 is						
	1) 22 2) 23 3) 15 4) none						
28.	Which of the following is least stable?						
20	1) NH ₄ ⁺ 2) SbH ₄ ⁺ 3) PH ₄ ⁺ 4) AsH ₄ ⁺ .						
29.	Only 68% Nitric acid is possible because of 1) High acid nature 2) azeotropic mixture						
	3) strong oxidising nature 4) Volatility						
30.	Phosphorous forms PCl ₅ but nitrogen cannot form NCl ₅ because nitrogen						
	1) has high electro negativity 2)has low size						
	3) doesn't contain d-orbitals 4) is less reactive						
31.	Aqueous solution of PBr3 conducts electricity due to the presence of						
	1) HOBr 2) HBr 3) H ₃ PO ₄ 4) H ₂ O						

32.	The bonds present in P_4O_{10} are
	1) ionic and covalent 2) ionic and dative
	3) covalent and dative 4) only covalent bonds
33.	In VA group has the maximum electron affinity.
	1) nitrogen 2) phosphorous 3) arsenic 4) antimony
34.	Mg ₃ N ₂ on hydrolysis produce a mixture of
	NH_3 and $Mg(OH)_2$ 3) $Mg(OH)_2$, N_2 and H_2
	3) NH ₃ and MgO 4) NH ₃ , Mg and O ₂
35.	NCl ₃ on hydrolysis produce a mixture of
	1) NOCl and NH ₃ 2) HOCl and N ₂
36.	3) HOCl and NH ₃ 4) NOCl ₂ and HCl Phosphorous on burning in excess oxygen gives
50.	1) PO_3 2) P_2O_3 3) PO_5 4) P_2O_5
37.	In Ostwald's process for the preparation of nitric acid catalyst is
	1) Fe 2) Pt gauze 3) NO 4) Ni gauze
38.	A tribasic acid with peroxy bond is
20	1) H_3PO_2 2) H_3PO_3 3) H_3PO_4 4) H_3PO_5
39.	One of the following pairs of oxyacids is tribasic
40.	1) H ₃ PO ₂ ; H ₃ PO ₃ 2) H ₃ PO ₂ ; H ₃ PO ₄ 3) H ₃ PO ₃ ; H ₃ PO ₄ 4) H ₃ PO ₄ ; H ₃ PO ₅ Which of the following is thermally most stable?
10.	1) NH ₃ 2) PH ₃ 3) AsH ₃ 4) SbH ₃
41.	Assertion: N_3^- is isostructural with I_3^-
11.	Reason: The E.N of N is greater than I
	1) Both A and R are true and R is the correct explanation of A
	2) Both A and R are true and R is not the correct explanation of A
	3) A is true but R is false
	4) A is false but R is true
42.	Assertion: PH ₃ is more basic than NH ₃ .
	Reason: EN of N is more than that of P
	1) Both A and R are true and R is the correct explanation of A
	2) Both A and R are true and R is not the correct explanation of A
	3) A is true but R is false
	4) A is false but R is true
43.	Assertion: N ₂ O ₅ is obtained on dehydration of HNO ₃ .
	Reason: P ₄ O ₁₀ acts dehydrating agent.
	1) Both A and R are true and R is the correct explanation of A
	2) Both A and R are true and R is not the correct explanation of A
	3) A is true but R is false
	4) A is false but R is true
44.	Assertion: Catenation capacity of nitrogen is more than phosphrous.
	Reason: In nitrogen N-N bond energy is less than P-P bond energy in P.
	1) Both A and R are true and R is the correct explanation of A
	2) Both A and R are true and R is not the correct explanation of A

4) A is false but R is true 3) A is true but R is false 45. Assertion: White Phosphorous is more reactive than red. Reason: White Phosphorous possesses high bond angle strain of 60° . 1) Both A and R are true and R is the correct explanation of A 2) Both A and R are true and R is not the correct explanation of A 3) A is true but R is false 4) A is false but R is true List-I 46. List-II 1) Tribasic A) H_3PO_2 B) H₃PO₃ 2) Monobasic C) H₃PO₄ 3) Tetrabasic D) $H_4P_2O_6$ 4) Dibasic 5) Zero Basicity The correct match is \mathbf{C} A В D 1) 5 1 2) 2 1 3 3) 2 5 3 4 3 1 2 4 47. Assertion: HNO_3 is a stronger acid than HNO_2 . Reason: Both are monobasic acids. 1) Both A and R are true and R is the correct explanation of A 2) Both A and R are true and R is not the correct explanation of A 3) A is true but R is false 4) A is false but R is true List-I 48. List-II A) N_2O 1) sp2 and planar triangle 2) Nitrite and nitro form B) HNO₂ C) NO₃ 3) sp3 and tetrahedron D) HNO₄ 4) Laughing gas. 5) Peroxy bond The correct match is В C D 5 1) 1 2) 4 3 2 5 3) 3 4 List-II 49. List-I A) Haber's process 1) Nitric acid 2) $N_2 + 3H_2 \rightarrow 2NH_3$ B) Ostwald process C) Contact process $3) NH_3 + CaCO_3$ D) Cyanamide process 4) H₂SO₄

5) Perdisulphuric acid

The correct match is

	A	В	\mathbf{C}	D
1)	3	2	1	5
2)	2	4	1	3
3)	2	1	4	3
<i>4</i>)	1	2	3	4

Assertion: HPO₃ is a monobasic acid.. 1.

Reason: The salts of meta phosphoric acid are metaphosphates..

- 1) Both A and R are true and R is the correct explanation of A
- 2) Both A and R are true and R is not the correct explanation of A
- 3) A is true but R is false
- 4) A is false but R is true

					KEY _				
1.1	2. 2	3. 4	4. 1			7. 2	8.1	9. 3	10. 2
11. 1	12. 1	13.3	14. 2	15. 1	16. 2	17.4	18. 1	19.2	20. 4
21. 1	22.3	23.3	24. 2	25. 1	26. 4	27.3	28. 2	29. 2	30. 3
31.4	32.3	33. 2	34. 1	35.3	36. 4	37. 2	38. 4	39. 4	40. 1
41. 1	42.4	43. 1	44. 3	45. 1	46. 4	47.2	48.1	49.3	50.2

Question Bank - II

General

1. T	The valence sho	ell electronic con	ifiguration of VA gro	up elements is		
	$1) ns^2np^2$	$2) ns^2np^1$	$3) ns^2np^3$	4) ns^2np^5		
2.	The most al	oundant gas in at	mosphere is	osphere is		
	1) O ₂	2) N ₂	3) F ₂	4) Ar		
3.	LIST - 1		List - 2			
	A) Phosphorite		1) KNO_3	1) KNO ₃		
	B) Indian salt petre		2) $Ba(NO_3)_2$			
	C) Fluoroapatite		3) NaNO ₃			
	D) Chile salt petre		4) $3Ca_3(PO_4)_2.CaF_2$			
			$5) \operatorname{Ca_3(PO_4)_2}$			
	The correct	match is				
	A B C	\mathbf{C} \mathbf{D}	A B C	D		
	1) 1 2	3 5	2) 2 4 3	1		
	3) 4 3	5 2	4) 5 1 4	3		

The most abundant VA group element in the earth's crust is 4.

- 1) Nitrogen 2) Phosphorous 3) Arsenic The following can exist as a diatomic molecule
- 5.
 - 1) N 2) P 3) As

4) Bismuth

4) Bi

6.	The following VA group element occurs even in free state					
	1) Bi	2) As	3) Sb	4) N		
7.	The VA group	element having sai	me number of allotr	ropes is		
	1) N	2) P	3) Bi	4) Sb		
8.	The following	g element doesn't ha	ave allotropes			
	1) N	2) P	3) As	4) S		
9.	Most reactive	allotropic form of l	Phosphorous is			
	1) Yellow	2) Red	3) Black	4) Scarlet		
10.	In nitrogen m	olecule, the two ato	ms of nitrogen are j	joined by		
	1) One sigma	bond and one pi bo	nd 2) Two sigm	a bonds and one pi bond		
	3) One sigma	bond and two pi bo	nds 4) Three sign	ma bonds		
11.	The chemical	inertness of nitroge	n is due to			
	1) half-filled '	2p' orbitals of Nitro	ogen 2) high bon	d dissociation energy		
	3) completely	filled d-orbitals	4) its gaseou	is nature		
12.	The maximum	n covalency of nitro	gen is			
	1) 2	2) 3	3) 4	4) 5		
13.	The VA group	element which ext	nibits wide range of	oxidation states is		
	1) P	2) As	3)Bi	4) N		
14.	The oxidation state of nitrogen in hydrazine is					
	1) -1	2) -2	3) +1	4) +2		
15.	The stable ox	idation state of Bisr	nuth is			
	1) + 1	2) -5	3) -3	4) + 3		
16.	Substance		Oxidation state of	N		
	A) HNO ₃		1) -3, +5			
	B) NH ₄ NO ₃		2) -1/3			
	C) N_3H		3) + 5			
	D) H_3PO_3		4) + 3			
			5) + 1/3			
	The correct n	natch is				
	A B C	D	A B C D			
	1) 3 1 2		2) 5 2 3 4			
	3) 1 2 3		4) 4 3 2 5			
17.	The atomicity	of white Phosporou	us is 'x' and the $_{ m P-}$	$\hat{P} - P$ bond angle in the molecule is		
	'y'. What are	'x' and 'y'?				
	1) $x = 4$; $y =$	90^{0}	1) $x = 4$; $y = 60^{\circ}$			
	3) $x = 3$; $y =$	120^{0}	4) $x = 2$; $y = 180^{\circ}$			
Hydı						
18.	•	e of nitrogen is				
	1) NH ₃	2) N_2H_4	3) N_2H_2	4) N3H		

19.	In Ostwald's process, nitric	oxide is prepared by	the oxidation of				
	1) NH_3 2) N_2	3) Air	4)) Nitrousoxide				
20.	Thermally more stable hydride is						
	1) NH ₃ 2) PH ₃	3) AsH ₃	4) BiH ₃				
21.	Which one of the following	statements is correct	with respect to basic character?				
	1) $PH_3 > P(CH_3)_3$	2) $PH_{3} = NH_{3}$	3) PH ₃ > NH ₃ 4) P(CH ₃) ₃ > PH ₃				
22.	The hydride with more basic nature is						
	1) PH ₃ 2) NH ₃	3) BiH ₃	4) AsH ₃				
23.	A stronger reducing agent is	J					
	1) NH ₃ 2) PH ₃	3) SbH ₃	4) BiH ₃				
24	The shape and bond angle o	f ammonia are	, and the second				
	1) Tetrahedral and 109° 281	2) Tetrahedral	and 107° 481				
	3) Pyramidal and 107° 18¹	4) Pyramidal a	and 109° 281				
25.	More volatile hydride is						
	1) PH ₃ 2) NH ₃	3) BiH ₃	4) AsH ₄				
26.	VA group hydrides are Lewis bases due to the presence of						
	1) unpaired electrons	2) high electro	2) high electron affinity values				
	3) low electronegativity 4) lone pair of electrons						
27.	The correct order of reducin	g abilities of VA gro	up hydrides is				
	1) NH ₃ < PH ₃ < AsH ₃ < SbH ₃ < BiH ₃ . 2) NH ₃ > PH ₃ > AsH ₃ > SbH ₃ > BiH ₃ .						
	3) $NH_3 < PH_3 > AsH_3 > SbH_3 > BiH_3$. 4) $SbH_3 > BiH_3 > AsH_3 > NH_3 > PH_3$.						
28.	Which is in the decreasing o	order of boiling point	s of hydrides?				
	1) $NH_3 > PH_3 > AsH_3 > SbH_3$	I_3 2) SbH ₃ >	> AsH3 > PH3 > NH3				
	3) $PH_3 > NH_3 > AsH_3 > SbH_3$	4) SbH ₃ >	$> NH_3 > AsH_3 > PH_3$				
Oxi	des	J					
29.	Chemical formula of laughir	ng gas is					
	1) N ₂ O 2) NO	3) $N_{2}O_{2}$	4) N_2O_5				
30.	Ammonium nitrate on heating gives						
	1) NO 2) N_2	3) N ₂ O	4) N_2O_4				
31.	Which of the following exist	ts as dimer	2 -				
	1) N_2O_5 2) N_2O	3) P ₂ O ₂	4) Bi ₂ O ₃				
32.	The basic oxide among the	following is	2 3				
	1) N_2O_3 2) AS_2O_3	3) Sb_2O_3	4) Bi ₂ O ₃				
33.	Paramagnetic oxide is						
	1) N_2O 2) N_2O_3	3) NO	4) N_2O_4				
34.	The oxide of nitrogen existing	ng in the solid state a	t room temperature is				
	1) NO 2) NO ₂						
35.	The neutral oxide of nitroge		2 3				
	1) NO 2) N ₂ O	3) NO ₂	4) Both 1 and 2				

36.	The sesqioxide of nitrogen is					
	1) N ₂ O 2) NO	3) N_2O_3	4) N_2O_5			
37.	Which is a mixed anhydride?					
	1) NO_2 2) N_2O_3	3) $N_{2}O_{5}$	4) N_2O			
38.	Formula of metaphosphoric acid	d is	-			
	1) H ₂ PO ₄ 2) HPO ₃	3) $H_4P_2O_6$	4) H ₃ PO ₂			
39.	Which one of the following elements does not form the compound M_4O_{10} . (M = elements					
	of group VA)?					
	1) P 2) Sb	3) As	4) Bi			
40.	The number of Oxygen atoms p	gen in N_2O_3 is				
	1) 2 2) 1	3) 3	4) 4			
41.	P ₄ O ₆ is the anhydride of the follo	owing				
	1) H_3PO_2 2) H_3PO_3	$3) H_3PO_4$	4) H_3PO_5			
42.	P ₄ O ₁₀ is the anhydride of the fol	lowing				
	1) H_3PO_2 2) H_3PO_3	$3) H_3PO_4$	4) H_3PO_5			
43.	LIST -1	LIST-2				
	A) $4NH_3 + 5O_2 \rightarrow$	I) PbO+NO ₂ +O ₂	\rightarrow			
	B) $P_4 + 3NaOH + 3H_2O \rightarrow$	II) $N_2O + H_2O \rightarrow$				
	C) $NH_3NO_3 \rightarrow$	$3) N_2O_5 + H_2O \rightarrow$				
	D) $Pb(NO_3)_2 \xrightarrow{\Delta}$	$4) 4NO + 6H_2O \rightarrow$				
		5) $3NaH_2PO_2 + P$	$H_3 \rightarrow$			
	The correct match is					
	A B C D	A B C D				
	1) 4 2 3 1	2) 1 3 2 5				
	3) 4 5 2 1	4) 3 4 1 5				
Hali	des					
44.	Which does not form a Pentaha	lide?				
	1) P 2) As	3) Sb	4) N			
45.	PCl ₅ on hydrolysis gives					
	1) H ₃ PO ₂ 2) H ₃ PO ₃	3) HCl	4) Both (2) and (3)			
46.	The shape and hybridisation of	PCl ₅ molecule				
	1) Tetrahedral and sp ³	2) Pyramidal and	sp^3			
	3) Angular and sp ³	4) Planar trigonal	and sp ³			
47.	PCl ₃ on hydrolysis gives					
	l) H ₃ PO ₂ 2) H ₂ PO ₄	$3) H_3PO_2$	4) H3PO5			
48.	Which of the following is not co	orrect?				
	1) Hydrolysis of NCl ₃ gives NH ₃ and HOCl 2) NH ₃ is less stable than PH ₃					
	3) NH ₃ is a weak reducing agent compared to PH ₃					
	4) Nitric oxide in solid state exhibits dia-magnetic property					

Oxyurids The existence of following ions have no evidence 49. 2) HPO₄⁻² 4) PO₄-3 1) H₂PO₄ 3) PO_3^{3-} Salt of the following is used as a water softner 50. 1) $H_4P_2O_6$ $2) H_4P_2O_7$ 4) HPO, 3) HPO₃ Covalency of phosphorus in peroxy phosphoric acid is 51. 2) 5 1) 6 3) 4 4)3 Basicity of orthophosphoric acid is 52. 2) 3 1) 2 4)5 3) 4 53. A tribasic acid with peroxy bond is 1) H₃PO₂ 3) H₃PO₄4) H₃PO₅ 2) H₃PO₅ The starting material used for the manufacture of HNO₃ by Ostwald process is 54. 1) Ammonia and N₂O 2) Ammonia '3) Air only 4) Ammonia and nitrogen Among the following an acidic salt is 55. 4) Na_2PO_4 I) NaH₂PO₂ 2) NaH₂PO₃ 3) Na₂HPO₃ Anhydride of pyrophosphoric acid is 56. 2) P_4O_{10} 3) $P_{2}O_{4}$ 1) P_4O_6 4) P₂O₃ Anhydride of orthophosphoric acid is 57. 1) P_4O_6 2) P_4O_{10} 3) P₂O₄ 4) P_2O_3 Oxidation state of phosphorus is least in 58. 1) Hypophosphoric acid 2) Hypophosphorus acid 3) Metaphosphoric acid 4) Pyrophosphoric acid The following is a primary phosphate ion 59. 3) $H_2PO_4^-$ 4) PO_4^{3-} 1) $H_2PO_4^{2-}$ 2) $H_2PO_3^{-}$ P—P linkage is present in 60. 1) Pyrophosphoric acid 2) Hypophosphoric acid 4) Metaphosphoric acid 3) Peroxy phosphoric acid **Ammonia** In the preparation of HNO₃ by Ostwald process ammonia is 61. d

	1) reduced	2) oxidised	3) reduced and ox	aidised 4) hydrolysed		
62.	NH ₄ Cl on heating with NaOH liberates					
	1) NaCl	2) NH ₃	3) HCl	4) NaOCl		
63.	Aqueous NaOH reacts with white Phospho-rous to form Phosphine and					
	1) NaH ₂ PO ₂	2) P2O5	3) Na_3PO_3	4) P2O3		
64.	Ammonia gas is dried over					
	1) Quick lime	e 2) Conc. H ₂ SO ₄	3) P2O5	4) CaCl ₂		
65.	The catalyst	used in the manufac	ture of ammonia by	Haber's process is		
	1) V_2O_5	2) Fe	3) Ni	4) Co		

66.	Which of the following compound is not used as fertilizer									
	1) Amm	onium sulp	hate	2) Urea						
	3) Calcium super phosphate				$PO_4)_2$					
67.	7. Which of the following can serve as a solvent for both ionic and covalent compoun							nds?		
	1) Liqui	d ammonia	L	2) H ₂ O		3) Benze	ne 4) (CCl_{4}		
68.	Which o	f the follow	ving is used	d as refriger	ant			·		
	1) Liqui	d NH ₃		2) C_2H_2	_s Cl	3) CCl ₂ F	₂ 4) A	A 11		
69.	Which o	f the follow	ing reaction	ns yield elem	nentary gas	es like N_2 ,	H_2 , O_3 as	the bypro	ducts?	
	I) CuO-	+ NH ₃	>	II) 2NH	$H_3 + 2Na -$	Fe 300–400°O				
	III) 8NF	$I_3 + 3Cl_2 \rightarrow$		IV) 2Pl	$b(NO_3)_2$	$\xrightarrow{\Delta}$				
	1) I and	II only		2) II, II	I and IV or	nly				
	3) I, II a	nd III only		4) All o	4) All of these					
Nitr	ic acid									
70.	Catalyst	in the Ostv	wald's proc	ess is						
	1) Pt	2) Fe	e	3) V_2O_5	5	4) Ni				
71.	Moles o	f oxygen th	at can oxid	lise one mol	e of NH ₃ to	o NO				
	1) 1	2) 1.	25	3) 2.5		4) 5				
72.	Which o	of the follow	ving is used	d in pyro- te	echniques					
	1) NH ₃	<i>2)</i> H	NO_3	3) PH ₃		4) H ₃ PO ₂	ļ.			
73.	Percenta	ige of nitric	acid obtai	ned in Ostw	ald's proc	ess is				
	1) 51%	2) 68	3%	3) 74%		4) 82%				
				——KE	Y					
	1) 3	2) 2	3) 4	4) 2	5) 1	6) 4	7) 2	8) 1		
	9) 1	10) 3	11) 2	12) 3	13) 4	14) 2	15) 4	16) 1		
	17) 2	18) 4	19) 1	20) 1	21) 4	22) 2	23) 4	24) 3		
	25) 1	26) 4	27) 1	28) 4	29) 1	30) 3	31) 3	32) 4		
	33) 3	34) 4	35) 4	36) 3	37) 1	38) 2	39) 4	40) 3		
	41) 2	42) 3	43) 3	44) 4	45) 4	46) 2	47) 2	48) 2		
	49) 3	50) 3	51) 2	52) 2	53) 4	54) 2	55) 2	56) 2		
	57) 2	58) 2	59) 3	60) 2	61) 2	62) 2	63) 1	64) 1		
	65) 2	66) 4	67) 1	68) 4	69) 4	70) 1	71) 2	72) 2		
	73) 2									

(b) GROUP-16 ELEMENTS

SYNOPSIS

- 1. The elements Oxygen (O), Sulphur (S), Selenium (Se), Tellurium (Te) and Polonium (Po) belong to VI A group.
- 2. Group VIA elements are called chalcogens as they are mineral forming elements.
- 3. Pyrolusite (MnO₂), Haematite (Fe₂O₃) are oxide minerals. Copper pyrite (CuFeS₂). Zincblend (ZnS), Galena (PbS), Cinnabar (HgS) are sulphide minerals. Gypsum (CaSO₄.2H₂O), Barytes (BaSO₄) and Epsom salt (MgSO₄.7H₂O) are sulphate minerals.
- 4. Oxygen is the most abundant element in earth's crust. Sulphur is the 16th most abundant element in earth's crust. The order of abundance of VI A group elements is O > S > Se > Te > Po
- 5. Oxygen occurs as oxides, carbonates, sulphates, nitrates and borates. Sulphur mainly occurs as sulphides and sulphates. Oxygen and sulphur are available even in the native state.
- 6. All the group VIA elements have six electrons (ns²np⁴) in their outermost energy level and tend to attain nearest inert gas electronic configuration by gaining or sharing of two electrons.
- 7. The elements of group VIA are chemically more similar due to similar valence shell configuration.
- 8. Oxygen is diatomic. Sulphur. Selenium and Tellurium are octaatomic. Polonium is monoatomic. Tendency to form octaatomic rings is more in S and also in Se.
- 9. Due to its small size oxygen is capable of forming $p_{\pi} p_{\pi}$ bonds. Hence it exists as a diatomic gas. The remaining elements are not capable of forming π bonds due to their large size and do not exist as diatomic molecules.
- 10. Atomic and ionic radii increase gradually with increase in atomic number.
- 11. Oxygen is a gas. but other elements are solids at room temperature.
- 12. The most common oxidation state of VI A group elements is -2.
- 13. Oxygen exhibits -2, -1, -1/2, +1 and +2 oxidation states. In oxides, the oxidation state of 'O' is -2, in peroxides, -1 and in super oxides, -1/2. in O_2F_2 , +1 and in OF_2 , +2.
- 14. Oxygen does not exhibit higher oxidation states due to lack of 'd' orbitals in its valency shell.
- 15. Other elements exhibit 2, +2 in ground state, +4 in first excited state and +6 in second excited state. Tendency to form –2 state decreases down the group due to decrease in electronegativity.
- 16. Oxygen lias two allotropcs. both are non metallic gases. Oxygen is stable diatomic gas and paramagnetic. Ozone is unstable triatomic gas and diamagnetic.
- 17. Sulphur exists in several non-metallic allotropic forms. The different forms arise partly from the extent to which S has polymerized and partly from the crystal structures adopted.
- 18. Rhombic or octahedral or a-sulphur is the common crystalline form of sulphur. Pale yellow in colour. It consists of S₈ structural units packed together into octahedral shape. It is the stable variety at ordinary temperature.

- 19. Monoclinic or prismatic or β -sulphur is stable above 95.6°C. Thus 368.5K is the transition temperature of $S_{(R)} \to S_{(M)}$
- 20. α , β (i and γ -forms are all in puckered riug structures and differ in density. The atoms in the ring lie in two parallel planes with angle 105° and bond length equal to 2.12A°.
- 21. The S_8 units break around 160°C. On further healing above it's melting point .S, units dissociates in to S_6 , S_4 , S_2 units.
- 22. Elements of VI A form H₂M type covalent hydrides. These hydrides are produced by the action of water or acid on metal chalcogenides.
- 23. H₂O and H₂S are exothermic compounds, while H₂Se and H₂Te are endothermic compounds.
- 24. Non-poisonous hydride of VI A group which exists in liquid state is H₂O. Other gases are poisonous and bad smelling.
- 25. H₂S is gas but H₂O is liquid, because of absence of molecular association in H₂S
- 26. The tendency of formation of hydrides decreases from O to Po. due to decrease in electronegativity.
- 27. Thermal stability and bond energy values of the hydrides decrease from H₂O to H₂Po. Reduction ability increases from H₂O to H₂Po.
- 28. Hydrides are weak acids. Acidic nature increases from H_2O to H_2 Te due to increase in their K_a values.
- 29. Order of boiling points : $H_2O > H_2Te > H_2Se > H_2S$. Volatility is in reverse order.
- 30. Water has higher boiling point than other VIA hydrides due to inter molecular hydrogen bonding.
- 31. In H_2O molecule, sp³ hybrid orbitals are involved in bonding. While in other hydrides, pure p-orbitals are involved in bonding. In H_2O the bond angle is $104^{\circ}2^{\circ}$. In other hydrides the bond angle is around 90°.
- 32. All elements of group VIA generally form dioxides and trioxides. MO₂ type are: SO₂, TeO₂ and PoO₂. MO₃, type are: SO₃, SeO₃ and TeO₃. Except SO₂ all other dioxides are solids.
- 33. Sulphur dioxide is produced by burning sulphur or roasting of metal sulphides in air.
- 34. Solubility of dioxides decreases from SO₂ to PoO₂. SO₂ is highly soluble in water.
- 35. Dioxides dissolve in water and form -ous acids. The strength of the oxy acids is in the order: $H_2SO_3 > H_2SeO_3 > H_2TeO_3$.
- 36. SO₂ can act as'reducing agent in acid and neutral media.
- 37. SO, reduces acidified yellow K₂Cr₂O₇ into green Cr₂(SO₄)₃
- 38. SO₂ bleaches by reduction in presence of moisture. It's bleaching action is temporary. During the bleaching action SO₂ is oxidised to H₂SO₄.
- 39. SO₂ forms addition compounds with halogens. eg. SO₂Cl₂ (Sulphuryl chloride)
- 40. SO_2 is the anhydride of sulphurous acid. It is angular with bond angle 119° 30'. It has one $P_{\pi} P_{\pi}$ and one $P_{\pi} d_{\pi}$ bond. Its bond length is 1.43A°.

- 41. Liquid SO₂ is used as solvent for organic and inorganic chemicals.
- 42. VIA group elements form M_2X_2 , MX_2 , MX_4 and MX_6 type halides. Oxidation states of VI A group elements in these halides arc +1, +2, +4 and +6 respectively.
- 43. Compounds of oxygen with fluorine are called oxygen fluorides, because fluorine is more electronegative than oxygen.
- 44. Group VIA elements form MX₆ type of hexahalides. Among hexahalides. only hexa fluorides are stable. They have octahedral structures.
- 45. SF_4 is highly reactive gas. It is thermally Stable. It is fluorinating agent. SCl_4 is formed by direct reaction of sulphur with chlorine. SCl_4 is an unstable liquid.
- 46. Many oxyacids of sulphur are known as unions and salts. Oxo anions have strong π bonds which prevent polymerization.
- 47. Sulphurous acid series : Oxidation state of S
 Sulphurous acid. H₂SO₃ + 4
 Thiosulphurous acid, H₂S₂O₂ + 4, -2
 hvdrosulphurous acid. H₂S₂O₄
 Pyrosulphurous acid. H₂S₂O₅ + 5, + 3
- 48. Sulphuric acid series: Oxidation state of S Sulphuric acid, H₂SO₄ + 6

Thiosulphuric acid. $H_2S_2O_3$ + 6,-2

Pyrosulphuricacid

(or) Disulphuric acid, $H_2S_2O_7 + 6$, + 6

Peroxo acid series : Oxidation state of S

Permouo sulphuric acid, $H_2S_2O_7$ + 6

(Caro's acid)

Perdisulphuric acid. $H_2S_2O_8$ + 6, + 6

(Marshall's acid)

- 50. H_2SO_5 is called Caro's acid and $H_2S_2O_8$ is called Marshall's acid.
- 51. In all oxyacids of sulphur the basicity is 2. sp³ hybridisation takes place in all acids. All pi bonds are p_{π} - d_{π} bonds.
- 52. Ozone can be prepared by silent electric discharge on pure dry oxygen gas. Formation of ozone is reversible and endothermic process.
- 53. Ozone is heavier than air. poisonous and slightly soluble in water. It is highly soluble in turpentine oil or glacial acetic acid.
- 54. Ozone is thermodynamically unstable. The decomposition is exothermic. It is a powerful oxidizing agent, next to F_2 . Ozone oxidises black lead sulphide to white lead sulphate. HCl to Cl_2 and iodide to I_2 .
- 55. Nitric oxide can caue depptetion of ozone in the upper atmosphere.
- 56. Ozone acts as bleaching agent. Ozone bleaches by oxidation. Ozone is dry bleach for oils, ivory etc.

- 57. Ozone is used as an insecticide, bactericide, for purifying water and atmosphere, manufacture of potassium permanganate.
- 58. Sulphuric acid (H₂SO₄) is also called as oil of vitriol' or 'king of chemicals'.
- 59. Sulphuric acid is commercially prepared by Contact process. It involves three main steps : formation of SO₂ by burning of 'S' (or) iron pyrites in oxygen, catalytic oxidation of SO₂ into SO₃ and absorption of SO₃ into H₂SO₄.
- 60. Pure SO_3 obtained is absorbed in 98% cone. $(H_2S_2O_7)$ to form oleum (orj pyrosulphuric acid $(H_2S_2O_7)$). Oleum is diluted with water to obtain H_2SO_4 of desired concentration.
- 61. Because of its low- volatility, sulphuric acid is used to prepare volatile acids from their corresponding salts
- 62. Sulphuric acid is a strong dehydrating agent and moderately oxidising agent.

Question Bank - I General Characteristics Which of the following set of atomic numbers belongs to group 16 elements? 1. 1) 56, 37, 20 2) 52, 8, 84 3) 14, 32, 50 4) 36, 9, 17 2. Oxygen and Sulphur have same 1) outer electronic configuration 2) Atomic size 3) electronic configuration 4) electron affinity Element with the lowest atomicity 3. 1) Te 2) S 3) Se 4) Po The number of atoms present in one molecule of rhombic sulphur is 4. 1) 2 3) 6 2) 4 4)8 5. The total number of covalent bonds present in one S₈ molecule is 1) 4 2) 6 3)8 4) 10 The S - S - S bond angle in S_8 molecule is 6. $3) 120^{0}$ 1) 109.5° $2) 105^{\circ}$ $4) 60^{0}$ 7. The decreasing tendency to exist in puckered 8 - membered ring structure is 1) S > Se > Te > Po2) Se > S > Te > Po3) S > Te > Se > Po4) Te > Sc > S > PoS₂ molecule in vapour state is paramagnetic due to the presence of unpaired electrons is 8. 1) Bonding orbitals 2) Anti bonding σ^* orbitals 3) Anti bonding π^* orbitals 4) Bonding π orbitals α , β and γ forms of sulphur differ in 9. 1) Overal packing of rings 2) Molecular weight 3) Atomicities 4) Their ring sructure The oxidation state of oxygen is zero in 10. 3) SO₂ 1) CO 2) O₃ 4) H₂O₂ In which of the following compounds, oxygen exhibits +2 oxidation state? 11.

	1) H ₂ O	2) H ₂ O ₂	3) OF ₂	4) H ₂ SO ₄
12.	Which of the follow	wing element does not	show an oxidation state of	of +4?
	1) Oxygen	2) Sulphur	3) Selenium	4) Tellurium
13.	Generally oxygen i	s convened into its ior	n by	
	1) Losing electrons	S	2) Increasing oxidation	number
	3) Decreasing atom	nic size	4) Gaining electrons	
14.	If X is a member of	of chalcogen family, the	e highest stability of X ⁻² is	s exhibited by
	1) Oxygen	2) Selenium	3) Tellurium	4) Sulphur
15.	Oxygen is always of	divalent while sulphur	can form 2. 4 and 6 bond	s because
	1) Oxygen is more	electronegative than s	sulphur	
	2) Sulphur has vac	ant d-orbitals while ox	ygen does not	
	3) Sulphur has larg	ge atomic radius than c	oxygen	
	4) Sulphur is more	electronegative than o	oxygen.	
16.	In sulphate ion the	oxidation state of sulp	ohur is +6 and the hybridiz	zation state of sulphur
	is			
	1) sp	2) sp ²	3) sp ³	4) sp^2 or sp^3d^2
17.	The second most e	electronegative element	t in periodic table is	
	1) F	2) O	3) C <i>l</i>	4) N
18.	Which of the follow	wing has higher IP		
	1) Oxygen	2) Sulphur	3) Selenium	4) Tellurium
19.	Element with high	er catenation capacity	is	
	1) S	2) Se	3) Te	4) Po
20	The order of electr	on gain enthalpy of VI	•	
	1) S > Se > Te > Pe		2) $S > Se > Te > 0 > Po$	
	3) $O > Sc > S > Te$	e > Po	4) O > Te > Se > S > Po	
21.	The most common	oxidution state of VI	A group elements is	
	1) -2	2) 42	3) +4	4) +6
22.	Chair form of S ₆ ri	ngs are present in		
	1) α - sulphur	2) β - sulphur	3) Engle's sulphur	4) γ - sulphur
Hyd	rides			
23.	The pair of exother	rmic hydrides of VI A	group are	
	1) H2O, H2S	2) H2O, H2Se	3) H_2 Se, H_2 Te	4) H2S, H2Te
24.	Which is non poiso	onous hydride?		
	1) H ₂ O	2) H2S	3) H ₂ Se	4) H_2 Te
25.	Sulphuruses	orbitals for bonding in	$_{1}H_{_{2}}S$	
	1) sp ⁵	2) sp ²	3) one s and one p	4) pure p orbitals
26.	A stronger reducing			
	1) H ₂ O	2) H2S	3) H ₂ Se	4) H ₂ Te

27.	Correct decreasing	ng order of volatility is		
	1) $H_2O > H_2S > H_3$	H ₂ Se	2) $H_2S > H_2O > H_2Se$	
	3) $H_2 Se > H_2 O >$	H ₂ S	4) $H_2S > H_2Se > H_2O$	
28.	Hie most acidic a	and thennally stable hyd	dride of chalcogens are	respectively
	1) H ₂ O, H ₂ Te	2) H, Te, H, S	3) H ₂ S, H ₂ Te	4) H, Te, H, O
29.	2 2		2 2	h is observed respectively
	in			
	1) H ₂ O, H ₂ O	2) H ₂ Po, H ₂ O	3) H ₂ O, H ₂ Po	4) H ₂ S, H ₂ Se
30.				resent on oxygen in H ₂ O
	molecule is			
	1) no change in H	H-O-H bond angle	2) increase in H-O-H	bond angle
	3) decrease in H-	O-H bond angle	4) all atoms will be in	one plane
31.	Which of the following	owing is a weakest aci	d in its aqueous solution	?
	1) H_2 Te	2) H ₂ Se	3) H ₂ S	4) H2Po
32.	Which of the foll	owing is least covalent	t hydride?	
	1) H ₂ O	2) H2S	3) H ₂ Se	4) H_2 Te
33.	The bond angle in	n H,S is		
	1) 109°28'	2) 104°51'	3) 120°	4) 92.5°
Hali	ides and oxides			
34.	The element of V	I A group which cannot	ot form hexahalides is	
	1) O	2) S	3) Se	4) Te
35.	The hybridization	n of S in SF ₄ is		
	1) sp3d2	2) sp ³ d	3) sp3d3	4) sp3
36.	The least stable d	lioxide of group 16 ele	ments is	
	1) SO ₂	2) SeO ₂	3) TeO_2	4) PoO ₂
37.	The oxide obtain	ed in the roasting of iro	onpyrites	
	1) SO ₂	2) SeO ₂	3) FeO	4) SO ₂ and SO ₂
38.	Among hexahalid	les of VIA group, the s	stable halides are	
	1) hexa iodides	2) hexa bromides	3) hexa chlorides	4) hexa fluorides
39.	SO ₂ bleaches by			
		2) Oxidation	3) Hydrolysis	4) Acidic nature
40.	The hybridization	of sulphur in SO ₂ is		
	1) sp	2) sp3	3) sp ²	4) dsp^2
41.	In SO ₂ two oxyge	en atoms are linked to the	ne sulphur atom through	double bonds. The two π
	bonds ar			
	1) both $P\pi - P\pi$		2) both $P\pi - d\pi$	
	3) both $d\pi - d\pi$		4) one $d\pi - d\pi$, amt of	
42.	2	dition compound sulphi	uryl chloride with Cl_2 in	
	1) Charcoal	2) CCl ₄	$3) H^+/K_2Cr_2O_7$	4) H ⁺ /KMO ₄

Oxy	Adds S			
43.	In HO - S- OH the	e oxidation states of S	are	
	1) + 4, -2	2) + 4, 0	3) +2, -2	4) + 4, -4
44.	Acid that contains	S-O-S linkage is		
	1) H,S,O,	2) H ₂ S ₂ O ₅	3) H ₂ S ₂ O ₆	4) H ₂ S ₂ O ₄
45.	Which of the follow	wing has S - S bond?	2 2 0	2 2 1
	1) H ₂ S ₂ O ₂	2) H ₂ S ₂ O ₇	3) mustard gas	4) $H_2S_2O_6$
46.	Peroxy linkage is p	present in		
	1) $H_2S_2O_2$	2) H2S2O3	3) H2S2O6	4) H2S2O8
47.	Pyrosulphurous aci	id is		
	1) $H_2S_2O_5$	2) H2S2O2	3) H2S3O3	4) H2S2O4
48.	Basicity of any oxy	vacid of sulphur is		
	1) 3	2) 4	3) 2	4) 1
49.	Partial neutralisation	on of sulphuric acid gi	ves	
	1) Sulphites	2) Bisulphates	3) Sulphates	4) Bisulphites
50.	Hybridisation of ce	entral sulphur iti all ox	o anions of sulphur is	
	1) sp ³ d	2) sp3	3) sp3d2	4) sp^3d
51.	What is^the number	er of sigma and pi bond	ds present in H ₂ SO ₄ mole	cule ?
	1) 6_{σ} and 2_{π}	2) 6_{σ} and 0_{π}	3) 2_{σ} and 4_{π}	4) 2_{σ} and 2_{π}
52.	Permonosulphuric	acid is known as		
	1) Marshall's acid	2) Caro's acid	3) Sulphuric acid	4) Sulphurous add
Ozo	ne			
53.	The formation of C	O ₃ from O ₂ is		
	1) exothermic and	reversible	2) endothermic and irre-	versible
	3) endothermic and	d reversible	4) exothermic and spont	aneous
54.	O_3 is prepared by s	ubjecting O ₂ to silent e	lectric discharge. The favor	ourable conditions for
	the formation of oz	zone according to Le-c	chatlicr's principle are	
	1) low temperature	, low pressure	2) high temperature, hig	h pressure
	3) low temperature	, high pressure	4) high temperature, low	v pressure
55.	Mercury sticks to g	glass when it comes in	contact with	
	1)H ₂ O	2) HNO ₃	3) I ₂	4) O ₃
56.	Decomposition of	Ozone into Oxygen ha	S	
	I) $\Delta G = -ve$	$2) \Delta S = - ve$	3) $\Delta H = \bullet \text{ ve}$	4) All of these
57.	Dry bleaching ager	nt is		
	1)O ₃	2) SO ₂	3) Cl ₂	4) H2O2
58.	A black compound	'X' when treated with	O ₃ turned white. The cor	npound 'X' is
	1) ZnS	2) PbS	3) CuS	$4) Ag_2.S$

59.	The O-O bond leng	gth in Ozone is		
	1) $1.33A^0$	2) 1.2 8A ⁰	3) $1.48A^0$	4) $1.39A^{0}$
60.	With respect to be	oth oxygen and ozone,	which one of the following	owing statements is not
	correct?			
	1) They are allotro	pes together	2) oxygen is colourless	w'hile ozone is coloured
	3) valency of oxyg	en is 2 in both	4) oxygen has 2 bonds	s and ozone has 3 bonds
61.	In which of the fol	lowing reactions, ozone	e acts as a reducing age	ent
	1) $BaO_2 + O_3 \rightarrow B$	$BaO + 2O_2$	2) $2HCl+O_3 \rightarrow Cl_2+H_2$	$O+O_2$
	3) $PbS+4O_3 \rightarrow Pb$	$SO_4 + 4O_2$	4) $2KI + O_3 + H_2O \rightarrow$	$2KOH + I_2 + O_2$
62.	Which one of the f	following reactions doc	s not occur?	
	1) BaO + $O_3 \rightarrow Ba$	$AO_3 + O_2$	2) PbS + $4O_3 \rightarrow PbS$	$O_4 + 4O_2$
	$3) H2O2 + O3 \rightarrow H$	$I_2O + 2O_2$	4) $2Hg + O_3 \rightarrow Hg_2O$	$+ O_2$
Sulp	huric acid			
63.	Oil of vitriol is			
	l) H ₂ SO ₄	2) H2SO3	3) H2S2O7	4) H2S2O3
64.	The catalyst used i	n the manufacture of H	I ₂ SO ₄ by contact proces	s is
	2 3	$2) \operatorname{Cr_2O_3}$	$3) V_2O_5$	4) MnO_2
65.	In the preparation	of H ₂ SO ₄		
	1) SO ₂ is dissolved	2 7	2) SO ₂ is dissolved in	
	3) SO ₃ is dissolved	in cone. H ₂ SO ₄	4) SO ₃ is dissolved in	dilute H ₂ SO ₄
66.	Poison for platinur	n, a catalyst in Contact	process is	
	1) S	2) P	3) As	4) C
67.	In Contact process	impurities of arsenic a	re removed by:	
	1) $Al(OH)_3$	2) $Fe(OH)_3$	3) $Cr(OH)_3$	4) $\operatorname{Fe_2O_3}$
68.	Oleum or fuming I	H ₂ SO ₄ is		
	1) A mixture of co	nc. H ₂ SO ₄ and oil		
	2) Sulphuric acid v	which gives fumes of so	ulphur dioxide	
		aturated with sulphur t		
	ŕ	lphuric acid and nitric a		
69.	•	rity in sulphur dioxide	used in contact proces	
	l) SO ₂	2) CO ₂	3) As	4) As2O3
70.	•	utilised in contact towe		
	1) 2 bar	2) 0.2 bar	3) 20 bar	4) 200 bar
71.	Hypo is a salt of th	•		
	1) thiosulphuric ac	pid	2) Thiosulphurous aci	d
	3) dithionous acid		4) dithionic acid	

			KE	Y			
1) 2	2)1	3)4	4)4	5) 3	6) 2	7) 1	8) 3
9) 1	10) 2	11) 3	12) 1	13) 4	14) 1	15) 2	16) 3
17)2	18)1	19)1	20)1	21) 1	22) 3	23) 1	24) 1
25)4	26) 4	27) 4	28) 4	29) 3	30) 3	31) 3	32) 1
33) 4	34) 1	35) 2	36) 4	37) 1	38) 4	39) 1	40) 3
41) 4	42) 1	43) 1	44) 1	45) 4	46) 4	47) 1	48) 3
49) 2	50) 2	51) 1	52) 2	53) 3	54) 2	55) 4	56) 1
57) 1	58) 2	59) 2	60) 3	61) 1	62) 1	63) 1	64) 3
65) 3	66) 3	67) 2	68) 3	69) 4	70) 1	71) 1	

		Que	estic	n	Ba	ınk - I	I
Gei	neral Characteris	tics					
1.	Most abundant el	ement in earth	crust is	\$			
	1) O	2) Se		3) S		4) Te
2.	LIST-1	List-2					
	A) Gypsum	1) PbS					
	B) Baryts	2) ZnS					
	C) Galena	3) BaSO ₄					
	D) Zinc blende	4) CaSO ₄ .2H	I_2O				
		5) Fe ₃ O ₄					
	The correct match	n is					
	A B C D		A	В	C	D	
	1) 4 5 1 3		2) 3	5	1	2	
	3) 4 3 1 2		4) 3	4	1	2	
3.	Oxygen exhibits l	east oxidation	state in	l			
	1) OF ₂	2) KO ₂		3) H ₂	$_{2}$ O	4) H2O2
4.	Polyanion format	ion is maximun	n in				
	1) Nitrogen	2) Oxygen		3) Su	ılphur	4) Boron
5.	In a compound of	of sulphur, the	sulphu	r at	om	is in secor	nd excited state. The possible
	hybridisation of s	ulphur is					
	$1) sp^2$			2) sp	3	
	3) sp3d2			4) sp	² (or) sp ³ (o	or) $\mathrm{sp}^3\mathrm{d}^2$
6.	Which of the follo	owing has stror	ng meta	allic	inte	ractions?	
	1) O	2) S		3) Se	;	4) Te
Hy	drides						
7.	Among the follow	ving, the weake	st conj	ugat	e ba	ase is	
	1) OH-	2) SH-		3) Se	·H ⁻	4) TeH⁻

8.	The geometry of	fH ₂ S and its dipole me	oment are		
	1) Angular and non zero		2) Angular and zero		
	3) Linear and no	n zero	4) Linear and zero		
9.	In which of the	following bond angle	can not be explained by	Valence Bond Theory?	
	1) H ₂ O	2) H ₂ Po	3) H ₂ S	4) H_2 Te	
Hali	des and oxides				
10.	Which among th	e following compound	d cannot be prepared by	direct union of elements?	
	1) SF ₆	$2) \operatorname{Se_2Br_2}$	3) S_2Cl_2	4) SF ₄	
11.	The shape of sul	lphur hexafluoride mo	lecule is		
	1) Tetrahedral	2) Square	planar		
12.	Which of the fol	lowing can give an ox	xy acids when dissolved	in H ₂ O ?	
	l) Cl ₂ O	2) SO ₃	3) SO ₂	4) All	
13.	Which is an amp	ohoteric oxide?			
	1) SO ₂	2) B ₂ O ₃	3) ZnO	4) Na ₂ O	
14.	The acidic chara	cter of dioxides of me	embers of oxygen family	decreases in the order	
	1) $SeO_2 > SO_2 >$	$TeO_2 > PoO_2$	2) SO2 > SeO2 > Te	$O_2 > PoO_2$	
	3) $PoO_2 > TeO_2$	$> SeO_2 > SO_2$	$4) \text{ TeO}_2 > \text{PoO}_2 > \text{S}$	$eO_2 > SO_2$	
15.	One gas bleache	es the colour of the f	lowers reduction while	the other by oxidation in	
	presence of mois	sture. The gases are			
	1) CO and CO ₂	2) H_2S and Br_2	3) SO_2 and Cl_2	4) NH ₃ and SO ₃	
16.	When moist colo	ured flowers are added	d in to SO ₂ gas the flower	s are decolourised because	
	1) SO ₂ absorbs c	colouring matter	2) SO ₂ oxidised veg	getable colouring matter	
	3) SO ₂ reduces v	regetable colouring ma	atter4) SO ₂ gives colour	less product	
17.	Sulphurous anhy	dride is			
	1) SO ₂	2) SO ₃	3) HSO ₃ ⁻	4) SO ₃ ²⁻	
18.	Which of the fol	lowing dissolves in w	ater but not give any ox	yacid solution?	
	1) SO ₂	2) OF ₂	3) SCl ₂	4) SO ₂	
Oxy	arids				
19.	Which of the fol	lowing has $S - O - S$	bond in it is		
	1) pyrosulphuro	us acid	2) Oleum		
	3) Caro's acid		4) Marshal's acid		
20.	The ratio of p_{π}	d_{π} bonds is SO_2 and S	SO ₃ molecules		
	1) 1:12) 1:2	3) 2:1	4) 2:3	
21.	A salt of sulphur	ous acid is called			
	1) Sulphate	2) Sulphurate	3) Sulphite	4) Sulphide	

22.	LIST - I	LIST - II		
	A) H ₂ SO ₄	1) + 4		
	B) H2(S)nO6	2) + 3		
	C) H_2SO_3	3) + 2, - 2		
	$D) H_2S_2O_4$	4) + 6		
		5) + 5, 0		
	The correct match	is		
	A B C D	A	B C D	
	1) 2 5 2 4	2) 3	2 1 4	
	3) 4 5 1 2	4) 2	3 1 5	
23.	Number of hydroxy	yl groups present in py	yrosulphuric acid is	
	1) 3	2) 4	3) 2	4) 1
24.	The acid containing	g S - O - O - S bond is	}	
	1) H2SO5	2) H2S2O7	3) H2S2O6	4) H2S2O8
25.	S - S bond is not pr	resent in		
	1) Pyro sulphurous	acid	2) Dithionic acid	
	3) Dithionous acid		4) Pyro sulphuric acid	
26.	Oxidation state of	S in H ₂ SO ₅ and H ₂ S ₂ O	₈ respectively are	
	1) +6, +6	2) +6, +4	3) +8, +7	4) +4, +4
27.	Iron sulphide is hea	ated in air to form A. an	oxide of sulphur. A is diss	solved in water to give
	an acid. The basicing	ty of this acid is		
	1) 2	2) 3	3) 1	4) zero
28.	Identify the correc	t sequence of increasi	ng number of π -bonds in	the structures of the
	following molecule	es.		
	$I. H_2S_2O_6$	$II.H_2SO_3$	III. $H_2S_2O_5$	
	1)1, II, III	2) II, III, I	3) II, I, III	4) I, III, II
29.	The number of sign	ma and pi bonds in per	roxodisulphuric acid are r	respectively
	1) 9 and 4	2) 11 and 4	3) 4 and 8	4) 4 and 9
Ozo	ne			
30.	Select the wrong st	atement		
	1) Ozone is a pale	blue gas	2) O ₃ acts as both oxidat	nt and reductant
	3) Ozone is used a	s an antiseptic inhaler	4) Ozone is used in sterl	lization of water
31.	Pure ozone is			
	1) Pale blue gas	2) Dark blue liquid	3) Violet black solid	4) All the above
32.	The incorrect state	ment among the follow	ving is	
	1) Ozone is an ang	ular molecule	2) O ₃ is a piosonous gas	
	3) O ₃ is highly solu	ıble in water	4) Ozone is present in st	tratosphere
33.	Which of the follow	wing conversion is not	brought about by ozone	
	1) HF to F ₂	2) Moist KI to I ₂	3) Ag_2O to Ag	4) PbS to PbSO ₄

34.	Number	of volumes	s of Oxygen	that give	s 4 volumes	of Ozone	is		
	1) 4		2) 6		3) 8		4) 2		
35.	Starch pa	aper moiste	ened with K	I solution	turns blue i	n ozone be	ecause of		
	1) Iodine	e liberation	2) Oxygen	liberation	a 3) Alkali 1	formation	4) O	zone is a	cidic
36.	Higher c	oncentratio	ons of ozone	is charac	eterised as				
	1) Dange	erously exp	plosive		2) Harmle	ess gas			
	3) Both	1 and 2			4) None o	fthese			
37.	Which of	f the follow	ving is not c	orrect?					
	$3O_2 - \frac{\text{Sile}}{\text{di}}$	$\xrightarrow{\text{ont electric}} 20$	$_{3}; \Delta H = -284$.5 KJ					
	2) Ozone	e undergoe	s addition re	action wi	th unsaturat	ed carbon	compoun	ds.	
	3) Nitrog	gen oxides	emitted from	n jet plan	es might be	slowly de	pleting oze	one.	
	4) Ozone	e oxides le	ad sulphide 1	to lead su	lphate				
38.	Ethylene	on reactio	n with ozon	e gives					
	1) Glyox	cal	2) Formald	lehyde	3) Ethylen	ne ozonidc	4) Acetale	dehyde	
Sulp	huric acio	d							
39.	Which cl	naracteristi	c property c	of H ₂ SO ₄ i	is responsibl	le for its cl	hemeial pr	operties	
	1) low be	oiling poin	t 2) weak ac	idic natur	re 3) acting a	as reductai	nt 4) affini	ty for wa	ıter
40.	Pick out	the ideal c	ondition for	H_2SO_4 m	anufactured	by Contac	ct process		
	1) Low t	emperatur	e, high press	ure and h	igh concent	ration of re	eactants		
	2) Low t	emperatur	e, low pressi	are and lo	w concentra	ation of rea	ectants		
	3) High	temperatur	e, high press	sure and h	nigh concent	ration of r	eactants		
	4) Low t	emperatur	e, low pressi	ure and hi	gh concentr	ation of re	actants		
Г				K	EY				
	1) 1	2) 3	3) 3	4) 3	5) 4	6) 4	7) 4	8) 1	
	9) 1	10) 4	11) 4	12) 4	13) 3	14) 2	15)3	16) 3	
	17) 1	18) 2	19) 2	20) 2	21) 3	22) 3	23) 3	24) 4	
	25) 4	26) 1	27) 1	28) 2	29) 2	30) 3	31) 4	32) 3	
	33)1	34)2	35)1	36) 1	37) 1	38) 3	39) 4	40) 1	
			Qu	estion	Bank	- III			
1.	The tota	l number o	f lone pairs	of electro	ns present i	n a S ₈ mol	ecule.		
	1) 8		2) 16		3) 12	-	4) 4		
2.	The chal	cogen havi	ing same nur	mber of el	lectrons botl	h in penult	imate and	antipenu	ltimate
	shells is								
	1) O		2) S		3) Se		4) Te		
3.	The num	nber of pai	ired and unp	paired ele	ectrons in th	ne valence	shell of t	he memb	pers of
					CHOID III U				
	oxygen f	family are	•						

4.	The oxidation state of sulphur in the ar	nions follow the order	
	1) $S_2O_4^{2-} < SO_3^{2-} < S_2O_6^{2-}$	2) $S_2O_4^{2-} < S_2O_3^{2-} <$	$< S_2O_6^{2-}$
	3) $S_2O_4^{2-} < S_2O_6^{2-} < S_2O_3^{2-}$	2) $S_2O_6^{2-} < S_2O_4^{2-} <$	$< S_2O_3^{2-}$
5.	In which allotropic form of sulphur, pu	ckered S ₈ rings are no	t present ?
	1) Chair form of sulphur	2) Rhombic sulphu	ır
	3) Monoelinie sulphur	4) γ - monoclinic s	ulphur
6.	Which of the following order is wrong	?	
	1) $H_2O > H_2S > H_2Se > H_2Te$ (Therma	l stability)	
	2) $H_2S < H_2Se < H_2Te < H_2O$ (Boiling)	points)	
	3) $H_2O < H_2S < H_2Se < H_2Te$ (pKa value)	ue)	
	4) $O - H > S - H > Se - H > Te - H$ (F	Bond Energy)	
7.	The hydride of group 16 elements which	ch shows greater Lewi	s base character
	1) H ₂ O 2) H ₂ Te	3) H ₂ S	4) H_2 Se
8.	Regarding H ₂ O the wrong statement is	-	-
	1) H ₂ O is an exothermic compound 2) It is an associated liq	uid
	3) Central atom is sp ³ hybridised 4)	It is an excellent solve	ent for covalent compounds
9.	Amongst H ₂ O, H ₂ S, H ₂ Se and H ₂ Te. th	e one with the highest	boiling point is
	1) H ₂ O because of hydrogen bonding	2) H ₂ Te because of	f higher molecular weight
	3) H ₂ S because of hydrogen bonding	4) H ₂ Se because of	f lower molecular weight
10.	Regarding SF ₆ the wrong statement is		
	1) It is inert and does not undergo hydr	olysis	
	2) It is a covalent compound		
	3) Hybridisation of S is sp ³ d ² and shape	e is octahedral	
	4) S forms SF ₆ in third excited state		
11.	Sulphur shows maximum coordination	number in SX _n . where	e 'X' is
	1) F 2) Br	3) 1	4) Cl
12.	The statements about oxides of chalcos	gens	
	i) The solubility of dioxides decreases	from SO ₂ to PoO ₂	
	ii) TeO ₂ is highly acidic in nature		
	iii) Trioxides are more acidic than diox	ides The correct comb	oination is
	1) Both i & iii arc correct	2) All are correct	
	3) Only iii is correct	4) Both i & ii are c	orrect
13.	The molecule having one $p\pi - p\pi$ and	two $p_{\pi} - d_{\pi}$ bonds is	
	1) SO ₂ 2) SO ₃	3) CO ₂	4) N ₂
14.	Which of the following is oxidised by	SO_2 ?	
	l) Mg 2) $K_2Cr_2O_7$	3) KMnO ₄	4) All
15.	In aqueous solutions H ₂ SO ₄ ionises as	:	
	$H_2SO_4 + H_2O \longrightarrow HSO_4 + H_3O^*; Ka_1$		

	11CO= . 11 O	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
		$\Sigma SO_4^{2-} + H_3O'; Ka_2$ is		
	The relation between	een Ka ₁ and Ka ₂ is		
	$1) Ka_1 < Ka_2$	$2) Ka_1 > Ka_2$	$3) Ka_1 = Ka_2$	4) $2Ka_1 = 3Ka_2$
16.	Single bond between	een sulphur atoms is p	present in	
	1) H2S2O7	2) H2S2O8	3) H2S2O6	4) H2S2O3
17.	Which of the follo	wing does not have S	S-S linkage?	
	1) $S_2O_8^{2-}$	2) $S_2O_6^{2-}$	3) $S_2O_5^{2-}$	4) $S_2O_3^{2-}$
18.	Which of the follow	wing statements regard	ding the manufacture of H	SO ₄ by Contact process
	is not true?			
	1) Sulphur is burn	t in air to form SO_2	2) SO ₂ is catalytically	oxidised to SO ₃
	3) SO ₃ is dissolved	d in water to get 100%	% sulphuric acid	
	4) H ₂ SO ₄ obtained b	by Contact process is of	f higher purity than that obt	ained by other methods
19.	In the preparation	of H ₂ SO ₄ by Contact	process V ₂ O ₅ is used as a	catalyst in the reaction.
	1) $S + O_2 \rightarrow SO_2$		$2) SO_3 + H_2SO_4 \rightarrow H$	$_{2}^{2}$ S_{2}^{0} O_{7}^{0}
	3) $SO_3 + H_2O \rightarrow 1$	H_2SO	$4) 2SO_2 + O_2 \rightarrow 2SO$	3
20.	Which statement i	s correct?		
	1) Ozone is a reso	nance hybrid of oxyg	en	
	2) Ozone is an allo	otropic modification of	of oxygen	
	3) Ozone is an iso	mer of oxygen		
	4) Ozone has no r	elationship with oxyg	en	
21.	Which gas is used	to improve the atmos	sphere of crowded places	?
	1) H ₂	2) O ₂	3) O ₃	4) N ₂ O
22.	Ozonization of wa	ater is carried out to re	emove	
	1) Bacterial impur	ities 2) Bad	taste	
	3) Excess of chlor	ine present 4) Calci	ium and magnesium salt p	present in it
23.	$C_{12}H_{22}O_{11}$ $- H_2SO_4$	\rightarrow H ₂ O + A.		
	$A \xrightarrow{H_2SO_4} B + C$	+H ₂ O		
		2	VIA element then the co	mnound B is
	1) SO,	2) CO	3) CO ₂	4) C ₃ O ₂
24.	2	,	on heating to give O_2 exce	3 2
	1) HgO	2) MnO ₂	_	4) NaN0 ₃
25.	,	of O, from KClO ₃ , N	5. 2	, 3
	1) Activator	2) Catalyst	3) Oxidizing agent 4)	Dehydrating agent
26.	Oxygen is liberate	d from water using	,	
	1) P	2) Na	3) F ₂	4) I ₂
27.	The gases absorbe	ed by alkaline pyrogal	lol and turpentine oil resp	2
	1) O ₃ , CH ₄	2) O ₂ , O ₃	3) SO ₂ , CH ₄	4) N ₂ O, O ₃
			٠ .	2 2

28.	Regardi	ng oxygen	the correct	statements	are				
	A) It is an important constituent of rocket fuels								
	B) It is used for artificial respiration								
	C) It is	used in oxy	yacetylene v	welding.					
	1) A, B		2) B, C		3) A, C		4) A,	, B, C	
29.	Concen	trated H ₂ SO	D_{4} is not use	ed to prepar	re HBr from	n KBr beca	use it		
	Concentrated H ₂ SO ₄ is not used to prepare HBr from KBr because it 1) Oxidizes HBr 2) Reduces HBr								
	3) Caus	es dispropo	ortionation (of HBr	4) Reacts	too slowly	with KB	•	
30.	Most ac	cidic oxide	in group VI	IA is forme	d by				
	1) oxyg	en	2) sulphu	r	3) nitroger	n	4) cł	nlorine	
31.	The elei	ment which	evolves tw	o gases on	reacting wi	ith conc. H	$_{2}SO_{4}$ is		
	1) Si		2) C		3) S		4) P		
32.	H ₂ SO ₄ ł	nas very co	rrosive acti	on on skin	because				
	1) It rea	cts with pr	oteins		2) It acts a	as an oxidi	zing agent	t	
	3) It act	s as dehydi	rating agent						
	4) It act	s as dehydi	rating agent	and absorp	ption of wat	er is highly	y exotherr	nic	
33.	A stude	nt accidentl	y splashes f	ew drops o	f conc. H ₂ S	O_4 on his \mathfrak{c}	cotton shi	t. After a	while,
	the spla	A student accidently splashes few drops of conc. H ₂ SO ₄ on his cotton shirt. After a while, the splashed parts blacken and the holes appear. This has happened because sulphuric acid							
	1) Dehydrates the cotton with burning				2) Causes	the cotton	to react v	vith air	
	3) Heats	s up the cot	ton		4) Remove	es the elem	ents of wa	ater from	cotton
34.	Sulpurio	c acid is us	ed						
	A) In petroleum refining B) In galvanising C) In making fertilizers								
	1) A, B		2) B, C		3) A, C		4) A,	, B, C	
35.	Which r	reaction rep	resents the	oxidizing l	oehaviour o	fH_2SO_4 ?			
	1) 2PC	$I_5 + H_2 SO_4$	——→POC1	$_{3} + 2HC1 +$	SO_2Cl_2				
	2) $2NaOH + H_2SO_4 \longrightarrow Na_2SO_4 + 2H_2O$								
	3) NaC	3) $NaCl + H_2SO_4 \longrightarrow NaHSO_4 + HCl$							
	4) 2HI	$+ H_2SO_4 -$	$\longrightarrow I_2 + SO$	$_{2} + 2H_{2}O$					
36.	Which s	substance c	hars when	warmed wi	th conc. H_2	SO_4 ?			
	1) Prote	ein	2) Fat		3) Hydroc	arbon	4) Ca	arbohydra	ate
37.	HCOOL	H reacts wi	th conc. H_2	SO ₄ to proc	luce				
	1) CO		2) CO ₂		3) NO		4) N	O_2	
38.	Ozone o	oxidises ioc	lide to						
	1) iodin	e	2) hypoio	dite	3) iodate		4) pe	eriodate	
				KI	EY				
	1) 2	2) 4	3) 1	4) 1	5) 1	6) 3	7) 1	8) 4	
		•	ŕ		13) 2		ŕ	· ·	
			•		21) 3	•	23) 3		
	25) 2	26) 3	27) 2	28) 4	29) 1	30) 2	31) 2	32) 4	
	33) 4	34) 4	35) 4	36) 4	37) 1	38) 1	,		

(c) GROUP-17 ELEMENTS

Synopsis:

- 1. Fluorine, chlorine, bromine and iodine are collectively known as halogens (sea salt producers).
- 2. Halogens are very reactive non metals. Therefore they do not occur in free state. They occur in the combined state as halides. Iodine is also available as NaIO₃.
- 3. Synthetically made element of group VIIA is a statine. It is radioactive short lived element.
- 4. The general outer electronic configuration of the halogens is $ns^2 np^5$.
- 5. Fluorine is the most reactive element. It is regarded as super halogen
- 6. Halogens are diatomic molecules, van der Waals forces of attraction between molecules increases from fluorine to iodine.
- 7. Gaseous elements in VIIA group are fluorine and chlorine. Bromine is a liquid, iodine is a subliming solid.
- 8. The melting points and the boiling points increase from fluorine to iodine due to increase in van der Waals forces. But volatile nature decreases down the group.
- 9. Atomic volume and density increase from Fluorine to iodine. The size of atoms and the ions also increase gradually.
- 10. Ionisation energies decrease from fluorine to iodine.
- 11. Fluorine has abnormally high ionisation energy due to its small size and electrons in it are held strongly by the nucleus
- 12. The decreasing order of bond energies is : $Cl_2 > Br_2 > F_2 > I_2$. Low bond energy of fluorine is responsible for its high reactivity.
- 13. According to Mulliken, Cl_2 , Br_2 and I_2 form multiple bonds due to overlapping of d- and p- orbitals. Fluorine has no such bonds due to lack of d' orbitals. Hence bond energy is expected to be less.
- 14. According to Coulson, small sized flurione results in greater inter electronic repulsions, which is responsible for low bond dissociation energy in fluorine.
- 15. Fluorine has the highest electronegativity (4.0) on Pauling scale. Electronegativity decreases down the group.
- Order of electron affinities : Cl > F > Br > I. Small size and greater repulsion of electrons are responsible for low electron affinity of fluorine than chlorine.
- 17. Mostly halogens form ionic compounds with metals. Metallic fluorides are all ionic except BeF₂.
- 18. Covalent bond is formed between two halogen atoms. The compounds formed between halogens and other non metals are covalent.
- 19. Fluorine is always univalent. Fluorine exhibits -1 oxidation state, since it is the

- most electronegative element.
- 20. Most common covalency of *Cl*, Br or I is 1, but highest valency is 7.
- Common oxidation state of halogens is -1. Except fluorine other halogens can also exhibit +1, +3, +5 and +7.
- 22. Fluorine cannot exhibit variable valencies due to the absence of 'd' orbitals. *Cl*, Br and I exhibit higher oxidation states in different excited states and undergo various types of hybridisations.
- 23. Halogens are strong oxidising agents due to high electron affinity values. The oxidising capacity decreases from fluorine to iodine.
- 24. The oxidising capacity depends on the net enthalpy change in the following reaction, which can be estimated by the application of Born-Haber cycle.

$$\frac{1}{2}X_{2(s)} + \overline{e} + aq \rightarrow x_{(aq)}^{-}$$

- 25. The energies involved in this reaction are : enthalpy of fusion, enthalpy of vapourisation, enthalpy of bond dissosciation, electron gain enthalpy and enthalpy of hydration.
- 26. F_2 is stronger oxidising agent than Cl_2 even though its electron affinity is less than that of Cl_2 .
- 27. It is due to low enthalpy of dissociation of F_9 and high hydration energy of F.
- 28. Greater the standard electrode potential, greater is the oxidising power. Order of oxidation capacities of halogens is : $F_2 > Cl_2 > Br_2 > I_2$
- 29. Hydration enthaply is the energy involved when one mole of a halide ion is hydrated. As the size of halide increases, the electrostatic attaractions to dipolar water molecules decrease. Hence the enthaply of hydration gradually decreases. F has the highest hydration energy.
- 30. Lighter halogen displaces a heavier halogens from their halides.
- Halogens absorb one of the seven colours of the visible light. This absorbed radiation promotes an electron to higher state.
- 32. Small fluorine atom requires more energetic violet radiation and transmits low energetic yellow radiation (complementary colour). So fluorine is pale yellow gas.
- 33. Large iodine atom absorbs less energetic yellow light and transmits high energetic violet light (complementary colour). So it is violet.
- 34. Br₂ is orange red liquid. Cl_2 is greenish yellow coloured gas.
- 35. The reactivity of halogens with H_2 decreases from F_2 to I_2 . F_2 reacts violently even in dark with hydrogen. The reaction of Cl_2 with H_2 is slow in dark but fast in

- sunlight. Br₉ reacts with H_2 at 593 K. I_2 reacts with H_2 at 713K in the presence of Pt catalyst. The reaction of F_2 with H_2 is reversible.
- 36. The order of stability or boiling points is : HF > HCl > HBr > HI. Order of acidic strength and reducing property : HI > HBr > HCl > HF
- 37. Properties of hydrogen halides

Property	HF	HC <i>l</i>	HBr	HI
M.P. (in K)	190	159	185	222
B.P.(in K)	293	189	206	238
Bondlength	91.7	121A	141.4	160.9
(H-X)/pm				
ΔH_{diss} / $kJmol^-$	574	432	363	295
pK _a value	3.2	- 7.0	-9.5	-10.0

- 38. The solubility of halogens in water and their reactivity decrease from F_2 to I_2 .
- 39. F_2 decomposes water to form O_2 and O_3 . Solution of chlorine in water is called 'chlorine water' which contains HCl and HOCl. Due to the presence of HOCl, chlorine water is bleaching agent.
- 40. Br₂ is less soluble in water and gives 'bromine water'. I₂ is insoluble in water and does not react with water at ordinary temperature. It is due to decrease in free energy.
- With dilute NaOH, fluorine gives OF₉ and with cone. NaOH, it liberates O₂. Other halogens (Cl_2 , Br_2 , l_2) form halides and hypohalites with cold dilute alkali
- With hot concentrated alkali, halogens (Cl_2 , Br_2 , I_2) form halides and halates. In these reactions Cl_2 , Br_2 , I_2 undergo disproportionation.
- 43. Reaction with metals : All halogens react with metals to form metal halides. F₉ reacts even with noble metals like Au, Pt etc.
- 44. Since fluorine is highly reactive and it occurs in nature only in combined state. Important minerals of fluorine are: Fluorospar CaF₂, Cryolite Na,AlF₆ and Fluorapatite CaF₂.3Ca₃(PO₄)₂
- 45. The anomalous behaviour of fluorine is due to its small size, highest electronegativity, low F-F bond dissociation enthalpy, and non availability of d orbitals in valence shell.
- 46. Fluorine exhibits -1 oxidation state because it is the most electronegative element known. Therefore, no higher oxidation state for it in its compouds.
- 47. Sea water contains about 2.5% (w/v) by weight of sodium chloride.
- 48. Important minerals of chlorine are : Rock salt, Camalite KCl. MgCl₂.6H₂O, Horn silver AgCl and Silvine KCl.
- 49. Chlorine was first prepared by Scheele by the oxidation of HCl with MnO₂.
- 50. Chlorine is commercially produced as a by- product in the electrolysis of aqueous NaCl. Nelson cell method and from fused NaOH in Down's process.
- 51. Chlorine is greenish yellow gas with pungent smell. Chlorine is 2.5 times heavier than air. Chlorine poisonous and produces suffocation and headache and cause even death. Chlorine is soluble in water.

- 52. Aqueous solution of chlorine is called chlorine water and gives smell of chlorine. Chlorine attacks mucous membrane in the nose.
- Boiling point of chlorine is 239K. It is easily liquified to yellow liquid. At 172K, Cl_2 freezes to yellow solid.
- 54. Except with nitrogen, oxygen and noble gases chlorine reacts with non- metals directly at ordinary temperature.
- 55. In the case of metals which can form more than one type of chloride, always the chloride in the higher oxidation state is formed.
- 56. The bleaching action and disinfectant property of chlorine water is due to oxidation.
- 57. With cold dilute alkali chlorine gives chloride and hypochlorite. With hot concentrated alkali chlorine gives chloride and chlorates. With dry slaked lime chlorine gives bleaching powder.
- 58. Chlorine liberates bromine from bromides and iodine from iodides.
- 59. Chlorine oxidises ferrous salts to ferric salts, hydrogen sulphide to sulphur, sulphites and thiosulphates to sulphates.
- When excess chlorine reacts with ammonia NCl_3 and HCl are formed. When chlorine reacts with excess ammonia N_2 , and NH_4Cl are formed.
- 61. Chlorine acts as a bleaching agent in the presence of moisture. Chlorine bleaches vegetable colours like litmus and indigo. Bleaching action of chlorine is due to production of nascent oxygen.
- Bleaching action of chlorine is permanent. Chlorine bleaches the textiles and paper. Chlorine cannot be used to bleach silk and wool because they are destroyed by chlorine.
- Chlorine is used for the purification of drinking water. It is used in the preparation of poisonous gases like phosgene (COC l_2), mustard gas S(CH $_2$ CH $_2$ C l_2 , teargas CC l_3 . NO l_2 and I D.D.T. (dichloro diphenyl trichloro ethane). ^L
- 64. Oxy acids of chlorine:

Oxy acid	No.of $d_{\pi} - p_{\pi}$ bonds	No.of lone pairs on Cl	Shape of acid
HC/O	0	3	Linear
HC/O ₂	1	2	Angular
HC/O ₃	2	1	Pyramidal
HC/O ₄	3	0	Tetrahedral

Chlorine undergo sp³ hybridisation in all acids

- 65. Acidic nature and thermal stability of oxyacids increases with increasing oxidation state of chlorine : HC/O < HC/O-, $< HC/O_3 < HC/O_4$
- 66. Order of bond length of Cl O in oxyanions $C/0_4$ " < $C/0_3$ ~ < $C/0_9$ " < C/0~. Order of bond energy of C/-0 in oxyanions of chlorine: ClO~ < ClOf < ClOf < CiO_4 ~.

- 67. The bond angles in $C/O_9\sim$, C/O_3 ' and C/O_4 " are 111° , 106° and $109^\circ 28^1$ respectively.
- 68. Bleaching powder is also called chloride of lime. Chemically it is calcium chloro hypochlorite. It is a mixed salt.
- 69. The oxidation states of Cl in bleaching powder are +1 and -1, an average of Zero.
- 70. Bleaching powder is manufactured in Bachmann's plant by the action of dry Chlorine on dry slaked lime.
- 71. With cold water bleaching powder forms Ca⁺², Cl~ and C/CT ions. With hot water bleaching powder forms Ca⁺², Ct~ and CIO A ions.
- 72. With little amount of dilute acid, bleaching powder forms HOC/ which is responsible for bleaching action.
- 73. Bleaching powder oxidises lead salts to lead dioxide.
- 74. With excess amount of dilute acid, bleaching powder gives out all the chlorine present in it. It is called "available chlorine". Bleaching powder gives chlorine on reaction with even CO-,.
- 75. A good quality bleaching powder contains 35-38% of available chlorine. Theoritical percentage of C/₂ in CaOC/₉ is 56%.
- 76. Bleaching powder gives 0_9 on heating in presence of cobalt chloride.
- 77. On long standing bleaching powder undergoes auto oxidation and gives calcium chloride (CC) and calcium chlorate ($C/0\sim_3$). The quality of bleaching powder decreases.
- 78. Bleaching powder is used for bleaching the wood pulp in the paper and textile industry and in the manufacture of $CHCl_3$ (anasthetic agent).
- 79. Bleaching powder is used for sterilisation of drinking water as disinfectant, germicide, oxidising agent and chlorinating agent.
- 80. Bleaching powder forms chloroform on reaction with alcohol or acetone.
- 95. Binary compounds formed between two halogens are called interhalogen compounds.
- 81. In the ground state monohalides like IC*l* are formed.
- 82. T shaped XX^ trihalide is formed in the first excited state. Hybridisation of central halogen atom is sp3d and oxidation state is +3.
- 83. Square pyramidal XX]5 pentahalide is formed in the second excited 7state. Hybridisation of central halogen atom is sp3d2 and oxidation state is + 5.
- 84. Pentagonal bypyramidal XX17 pentahalide is formed in the third excited state. Hybridisation of central halogen atom is sp3d3 and oxidation state is +7
- 85. Number of lone pairs on the central halogen atom is 2 in trihalide, 1 in pentahalide and nil in heptahalide
- 86. Inter halogens are polar and more reactive than corresponding halogens.

SYNOPSIS - II

- 1. Fluorine, chlorine, bromine and iodine are collectively known as halogens (sea salt producers).
- 2. Halogens are very reactive non metals. Therefore they do not occur in free state. They occur in the combined state as halides. Iodine is also available as NaIO₃.
- 3. Synthetically made element of group VIIA is a statine. It is radioactive short lived element.
- 4. The general outer electronic configuration of the halogens is ns² np⁵.
- 5. Fluorine is the most reactive element. It is regarded as super halogen.
- 6. Halogens are diatomic molecules vander Waals forces of attraction between molecules increases from fluorine to iodine.
- 7. Gaseous elements in VII A group are fluorine and chlorine. Bromine is a liquid, iodine is a subliming solid.
- 8. The melting points and the boiling points increase from fluorine to iodine due to increase in van der Waals forces. But volatile nature decreases down the group.
- 9. Atomic volume and density increase from Fluorine to iodine. The size of atoms and the ions also increase gradually.
- 10. Ionisation energies decrease from fluorine to iodine.
- 11. Fluorine has abnormally high ionisation energy due to its small size and electrons in it are held strongly by the nucleus
- 12. The decreasing order of bond energies is : $Cl_2 > Br_2 > F_2 > I_2$. Low bond energy of fluorine is responsible for its high reactivity.
- 13. Fluorine has the highest electronegativity (4.0) on Pauling scale. Electronegativity decreases down the group.
- 14. Order of electron affinities : Cl > F > Br > I. Small size and greater repulsion of electrons are responsible for low electron affinity of fluorine than chlorine.
- 15. Covalent bond is formed between two halogen atoms. The compounds formed between halogens and other non metals arc covalent.
- 16. Fluorine is always univalent. Fluorine exhibits -1 oxidation state, since it is the most electronegative element.
- 17. Most common covalency of Cl, Br or I is 1 but highest valency is 7.
- 18. Common oxidation state of halogens is -1. Except fluorine other halogens can also exhibit +1, +3. +5 and +7.
- 19. Fluorine cannot exhibit variable valencies due to the absence of 'd' orbitals. Cl, Br and I exhibit higher oxidation states in different excited states and undergo various types of hybridisations.
- 20. Halogens are strong oxidising agents due to high electron affinity values. The oxidising capacity decreases from fluorine to iodine.
- 21. Lighter halogen displaces a heavier halogens from their halides.
- 22. Halogens absorb one of the seven colours of the visible light. This absorbed radiation promotes an electron to higher state.

- 23. Fluorine is yellow gas. Br₂ is red liquid. Cl₂ is greenish yellow coloured gas and iodine is violet.
- 24. The reactivity of halogens with H_2 decreases from F_2 to I_2 . F_2 reacts violently even in dark with hydrogen. The reaction of Cl_2 with H_2 is slow in dark but fast in sunlight.
- 25. The order of stability or boiling points is : HF > HCl > HBr > HI. Order of acidic strength and reducing property : HI > HBr > HCl > HF
- 26. The anomalous behaviour of fluorine is due to its small size, highest electronegativity, low F-F bond dissociation enthalpy, and non availability of d orbitals in valence shell.
- 27. Fluorine exhibits –1 oxidation state because it is the most electronegative element known. Therefore, no higher oxidation state for it in its compounds.
- 28. Sea water contains about 2.5% (w/v) by weight of sodium chloride. Important minerals of chlorine are: Rock salt. Camalite KCl. MgCl₂. 6H₂O, Horn silver AgCl and Silvine KCl.
- 29. Chlorine is commercially produced as a byproduct in the electrolysis of aqueous NaCl. Nelson cell method and from fused NaOH in Down's process.
- 30. Except with nitrogen, oxygen and noble gases chlorine reacts with non- metals directly at ordinary temperature.
- 31. In the case of metals which can form more than one type of chloride. The chloride in the higher oxidation state is formed.
- 32. The bleaching action and disinfectant property of chlorine water is due to oxidation.
- 33. With cold dilute alkali chlorine gives chloride and hypochlorite. With hot concentrated alkali chlorine gives chloride and chlorates. With dry-slaked lime chlorine gives bleaching powder.
- 34. Chlorine oxidises ferrous salts to ferric salts, hydrogen sulphide to sulphur, sulphites and thiosulphates to sulphates.
- 35. Chlorine acts as a bleaching agent in the presence of moisture. Chlorine bleaches vegetable colours like litmus and indigo. Bleaching action of chlorine is due to production of nascent oxygen.
- 36. Chlorine is used for the purification of drinking water. It is used in the preparation of poisonous gases like phosgene (COCl₂), mustard gas S(CH₂ CH₂ Cl)₂, teargas CCl₃. NO₂ and D.D.T. (dichloro diphenyl trichloro ethane).
- 37. Fluorine has no oxyacids. Four types of oxyacids of other halogens are known.
- 38. Acidic nature and thermal stability of oxyacids increases with increasing oxidation state of chlorine : $HClO < HClO_2 < HC/O_3 < HClO_4$
- Order of bond length of Cl O in oxyanions $ClO_4^- < ClO_3^- < ClO_2^- < ClO_1^-$. Order of bond energy of Cl-O in oxyanions of chlorine: $ClO_4^- < ClO_2^- < ClO_3^- < ClO_4^-$.
- 40. There are four types of interhalogen compounds. Their compositiona are: XX', XX'_3, XX'_5 and XX'_7 .
- 41. XX'_3 is T shaped, XX'_5 is square pyramidal and XX'_7 has pentagonal bipyramidal structure.

Question Bank - I

1.	Valence shell electronic con		
	1) ns^2np^4 2) ns^2np^5	3) ns ² np°	4) ns ⁻ np ⁻
2.	Super halogen is		
	1) F ₂ 2) Cl ₂	3) Br ₂	4) I ₂
3.	Liquid and solid halogens ar	·e	
	1) Br_2 and Cl_2 2) I_2 and B	r_2 3) Br_2	and I_2 4) Cl_2 and I_2
4.	The pale yellow coloured ga	as is	
		3) Br ₂	4) I ₂
5.	The order of reactivity of ha	<i>'</i>	· –
		2) F ₂ >Cl ₂ >Br	
		4) $F_2 > I_2 > Br_2 >$	
6.	Halogens are	1) 1 22 122 13122	
0.	1) Monoatomic 2) Diatom	ic 3) Triaton	nic 4) Tetratomic
7.		,	Tetratonne
7.	The halogen that undergoes		4) I
0	1) F_2 2) Cl_2	, <u> </u>	4) I ₂
8.	Bond dissociation energy is		4) T
0	1) F_2 2) Cl_2	· –	4) I ₂
9.	The important minerals of fl		
	<u> </u>	, ,	volite (Na ₃ AlF ₆)
	3) Fluorapatite CaF ₂ .3Ca ₃ (P		
10.	In the reaction of I_2 with war	•	
	1) Negative 2) Positive	ŕ	•
11.	Which of the following oxid		
	1) Cl_2O 2) ClO_2	3) Cl_2O_6	, – ,
12.	Total number of lone pairs of	of electrons on a	all atoms of Cl ₂ O is
	1) 2 2) 4	3) 6	4) 8
13.	HClO ₄ dimerises due to		
	1) Hydrogen bonds	2) Covalent b	onds
	3) dative bonds	4) vanderwaa	l's forces
14.	Bond angle in ClO ₃ is		
	1) $109^{0}28^{1}$ 2) 111^{0}	$3) 106^0$	4) 118 ⁰
15.	The weakest acid is		
	1) HOCl 2) HClO ₂	3) HClO ₃	4) HClO ₄
16.	The element which can disp	lace three other	halogens from their compounds is
	1) Cl ₂ 2) Br ₂	3) I ₂	4) F ₂
	, –	, –	, -
17.	The oxide of chlorine which	is a colourless	oily liquid is
	1) Cl ₂ O 2) Cl ₂ O ₆		4) Cl_2O_7
18.	SiO ₂ is soluble in	2) 222	-,2-,
201	1) H ₂ SO ₄ 2) HNO ₃	3) HF	4) HCl
19.	Chlorine acts as a bleaching	,	
	_		4) Pure oxygen
20.	Fluorine does not show mult	,	,
2 0.	1) d-orbitals 2) s-orbitals	-	
	$\frac{1}{3}$ a ordinals	of bronais	1) 110110

21.	Mark the stro	ngest acid				
	1) HF	2) HCl	3) HBr	4) HI		
22.	The order of	EA of halogens	sis			
	1) F <cl<br<< td=""><td>I 2) F>0</td><td>Cl>Br>I</td><td>3) Cl>Br>F>I</td><td>4) Cl>F>Br>I</td></cl<br<<>	I 2) F>0	Cl>Br>I	3) Cl>Br>F>I	4) Cl>F>Br>I	
23.	The number	of unpaired ele	ectrons and lone	e pairs of electrons in	the first excited	
	state of Chlor	rine				
	1) 2 and 2	2) 3 and 3	3) 2 and 3	4) 3 and 2		
24.	The maximum	m oxidation sta	ate that can be	exhibited by a halog	gen in its second	
	excited state					
	1) +1	,	3) +5	4) +7		
25.	•	ergy of fluorine				
			2) Less than t			
	,		4) More than	that of Cl		
26.	Interhalogen	_	0) 101	4) 411 61		
27	1) ClF ₃	, -	3) ICl	4) All of these		
27.		of Hydrofluoro		4) II G.O		
20	, –	2) H_2SiF_6	, – -	4) H_2SiO_4		
28.	`	g is not a miner		4) Carra 1:4-		
20	*	2) Horn silver	,	4) Cryolite		
29.	•	emperature Cl ₂		4) Cu		
30.	1) O ₂	, <u>-</u>	,	4) Cu ne is based on its ¡	oronerty	
<i>5</i> 0.	1) reducing	a disiniectant n	2) oxi	-	property	
	<i>'</i>	tion and reduct	ion 4) disp	•		
31.	Chlorine oxid			proportination		
21.	1) S	_	3) H ₂ SO ₄	4) H_2SO_3		
32.	,	,	*	ode respectively are		
	•	•	both anode and	_		
	_	ts as both anode				
	3) Cu acts as anode and Graphite acts as cathode					
	4) Cu ac	ts as cathode ar	nd Graphite acts	s as anode		
33.	The high boil	ing point of HF	F is due to			
	5) the presence of intramolecular hydrogen bonds					
	6) the presence of intermolecular hydrogen bonds					
	7) the presence of dative bonds					
	8) the pr	esence of polar	covalent bonds	8		
2.4		1 6 1 6 4		C 11 ' ' 1'1	11 ' 11'	
34.			•	f chlorine in which	chlorine exhibits	
		idation number				
	1) HClO	2) HClO ₂	3) $HClO_3$	4) HClO ₄		
35.	The chemical	formula of ble	aching powder	is		
	1) CaO ₂ Cl ₂	2) CaOCl ₂	3) Ca(ClO ₃) ₂	4) CaO ₂ Cl		
36.	The deep col	our produced v	when Iodine is o	dissolved in a solution	n of KI is caused	
	by the presen	ce ofion				
	1) I^{3-}	2) I ₃	3) I_2^{3-}	4) I ₂ -		

37.	Chlorine acts as bleaching agent by means of the following process						
	1) oxidation 2) reduction 3) Hydrolysis 4) Decomposition						
38.	Glass reacts with HF giving						
	1) Na_3AlF_6 2) H_2SiF_6 3) H_2SiO_3 4) SiF_6						
39.	Oxidation state of chlorine in hypochlorous acid is						
	1) +1 $2) +3$ $3) +5$ $4) +7$						
40.	Cl_2O_7 is the anhydride of						
	1) HClO ₂ 2) HClO ₃ 3) HClO ₄ 4) HClO						
41.	Which one of the following represents the reaction between fluorine and cold						
	dilute NaOH?						
	1) $2F_2+4NaOH \rightarrow 4NaF + 2H_2O$ 2) $3F_2+NaOH \rightarrow 5NaF+NaFO_3$						
	3) $F_2+2NaOH \rightarrow NaF+NaOF+H_2O$ 4) $2F_2+2NaOH \rightarrow 4NaF+OF_2+H_2O$						
42.	Chlorine atom, in the third excited state, reacts with fluorine to form a compound						
	'x'. The formula and shape of 'x' are						
	1) ClF ₅ , Pentagonal 2) ClF ₄ , Tetrahedral						
	3) ClF ₄ , Pentagonal bipyramidal 4) ClF ₇ , Pentagonal bipyramidal						
43.	Bond dissociation energies of HCl, HF and HBr follow the order						
	1) HCl>HBr>HF 2) HF>HBr>HCl 3) HF>HCl>HBr 4) HBr>HCl>HF						
44.	The electron affinity values (in KJ mole ⁻¹) of three halogens x, y and z are						
	respectively –349, -333 and –325. Then x, y and z respectively are						
	1) F, Cl and Br 2) Cl, F and Br 3) Cl, Br and F 4) Br, Cl and F						
45.	Assertion: F ₂ is used for etching of glass is the form of HF.						
	Reason: The formula of hydofluoro silica acid is H ₂ SiF ₆ .						
	1) Both A and R are true and R is the correct explanation of A						
	2) Both A and R are true and R is not the correct explanation of A						
	3) A is true but R is false						
	4) A is false but R is true						
46.	Assertion: Chlorine bleaches by oxidation in presence of moisture.						
	Reason: Chlorine can react with noble gases to form stable compounds.						
	1) Both A and R are true and R is the correct explanation of A						
	2) Both A and R are true and R is not the correct explanation of A						
	3) A is true but R is false						
	4) A is false but R is true						
47.	Assertion: Cl-O bond length decreases from ClO to ClO ₄ .						
	Reason: Cl-O bond order increases from ClO to ClO ₄ .						
	1) Both A and R are true and R is the correct explanation of A						
	2) Both A and R are true and R is not the correct explanation of A						
	3) A is true but R is false						
	4) A is false but R is true						

- 48. Assertion: F_2 has lesser bond energy than Cl_2 .
 - Reason: Down the group, for halogens bond energy increases with increase in atomic size
 - 1) Both A and R are true and R is the correct explanation of A
 - 2) Both A and R are true and R is not the correct explanation of A
 - 3) A is true but R is false
 - 4) A is false but R is true
- 49. List-II List-II
- A) HClO 1) Pyramidal
 - B) HClO₂ 2) Salts are chlorites
 - C) HClO₃ 3) Strongest acids
 - D) HClO₄ 4) Strongest oxidizing agent
 - 5) Reacts with the inert gases.

The correct match is

	\mathbf{A}	В	C	D
1)	4	2	1	5
1) 2) 3) 4)	2	4	1	3
3)	4	2	1	3
4)	3	5	1	2

- 50. List-II List-II
 - A) Super halogen
 1) CCl₃NO₂
 B) Tear gas
 2) COCl₂
 - C) Phosgene 3) Cl- C_2H_4 –S- C_2H_4 -Cl
 - D) Mustard gas 4) F₂ 5) HF

The correct match is

	A	В	\mathbf{C}	D
1)	4	2	1	3
2)	2	4	1	3
3)	2	5	3	4
4)	3	5	1	2

KEY

1. 2	2. 1	3.3	4. 1	5. 2	6. 2	7.4	8.4	9.4	10. 2
11. 2	12.4	13. 1	14. 3	15. 1	16. 4	17. 4	18.3	19. 2	20. 1
21.4	22. 4	23.4	24. 3	25.4	26. 4	27. 2	28. 4	29. 4	30. 2
31. 1	32. 4	33. 2	34. 4	35. 2	36. 2	37. 1	38. 2	39. 1	40. 3
41 4	42.4	43 3	44.2	45.2	46 3	47 1	48 3	49 3	50.1

Question Bank - II

General characteristics

1.	The number of	of unpaired electron	s present in the first	excited state of chlorine atom is			
	1) 1	2) 3	3) 5	4) 2			
2.	Which of the	following halogens	has metallic charac	ter?			
	1) F ₂	2) CI ₂	3) Br ₂	4) I ₂ .			
3.	Super haloge	n is					
	1) F ₂	2) CI ₂	3) Br ₂	4) I ₂ .			
4.	The element	which never acts as	reducing agent in a	chemical reaction is			
	1) 0	2) Li	3) F	4) C			
5.	The high read	ctivity of fluorine is	mainly due to				
	1) high heat of	of hydration		2) small size			
	3) low bond of	dissociation energy	of the F-F bond	4) high ionisation potential			
6.	The type of fe	orces present among	g halogen molecules	3			
	1) H-bonds	2) Covalent bond	s 3) Vander waals fo	orces 4) Ionic bond			
7.	The correct of	The correct order of Vander Waals radius of F, Cl and Br is					
	1) Cl > F > Br		2) Br > Cl > F				
	3) F > Cl > B	r	4) $Br > F > Cl$				
8.	Liquid and solid halogens are						
	1) Br ₂ and Cl	$_2$ 2) I_2 and Br_2	3) Br_2 and I_2	4) Cl_2 and I_2			
9.	The halogen	that undergoes subl	imation is				
	1) F ₂	2) Cl ₂	3) Br ₂	4) I ₂			
10.	Ionisation po	tential of fluorine is	abnormally high. It	is due to			
	1) Its high EN value		2) Its high EA value				
	3) Its small s	ize	4) Its big size				
11.	The elements	with the highest ele	ectron affinity and e	electronegativity respectively are			
	1) Cl and Cl	2) F and F	3) F and Cl	4) Cl and F			
12.	An element M has an atomic mass 19 and atomic number 9. Its ion is represented by						
	1) M ⁺	$2)M^{2+}$	3)M ⁻	$4)M^{2-}$			
13.	General oxida	ation states of halog	gens are				
	1) 0-1, +1	2) -1, +1, +3	3) -1, +1, +3, +5	4) -1, +1, +3, +5, +7			
14.	Which one of	the following eleme	ents can show both p	ositive and negative oxidation state?			
	1) F	2) I	3) Li	4) He.			
15.	The maximum	n oxidation state th	at can be exhibited	by a halogen in its second excited			
	state						
	1)+1	2) +3	3) +5	4) +7			
16.	Which one of	f the following elem	ents show different	oxidation states?			
	1) Sodium	2) Fluorine	3) Chlorine	4) Potassium			

17.	Enthalpy of	dissociation is lo	ow for				
	1)F ₂	2) Cl ₂	3) Br ₂	4) I ₂			
18.	F ₂ absorbs.	portion of light	nt and appear yello	w and I ₂ absorbs portion of light and			
	appears vio	let					
	1) Red and	Green	2) Violet and	Yellow			
	3) Blue aud	Orange	4) Green and	Red			
19.	In AX ₅ type	of molecule if 'A	undergoes sp ³ d ² hy	bridisation then the shape of the molecule			
	is						
	1) T-shape	2) Octahedral	3) Square py	ramidal 4) Tetrahedal			
20.	The hybridi	zation in interhal	ogen compound A	X_7 is			
		2) sp^{3}		4) sp^3d^2			
21.	The stronge	est oxidising ager	t among the follow	ving is			
	1) Cl ₂	2) F ₂	3) O ₃	4) H_2O_2			
22.	The order o	f reactivity of ha	logens with Hydrog	gen is			
	1) $F_2 < Cl_2 < Br_2 < I_2$		2) $F_2 > Cl_2 > 1$	$\operatorname{Br}_2 > \operatorname{I}_2$			
	3) $F_2 < Br_2$	$< Cl_2 < I_2$	4) $F_2 > I_2 > B$	$\operatorname{Br}_2 > \operatorname{Cl}_2$			
23.	Which of the following is incorrect with respect to property indicated?						
	1) E.N : F >	\cdot Cl $>$ Br		2) E.A : $Cl > Br < F$			
	3) Oxidising power: $F_2 > Cl_2 > Br_2$			4) Bond energy; $F_2 > Cl_2 > Br_2$.			
24.	Which halo	gen has highest i	onisation potential				
	1) Fluorine	2) Chlorine	3) Bromine	4) Iodine			
25.	The electron	The electron affinity values (in KJ mole-1) of three halogens x, y and z are respectively					
	-349, -333 aud -325. Then x, y and z respectively are						
	1) F, Cl and Br		2) Cl, F and I	Br .			
	3) Cl, Br an	d F	4) Br, Cl and	F			
26.	Which of th	e following is m	ost volatile				
	1) HI	2) HBr	3) HCl	4) HF			
27.	Correct ord	er of boiling poir	nts of hydrogen half	ides is			
	1) HF > HC	1 > HBr > HI	2) HF< HCl <	< HBr < HI			
	3) HCl < HI	Br < HI < HF	4) HF < HBr	< HI < HCl			
28.	One gas ble	aches the colour	of flowers by redu	action and another gas by oxidation. The			
	gases respec	ctively are					
	1) SO ₂ and	Cl ₂	2) CO and Cl ₂				
	3) NH_3 and	SO ₂	4) H ₂ S and B	r_2			
29.	In the reacti		$Br_{2} + 2X^{-}, X_{2}$ is				
		2) Br ₂	3) I ₂	4) N ₂			
30.	Which of th	e following has g	greatest reducing po	ower?			
	1) HI	2) HBr	3) HCI	4) HF.			

31.	Mark the ele	ment which shows	only one oxidation	state in its compounds
	1) F	2) Cl	3) Br	4) I
Chle	orine			
32.	Cl ₂ reacts wi	th water and forms		
	1) HCl + HC	OC1	2) $HCl + O_2 + O_3$	
	3) HCl + HC	$OC1 + O_3$	4) $HOCl + O_2$	
33.	Chlorine acts	s as a bleaching age	nt only in the presen	nce of
	1) Dry air	2) Moisture	3) Sun light	4) None of these
34.	Cl ₂ (or) Br ₂ ((or) I ₂ reacts with co	old and dilute alkali	solution to form
	1) Halide + l	Hypohalite	2) Halide + Hypo	ohalite + H ₂ O
	3) Halide + I	nalite	4) Halide + Halat	$e + H_2O$
35.	Cl_2 (or) Br_2	or) I ₂ reacts with ho	t conc. alkali solutio	on to form
	1) Halide + l	Hypohalite	2) Halide + Hypo	ohalite + H ₂ O
	3) Halide + I	nalite	4) Halide + Halat	$e + H_2O$
36.	The followin	g is not a mineral c	of Chlorine	
	1) Carnalite	2) Horn silver	3) Sylvine	4) Cryolite
37.	When Brine s	olution is subjected t	o electrolysis the gas	es liberated at anode and at cathode are
	1) H ₂ and Cl	$_{2}$ 2) H $_{2}$ and O $_{2}$	3) Cl_2 and O_2	4) Cl ₂ and H ₂
38.	At ordinary t	emperature Cl ₂ read	cts with	
	1) O ₂	2) N ₂	3) He	4) Cu
39.	Chlorine oxid	dises H ₂ S to		
	1) S	2) SO ₂	3) H ₂ SO ₄	4) H_2SO_3
40.	The products	s formed when Cl_2 r	eacts with excess of	f NH ₃ are
	l) NCl ₃ + HC	1 2) $N_2 + HC1$	3) $NCl_3 + N_2$	4) N2 + NH4Cl
41.	What are the	products obtained	when ammonia is re	eacted with excess chlorine
	1) N_2 and N_2	Cl_3	2) N_2 and HCl	
	3) N_2 and NI	H_4Cl	4) NCl ₃ and HOC	
42.	In the use o	f Cl ₂ as bleaching	agent, the substanc	e that is mainly responsible for the
	bleaching is			
	1) HClO ₂	2) HClO ₃	3) HClO ₄	4) HOC/
43.	Which of the	e following is. used	in the extraction of	gold
	1)F ₂	2) Cl ₂	3) Br ₂	4) I ₂
44.	Which one o	of the following is f	ormed apart from se	odium chloride when chlorine reacts
	with hot con	cetrated sodium hyd	droxide	
	1) NaClO	2) NaClO ₂	3) NaClO ₃	4) NaClO ₄
Oxy	acids			
45.	Cl in ClO- u	ndergoes hybridi	sation	
	$1) sp^2$	2) sp3	3) sp ³ d	4) sp3d2
46.	What is the o	oxidation state of cl	nlorine in hypochlor	ous acid?

	1) + 7	2) + 5	;	3) + 3		4) + 1			
47.	Which of the following is not peroxy Acid								
	1) Perphosphoric Acid		2) Perni	2) Pernitric Acid					
	3) Perdisulphuric Acid		4) Percl	4) Perchloric Acid					
48.	The geometry' of ClO ₃ ⁻ according to valence shell electron pair repulsion theory will be								
	1) Planar triangle		2) Pyra	2) Pyramidal					
	3) Tetrahedral		4) Squa	4) Square planar.					
49.	The bond ar	ngle in C	ClO_2^- is						
	1) 109°28¹	2) 11	1°	3) 118°		4) 115°			
50.	Sigma bond	between	n Cl and O	in C/O_4^- is	formed by	y overlappi	ng		
	l) sp ² -p	2) sp2	- S	3) sp^3 -	S	4) $sp^3 - p$)		
51.	Shape and b	Shape and bond angle in ClO ₄ ⁻ ion is							
	1) planar trigonal. 109°28¹		2) tetral	2) tetrahedral. 109°28¹					
	3) pyramida	l. 105°		4) V-sha	ape, 118°				
52.	The number of π bonds in ClO_4^- ion is								
	1) 2	2) 3		3)4		4) 1			
53.	The number	of lone	pairs on Ch	nlorine ator	m in <i>ClO</i> -	$,ClO_2^-,ClC$	O_3^-, ClO_4^- i	ons are	
	1) 0, 1, 2, 3	2) 1,	2, 3, 4	3) 4, 3,	2, 1	4) 3, 2,	1, 0		
54.	The order of Cl-O bond energy in $ClO^-, ClO_2^-, ClO_3^-, ClO_4^-$ is								
	1) $ClO^- > ClO_2^- > ClO_3^- > ClO_4^-$ 2) $ClO_4^- > ClO_2^- > ClO_2^- > ClO_2^-$								
	3) $ClO_4^- > C$	710- > (~!O- > C!O	- 4) <i>ClO</i>	- > C1O- +	> C1O ⁻ > 0	710-		
	$3) ClO_4 > C$	$10_2 > 0$	$10_3 > 0$	4) ClO	, > ClO .	$> C_1O_2 > C_1$	$\mathcal{I}\mathcal{O}_4$		
				— KE	<u>Y</u>				
	1) 2 2	2) 4	3) 1	4) 3	5) 3	6) 3	7) 2	8) 3	
	1 0) / 1	0) 3	11) /	12) 3	13) /	14) 2	15) 2	16) 3	

				/ <u>I</u>			
1) 2	2) 4	3) 1	4) 3	5) 3	6) 3	7) 2	8) 3
9) 4	10) 3	11) 4	12) 3	13) 4	14) 2	15) 3	16) 3
17) 4	18) 2	19) 3	20) 1	21) 2	22) 2	23) 4	24) 1
25) 2	26) 3	27) 3	28) 1	29) 1	30) 1	31) 1	32) 1
33) 2	34) 2	35) 4	36) 4	37) 4	38) 4	39) 1	40) 4
41) 4	42) 4	43) 2	44) 3	45) 2	46) 4	47) 4	48) 2
49)2	50)4	51) 2	52) 2	53) 4	54) 2		

(d) GROUP-18 ELEMENTS

Synopsis:

- 1. Helium, neon, argon, krypton, xenon and radon are noble gas elements.
- 2. Noble gases constitute the elements of zero group or 18th goup in the long form of the periodic table.
- 3. The general outermost electronic configuration of noble gases is ns^2np^6 .
- 4. Noble gases are called iner gases and are monoatomic. Noble gasesa re chemically inser because of 'octet' configuration.
- 5. Argon is the principal noble gas constitute in the air.
- 6. First compound Xenon was prepared by H bertlett. And thd compound is Xenon Hexa Fluroplatinate (II). Xe [PtF₆]
- 7. Due to stable electronic configuration these gases exhibit very high ionisation enthalpy. However, it decreases down the group with increase in atomic size.
- 8. Atomic radii increase down the group with increase in atomic number
- 9. Separation of noble gases can be carried out by Dewar's adsorption method on activated charcoal.
- 10. The first and reasonable stable compound of any noble gas, xenonplatinum hexafluoride was prepared by Bartlett.
- 11. The compounds of xenon are usually three types: fluorides, oxides and oxyfluorides.
- 12. Helium is totally inert because of its small size, high ionisation potential and zero electron affinity.
- 13. The structure of xenon difluoride is linear, xenon tetrafluoride is square planar and xenon hexafluoride is distorted octahedral.
- 14. Xenon trioxide has pyramidal shape and xenontetroxide is tetrahedral.
- 15. Helium is preferred to nitrogen by deep sea divers and asthma patients. The respiration mixture is 20% O, and 80% He by volume.
- 16. He is also used to provide inert atmosphere, in gas thermometers and as a cryoscopic liquid.
- 17. Neon is used in advertisement discharge lamps and in green houses
- 18. Argon is used to provide inert atomosphere in metallurgy and for filling electric bulbs.
- 19. Krypton is used in miners cap lamps.
- 20. Xenon is used in photographic flash bulbs
- 21. Radon is used to locate defects in steel castings.

(a) Xenon-fluorine compounds

Xenon forms three binary fluorides, XeF₂, XeF₄ and XeF₆ by the direct reaction of elements under appropriate experimental conditions.

$$Xe (g) + F_2(g) XeF_2(s)$$
(xenon in excess)
$$Xe (g) + 2F_2(g) XeF_4(s)$$
(1:5 ratio)
$$Xe (g) + 3F_2(g) XeF_6(s)$$
(1:20 ratio)

 XeF_6 can also be prepared by the interaction of XeF_4 and O_2F_2 at 143K.

XeF₂, XeF₄ and XeF₆ are colourless crystalline solids and sublime readily at 298 K. They are powerful fluorinating agents. They are readily hydrolysed even by traces of water. For example, XeF₂ is hydrolysed to give Xe, HF and O₂.

$$2XeF_2$$
 (s) + $2H_2O(1) \rightarrow 2Xe$ (g) + 4 HF(aq) + $O_2(g)$

The structures of the three xenon fluorides can be deduced from VSEPR and these are shown in Fig. XeF_2 and XeF_4 have linear and square planar structures respectively. XeF_6 has seven electron pairs (6 bonding pairs and one lone pair) and would, thus, have a distorted octahedral structure as found experimentally in the gas phase.

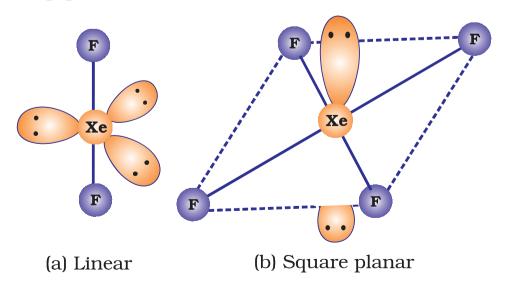
Xenon fluorides react with fluoride ion acceptors to form cationic species and with fluoride ion donors to form fluoroanions.

$$XeF_2 + PF_5 \rightarrow [XeF]^+ [PF_6]^-; \quad XeF_4 + SbF_5 \rightarrow [XeF_3]^+ [SbF_6]^-$$

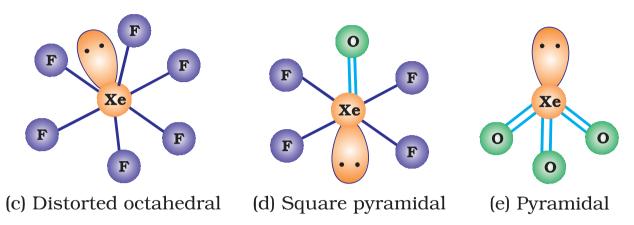
 $XeF_6 + MF \rightarrow M^+ [XeF_7]^- (M = Na, K, Rb or Cs)$

(b) Xenon-oxygen compounds

Hydrolysis of XeF₄ and XeF₆ with water gives XeO₃.


$$6XeF_4+12 H_2O \rightarrow 4Xe+2XeO_3+24 HF + 3 O_2$$

$$XeF_6 + 3 H_2O \rightarrow XeO_3 + 6 HF$$


Partial hydrolysis of XeF₆ gives oxyfluorides, XeOF₄ and XeO₂F₂.

$$XeF_6 + H_2O \rightarrow XeOF_4 + 2 HF$$

$$XeF_6 + 2 H_2O \rightarrow XeO_2F_2 + 4HF$$

XeO₃ is a colourless explosive solid and has a pyramidal molecular structure (Fig.). XeOF₄ is a colourless volatile liquid and has a square pyramidal molecular structure (Fig.).

Fig. The structures of (a) XeF_2 (b) XeF_4 (c) XeF_6 (d) $XeOF_4$ and (e) XeO_3

Question Bank

1.	In which of the p	rocesses O2	is removed by	hot Cu?	
	1) Ramsay metho	od I	2) Fischer-	Ringe's method	
	3) Ramsay metho	odII	4) All the	three	
2.	· ·		/	r, Xe activated charcoal is maintained a	ıt
				At any tem above 200K	
3.				e the component separated out is	
	1) O ₂	_	3) Xe	4) Ar	
4.	He and Ne mixtu	re is separa	ted by passing it	through	
	1) Liquid O ₂ pipe	_			
	3) Cannot be sepa				
5.	The charcoal mai	ntained at -	-100°C adsorbs		
) He, Ar 4) He, Ne	
6. During fractional evaporation of liquid air nitrogen will be mixed with					
	1) Ar, Kr, Xe	_	_	He &Ne 4) Kr, Xe	
7.	7. Claude's apparatus is used for the isolation offrom liquid air				
	1) noble gases	2) liquid n	itrogen 3)	liquid oxygen 4) all of these	
8.	Noble gases do n	ot occur in			
	1) ores 2) sea	water 3)	atmosphere	4) natural gas	
9.	Which among the	e following	has the highest	density	
	1) Ar	2) Ne	3) Kr	4) Xe	
10.	The following ha	s zero valei	ncy		
	1) Na	2) Kr	3) Al	4) Be	
11.	Which one of the	following	gas exists in mo	no atomic state?	
	1) Chlorine	2) Oxyger	=	4) Nitrogen	
12.	Element with hig	hest, I.P in	the periodic tab	le	
	1) H ₂	2) O ₂	3) He	4) F ₂	
13.	The inert gas amo	ongst the fo	ollowing with lea	ast boiling point in Kelvin scale	
	1) Ne	2) He	3) Kr	4) Xe	

14. Which of the following cannot be easily liquified?
1) He 2) Ne 3) Xe 4) Ar
15. In the Dewar's method of separation of noble gases, the mixture of noble gases is
kept in contact with coconut charcoal at 173K which one of the following gaseous
mixture is not adsorbed on to the charcoal?
1) Ar, Kr 2) Xe, Ar 3) He, Ne 4) Xe, Kr
16. In Fischer-Ringe's method of separation of noble gas mixture from air, is used
1) 90% CaC ₂ +10%CaCl ₂ 2) coconut charcoal
3) soda lime+ potash solution 4) 90% CaCO ₃ +urea
17. Least chemical activity is shown by
1) NH ₃ 2) CH ₄ 3) Ar 4) H ₂ SO ₄
18. The general electronic configuration of noble gases is
1) ns^2np^3 2) ns^2np^6 3) ns^2np^4 4) ns^2np^5
19. Which of the following is not a noble gas?
1) He 2) Ne 3) Ar 4) Ra
20. Which of the following noble gas is not present in atmosphere?
1) He 2) Ne 3) Rn 4) Ar
21. The noble gases were first reported by?
1) Frankland 2) Rayleigh 3) William Ramsay 4) Cavendish
22. Helium was discovered by
1) Dorn 2) Rutherford 3) Chadwick 4) Janssen & Lockyer
23. Monazite is a source of
1) He 2) Kr 3) Ne 4) Ar
24. Most important source of He
1) Sun 2) Radon 3) Natural gas 4) Minerals
25. Which electron configuration corresponds to minimum energy and maximum stability
1) $(n-1)d^{10}ns^{1}$ 2) $(n-1)d^{5}ns^{1}$ 3) $ns^{2}np^{6}$ 4) $ns^{2}np^{3}$
26. Which of the following gaseous molecules is mono atomic
1) Chlorine 2) helium 3) oxygen 4) nitrogen
27. The S-block element present in zero group is
1) H 2) He 3) Ne 4) Rn
28. Noble gases belong to
1) S-block 2) P-block 3) d-block 4) f-block
29. Assertion: Helium does not get absorbed on activated charcoal in Deewar's method.
Reason: Helium has lower atomic weight.
1. Both A and R are true and R is the correct explanation of A
2. Both A and R are true and R is not the correct explanation of A
3. A is true but R is false4. A is false but R is true
4. A INTAINE DULIN INTUE

30. Assertion: In the separation of noble gas mixture from air, CO₂ is removed with potash.

Reason: KOH being a base reacts with CO₂ which is acidic in nature to form potassium carbonate.

- 1. Both A and R are true and R is the correct explanation of A
- 2. Both A and R are true and R is not the correct explanation of A
- 3. A is true but R is false
- 4. A is false but R is true
- 31. Assertion: Helium and Neon do not participate in chemical reactions.

Reason: The I.P value of He and Ne are very high.

- 1. Both A and R are true and R is the correct explanation of A
- 2. Both A and R are true and R is not the correct explanation of A
- 3. A is true but R is false
- 4. A is false but R is true
- 32. Assertion: The shape of XeF₂ is linear.

Reason: In XeF_2 , Xe undergoes sp^3d hybridisation.

- 1. Both A and R are true and R is the correct explanation of A
- 2. Both A and R are true and R is not the correct explanation of A
- 3. A is true but R is false
- 4. A is false but R is true

33.

List-I	List-II
a) XeF ₂	1) Pyramidal
b) XeO ₃	2) Square planar
c) XeF ₆	3) Linear
d) XeF ₄	4) Distorted octahedral

The correct match is

	\mathbf{r}	Γ
/\	ĸ	
\neg	D	$ \cup$

2 1 4

3) 3 1 4 2

A B C D

2) 3 4 2 1

4) 3 1 2 4

34.

List-I	List-II
a) XeF ₂	1) One lone pairs on Xe
b) XeF ₄	2) Two lone pairs on Xe
c) XeO ₄	3) Three lone pairs on Xe
d) XeF ₆	4) Zero lone pairs on Xe

The correct match is

A B C D

A B C D

1) 1 2 3 4

2) 3 4 2 1

3) 3 2 4 1

4) 3 2 1 4

35.	Separation of noble air into	gases from liquid a	ir is done commercia	ally by dividing liquid			
	1) 6 fractions	2) 2 fractions	3) 3 fractions	4) 4 fractions			
36.	 Which is a wrong statement? 1) All inert gases posses ns² np² configuration 2) Zero group elements are gases 3) Noble gases are chemically inert generally 4) Inert gases are mono atomic 						
37.	Regarding Ramsay – Reyleigh II method, the wrong statements are (a) O ₂ is removed in the form of CuO (b) N ₂ is removed in the form of Mg ₃ N ₂ (c) The ratio of air and oxygen taken is 9:11 1) (a) and (b) 2) (b) and (c) 3) (a) and (c) 4) all are correct						
			, , , , , , ,	,			
38.	Lone pairs are not p 1) XeO ₄	oresent on the central 2) XeF ₄	atoms of the molecu 3) XeO ₃	ıle 4) XeF ₆			
39.	About the uses of noble gases (a) Ar is used in Geiger counter tubes (b) Kr-85 is used for voltage regulation (c) Ar is used in thermoionic tubes The wrong statements are						
	1) (a) and (b)		3) (b) and (c)	4) all are correct			
40.	To separate argon f should be maintained		ining Ar + Kr + Xe,	the activated charcoal			
	1) 77K	2) 183K	3) 93°C	4) 85°C			
41.	chemical med R: Inert gases at 1) Both A and R at	ethods are associated with Nore true and R is the core true and R is not the false	d from air is more to the atmospheric correct explanation of the correct explanation of the correct explanation.	f A			
42.	R: Adsorption attraction.1) Both A and R a	of noble gases on re true and R is the c re true and R is not t is false	gases on activated classification of the correct explanation of the correct explanation	on the Vanderwaals A			

- 43. **A:** A mixture of 80% He + 20% O_2 is used for respiration by deep sea divers instead of air.
 - **R:** The N_2 is air at high pressure dissolves in blood but helium is not soluble.
 - 1) Both A and R are true and R is the correct explanation of A
 - 2) Both A and R are true and R is not the correct explanation of A
 - 3) \mathbf{A} is true but \mathbf{R} is false
 - 4) **A** is false but **R** is true
- 44. Match the following.

List – I	List – II
Molecule	Position of lone pairs
A) XeF ₂	1) axial positions
B) XeF ₄	2) corners of triangle
C) XeO ₃	3) equatorial positions
	4) corners of a tetrahedron

The correct match is

	\mathbf{A}	В	C
1)	1	2	3
2)	3	1	4
3)		2	1
4)	2	1	3

- 45. Which of the following is not correct?
 - 1) XeO₃ has four σ and four π bonds
 - 2) the hybridization of Xe in XeF₄ is sp^3d^2
 - 3) Among noble gases, the occurrence of argon is highest in air
 - 4) Liquid He is used as cryogenic liquid

KEY

1.1	2.2	3.4	4.2	5.2	6.3	7.4	8.2	9.4	10.2
11.3	12.3	13.2	14.1	15.3	16.1	17.3	18.1	19.4	20.3
21.3	22.4	23.1	24.3	25.3	26.2	27.2	28.2	29.2	30.1
31.1	32.2	33.3	34.3	35.3	36.1	37.1	38.1	39.4	40.1
41.1	42.1	43.1	44.2	45.1					

Question Bank - II

General characteristics

1.	When a rad	ioactive substance	e is kept in a vessel,	the atmosphere around it is rich w	<i>i</i> th
	1) He	2) Ne	3) Ar	4) Xe	
2.	Which elem	ent disintegrates t	to give two noble g	ases	
	1) Ra	2) Th	3) Rn	4) He	
13.	The actual	density of nitroge	en is 1.25glir ⁻¹ . The	density of nitrogen obtained from	n the
	atmosphere	is 1.258 g lir ⁻¹ . Th	nis is because of the	fact that atmospheric nitrogen con	ıtains
	1) Argon an	d other noble gase	es	2) Carbon dioxide	
	3) Neon			4) Carbon monoxide	
4.	Noble gases	s exists only in mo	onoatomic state. Th	s is due to	
	1) Non avai	ilability of unpaire	ed electrons	2) high ionization energy	
	3) large size	>		4) zero electron affinity	
5.	If one litre	of air is passed re	peatedly over heate	d copper and magnesium till no fu	rther
	reduction in	volume takes pla	ace, the volume fina	lly obtained is	
	1) 800ml	2) 990 ml	3) 10 ml	4) 100 ml	
6.	The maxim	um valency (8) is	shown by		
	1) Xe and C	s only	2) Xe and Ru	only	
	3) Xe, Os a	nd Ru	4) Xe, Os. Ru	and Mn	
7.	Regarding 2	XeF ₂ the correct c	ombination is		
	1) $sp^3d - 4I$	_P	2) $sp^3d - 3 LP$		
	3) $sp^3d - 2I$	_P	4) $sp^3d - 1 LP$		
8.	Which of th	e following is dia	magnetic in nature		
	1) O ₂	2) NO ₂	3) He	4) Fe^{2+}	
9.	The incorre	ct statement regar	ding noble gases is		
	1) Their ele	ctronegativity valu	ues are zero		
	2) They are	held together by	Vanderwaals forces		
	3) They occ	cupy the peaks in t	the graphs of ionisa	tion potential and atomic number	
	4) Their boi	ling points decrea	se from He to Xe		
10.			on of first compoun		
	1) High bon	d energy of Xe - 1	F 2) Low bond 6	energy of F - F in F ₂	
	3) Ionisation	n energies of O_2 a	nd xenon were alm	ost similar	
	4) None of	these			
11.	Noble gases	are only sparingl	y soluble in water d	ue to:	
	1) dipole - (dipole interactions	2) induce	ed dipole- induced dipole interaction	ns
		-	ractions 4) hydrog		
12.		as compound iso-	structural with bro		
	I) XeO_2	2) XeF ₄	3) XeP_2	4) XeOF ₂	

13.	Which of	the follow	ving is plana	ar?					
	1) XeO ₄	2) Xe	eO ₃ F	3) XeC	$_{2}F_{2}$	4) XeF ₄			
14.	Which of	the follow	ing is not c	correct?		·			
	1) Xe is th	ne most re	active amo	ng the rare	gases	2) He is	an inert g	as	
	3) Radon	3) Radon Is obtained by decay of radium							
	4) The mo	st abunda	nt rare gas	found in a	tmosphere	is He			
15.	Which of	the follow	ving is more	e volatile?					
	1) He	2) Xe	e	3) Kr		4) Ne			
16.	Among th	e followir	ng molecule	es,					
	a) XeO ₃	b) XeOF	G_4 and c) X	CeF ₆ ;					
	Those hav	ing same	number of	lone pairs	on Xe are				
	1) a and b	2) b a	and c	3) a, b	and c	4) a and	c		
17.	In the co	mpound	formation :	xenon ato	m is in the	e third exc	cited state	e, the ex	pecteo
	hybridisati	on of xer	on is						
	$l) sp^2$	2) sp	3	3) sp ³ d		4) sp^3 or	sp^3d^3		
18.	Bond leng	th order i	n various x	enon fluor	ides is				
	1) Xel6 > XeF4 > XeF2			2) XeF	2) XeF2 = XeF4 = XeF6				
	3) XeF ₂ >	$XeF_4 > X$	leF ₆	4) cann	ot be pred	icted			
19.	XeF ₆ on p	artial hyd	rolysis give	es.					
	1) XeOF ₄ only			2) XeC	2) XeO_2F_2 only				
	3) both Xe	eF ₄ and X	eO_2F_2	4) XeC	F ₄ or XeO	$_2F_2$			
20.	Number o	f σ and τ	t bonds pre	sent in Xe	OF ₄ molecu	ıle are			
	1) 5 σ and	1π		2) 4σ	and 2π				
	$3) 2\sigma$ and	4π		4) 3 σ	and 3π				
21.	Number o	f lone pair	r and bond	pairs prese	ent on Xe i	n XeOF ₄ m	olecule is	3	
	I) 1,2	2) 1,4	1	3) 1,6		4) 2,4			
22.	Xenon dif	luoride re	acts with P	F ₅ and give	e which pai	ir of ions			
	3) [XeF] ⁺ [[PF ₆]-		4) [Xel	$[F_3]^+[PF_6]^-$				
	1) [XeF ₅]	$[PF_6]^+$		2) [Xel	$[F_7]^+[PF_6]^-$				
23.	XeF ₆ +MF	$\rightarrow M^+$ [X	[eF ₇] Here	e "M" is					
	1) Alkali metals			2) Alka	2) Alkaline earth metals				
	3) Transiti	ion metals	3	4) Inne	r transition	metals			
24.			f the noble g		in xenon ox		[XeOF ₂] i	S	
	1) 0	2) +1		3) +4	177	4) +8			
	1) 1	2) 1	2) 1	KF		6)2	7) 2	9) 2	
	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	2) 1	3) 1	4) 1	5) 3	6)3	7) 2	8) 3	
	9) 4 17\ 4		11) 3	12) 1	ŕ	14) 4	15) 1	16) 3	
	17) 4	18) 3	19) 4	20) 1	21) 3	22) 1	23) 1	24) 3	

7. d AND f BLOCK ELEMENTS & COORDINATION COMPOUNDS

Synopsis:

- 1. Elements in which differentiating electron enters into (n 1) d orbitals are called d-block elements.
- 2. The d-block elements are present in group 3 to 12 of the long form periodic table and lie in between s-block and p-block. They represent a transition from electropositive to electronegative character.
- 3. Transition elements are defined as the elements having partially filled d-orbitals in elemental " form or in their stable oxidation state.
- 4. All d-block elements except Zn, Cd and Hg (group 12) are transition elements.
- 5. There are four transition series, namely 3d, 4d, 5d which are completely filled and 6d series. It is incomplete
- 6. 3d series: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn 4d series: Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag and Cd 5d series: La, Hf, Ta, W, Re, Os, Ir, Pt, Au and Hg
- 7. The general electronic configuration of d-block elements is (n-l)d¹" ns^{0,2}. Only Pd has pseudo inert gas configuration.
- 8. Exceptional outer electronic configurations: $Cr [Z = 24] = 3d^54s^{1-}, Cu [Z = 29] = 3d^{10} 4s^{1-}, Mo[Z = 42] = 4d^55s^{1-},$ $Pd [Z = 46] = 4d^{10} 5s^{\circ}, Ag [Z = 47] = 4d^{10} 5s^{1-}, Au [Z = 79] = Sd^{\circ}s^{1-},$ $Pt [Z = 78] = 5d^96s^*$
- 9. Changed names of few elements

Z	Old name	New name
104	Khurchatovium	Dubium
105	Neilsbohrium	Joliotium
106	Unnilhexium	Rutherfordium
107	Neilsbohrium	Bohrium
108	Hassium	Hatirium
109	Meitnerium	Meitnerium

- 10. IUPAC names: 104 Unnilquadium (Unq); 105 Unnilpentium (Unp); 106 Unnilhexium (Unh); 107 Unnilseptium (Uns); 108 Unniloctium (Uno); 109 Unnilennium (Une)
- 11. The atomic and ionic radii of 3d elements are smaller than 4d and 5d elements.
- 12. The radii of 4d and 5d elements do not differ significantly due to lanthanide contraction.
- 13. In first transition series as the electrons are added to 3d orbitals, the atom shows slow contraction in size. These slight irregularities in size have been ascribed to crystal field effects.
- 14. The atomic and ionic radii of terminal elements of each d series increases (Zn, Cd, Hg) due to repulsions between paired electrons which reduces attractive forces. This effect increases so much that the s-electrons of the outer orbi: are shielded

- from nuclear attractions.
- 15. All transition elements are metals. They are less metallic compared to s- block metals. The} possess metallic lustre. They are hard and brittle They easily form alloys.
- 16. Transition metals are less reactive due to high ionisation energy and high heat of sublimation Pt and Au are almost unreactive. They are called noble metals.
- 17. The transition metal ions with the configuratio: d⁵ or d¹⁰ will be more stable. Ferric ion with d⁵ configuration is more stable than ferrous ion
- 18. Transition elements possess high melting anc boiling points. This is due to involvement o: electrons from both ns and (n-l)d subshell i: metallic bonding.
- 19. In any series highest melting point is for VI B group elements, due to the presence maximum number of unpaired electrons that gives strong metallic bonding.
- 20. Zn, Cd and Hg have very low melting pom's due to non involvement of d¹⁰ configuration ir metallic bonding.
- 21. As number of valence electrons increases strength of metallic bond, enthalpy of atomisation increases.
- 22. In a period decrease in atomic size is less compared to decrease in atomic size of representative elements. This is due to added (n-l)d electrons provide screening effect.
- 23. Conductivities of transition elements are very high. 'Ag'is the best conductor.
- Densities of transition metals are very high due to their low atomic volumes. In 3d series highest E 38. density is observed in 'Cu' and least in 'Sc'.
- 25. VIII group elements possess maximum densities, very high densities are exhibited by Ir and Os.
- 26. Ionisation potential of '3d' transition metals increases from Sc to Fe, then decreases to Ni and increases in Cu and Zn.
- 27. IP values of transition elements are high and they have low heat of hydration. Hence transition elements are less reactive than s-block elements. The least reactive metals are Pt, Ir, Au.
- 28. The increase in I.P. while passing from 4d to 5d is larger than 3d to 4d. The increase in I.P. from 'Zr¹ to 'Hf is 86 kj/mole, whereas from 'Ti' to 'Zr' is 18 kj/mole.
- 29. 5d' transition elements possess higher ionisation energies than 3d and 4d elements. This is due to the greater effective nuclear charge ineffective shielding of the nucleus by 4f electrons.
- 30. Decreasing order of IP, values : SC > Y > La, Hg > Zn > Cd, Hf > Zr > Ti
- 31. IP₂ values are much higher for Cr and Cu as they have stable configurations in unipositive state, with considerable loss of exchange energy.
- 32. IP₃ values relatively high for Zn as it is getting stable configuration after IP₂
- 33. IP₃ values of Mn⁺² is much higher than Fe⁺². Hence half filled (or) completely

- filled d orbitals have relatively high ionisation values.
- 34. d-Block elements form ionic bonds in lower oxidation states and covalent bonds in higher oxidation states.
- 35. Transition metals possess good catalytic properties due to the free valencies and ability to show variable oxidation states.
- 36. The characteristic properties of transition elements are : variable oxidation states, formation of coloured ions, paramagnetism, formation of alloys, complex compounds, etc.
- 37. Transition metals exhibit variable oxidation states as they use outer ns electrons as well as inner (n-1) d-electrons in bonding.
- 38. The oxidation state will be in between 0 and +8. The common oxidation state +2, due to loss of electrons either from ns or (n-1) d levels.
- 39. In 3d series lowest oxidation state is +1, shown by Cr and Cu. Highest oxidation state is +7, shown by Mn.
- 40. In 4d series highest oxidation state is +8 (unstable) shown by Ru in RuO₄. In 5d series highest is +8 (stable) shown by Os in OsO₄.
- 41. Substances are classified as paramagnetic, diamagnetic and ferromagnetic on the basis of their magnetic behaviour in an external magnetic field.
- 42. If the magnetic lines of forces are drawn into the substance the field (B) in the substance is greater than the applied field (H) such a substance is called paramagnetic substance. They move from low field to high field.
- Paramagnetic substances are weakly attracted in to magnetic field. Examples are: O₂, NO, NO₂, ClO₂, Fe⁺², Cu⁺², K₃[Fe(CN)₆], Cr³⁺.
- 44. Paramagnetic nature is due to the presence of unpaired electrons.
- 45. If the magnetic lines of forces are repelled by the substance then the field (B) is less than the applied field (H). Such a substance is called diamagnetic substance
- 46. Diamagnetic substances are weakly repelled in a magnetic field. They do not contain unpa::r : electrons. Examples are : O₃, H₂O₂. Zn²⁺
- 47. In ferromagnetic substances all magnet:.: moments are alligned in the same dir Ferromagnetism is a special ca paramagnetism.
- 48. In ferromagnetic substances the field strength, (B) >>> (H). Ferromagnetism disappear in the solution form of the substance. Eg: Fe, Co and Ni.
- 49. Transition metal ions are generally paramagnetic since they contain unpaired electrons.
- Magnetic property is measured in Bohr magnetons (BM). BM = eh/4 π me, where e is the charge of electron, h is Planck's constant 'm¹ is the mass of electron. One BM is 9.273 x Lo⁻²⁴ JT⁻¹ (S.I.Unit). (or) 9.273 x 10⁻²⁴ erg/gauss.
- 51. Magnetic moment p is calculated using equation.

$$\mu_{(S+L)} = \sqrt{4S(S+1) + L(L+1)}$$
 B.M.

where S is sum of the electron spin of all unpaired electrons. L is sum of the

- azimuthal quantum numbers of all unpaired electrons.
- 52. In many compounds of 3d seiles elements, the angular momentum due to orbital motion of unpaired electons is small and can be ignored.
- 53. If 'n' is the number of unpaired electrons, the magnetic moment is $\mu = \sqrt{n(n+2)}$ B.M.
- 54. Au⁺ is diamagnetic due to 5d¹⁰ Configuration and is colourless. Au⁺³ is para magnetic due to 5d⁸ configuration and is green in colour.
- 55. The solution of solids of transition metal ions absorb light in visible region and exhibit colours. The d-d transition causes colour, if the ion contains unpaired d-electrons. [Ti $(H_2O)_6$]C l_3 absorbs light of wave length 500 to 575nm and transmit red and violet. Hence it appears purple.
- 56. Fe²⁺ is green, Fe³⁺ is yellow, Cr²⁺ is blue, Cr³+ is green, Mn²⁺ is pink, Mn⁶⁺ is green.
- 57. Hydrated Cu⁺,Zn⁺², Sc³⁺, Ti⁴⁺, Mn⁺⁷ are colourless as d-d transition is not possible.
- But in oxo ions $Cr_2O_7^{2-}$, CrO_4^{2-} , MnO_4^{-} the colour is due to charge transfer phenomenon.
- 59. An intimate mixture having physical properties similar to that of the metal, formed by a metal with other metals or metalloid or sometimes a nonmetal, is called an alloy.
- 60. Alloys are generally prepared to modify malleability, ductility, toughness, resistance to corrossion etc, so as to suit industry.
- 61. Alloys are classified into ferrous type and non ferrous type depending upon the presence or absence of iron in the alloy.
- 62. Invar: Fe-64%, Ni-35%, Mn and C in traces. As it has a low temperature coefficient it is used in pendulum rods
- 63. Nichrome: Ni-60%, Fe-25%, Cr-15%. It is used in heating elements of fire stoves and furnaces.
- 64. German silver: Cu-50 to 60%, Ni-10 to 30%, Zn- 20 to 30%. It is used in spoons, forks, and utensils.
- 65. Bronze: Cu-75 to 90%, Sn-10 to 25%. It is used in utensils, coins and statues.
- 66. Brass: Cu 60 to 80%, Zn 20 to 40%. It is used in machinery parts.
- 67. Some alloys are also used in nuclear engineering, dental fillings and strong magnetic material.
- 68. Alloys are prepared by melting a mixture of metals or the components taken in proper proportion followed by cooling or simultaneous electrolytic deposition of the metals used under suitable conditions.
- 69. Transition metals form interstetial or nonstoichiometric compounds with non

- metals such as carbon, hydrogen, boron and nitrogen The non metal (guest) atoms are accommodate in the voids of crystals.
- 70. The non metal atoms occupy holes with ou altering metal lattice. But the lattice expands little. Due to this the density of intersteti compounds is less than that of metal.
- 71. Metals like Ti, V, Zr, Nb, Hf, Ta form intersteti compounds.
- 72. Hydrogen always occupy tetrahedral voids a C and N occupy larger octahedral voids.
- 73. Interstitial compounds will not possess a chemical bond. Since no bond is prese between guest & host elements they are call no bond compounds.
- 74. Catalytic activity of transition metals depends on their ability to exist in different states of oxidation or to form coordination compounds.
- 75. Catalytic acitivity is due to variable oxidation states and presence of vacant'd' orbitals.
- 76. Potassium dichormate is prepared from chromite ore fusing with sodium carbonate in air.
- 77. Potassium permanganate is prepared from pyrolusite ore.
- 78. Chromate, manganate and permanganate are all tetrahedral.
- 79. The elements from _{5?}La to ₇₁Lu are known as lanthanoids. They are characterized by the filling of 4f orbitals in their atoms.
- 80. The lanthanides occur as orthophosphates in Monazite sand. It is a mixture containing mostly 'La' phosphate and trivalent phosphates of Ce, Pr and Nd.
- 81. The general electronic configuration of the lanthanides is $[Xe]4f^{\circ_]4} 5d^{0_1} 6s^2$ (or) $[Pd] 4f^{\circ_14} 5d^{\circ-1} 6s^2$
- 82. Among lanthanides the same theoritical and experimental configurations are observed in Ce, Gd and Lu.
- 83. Lanthanides are silvery white in colour. They are malleable, ductile, have low tensile strength and are good conductors of heat. They have relatively high density and posses high melting points.
- 84. Many of the lanthanoid ions are coloured due to the electronic transition between different 4f levels.
- 85. The majority of the lanthanoid ions exhibit paramagnetism due to the presence of unpaired electrons.
- 86. The oxides and hydroxides of the lanthanoids are basic in character.
- 87. Lanthanides are called rare earths because of their rare abundance in the earth's crust. Promethium (z = 61) does not occur in nature.
- 88. Lanthanides have high electropositive character due to low ionisation energies.
- 89. Lanthanides mostly exhibit +3 in their compounds. They exhibit +2 and +4 states where they are able to get half filled or completely filled orbitals. But in +2 & +4 they are unstable, they reverse back to +3.

- 90. Ce⁺⁴ has noble gas configuration. Still it comes back to +3 by accepting electron hence acts as oxidant. Eu⁺² has F⁷ configuration. It returns back to Eu⁺³ by loosing electrons. Elence Eu⁺² is reductant.
- 91. Lanthanides react slowly with cold water and quickly with hot water liberating H₉ gas.
- 92. Lanthanides form basic oxides M_2O_3 and hydroxides $M(OH)_3$. The basic nature decreases from $Ce(OH)_3$ to $Lu(OH)_3$.
- 93. In air lanthanides get oxidized to form M_2O_3 (MO_2 if stable). Their oxides are ionic in nature. These oxides are basic in nature and the basic nature decreases with increase in atomic weights.
- 94. Lanthanides do not form coordination compounds as readily as d-block elements due to their larger sizes. Thier ions are similar to inert gas atoms. However complexes with chelating ligands are well known for lanthanides.
- 95. The magnetic moment and colours show periodicity in lanthanides. The colour of lanthanide (III) ion with 4P configuration is similar to the lanthanide (III) ion with $4f^{m} \sim {}^{n}$ configuration.
 - Nd³⁺ (4f³) —Pink, Er³⁺ (4f¹⁴, 3)...Pink, Sm³⁺ (4P) ...yellow Dy (4f¹⁴⁻⁵)yellow
- 96. Consequences of lanthanide contraction are : 4d series elements are larger than 3d series (but the same trend is not followed while going from 4d to 5d). The size of 4d and 5d are almost same. Hf & Zr, Nb & Ta, Mo & W these pairs shows same size and same chemical properties.
- 97. Chemical properties of lanthanides vary little from one another. Due to this their separation from mixture becomes difficult.
- 98. The elements from $_{90}$ A1 to $_{103}$ Lw are known as actinides.
- 99. Actinides are mostly synthetic and are called transuranic elements.
- 100. Addition compounds are formed when two or more independent stable compounds combine either physically or chemically.
- 101. A double salt gives test for all the constituent ions present in it. Eg. Carnallite, Alum, etc.
- 102. A complex species is either a molecule or ion whose physical properties such as colour and , conductivity are distinctly different from those * of the substances from which it is formed."
- 103. A complex compound retains its odentily and does not exhibit the properties of constituent elements.
- 104. Werner proposed that transition metals possess two types of valencies: primary (1°) valency and secondary (2°) valency.
- 105. Primary valency indicates oxidation number. It is ionisable valency and is satisfied by only negative ions.
- 106. Secondary valency is non-ionisable valency and determines the shape of complex. It is satisfied by positive ions, negative ions and neutral molecules.

- 107. Ligand is an ion or molecule that surrounds the metal ion in a condition complex. Ligand is an electron pair donor.
- 108. Based on the charge, ligands are 3 types : neutral ligands like NH₃, H₂O, CO; anionic ligands like CN $^-$, C Γ , NO $_2$ $^-$ and cationic ligands like NO $^+$.
- 109. Based on the number electron pairs donated, " ligands are three types: monodeutate ligands, like NH₃ H₂O, C*l*, CN, bidentate ligands like –OOC COO, H₂OCH₂COO and polydentate ligands like ethylenediamine tetracetate (EDTA)^{4–}.
- 110. Number of coordinate covalent bonds that a metal ion forms with the ligands in a complex compound is called coordination number.
- 111. It denotes 2° valency. Shape of complex can be assumed based on the coordination number.

112. Shapes of complexes

Coordination number	Shape of the corresponding complex
2	Linear
3	Trigonal planar
4	Tetrahedral (sp ³)or
	square planar (dsp ²)
5	Square pyramidal
6	Octahedral
7	Pentagonal bipyramidal

- Werner prepared cobalt amine complexes $CoCl_3$. $6NH_3$ or $[Co(NH_3)_6]Cl_3$, $CoCl_35NH_3$ or $[Co(NH_3)_5Cl]Cl_2$, $CoCl_3.4NH_3$ or $[Co(NH_3)_4Cl]Cl$ and $CoCl_3.3NH_3$ or $[Co(NH_3)_3Cl_3]$.
- 114. One mole CoC/₃.6NH₃ produces four moles of ions in solution with excess AgNO₃ solution three moles of AgC*l* precipitate. CoC*l*₃.3NH₃ does not ionise in solution and gives no precipitate.
- 115. Werner's theory does not correlate electronic configuration of the central metal with the formation of the complex compounds.
- 116. Werner's theory fails to explain colour, magnetic and optical properties of complexes.
- 117. In the formation of a complex ion, the central metal ion acts as a Lewis acid where as the ligand acts as Lewis base.
- 118. The formation of coordination complex is a Lewis neutralisation.
- 119. Some ligands contain two or more atoms with unshared pairs of electrons. If they coordinate to the same central metal or ion to form a ring, the phenomenon is known as chelation.
- 120. Transition metal ions form complex compounds due to small size, high effective nuclear charge of the metal ion and presence of vacant d-orbitals.

- 121. The central metal ion together with the ligands is known as complex ion or coordination sphere. Coordination entities are mainly two types: Mononuclear compounds like $[Co(NH_3)JCl_3, K_4[Fe(CN)_6]]$ and polynuclear compounds like $[Fe_2(CO)_9][Co_2(NH_3)_6(OH)_3]Cl_3$.
- 122. The coordination sphere of a complex compound carrying negative charge is anionic complex.
 - eg. $K_4[Fe(CN)_6]$, $K_3[Fe(CN)_6]$, $K_2[Ni(CN)_4]$,
- 123. The coordination sphere of a complex e compound carrying positive charge is cationic t complex.
 - eg. $[Ag(NH_3)_2]Cl$, $[CU(NH_3)_4]SO_4$
- The coordination sphere of a complex compound which does not carry any charge is neutral complex, eg. $[Ni(CO)_4]$, $[Co(NH_3)_3Cl_3]$
- 125. IUPAC rules to write the formula: All mononuclear complex entities contain a single central metal atom, which is symbolised first. If more than one ligand of each type is present, alphabetical order according to the first letter is to be followed in listing them. Formulae of polyatomic ligands are enclosed in parantheses. Complete coordination entity is enclosed in square brackets. Different species present in the formula are written continuously without leaving space. Charge of anionic or cationic complex is indicated outside the square brackets as a right superscript.
- 126. IUPAC rules for naming the complexes: Neutral coordination entity is written as one word. Cationic part is named first, and then anionic part. Number of cations or anions is not indicated. Within a coordination entity, ligands are named in alphabetical order and then name of the central metal atom (or ion) follows. The oxidation state of the metal is represented in Roman numerical after the name in parenthesis.
- 127. The names of cationic ligands and neutral ligands do not change, except aqua for H_2O , ammine for NH_3 , carbonyl for CO and nitrosyl for NO. The names of anionic ligands ends with 'O'.
- 128. Prefixes like di-, tri—, tetra- etc are used to name simple ligands bis-, tris-, tetrakis- etc for ligands whose names have di-, tri- etc already included. In anionic entities, the name of central metal ion terminates with -ate. The atom of the ligand which is bonded to the metal is indicated by its chemical symbol.
- 129. If complex compound possesses water or solvent of crystallisation, these follow the name of the compound and their numbers are represented by Arabic numericals before their names.

130. Names of some complexes

Formula	Name
$[Co(NH_3)_6]C/_3$	Hexaammine cobalt (III) chloride
$[CoC/(NH_3)_5JC/_2$	Pentaamminechlorocobalt (III) chloride
$K_4[Fe(CN)_6]$	Potassium hexacyanoferrate (II)
$K_3[Fe(CN)_6]$	Potassium hexacyanoferrate (III)
[Pt(NH ₃) ₆ C/J	Hexaamineplatinum (IV) chloride
[Pta2(NH3)2]	Diamminedichloroplati n um(II)
$K_3[Fe(C_7O_4)_3]$	Potassium trioxalatoferrate (III)

- Pauling's valence bond theory provided useful understanding of the valence and structure of compounds.
- 132. Complexes with unpaired electrons are paramagnetic and with no unpaired electons are diamagnetic
- 133. The hybridisation of central metal atom depends upon the co-ordination number.
- 134. Hybridisation in complexes

Co-ordination Number	Complex	Hybridisation
2	$[Ag(NH_3)_2]Cl$	sp
4	Ni(CO) ₄	sp^3
4	Ni(CO) ₄ [Ni(CN) ₄] ²⁻	$\mathrm{sp}^3 \ \mathrm{dsp}^2$
6	$K_4[Fe(CN)_6]$	d^2sp^3
6	$K_3[Fe(CN)_6]$	d^2sp^3
6	$[\mathrm{Co}(\mathrm{NH_3})_6]\mathrm{C}l_3$	d^2sp^3

- 135. With dsp² and d²sp³ hybridisation, inner complexes are formed. Inner complex is also called spin paired, low spin or strong field or covalent complex.
- 136. With sp³ and sp³d² hybridisation, outer complexes are formed. Outer complex is also called sping free or high spin or weak field or low field or ionic complexes.
- 137. The orbitals in the valance shell of central atom, such as (n-l)d, ns, np, nd orbitals undergoes hybridisation to form identical hybrid orbitals. These empty hybrid orbitals of metal overlaps with completely filled orbitals of ligands to form dative bonds with ligands.
- 138. With sp³ hybridisation, tetrahedral complex is formed. Bond angle is 109.5°.
- 139. With dsp² hybridisation square planar complex is formed. Bond angle is 90°.
- 140. With d²sp³ or sp³d² hybridisation, octahedral complex is formed. Bond angle is 90°.
- 141. $[Co(NH_3)_6]^{3+}$ has d^2sp^3 hybridization. Oxidation state of Co is +3. It is diamagnetic, inner orbital complex and has ochahedral shape
- 142. $[NiCl_4J^{2-}]$ has sp³ hybridization. Oxidation state of Ni = +2. It is tetrahedral,

- paramagnetic and high spin complex.
- $[Ni(CN)_4]^{2-}$ has dsp^2 hybridization. Oxidation state of Ni = +2. It is square planar, 143. diamagnetic and low spin complex
- 144. Valency bond theory can explain the structure and magnetic behaviour of coordination compounds.
- 145. Effective atomic number (EAN) concept was introduced by Sidgwick to explain the stability of complexes.
- 146. EAN is the sum of number of electrons of the metal ion and number of electrons gained from ligands.
- When EAN of central metal cation is equal to the atomic number of the nearest 147. inert gas, the complex is expected to possess greater stability.
- Two or more complexes with identical composition but with different properties 148. are called isomers.
- 149. Structural isomerism arises due to different kinds of bonds. Ionisation, hydrate, ligand and coordination isomerism are examples of structural siomerism.
- Ionisation isomerism: Isomers differs in type of ions obtained on dissociation in 150. aqueous solutions.

[Pt $Cl_2(NH_3)JBr_2$ gives Br ions; [Pt $Br_2(NH_3)_4$] Cl_2 gives Cl ions

Hydrate Isomerism: (Solvate Isomerism).It is a special type of ionisation 151. isomerism, arises due to the presence of different number of water molecules in and outside the coordination sphere.

 $[Cr(H_20)_6]Cl_3$ - Violet

 $[\operatorname{CrC} l (H_2O)_5] C l_2.H_2O$ - Light Green

- Dark Green $[CrCl_2(H_20)_4]Cl.2H_20$

- Ligand Isomerism: Due to different isomers of the ligand 152. $[CO(H_2N CH_2CH_2CH_2NH_2)_3]^{3+}$; $[CO(CH_3CH(NH_2) CH_2NH_2)_3]^{3+}$
- 153. Stereoisomerism is due to difference in spacial orientation.
- 154. Geometrical isomerism is also known as cis- trans isomerism. It is shown by complexes in which the coordination entities have the general formula, [Ma₂b₂] and [Ma₂b₄] or [Ma₂(bb)₂] where M is the central metal atom/ion; a and b are (ligands).
- 155. In cis-isomer the same ligands are on the same side whereas in trans-isomers they are on the opposite side.
- When there are three ligands of each type [Ma₃b₃], a different type of geometrical 156. isomerism occurs in octahedral coordination entities. It is known as facial (fac) meridional (mer) isomerism.
- Cis trans isomerism is observed only in some square planar and octahedral 157. complexes.
- Tetrahedral complexes do not show geometrical isomerism. Square planar 158. complex Ma₄, Ma₃b do not show geometrical isomerism. Octahedral complexes

- Ma₆, Mab₅, do not show geometrical isomerism.
- 159. Optical isomerism is due to the difference in the rotation of plane of polarised light in a polarimeter.
- 160. Dextro (d- or +) isomer rotates the light to right of the original plane and laevo (1- or -) isomer rotates to left.
- 161. Optical isomerism is generally shown by octahedral complexes, containing polydentate ligands. They must have the property of chirality.
- 162. equilibrium mixture of d- and 1- isomers e gives a recemic mixture, with a net optical L rotation of zero.
- 163. Optical isomers are called enantiomorphs or enantiomers. They are non-superimposable mirror images and almost identical in physical and chemical properties.
- 164. Complex formation is an important feature in qualitative analysis cu^{2+} is identified by deep blue complex. $[Cu(NH_3)_4(H_2O)_2]^{2+}$
- 165. Nesseler's reagent is used for detection of NH₃ or NH₄⁺ salts. Nesseler's reagent is a solution of K₂[HgI₄] complex in excess of KOH. K₂ [HgIJ (colourless).
- 166. In group 3 cations, the formation of blood red coloured complex [Fe(NCS)₆] indicates the presence of ferric iron.
- Depending upon the characterstic colour of hydrate complexes, respective metal ions can be detected, eg. $[Fe(H_2O)_6]^{2+}$ pale green. $[Cu\ (H_2O)_4]^{2+}$ blue $[Ti(H_2O)_6]^{3+}$ purple.
- 168. In photography the unreacted AgX on the film is dissolved in dilute hypo solution due to the formation of complex, $Na_3[Ag(S_2O_3)_2]$
- Metal complexes .releases metal slowly and thus give a uniform coating in electroplating of the metal. In electroplating of silver, K $[Ag(CN)_2]$ is used because it provides Ag^+ slowly and thus give uniform coating
- 170. Ag and Au are extracted by use of complex formation. The metal Ag or Au is displaced from the complex in the solution by using Zn.

Bonding in Metal Carbonyls

Metal carbonyls (compounds containing carbonyl ligands only) are formed by most of the transition metals. These carbonyls have simple, well defined structures. Tetracarbonylnickel(0) is tetrahedral, pentacarbonyliron(0) is trigonalbipyramidal while hexacarbonyl chromium(0) is octahedral.

Decacarbonyldimanganese(0) is made up of two square pyramidal $Mn(CO)_5$ units joined by a Mn-Mn bond. Octacarbonyldicobalt(0) has a Co-Co bond bridged by two CO groups (Fig.).

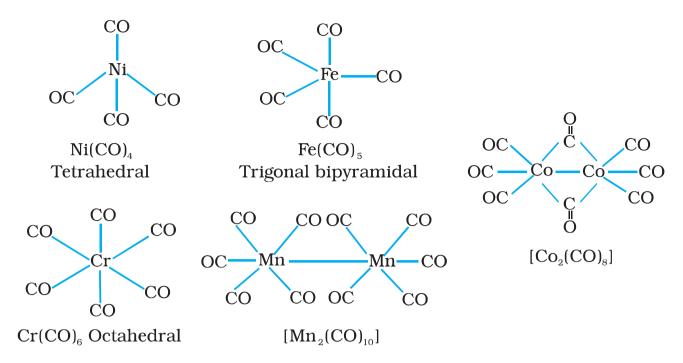
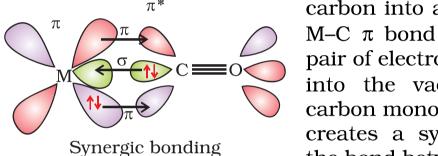



Fig. Structures of some representative homoleptic metal carbonyls.

The metal-carbon bond in metal carbonyls possess both σ and π character. The M–C σ bond is formed by the donation of lone pair of electrons on the carbonyl

carbon into a vacant orbital of the metal. The M–C π bond is formed by the donation of a pair of electrons from a filled d orbital of metal into the vacant antibonding π^* orbital of carbon monoxide. The metal to ligand bonding creates a synergic effect which strengthens the bond between CO and the metal (Fig.).

Fig. : Example of synergic bonding interactions in a carbonyl complex.

Stability of Coordination Compounds

The stability of a complex in solution refers to the degree of association between the two species involved in the state of equilibrium. The magnitude of the (stability or formation) equilibrium constant for the association, quantitatively expresses the stability. Thus, if we have a reaction of the type:

$$M + 4L \rightleftharpoons ML4$$

then the larger the stability constant, the higher the proportion of ML4 that exists in solution. Free metal ions rarely exist in the solution so that M will usually be surrounded by solvent molecules which will compete with the ligand molecules, L, and be successively replaced by them. For simplicity, we generally ignore these solvent molecules and write four stability constants as follows:

$$M + L = ML K_1 = [ML]/[M][L]$$
 $ML + L = ML_2 K_2 = [ML_2]/[ML][L]$
 $ML_2 + L = ML_3 K_3 = [ML_3]/[ML_2][L]$
 $ML_3 + L = ML_4 K_4 = [ML_4]/[ML_3][L]$

where K_1 , K_2 , etc., are referred to as **stepwise stability constants**. Alternatively, we can write the **overall stability constant** thus:

$$M + 4L \longrightarrow ML4 \beta 4 = [ML4]/[M][L]^4$$

The stepwise and overall stability constant are therefore related as follows:

$$\beta 4 = K_1 \times K_2 \times K_3 \times K_4$$
 or more generally,

$$\beta_n = K_1 \times K_2 \times K_3 \times K_4 \dots K_n$$

If we take as an example, the steps involved in the formation of the cuprammonium ion, we have the following:

$$Cu^{2+} + NH_3 \rightleftharpoons Cu(NH_3)^{2+}$$
 $K_1 = [Cu(NH_3)^{2+}]/[Cu^{2+}][NH_3]$

$$\text{Cu(NH3)}^{2+} + \text{NH3} \rightleftharpoons \text{Cu(NH3)}_2^{2+} \qquad K_2 = [\text{Cu(NH3)}_2^{2+}]/[\text{Cu(NH3)}_2^{2+}]/[\text{NH3}]$$
 etc.

where K_1 , K_2 are the stepwise stability constants and overall stability constant.

Also
$$\beta_4 = [Cu(NH3)4^{2+}]/[Cu^{2+}][NH3)^4$$

The addition of the four amine groups to copper shows a pattern found for most formation constants, in that the successive stability constants decrease. In this case, the four constants are:

$$logK_1 = 4.0$$
, $logK_2 = 3.2$, $logK_3 = 2.7$, $logK_4 = 2.0$ or $log \beta_4 = 11.9$

The **instability constant or the dissociation constant** of coordination compounds is defined as the reciprocal of the formation constant .

Importance and Applications of Coordination Compounds

- Coordination compounds are of great importance. These compounds are widely present in the mineral, plant and animal worlds and are known to play many important functions in the area of analytical chemistry, metallurgy, biological systems, industry and medicine. These are described below:
- Coordination compounds find use in many qualitative and quantitative chemical analysis. The familiar colour reactions given by metal ions with a number of ligands (especially chelating ligands), as a result of formation of coordination entities, form the basis for their detection and estimation by classical and instrumental methods of analysis. Examples of such reagents include EDTA, DMG (dimethylglyoxime), α -nitroso- β -naphthol, cupron, etc.
- Hardness of water is estimated by simple titration with Na₂EDTA. The Ca²⁺ and Mg²⁺ ions form stable complexes with EDTA. The selective estimation of these ions can be done due to difference in the stability constants of calcium and magnesium complexes.
- Some important extraction processes of metals, like those of silver and gold, make use of complex formation. Gold, for example, combines with cyanide in the presence of oxygen and water to form the coordination entity $[Au(CN)_2]^-$ in aqueous solution. Gold can be

separated in metallic form from this solution by the addition of zinc (Unit 6).

- Similarly, purification of metals can be achieved through formation and subsequent decomposition of their coordination compounds. For example, impure nickel is converted to [Ni(CO)₄], which is decomposed to yield pure nickel.
- Coordination compounds are of great importance in biological systems. The pigment responsible for photosynthesis, chlorophyll, is a coordination compound of magnesium. Haemoglobin, the red pigment of blood which acts as oxygen carrier is a coordination compound of iron. Vitamin B_{12} , cyanocobalamine, the antipernicious anaemia factor, is a coordination compound of cobalt. Among the other compounds of biological importance with coordinated metal ions are the enzymes like, carboxypeptidase A and carbonic anhydrase (catalysts of biological systems).
- Coordination compounds are used as catalysts for many industrial processes. Examples include rhodium complex, [(Ph₃P)₃RhCl], a Wilkinson catalyst, is used for the hydrogenation of alkenes.
- Articles can be electroplated with silver and gold much more smoothly and evenly from solutions of the complexes, $[Ag(CN)_2]^-$ and $[Au(CN)_2]^-$ than from a solution of simple metal ions.
- In black and white photography, the developed film is fixed by washing with hypo solution which dissolves the undecomposed AgBr to form a complex ion, $[Ag(S_2O_3)_2]^{3-}$.
- There is growing interest in the use of chelate therapy in medicinal chemistry. An example is the treatment of problems caused by the presence of metals in toxic proportions in plant/animal systems. Thus, excess of copper and iron are removed by the chelating ligands D-penicillamine and desferrioxime B via the formation of coordination compounds. EDTA is used in the treatment of lead poisoning. Some coordination compounds of platinum effectively inhibit the growth of tumours. Examples are: *cis*-platin and related compounds.

Question Bank – I

- 1. The following represents the electronic configuration of a transition element
 - 1) ns^2np^3

2) $ns^2np^6nd^3(n+1)s^2$

3) $ns^2np^6nd^{10}(n-1)s^2(n+1)p^4$

- 4) ns^2np^5
- 2. Transition elements are so called because
 - 1) they form coloured compounds
 - 2) they occur in between the s-block and p-block in the periodic table
 - 3) they show variable oxidation states
 - 4) they exhibit paramagnetic nature

3.	Substances which are repelled by th	•	eld are called				
	1) diamagnetic 2) paramagne						
	3) ferromagnetic 4) antiferrom	agnetic					
4.	The following is paramagnetic						
	1) CaCl ₂ 2) CuCl ₂	3) $ZnCl_2$	4) NaCl				
5.	Diamagnetism is not exhibited by 1) Zn ²⁺ 2) Sc ³⁺ 3) Cu ²⁺	2+ 4) 0 1+					
	,	4) Cu					
6.	Coloured ion among the following i 1) Zn ²⁺ 2) Mn ²⁺ 3) Cu	2+ 4) Cu ¹⁺ s 1+ 4) Ti ⁴⁺					
7.							
1.	Coloured complexes absorb radiation in the 1) visible region 2) infrared region 3) II V region 4) far IR region						
8.		1) visible region 2) infrared region 3) U.V region 4) far IR region The element which has half-filled d-orbitals in its '+1' oxidation state is					
0.			idation state is				
0	1) Mn 2) Cr	3) Zn 4) Fe	the aller				
9.	Resistance wires for electrical furna						
10		3) Nichrome 4) Alu	immum Bronze				
10.	IUPAC name of [Cu(NH ₃) ₄]SO ₄	2) 4-4	(II)114				
	1) tetra ammine copper sulphate	, , , , , , , , , , , , , , , , , , ,					
1.1	3) copper tetra amine sulphate	4) copper sulphate te	traamine				
11.	A bidentate ligand is	.1 1 1 1	4				
10	1) pyridine 2) thiocyanate 3) e	thylene diammine	4) water				
12.	The number of 'd' electrons in Fe ²⁺	-					
	1) s-electrons in Mg	2) p-electrons in Ne					
	3) p-electrons in Cl	4) d-electrons in Fe					
13.	The pair of ions which do not have						
	1) Cu^{1+} and Zn^{2+}	2) Sc^{3+} and Ti^{4+}					
	3) Ca^{2+} and Zn^{2+}	4) V^{2+} and Fe^{2+}					
14.	IUPAC name o $K_3[Fe(CN)]_6$						
	•	2) Potassium hexac	• '				
	3) Potassium hexa Ferro cyanate(II)	•	• • • •				
15.	The magnetic behaviour of complex						
	1) Para, Dia 2) Dia, Para	3) Dia, Ferro	4) Both dia				
16.	$K_2SO_4.Al_2(SO_4)_3.2H_2O$ is						
	1) a complex salt	2) a double salt					
	3) a complex salt & double salt						
17.	Which of the following orbitals are	filled progressively in	the transition elements				
	1) s 2) p	3) d	4) f				
18.	The transition element that has stable	le configuration in +1 o	oxidation state is				
	1) Cu 2) Zn	3) Sc	4) Mn				
19.	The element of the following group	are called Typical trna	sitional elements				
	1) IB 2) IIB	3) VIII	4) IVB				
20.	Divalent Manganese is more stable	due to					
	1) 3d ⁴ configuration	2) 3d ² configuration					
	3) 3d ⁵ configuration	4) 3d ³ configuration					
21.	The units of Magnetic moment are	-					
	1) Newton-ohm 2) Torrs	3) Bohr Magneton	4) Pascals				

22.	Which of the following atom would be repelled by magnetic field				
	1) Ti 2) Cr 3) Ni 4) Zn				
23.	Magnetic moment of diamagnetic substance in Bohr magnetons is 1) 1.73 2) 2.83 3) 5.0 4) 0				
24.	Element furnishing coloured ions in the aqueous medium is				
27.	1) Zinc 2) Mercury 3) Copper 4) Aluminium				
25.	The value of paramagnetic moment Ti ⁺³ ion in Joule/Tesla is				
23.	1) 273×10^{-24} 2) 16.042×10^{-24} 3) 26.34×10^{-24} 4) 16.042×10^{-27}				
26					
26.	Number of dative bonds in the complex CoCl ₃ .5NH ₃ is				
27	1) 5 2) 6 3) 3 4) 4				
27.	The alloy used to reduce nitrites to ammonia 1) Type metal 2) Devende's metal 2) Wood's metal 4) Solder metal				
20	1) Type metal 2) Devarda's metal 3) Wood's metal 4) Solder metal				
28.	Variable valency of transition metals is due to				
	1) incomplete s-orbitals 2) incomplete d-orbitals				
20	3) completely filled d-orbitals 4) incomplete p-orbitals				
29.	Which of the following is colourless				
•	1) Sc^{3+} 2) Ti^{3+} 3) V^{3+} 4) Cr^{3+}				
30.	Which of the following metal ion is colourless in aqueous solution				
	1) V^{2+} 2) Cr^{3+} 3) Zn^{2+} 4) Ti^{3+}				
31.	The magnetic moment of Sc ³⁺ is				
	1) 1.73BM 2) 0 3) 2.56BM 4) 3.43BM				
32.	A set of elements does not belong to transitional elements is				
	1) Fe, Co and Ni 2) Cu, Ag and Au				
	3) Ti, Zn and Hf 4) Ga, In and Tl				
33.	The number of moles of AgCl precipitated when excess of AgNO ₃ is added to one				
	mole of $[Cr(NH_3)_4Cl_2]Cl$ is				
	1) 0 2) 1 3) 2 4) 3				
34.	Which of the following ions has same number of unpaired electrons as that of V^{3+}				
	ion				
	1) Cr^{3+} 2) Mn^{2+} 3) Ni^{2+} 4) Fe^{3+}				
35.	Which of the following pair of ions contain the same number of unpaired electrons?				
	1) Ni ²⁺ and Co ²⁺ 2) Mn ²⁺ and Fe ²⁺ 3) Mn ²⁺ and Ni ²⁺ 4) Ti ²⁺ and Ni ²⁺				
36.	The following ion exhibits highest magnetic moment?				
20.	1) $Cu^{2+}2$) Ti^{3+} 3) Ni^{2+} 4) Mn^{2+}				
37.	Which does not obey EAN rule?				
57.	1) K_4 [Fe (CN) ₆] 2) K_3 [Fe (CN) ₆] 3) [Co (NH ₃) ₆] CI ₃ 4) [Ni (CO) ₄]				
38.	Example of neutral complexs				
50.					
	A) Potassium pentacyanonitrosyl ferrate (II)B) Triaquotrichloro chromium (III) trihydrate				
	C) Triamminetrichloro cobalt (III) D) Diamminedibromo dichloroplatinum (IV)				
	D) Diamminedibromo dichloroplatinum (IV)				
20	1) A & B 2) B, C & D 3) A, C & D 4) B only For and more isomerism is associated with the general formula				
39.	Fac and mer isomerism is associated with the general formula				
	1) MA_3X_3 2) $M (AA)_3$ 3) $MABCD$ 4) $M (AA')_3$				

- 40. Correct order of ligands for writing the formula of complex compounds
 - 1) neutral, anionic, cationic 2) anionic, neutral, cationic
 - 3) anionic, cationic, neutral 4) cationic, neutral, anionic
- 41. [Co(NH₃)₅ Br] SO₄ and [Co(NH₃)₅ SO₄] Br are example of which typing of isomerism
 - 1) Linkage 2) Geometrical 3) Ionisation 4) Optical
- 42. Which of the following is a polynuclear compounds
 - 1) $[Co (NH_3)_4 CI_2] CI$
- 2) Na Fe $[Fe(CN)_6]$
- 3) [Cr (H₂O)₅ CI] CI₂
- 4) [(CO)₃Fe(CO)₃ Fe(CO)₃]
- 43. Assertion (A): Racemic mixture has a net rotation of zero.

Reason (R): Racemic mixture contains optically inactive isomers.

- 1) Both A and R are true, R property explains A.
- 2) Both A and R are true, R does not explain A.
- 3) A is true, but R is false.
- 4) A is false, but R is true.
- 44. Assertion (A): According to EAN rule, ferricyanide is not a stable complex compound.

Reason (R): EAN of Fe in ferricyanide is 35.

- 1) Both (A) and R are true, R properly explains A.
- 2) Both A and R are true, R does not explain A.
- 3) A is true, but R is false.
- 4) A is false, but R is true.
- 45. Assertion: The primary valency of iron in [Fe $(CO)_5$] is zero.

Reason: The oxidation state of metals in metal carbonyl is zero.

- 1) Both A and R are true and R is the correct explanation of A
- 2) Both A and R are true and R is not the correct explanation of A
- 3) A is true but R is false
- 4) A is false but R is true
- 46. Assertion: CoCl₃ 4NH₃ as three ionizable chlorides.

Reason: The coordination number of Cobalt is 6.

- 1) Both A and R are true and R is the correct explanation of A
- 2) Both A and R are true and R is not the correct explanation of A
- 3) A is true but R is false
- 4) A is false but R is true

7.

List –I	List –II
A) 3d	1) Ru 2) Ac 3) Mn 4) Pt
B) 4d	2) Ac
C) 5d	3) Mn
D) 6d	4) Pt

The correct match is

- 1) 1-C, 2-D, 3-B, 4-A
- 2) 1-C, 2-A, 3-D, 4-B
- 3) 1-C, 2-A, 3-B, 4-D
- 4) 1-A, 2-C, 3-D, 4-B

48.

List –I	List –II
A) Sc ⁺³ B) Cr ⁺³	1) 5.92BM
B) Cr ⁺³	2) 7.73BM
C) Fe ⁺²	3) 3.87BM
D) Mn ⁺²	4) zero
	5) 4.9BM

The correct match is

A	В	\mathbf{C}	D	A	В	\mathbf{C}	D
1) 4	2	5	1	2) 2	1	4	5
3) 4	3	5	1	4) 5	4	3	1

49.

List –I	List –II
A) Simple salt	1) CuSO ₄ .4NH ₃
B) Double salt	2) CaOCl ₂
C) Complex salt	3) KCl MgCl ₂ .6H ₂ O
D) Mixed salt	4) MgCl ₂

The correct match is

	A	В	C	D		A	В	C	D
1)	3	2	1	4	2)	4	1	2	3
3)	1	2	3	4	4)	4	3	1	2

50.

List –I	List –II
A) Octahedral	1) 4
B) Tetrahedral	2) 5
C) Linear	3) 6
D) Square pyramidal	4) 2
	5) 8

The correct match is

	A	В	C	D		A	В	C	D
1)	2	5	3	1	2)	3	1	4	2
3)	3	4	1	5	4)	5	1	4	2

KEY

1. 2	2. 1	3. 1	4. 2	5. 3	6. 2	7. 1	8. 2	9. 3	10. 2
11.3	12. 2	13.4	14.4	15. 2	16. 2	17. 3	18. 1	19. 1	20. 3
21.3	22.4	23.4	24. 3	25. 2	26. 2	27. 2	28. 2	29. 1	30. 3
31. 2	32. 4	33. 2	34. 3	35.4	36. 4	37.4	38. 2	39. 2	40. 3
41.3	42. 2	43.3	44. 1	45. 1	46. 4	47. 2	48. 3	49. 2	50. 2

Question Bank – II

1.	The element having	ng general co	nfiguration	$4f^{14}5s^2$	$5p^6fd^{0-}$	$-16s^2$ are reference	erred a	as
	(1) Alkali metals	(2) Transiti	on elemen	its (3	3) Lant	thanides	(4)	Actinides
2.	Which of the follo	owing lanthan	ides is rad	io active.				
	(1) Cerium	(2) Prometl	nium	(3	3) Thu	lium	(4)	Lutetium
3.	Which of the follo		aramagne	tic.				
	(1) La^{3+}	(2) Lu^{+3}		(3	Vb^{+3}	3	(4)	Sm^{+3}
4.	Which of the foll	lowing has ter	ndency to a	act as on o	xidizir	ng agent		
	(1) Ca^{+4}	(2) Sm^{+2}	•		3) Lu ⁺³		(4)	Gd^{+3}
5.	In which of the fo	ollowing lanth	anides oxi	dation sta	te +2 is	s most stable		
	(1) Ca	(2) Eu		(3	Gd Gd		(4)	Dy
6.	Which element ha		nic radius.					
	(1) Nd^{+3}	(2) Dy^{3+}		(3	3) Lu ⁺³	3	(4)	Pm ³⁺
7.	Lanthanide contra	action is respo	nsible for					
	(1) Zr and Y have	e same radius	(2) Zr	and Nb h	ave sin	nilar oxidatio	on sta	te
	(3) Zr and Hf hav	ve same radiu	s (4) Zr	and Zn ha	ive san	ne oxidation	state	
8.	Which is most bas	sic						
	(1) $Sc(OH)_3$	(2)	$La(OH)_3$	(3	3) Lu($OH)_3$	(4)	$Yb(OH)_3$
9.	In aqeous solution					7 3		` '3
•	(1) An oxidizing			C) Red	ucing agent		
	(3) Can act as eit	•		,	•	as redox age	ent	
10	Which of the foll		naximum	`	,	0		
10	(1) La^{+3}	(2) Lu^{3+}		•	Gd^{+3}		(4)	Ce^{3+}
	(1) 24	(2) 24		(2	,		(.)	
			K	EY				
34)	3 35) 2 36)) 4 37) 2	38) 2	39) 3	40) 3	41) 2	42) 2	43) 2

Question Bank - III

1.	Which metal	has the least melt	ing point					
	1) Cr	2) Ti	3) Cu	4) Zn				
2.	Among the to	ransition elements	the element with lov	west melting point belongs to				
	1) group IIIB	2) group IB	3) group VIB	4) group IIB				
3.	Arrange the	following in order	of their decreasing t	thermal conductivity				
	1) Al, Ag, Cu	1 2) Cu, Ag, A1	3) Ag, Cu, Al	4) Al, Cu, Ag				
4.	A) In a group	the correct order	of melting points is	3d < 4d < 5d				
	B) VI B grou	ip have highest me	elting points in any se	eries				
	C) In 3d and	4d series, VIIB gr	roup elements have e	exceptionally low melting points				
	D) The correct order of melting points is Cu > Ag > Au							
			2) Only A, B, D a					
	3) Only A, C,	D are correct	4) Only A, D, C a	are correct				
5.	The reason for	or the stability of C	Gd^{3+} ion is					
	1) 4f subshel	l - half filled	2) 4f subshell - c	completely filled				
	3) Possesses	the general electro	onic configuration of	noble gases				
	4) 4f subshel	l empty						
6.	Electronic co	nfiguration of a tra	ansition element is [A	Ar] 4s ² 3d ⁶ . A sudden hike is observed				
	between							
	1) IP, & 1P ₂	2) 1P ₂ & IP ₃	3)IP ₃ & IP ₄	4) IP ₄ & IP ₅				
7.	Transition ele	ements have higher	r enthalpy of atomis	ation than alkali metals due to				
	1) High elect	1) High electropositive nature of transition elements						
	2) Larger siz	2) Larger size of transition elements						
	3) Stronger r	netallic bond in tra	ansition elements					
	4) Participati	on of ns and (n - 1	l) id electrons in bor	nd formation in alkali metals				
8.	Enthalpy of a	ntomisation is lowe	est in					
	1) Sc	2) Mn	3) Ni	4) Zn				
9.	Which of the	following has hig	hest tendency for M	+2 M				
	1)V	2) Cr	3) Co	4) Cu				
10.	Cu ⁺² can oxid	lise the halide						
	1) 1	2) Br	3) Cl	4) F				
11.	In aqueous so	olution the followi	ng undergoes dispro	portination reaction				
	1) Cr ⁵⁺	2) Mn ⁶⁺	3) Cu ⁺	4) All				
12.	d- block elem	nents can act as ca	talysts due to their a	bility to				
	1) Exhibit va	riable oxidation st	rates	2) Coloured ion formation				
	3) Paramagnetic nature 4) Alloy formation							
13.	Incorrect stat	ement regarding i	nterstial hydrides is					
	1) They show	w metallic conduct	ion	2) They are harder than pure metal				
	3) They have high mp than pure metal			4) They are denser than pure metal				

14.	The properties of Zr and Hf are	e similar beca	ause:				
	1) both belong to d-block	2) both be	elong to sa	me group of the periodic table			
	3) both have similar radii	4) both h	ave same n	umber of electrons			
15.	The stability of particular oxida	ntion state of	a metal in	aqueous solution is determined by			
	1) Enthalpy of sublimation of t	he metal	,	2) Ionisation energy			
	3) Enthalpy of hydration of the	metal ion	•	4) All of these			
16.	Which among FeO and Fe ₂ O ₃ i	s more basic	?				
	1) FeO		,	2) $\operatorname{Fe_2O_3}$			
	3) Both have same basic streng	gth	•	4) None of them is basic			
17.	Which of the following propert	ies would yo	ou not expe	ct copper (Cu) to exhibit?			
	1) High thermal conductivity	2) High e	electrical co	onductivity			
	3) Ductility	4) Mallea	ability				
18.	Identify the incorrect statement	t among the	following				
	1) La and Lu have partially tille	ed 'd' orbital	s and no o	ther partially filled orbitals			
	2) The chemistry of various lan	2) The chemistry of various lanthanoids is very similar					
	3) 4f and 5f orbitals are equally	3) 4f and 5f orbitals are equally shielded					
	4) d-block elements show irregular and drastic chemical properties among themselves						
19.	The complex $K_3[Fe(CN)_6]$ show	uld have a sp	oin only ma	gnetic moment of			
	1) $\sqrt{3}$ BM 2) $2\sqrt{5}$ BM	3) $\sqrt{35}$ B	M	4) 6 BM			
20.	The pair of the compounds in which both the metals are in the highest possible oxidation						
	state is.			\mathcal{E} 1			
	1) $[Fe(CN)_6]^3$, $[Co(CN)_6]^3$	2) CrO ₂ C	cl., MnO				
	3) Mn ₂ (CO) ₁₀	2	$N)_{6}]^{3}$, Mn(),			
21.	In which of the following comp		0-	2			
	1) [Cu(NH ₃) ₄]Cl ₂	2) Zn ₂ [Fe					
	3) Mn ₂ (CO) ₁₀	4) [Ag(N	O				
22.	Which of the following is dian		3/ 2-				
	1) $[Zn(NH_3)_4]^{2+}$	2) [Cu(C)	$N)_{4}]^{2}$				
	3) [NiCl ₄] ²⁻	4) [Ni(NI	4-				
23.	T		<i>3</i> T	the increase in the paramagnetic			
	property of the ions?						
	1) $Cu^{2+} < V^{2+} < Cr^{2+} < Mn^{2+}$	ŕ					
	3) $Cu^{2+} < V^{2+} > Cr^{2+} < Mn^{2+}$,					
24.	In the complex $[Ni(H_2O)_2 (NH$	$_{3})_{4}]^{2+}$ the nun	nber of unp	aired eletrons is			
	1) 0 2) 1	3) 3	4	4) 2			
25.	Heat of atomization of zinc is l	owest among	g 3d block	elements due to			
	1) Stronger metallic bond in zi	nc	2) (n-l) d e	lectrons do not involve in bonding			
	3) (n -l) d electrons involve in l	oonding 4	4) Larger s	ize of zinc			

26.	The positive standard reduction potential of Cu ²⁺ /Cu electrode is due to
	1) high heat of atomisation and hydration energies
	2) low heat of atomisation and hydration energies
	3) high heat of atomisation and low heat of hydration
	4) low heat of atomisation and high heat of hydration
27.	The observed and calculated E° values of M ⁺² /M are same for
	1) Fe 2) Co 3) Ni 4) Cu
28.	When a large amount of KMnO ₄ is added to concentrated H ₂ SO ₄ an explosive compound
	is formed. The formula of the compound is
	1) Mn ₂ O ₇ 2) Mn ₃ O ₄ 3) MnO ₃ 4) MnO ₃ ⁺
29.	Reaction of KMnO ₄ in neutral or very weakly acidic solution can be represented as
	1) $MnO_4 + 2H_2O + 3e$ $MnO_2 + 4OH$
	2) $2MnO_4 + 2OH$ $MnO_4^2 + 1/2O_2 + H_2O$
	3) $2MnO_4 + 8H$ 5e $Mn^2 + 4H_2O$
	4) $MnO_4 + e$ MnO_4^2
30.	When KMnO ₄ is added to oxalic acid, the decolorisation is slow in the begining but
	becomes instantaneous after sometime- because
	1) Mn ²⁺ acts as autocatalyst 2) CO ₂ is formed as the product
	3) reaction is exothermic 4) MnO ₄ catalyses the reaction
31.	A solution of potassium chromate is treated with an excess of dilute nitric acid. Then the
	observations is
	1) Cr^{3+} and $Cr_2O_7^2$ are formed 2) $Cr_2O_7^2$ and H_2O are formed 3) $Cr_2O_7^2$ is reduced to $+3$ state of Cr_2
	 3) Cr₂O₇² is reduced to +3 state of Cr 4) Cr₂O₇² is oxidised to +7 state of Cr
32.	$K_2Cr_2O_7$ is oxidised to 17 state of Cl
<i>-</i>	1) preparing azo compounds 2) tanning leather
	3) as a laboratory oxidant 4) as a reductant
33.	When acidified solution of potassium dichromate is shaken with aqueous solution of ferrous sulphate then
	1) $Cr_2O_7^2$ ion is reduced to Cr^{3+} ions 2) $Cr_2O_7^2$ ion is reduced to $Cr_2O_4^2$ ions
	3) $Cr_2O_7^2$ ion is oxidised to Cr 4) $Cr_2O_7^2$ ion is oxidised to CrO_3
34.	The blue colour produced on adding hydrogen peroxide to acidified $K_2Cr_2O_7$ is due to the
J T.	formation of
	l) CrO ₅ 2) Cr ₂ O ₃ 3) CrO ₄ ² 4) CrO ₃
35.	Which of the following metals is known to form acidic oxide
55.	1) iron 2) manganese 3) cobalt 4) mercury
36.	In the dichromate anion
50.	1) 4 Cr O bonds are equivalent 2) 6 Cr O bonds are equivalent
	3) All Cr O bonds are equivalent 2) o Cr O bonds are equivalent 3) All Cr O bonds are equivalent
	5) m or o bonds are equivalent +) mi or o bonds are non-equivalent

37. The oxidation state of chromium in the final product formed by the				t formed by the reaction between Kl			
	and acidified potassium dichromate solution is						
	1) +4	2) +6	3) +2	4) +3			
38.	Which of the	e following element	has f^7 electronic co	onfiguration in its + 4 state			
	1)Ac	2) Bk	3) Er	4) Lv			
39.	The natures of the oxides CrO and CrO ₃ respectively						
	1) acidic and	d basic	2) basic and amp	hoteric			
	3) amphoter	ic and basic	4) basic and acid	ic			
40.	Acedified K	2Cr2O7 cannot oxidi	se				
	1) Ferrous to	o ferric	2) Sulphide to sulphur				
	3) Stanous to	o stannic	4) Flouride to flu	orine			
41.	The equilibr	ium $Cr_2O_7^2 \longrightarrow 20$	CrO_4^2				
	1) exists in a	acidic medium	2) exists in basic	medium			
	3) exists in 1	neutral medium	4) never exists				
42.	The correct	statement among the	e following is				
	1) The colour of $Cr_2O_7^2$ ion is due to d-d transition of unpaired electrons						
	2) Transition	2) Transition elements form a large number of alloys because of similar boiling points					
	3) Bronze is	an alloy of Copper	and Zinc				
	4) Salt of Fe	4) Salt of Fe ²⁺ ion has greenish colour					
43.	Identify the correct statements among the following						
	I) Both Cr and Cu show +1 oxidation state						
	II) The complementary colour of absorbed green colour of visible radiation is purple.						
	III) Ni ⁺² ion in its hydrated state exhibits green colour						
		an alloy of copper					
	1) All		3) I, IV only	4) I, III only			
44.	Which of the	e following has very					
	l) Zn	2) Mn	3) Cu	4) Ti			
45.	Zn. Cd and Mg are only d-block elements but not transition elements because						
	1) They have partly filled d-sub shells both in their atomic and ionic states						
	2) They have completely filled d-sub shells both in their atomic and ionic states						
	3) They have fully filled d-sub shells only in their atomic states						
4.6	4) Ihev have partly filled d-sub shells only in their atomic states						
46.		MnO ₄ oxidizes nitrit		4) NIO			
4.77	1) N ₂	_	5	4) NO			
47.		te ion oxidize $S_2O_3^2$					
10	1) SO ₄ ² Which of the	3	3) S 2	4) S			
48.		e following ions is n	1				
	1) Nd^{+2}	2) Yb^{+2}	3) Lu^{3+}	4) Ce^{2+}			

Yb⁺² and LU³⁺ are diamagnetic due to 49. 1) Vacant 'f' sub shells 2) Fully 'f' sub shells 3) Parity filled 'f' sub shells 4) Partly filled 'd' sub shells 50. Alloy of Mitsch metal consists of 1) 95% of actionoid metal +5% iron 2) 95% of alkali metal 5% iron 3) 95% of lanthanoid metal +5% iron 4) 95% of alkaline earth metal + 5% iron

KEY							
1) 4	2) 2	3) 3	4) 1	5) 1	6) 3	7) 3	8) 4
9) 4	10) 1	11) 4	12) 1	13) 4	14) 3	15) 4	16) 1
17) 2	18) 3	19) 3	20) 2	21) 3	22) 1	23) 1	24) 4
25) 2	26) 3	27) 1	28) 1	29) 1	30) 1	31) 2	32)4
33)1	34)1	35)2	36) 2	37) 4	38) 2	39) 4	40) 4
41) 3	42) 3	43) 1	44) 3	45) 2	46) 3	47) 1	48) 1
49) 2	50) 3						

4 <i>2</i> <i>2</i> <i>2</i> <i>2</i> <i>3</i> <i>3</i>	50) 3		
	Que	estion Bank	k - IV
omplex compo	unds		
. The primai	cy valency of the co	entral transition i	metal ion in a complex compoun
$[Cr(NH_3)_4C]$	² l ₂]Cl		
1) 3	2)2	3) 1	4)0
The number	r of ions given by [Co	$o(NH_3)_3Cl_3$] in aqu	eous solution is
1) 1	2) 2	3) 3	4) zero
The oxidati	on state ef Chromiun	n in the complex. [$[Cr(NH_3)_4Cl_2]Cl$ is
1) +3	2) +2	3) +1	4) 0
When 1 mo	le of $[Co(NH_3)_3Cl_3]$ is	s added to excess o	of AgNO ₃ solution the weight of AgO
precipitated	is		
1) 143.5g	2) 108 g	3) zero	4) 54 g
The second	ary valency of Chron	nium in [Cr(en) ₃]C	l ₃ is
1) 6	2) 3	3) 2	4) 4
The deep bl	lue complex produced	d by adding excess	of Ammonia to CuSO ₄ solution is
1) [Cu(NH ₃	$_{2}]^{2+}$	2) $[Cu(NH_3)_4]^{2+}$	
3) [Cu(NH ₃	$_{6}]^{2+}$	4) $[Cu(NH_3)_4]^+$	
K ₂ SO ₄ .A1 ₂ (SO_4 ₃ , $2H_2O$ is		
1) a comple	1) a complex salt		
3) a comple	ex salt & double salt	4) a basic salt	
Number of	dative bonds in the c	omplex CoCl ₃ .5NF	H_3 is
1) 5	2) 6	3) 3	4) 4

9.	LIST - I (complex)	LIST - II (Charge of	on co-ord. shere)				
	A) CoCl ₃ .6NH ₃	1) +1					
	B) CoCl ₃ .5NH ₃	1) +2					
	C) CoCl ₃ .4NH ₃	3) +3					
	D) CoCl ₃ .3NH ₃	4) +4					
		5) 0					
	The correct match in terms of the charge on the complex						
	A B C D	A B C D					
	1) 3 2 5 1	2) 3 1 2 5					
	3) 3 1 1 5	4) 4 3 2 1					
10.	A complex of Co ⁺³ having molec	ular formula CoCl ₃ .X	KNH ₃ when dissolved in water three				
	ions are produced. The number of Cl ions satisfying both primary and secondary valencies						
	is						
	1)3 2) 1	3)4	4) zero				
11.	Pick up true statement about the	complex compound	with formula [Co(NH ₃)Cl ₃]				
	1) IUPAC name is triamminecobalt(III)chloride						
	2) The complex can exhibit fac and mer isomerism						
	3) The complex can show optical isomerism						
	4) The hybrid state of cobalt is dsp ³						
12.	Neutral complex among the following						
	1) $CuSO_4.4NH_3$	$2) \left[Co(NH_3)_6 \right] Cl_3$					
	3) Ni(CO) ₄	4) [Pt(NH ₃) ₂]Cl ₂					
13.	Cationic complex is						
	1) Potassium ferrocyanide	2) Cryolite					
	3) Cuprammonium (II) sulphate	4) Sodium argento	thiosulphate				
14.	Number of unpaired electrons in	$[Fe(CN)_6]^4$ ion					
	1) 6 2) 5	3) 4	4) zero				
15.	Which of the following is diama	ignetic					
	1) $[Fe(CO)_5]$ 1) $[Fe(CN)_6]^3$	3) $[Cr(NH_3)_6]^{3+}$	4) $[Cr(H_2O)_6]^{3+}$				
16.	The number of ions formed whe	n cupra ammonium	sulphate is dissolved in water				
	1) 1 2) 2	3) 4	4) zero				
17.	Property of transition element	Reason for the property					
	1) Colour of ion	A) unpaired e in (n-1)d orbital					
	2) Variable oxdation states	B) Same crystal structure					
	3) fomation of alloys	C) d-d- transition					
	4) paramagnetic	D) high magnitude of positive charge					
		E) slight energy between ns and (n-1)d shells					
	1) 1-C, 2-E, 3-A, 4-B	2) 1-C, 2-E, 3-B, 4-A					
	3) 1-C, 2-B, 3-E, 4-A	4) 1-B, 2-A, 3-E, 4-B					

18.	Ammonia form the complex ion $[Cu(NH_3)_4]^{2+}$ with copper ions in alkaline solutions but not in acidic solutions. The reason is					
	 In acidic solutions hydration protects copper ions In acidic solutions protons coordinate with ammonia molecules forming NH₄⁺ ions and 					
			nonia molecules forming NH ₄ ions and			
	NH ₃ molecules are not availal		::4-4-11.:-1. :1-1.1- :			
		$e Cu(OH)_2$ is prec	ipitated which is soluble in excess of			
	any alkali	. 4				
1.0	4) Copper hydroxide is an amph		1 1 1 77 4 6			
19.	_		tate ligand X to form a paramagnetic			
	complex $[NiX_4]^2$. The number of unpaired electron/s in the nickel and geometry of this					
	complex ion are respectively	2)	11			
	1) two, square planar	2) one, tetrahed				
20	3) two, tetrahedral	4) one, square j	•			
20.	[PdBr ₄] ² is a sqaure planar com					
T. I.	1) sp^3 2) dsp^2	3) sp ³ d	4) sp3d2			
	ories					
21.	Stabilisation energy of octahedral complex with d ⁷ configuration					
	A) 1.8 ₀ with one unpaired electron					
	B) 1.8 ₀ With three unpaired ele					
	C) 0.8 ₀ with one unpaired electron					
	D) 0.8 with three unpaired ele					
	1) A and D 2) A and R	,				
22.	If $_0$ < P, the correct electronic configuration for d^4 system will be					
	1) $t_{2g}^4 e_g^0$ 2) $t_{2g}^3 e_g^1$	3) $t_{2g}^{0}e_{g}^{4}$	4) $t_{2g}^2 e_g^2$			
23.	Which of the following complexes is an outer orbital complex?					
	1) $[Fe(CN)_6]^4$	2) $[Ni(NH_3)_6]^{2+}$				
	3) $[Co(NH_3)_6]^{3+}$	4) $[Mn(CN)_6]^4$				
24.	Which of the following statemer	nt is incorrect for	metals involving in formation of alloys			
	1) must have almost same atomic radii					
	2) must have similar chemical properties, especially number of valency electrons					
	3) must have same crystal structures					
	4) must belong to same 'd' series					
25.	Match the lists I and II and pick	the correct matching from the codes given below				
	List -I	List -II				
	(complex)	(Structure and	(Structure and magnetic moment)			
	a) $[Ag(CN)_2]$	1) square plana	1) square planar and 1.73 BM			
	b) [Cu(CN) ₄] ³	2) Linear and z	ero			
	c) $[Cu(CN)_6]^4$	3) Octahedral a	and zero			

	d) [Cu(NH) ₃	$[a, b]_4]^2$	4) tetrah	edral	and zero)		
	e) [Fe(CN) ₆]	$ brack 1^4$	5) octahedral and 1.73BM					
	1) a-2, b-4, c-5, d-l, e-3		2) a-5, b	2) a-5, b-4, c-1, d-3, e-2				
	3) a-1, b-3, c-	4) a-4, b	-5, c-2	2, d-l, e-	.3			
26.	Compound t	hat is both paramag	netic and c	colour	ed is			
	1) K ₂ Cr ₂ O ₇		2) [TiCl					
	3) VOSO ₄		4) K ₃ [Ci					
27.	Strongest ox	ridant among the fol	lowing is					
	1) VO ₂ ⁺	2) $Cr_2O_7^{-2}$	3) MnO ₂	ļ	4)	MnO_4^{2}		
Pro	perties							
28.	The number	of unpaired electron	ns in the so	uare p	olanar c	omplex $[Pt(CN)_4]^2$ is		
	1) 2	2) 3	3) 0		4)	1		
29.	The correct	statement regarding	$[Co(C_2O_4)]$	$[a_3]^{3+}$ co	omplex	is		
	1) It .is inner	r orbital complex an	d diamagn	etic				
	2) It is outer	oibital complex and	d diamagne	etic				
	3) It is inner	orbital complex and	l paramagı	netic.				
	4) It is outer	oibital complex and	l para mag	netic				
30.	Match the fo	ollowing						
	complex		colour					
	I) $[Ni(H_2O)]$		A) Grey	-green	l			
	II) $[Ni(H_2O)]$		B) Viole	t				
	III) $[Ni(en)_3]$	aq	C) blue/	Purple	•			
	IV) Cr[H ₂ O)	₅ Cl]Cl ₂ .H ₂ O	D) Pale	blue				
	The correct	match is						
	I II II			III				
	1) D C B		2) B A					
	3) A D H		4) C A					
31.	The spin only magnetic moment $[Mn(Br)_4]^{2+}$ is 5.9BM. Then possible hybridisation of							
	Mn in the co	•	2) 12 2		45	2		
N .T	1) sp^3d	2) dsp ³	$3) d^2sp^3$		4)	sp^3		
	ienclature							
32.		e of Ni(CO) ₄ is	2) / /	1	1 3 71 1	1 (0)		
	1) tetracarbonyl Nickel (II)		,	2) tetracarbonyl Nickel (O)				
2.2	3) tetracarbonyl Nickelate (II) 4) tetracarbonyl Nickelate (O)							
33.		exa chloro platinate		(01) 1	4)	IZ [D/(C1)]		
2.4	2	$_{6}$ 2)K[Pt(Cl) $_{6}$]	3) K ₂ [Pt	(CI) ₆]	4)	$K_4[Pt(Cl)_6]$		
34.		e of Li[AlH ₄] is	2) 1		aa 4 a41.	arduido obrasio -4 - FIIII		
		ıluminium hydride	,			nydrido aluminate [III]		
	o i ietranvar	ide aluminium lithio	mate 4)	Aiumi	unum 111	thium hydride		

35.	5. When AgNO ₃ solution is added in excess to 1lit. of CoCl ₂ x NH ₃ solution, one mo					
	AgCl is formed. What is the value	e of 'x'				
	1) 1 2) 2	3) 3	4) 4			
36.	The IUPAC name of the coordinate	ation compound K_3	$[\mathrm{Fe(CN)}_6]$			
	1) Potassium hexacyanoferrate (I	I) 2) potassium	hexacyanoferrate (III)			
	3) potassium hexacyanoiron (II)	4) tripotassium	m hexacyano iron (II)			
37.	Example showing ionisation isor	nerism				
	1) [Co(NO) ₃ (NH ₃)] SO ₄ & [Co(S	O_4) $(NH_3)_5$] NO_3				
	2) [Co(NH ₃) ₄ Cl ₂]Cl & [Co(NH ₃) ₄	₅ Cl]Cl ₂				
	3) $[Cr(H_2O)_5Cl_2]Cl_2.H_2O \& [Cr(I_2O)_5Cl_2]Cl_2.H_2O \& [Cr(I_2O)_5Cl_2]Cl_2.H_2O$	$H_2O)_4Cl_2$]Cl.2 H_2O				
	4) [Pt(NH ₃) ₄] [Pt Cl ₄] & [Pt(NH ₃	$_{3}$ Cl $_{2}$ [Pt Cl $_{4}$]				
38.	Geometrical isomerism in square	planar complexes	is given by			
	1) Ma ₄ type complex	2) Ma ₃ b type com	plex			
	3) Ma ₂ b ₂ type complex	4) Mb ₄ type comp	olex			
39.	Ligands with which linkage isom	nerism is possible				
	A) NO ₂ B) CN	C) SCN				
	1) A only 2) A & B	3) B & C	4) A,B & C			
40.	Which of the following complex	compound shows of	optical isomerism?			
	1) $[Cu(NH_3)_4]^{2+}$	2) [Zn(Cl)4]2				
	3) $[Cr(C_2O_4)_3]^2$	4) $[Co(CN)_6]^3$				
41.	Identify the correct statements an	nong the following				
	I) Cr in first series of d-block has highest oxidation state.					
	II) Colour of MnO ₄ is due to charge transfer phenomenon.					
	III) Zn can show variable oxidation	on state.				
	IV) Ferromognetism disappears i	n the solution of Fe				
	· · · · · · · · · · · · · · · · · · ·	3) II & IV only	•			
42.	The types of isomerism exhibited					
	1) Geometrical and linkage	2) Linkage and io	nization			
	3) Optical and ionization	4) Co-ordination a	and hydrate			
43.	Which of the following compoun	d is expected to be	coloured			
	1) Ag_2SO_4 2) CuF_2	3) MgF_2	4) CuCl			
44.	The orbitals having lower energy	in tetrahedral comp	plexes according to CFT are			
	1) d_{xy}, d_{yz}, d_{z^2} 2) d_{xy}, d_{yz}, d_{x^2}	$3) d_{xy}, d_{yz}, d_{zx}$	4) $d_{x^2 y^2}, d_{z^2}$			
45.	$K_3[Fe(CN)_6]$ is a					
	1) double salt	2) complex compo	ound			
	3) neutral molecule	4) Simple salt				
46.	According to CFT the energy of	t ₂ g orbitals in an oc	tahedral complex			
		2				
	1) decrease $\frac{2}{5}$ 0	2) increase by $\frac{2}{5}$	0			

- 2) increase by $\frac{3}{5}\Delta_0$
- 4) decrease by $\frac{3}{5}\Delta_0$
- 47. Transition elements form complexes due to
 - 1) small size

- 2) High nuclear charge
- 3) Presence of vacant d orbitals 4) All the above
- The IUPAC name of $[Co(NH_3)_5(CO_3)]Cl$ is 48.
 - 1) Penta ammine chloro cobalt (III) chloride
 - 2) Penta amino chloro cobalt (III) carbonate
 - 3) Penta ammine carbonate cobalt(III) chloride
 - 4) Penta amino carbonate chloro cobalt (III)
- (Co(NH₃)₆SO₄]Br and [CoC(NH₃]₆Br]SO₄ are a pair of isomers 49.
 - 1) Ionization 2) Ligand
- 3) Co ordination 4) Hydrate

Applications

- Hardness of water is estimated by simple titration using 50.
 - 1) formate
- 2) acetate
- 3) edta
- 4) glyoxile
- In photography silver bromide dissolves in hypo to give 51.
 - 1) $Na_{2}[Ag(S_{2}O_{3})_{2}]$
- 2) Na[Ag(S_2O_3)₂]
- 3) $Na_3[Ag(S_2O_3)_2]$
- 4) $Na_4(Ag(S_2O_3)_2]$
- Nickel is purified using the concept of complex compounds. The complex related is 52.

 - 1) $Ni(CO)_6$ 2) $[Ni(NH_3)_4]^{2+}$
- 3) Ni(CO)₄
- 4) $[Ni(NH_3)_6]^{2+}$
- [(Ph₃P)₃RhCl] is a familiar catalyst used in 53.
 - 1) hydrogenation of oils
- 2) hydrogenation of alkenes
- 3) dehydration of alcohols
- 4) dehydration of aldehydes
- Ammonium cations can be detected using the complex 54.
 - 1) $[Cu(NH_3)_4]^{2+}$

2) $[HgI_4]^2$

3) $[Ag(CN)_{2}]$

4) [HgI₂]

- (Ph,P),RhCl is 55.
 - 1) Zieglar natta catalyst
- 2) Wilkinsons catalyst
- 3) Developer in photography
- 4) Bio catalyst

			KE	CY			
1) 1	2) 4	3) 1	4) 3	5) 1	6) 2	7) 2	8) 2
9) 3	10) 2	11) 2	12) 3	13) 3	14) 4	15) 1	16) 2
17) 2	18) 2	19) 3	20) 2	21) 1	22) 2	23) 2	24) 4
25) 1	26) 3	27) 3	28) 3	29) 1	30) 1	31) 4	32) 2
33) 3	34) 2	35) 4	36) 2	37) 1	38) 3	39) 4	40) 3
41) 3	42) 2	43) 2	44) 4	45) 2	46) 1	47) 4	48) 3
49) 1	50) 3	51) 3	52) 3	53) 2	54) 2	55) 2	

8. POLYMERS

Synopsis:

- 1. Polymers are the large molcules built up by repeating structural units joined by the covalent bonds.
- 2. The smallest unit that repeatedly combines to form the polymer is known as monomer.
- 3. Polymers have different physical, structural, mechanical and thermal characteristics from those of the simple molecules constituting them.
- Polymer made from single monomeric chemical species are known as homopolymer.
 eg. Polythene, Teflon, PVC etc.,
- 5. Polymers synthesised from two or more different monomers, are called copolymers, eg: PET, Nylon-6,6, BuNa- N, BuNa S etc.,
- 6. Addition polymers are formed by reaction between molecules possessing multiple bonds. These are also known as chain reaction polymers or vinyl polymers or chain growth polymers, eg. Polyethylene, Styrene-butadiene rubber.
- 7. Addition polymerisation is of 3 types: Cationic polymerisation, Anionic polymerisation and Free radical polymerisation.
- 8. In general, the addition polymerisation involves three steps: Chain initiation, Chain propagation and Chain termination.
- 9. In cationic polymerisation process the initiator is a positive ion. Lewis acids such as BF₃, AlC/₃, SnCl₄ also act as initiators for this process.
- 10. In anionic polymerization process the initiator is an anion. Potassium amide (KNH₂) or n-butyl lithium can be used as initiators.
- 11. In anionic polymerisation the termination step is generally absent.
- 12. A condensation polymer contains fewer atoms than the number of atoms in all the monomeric units from which it is formed.
- 13. The condensation occurs between molecules having polyfunctional groups. The process involves elimination of small molecules such as water, ammonia and alcohol.
- 14. The condensation polymers are also called step growth polymers.
- 15. Co-polymers are classified into 4 categories : Random co-polymers, Alternating co-polymers, Block co-polymers, Graft Co-polymers.
- 16. A milky suspension of crude rubber obtained from certain varieties of trees is called latex. It is an emulsion of poly hydrocarbon droplets in an aqueous solution. It consists of negatively charged particles of rubber.
- 17. The latex contains about 35% rubber and it is coagulated by the addition of CH₃COOH or HCOOH.
- 18. Crude rubber is refined by masticating the raw rubber or Compounding, by addition of necessary agents to the rubber.

- 19. The empirical formula of natural rubber is C_5H_g .
- 20. On heating in air rubber gives $C0_2$ and H_20 . Hence natural rubber is a hydrocarbon.
- 21. Heating rubber to high temperatures in the absence of air or 0_2 yields isoprene. Hence, rubber is a polymer of isoprene.
- 22. Ozonolysis experiments on natural rubber explains the mode of linkage between the isoprene units. Ozonolysis gives of natural: rubber 4-oxo-pentanal.
- Natural rubber may be considered as a linear 1,4 polymer of isoprene. In this polymer the residual double bonds are located between C_2 and C_3 of isoprene units in the polymer.
- 24. From X ray studies it is known that all the double bonds have cis configurations. Thus natural rubber is cis-1,4-poly isoprene. The transform of rubber is called 'gutta percha'.
- 25. The weight average molecular weight of (\overline{M}_{w}) of rubber varies between 1,30,000 to 3,40,000.
- 26. The intermolecular forces in the polymer are largely limited to van der Waal's interactions due to absence of polar groups. The interactions are further weakened due to cis configuration.
- 27. cis-1,4-Polyisoprene molecule is not a straight chain but has a coiled structure, consequently it can be stretched like a spring, and it imparts elastic nature to the polymer.
- 28. Rubber has high sensitivity to heat treatment, a low tensile strength, readily abrasive, low elasticity and high water absorbing ability.
- 29. Properties of rubber can be improved by the addition of sulphur to hot rubber at 373-415K. This process is called vulcanization.
- 30. Vulcanization process is slow. It can be accelerated by the addition of zinc oxide, zinc stearate and some organic compounds.
- 31. The rubber can be hardened by increasing the percentage of sulphur. If sulphur amount is raised to 40-45%, the rubber sets to a non-elastic, hard material known as ebonite.
- 32. The rubber becomes cross linked with sulphur during the process of vulcanization. The vulcanized rubber has excellent elasticity, low water absorption tendency, resistance to oxidation and organic solvents.
- 33. In natural rubber the double bonds and allylic -CH₂ groups are active centers for vulcanization.
- 34. Synthetic rubbers are synthesised from butadiene and its dlriyativWW^
- 35. The synthetic rubbers are homopolymers of 1,3- butadiene derivatives or copolymers in which one of the monomer unit is 1,3-butadiene or its derivatives.
- 36. There are several types of average molecular weights in polymers. They are
 - 1) Number average molecular weight $(\overline{\mathbf{M}}_{n})$
 - 2) Weight average molecular weight $(\overline{\mathbf{M}}_w)$.

- 3) Z average molecular weight $(\overline{\mathbf{M}}_x)$
- 4) Viscosity-average molecular weight $(\overline{\mathbf{M}}_{\nu})$.
- 37. The polymers which are degradable by enzymatic hydrolysis or oxidation are called biodegradable polymers. Aliphatic polyesters are one important class of biodegradable polymers.
- 38. Poly lactic acid, Nylon 2- nylon 6 etc are examples of bio-degradable polymers.
- 39. Poly β hydroxybutyrate Co- β -hydroxy- valerate (PHBV) is a copolymer of 3-hydroxy butanoic acid and 3-hydroxy pentanoic acid. It is a polyester condensation co-polymer.
- 40. Nylon 2 nylon -6 is formed from glycine (H₂N-CH₂-COOH) and amino caproic acid [H₂N-(CH₂)₅-COOH], It is an alternating polyamide co -polymer.
- 41. Low density poly ethylene is obtained by the polymerisation of ethene under high pressure of 1000 to 2000 atm at 350 K to 570 K in the presence of traces of dioxygen or a peroxide catalyst. It has highly branched structure.
- 42. High density poly ethylene is obtained by the polymerisation of ethene under a pressure of 6-7 atm at 333 K to 343 K in presence of catalyst triethylaluminium and titanium tetra chloride (R_3Al and $TiCl_4$) called Ziegler Natta catalyst. It consists of linear molecules and has a high density due to close packing.
- 43. Semi synthetic polymers are the derivates of cellulose, eg : Cellulose acetate (rayon), cellulose nitrate etc.

Question bank

- 1) On the basis of mode of formation, polymers can be classified
 - 1) as additional polymers only
 - 2) as condensation polymers only
 - 3) as copolymers
 - 4) Both addition and condensation polymers
- 2) Which of the following is a polyamide?
 - 1) Nylon 2) Bakelite 3) Terylene 4) PVC
- 3) The monomer of polyacrylonitrite is
 - 1) Vinyl chloride 2) Vinyl alcohol 3) Vinyl cyanide 4) Adipic acid
- 4) Glyptal is a polymer of
 - 1) Ethylene glycol and phthalic acid
- 2) Ethylene glycol and adipic acid
- 3) Ethylene glycol and terephthalic acid 4) Caprolactum and formaldehyde
- 5) The constituents of Nylon –66 are
 - 1) Benzoic acid and ethylamine 2) Pthalic acid and hexamethylene diamine
 - 3) Adipic acid and hexamethylene diamine 4) Phenol and adipic acid
- 6) The repeating units of PCCTFE is
 - 1) $Cl_2CH CH_3$ 2) $F_2C = CF_2$ 3) $F_3C CF_3$ 4) $FClC = CF_2$
- 7) Which of the following fibres is made of polyamides?
 - 1) Polythene 2) PVC 3) Neoprene 4) Bakelite
- 8) Bakellite is obtained from phenol by reacting with
 - 1) Acetal 2) Acetaldehyde 3) Formaldehyde 4) Chlorobenzene

9) Which of the following polymers is generally used in making carry bags? 2) Bakellite 1) Polyester 3) Polythene 4) Alkyl resins Which of the following fibres is made of polyamides? 10) 2) Orton 1) Dacron 3) Nylon 4) Rayon Which of the following is an example of co-polymer? 11) 3) Polythene 4) PTFE 1) Buna –S 2) PAN 12) Perlon is another name of 2) Nylon –66 3) Nylon 6, 10 4) Terylene 1) Nylon –6 Which of the following represents number average molecular mass? 13) 1) $M = \frac{\sum N_i M_i^2}{\sum N_i}$ 2) $M = \frac{\sum N_i M_i}{\sum N_i}$ 3) $M = \frac{\sum N_i M_i^2}{\sum N_i M_i}$ 4) $M = \frac{\sum N_i M_i}{\sum N_i}$ 14) Nitrite rubber is a copolymer of 1) Isobutylene and isoprene 2) Isobutylene and acrylonitrite 3) Butadiene and acrylonitrite 4) Styrene and butadiene Isoprene is a monomer of 15) 2) Natural rubber 1) Starch 3) PVC 4) Synthetic rubber 16) Which of the following is true about the polymer – $\{CH_2 - CH (C_6H_5)_{11} - \}$? 1) It is a homopolymer and condensation polymer 2) It is a copolymer and condensation polymer 3) It is a homopolymer and addition polymer 4) It is a copolymer and condensation polymer 17) The monomer for Buna –N are 1) $CH(CN) = CH_2$, $CH_2 = CHHC = CH_2$ 2) CH₃-CH=CHCN, CH₂=CH-CH=CH₂ 3) CH_2 =CHCN, CH_2 = $CCOOHC_2H_5$ CH_3 4) $CH_2 = CH COOC_2H_5$, $CH_2 = CHCN$ Vinyl polymers are also known as 18) A) additional polymers B) Chain reaction polymers C) Condensation polymers The correct answer is 1) A only 2) B only 3) A and B 4) A, B, and C Which of the following is not a polyester 19) 3) Polylactic acid 1) Polyglycolic acid 2) PABR Which one of the following is not a biopolymer 20) 2) Proteins 3) DNA 4) Nylon-66 1) Cellulose **KEY** 1.4 2.1 3.3 4.1 5.3 6.4 7.4 8.3 9.3 14.3 11.1 15.2 16.3 19.2 12.1 13.2 17.1 18.3

10.3

20.4

Question Bank - I I

1.	Which of the following is an exa	mple of co - poly	mer ?		
	1) PTFE 2 i Perlon-L	3) Neoprene	4) PET		
2.	Which of the following statemen	ts about terylene a	are correct?		
	A) It is a poly ester				
	B) It is obtained by the reaction	between ethylene	glycol and terephthalic acid H		
	C) It is a condensation polymer	D) It is a natural	l polymer		
	1) A and B 2) C and D	3) A,B, and C	4) A,B, and D		
3.	Common monomer n melamine	formaldehyde and	Bakelite		
	1) Formaldehyde	2) Phenol			
	3) Melomine	4) Ethylene glyc	col		
4.	Vinyl polymers are also known a	ıs			
	A) Additional polymers	B) Chain reaction	on polymers		
	C) Condensation Polymers				
	The correct answer is				
	1) A only 2) B only	3) A and B	4) A,B, and C		
5.	Which one of the following polyr	ner can be softene	ed and burdened repeatedly on heating		
	and cooling without change in its	s property?			
	1) Bakellite	2) Polysiloxane			
	3) Urea formaldehyde resin	4) PVC			
6.	IUPAC names of monomers in N	lylon-6,6 are			
	1) Ethylene glycol, terephthalic acid				
	2) Adipic acid, hexamethylenedi	amine			
	3) Butane dionic acid, Hexane -				
	4) Hexanedioic acid, Hexane-1,				
7.	Some statements about condensation polymers are given below				
	a) Condensation polymer molecule contains same number of atoms as the number of				
	atoms present in all monomers				
	b) Monomers of condensation polymers have polyfunctional groups .				
	c) Majority of condensation polymers are co-polymers d) Molecular variable of condensation polymer molecula is integral multiples of molecular				
	d) Molecular weight of condensation polymer molecule is integral multiples of molecular				
	weight of its monomers The correct statements is /are				
	1) All are correct	2) Only b is corn	rect		
	,	4) only b, c and			
8.	3) Only b and c are correct Chain initiation and chain propage	• • •			
0.	Chain initiation and chain propag	1			
	a) Cationic polymerizationc) Free radical polymerization	b) Anionic poly	n polymerization		
	The correct answer is	a) Condensation	i porymenzation		
	1) all 2) only a, b and c	3) only a	4) only a and c		
	1) an \(\alpha\) Offiny a, 0 and C	omy a	T) Omy a and C		

9. Some statements about addition polymerisation are given below			given below			
	a) Monomers containing C = C bond can undergo this polymerisation.					
	b) Polymer molecules may or may not contain C = C bond					
	c) Addition p	olymers are formed	by chain reactions			
	d) Molecular	weight of addtion po	olymer molecule is in	ntegral multiples of molecular weight		
	of its mono	mers				
	Correct states	ment (s) is (are)				
	1) All are con	rect	2) only a, c & d ar	re correct		
	3) only c and	d are correct	4) only c is correc	t		
10.	Vinyl derivati	ves undergo which	type of polymerizat	tion		
	1) cationic polymerization only 2) anionic polymerization only					
	3) condensati	on polymerization	only			
	4) cationic (o	r) anionic (or) free	radical polymerizati	ion		
11.	Chloroprene	is used in making				
	1) Synthetic r	rubber 2) Plastic	3) Pelrol	4) All		
12.	The monome	rs present in glyptal	are			
	1) ethylene glycol, caproic acid		2) vinyl chloride, terepthalic acid			
	3) ethylene glycol, pthalic acid 4) urea, formaldehyde					
13.	Natural rubber on ozonolysis gives					
	1) 4-oxopentanal		2) 3-oxopentanal			
	3) Hexane-2,	5-diene	4) Pentanedial			
14.	The formula for calculating M_n of a polymer is					
	$\sum \mathrm{NiMi}$	$\sum NiMi$	Σ NiMi 2	$\sum NiMi^2$		
	1) $\frac{-}{\sum Ni}$	$\frac{1}{\sum Mi}$	3) $\frac{\sum \text{NiMi}^2}{\sum \text{Mi}}$	4) $\frac{\sum \text{NiMi}}{\sum \text{NiMi}}$		
15	During the vu	ulcanization of rubb	er, sulphur cross lin	king occurs at		
	a) Double box		b) Allylic - CH ₂ - a			
	c) Methyl gro		, ,			
	The correct answer is					
	1) only a	2) only b	3) only a and b 4)	all		
16.	Which of the following is a biodegradable polymer					
	A) PHBV		C) PMMA	D) Nylon -2-Nylon-6		
	The correct a		,	•		
	1) A, B, C	2) B, C, D	3) A, D	4) All are correct		
17.	For natural po	olymers PD1 is gen	erally			
	1) 1	2) 10	3) 100	4) 1000		
18.	Amide linkag	e is absent in				
	1) Nylon - 6	2) Nylon - 66	3) NyIon - 2- Nylo	on - 6 4) PHBV		
19.		of a synthetic polyn				
	$1) \ \overline{M}_n < \overline{M}_w$	2) $\overline{\mathbf{M}}_{\mathrm{n}} > \overline{\mathbf{M}}_{\mathrm{w}}$	3) $\overline{\mathbf{M}}_{\mathrm{n}} = \overline{\mathbf{M}}_{\mathrm{w}}$	4) $\overline{\mathbf{M}}_{\mathrm{n}} = \sqrt{\overline{\mathbf{M}}_{\mathrm{w}}}$		

20. Which of the following is currently used as a tyre cord			rd			
	1) Terylene 2) polyethylene	3) Bakelite	4) Nylon-6			
21.	Match the following					
	List-1		List-II			
	A) Phelnol +CH ₂ O		1) Synthetic rubber			
	B) Terephthalic acid and ethylene	e glycol	2) Bakelite			
	C) Caprolactum		3) Nylon-6			
	D) Butadiene and styrene		4) Terylene			
	The correct match is					
	A B C D	A B C D				
	1) 2 3 4 1	2) 3 1 2 4				
	3) 2 4 3 1	4) 1 2 3 4				
22.	Match tjie following					
	List-II List-II					
	A) PHBV 1) Synthetic fibers					
	B) Teflon 2) Orthopaedic de	vices				
	C) Nylon-66 3) For making laminates					
	D) Bakelite 4) non-sticking utensils					
	5) Automobile tyre	es				
	A B C D	A B C D				
	1) 2 4 1 3	2) 1 3 2 4				
	3) 3 2 1 5	4) 4 1 3 2				
23.	Match the following					
	List-I (polymer) Lis-II (type of monomers)					
		aromatic alcohol				
		liphatic dioic acid				
		atic dioic acid				
	4) Buna-N d) Unsaturated ester					
	1 2 3 4	unsaturated cyanide 1 2 3 4				
	1 2 3 4 1) c b a e	2) b c a d				
	3) b c d e	4) c b e d				
24.	,	,				
4 1.	Wrong statement about the polymer BuNa * S is 1) 'Bu' stands for 1,3 - butadiene 2) 'Na' stands for sodium (catalyst)					
	3) 'S' stands for styrene	4) it is used in man	` '			
25.	Match the following	i) it is asea in mai.				
20.	List-I (polymer)	List-Il (use)				
	1) Urea formaldehyde resin					
	2) Nylon - 6	a) unbreakable cupsb) TV cabinets				
	3) Polystyrene	c) Oil seals				
	, ,					
	4) GRN	d) Tyre cords				

1 2 3 4

1 2 3 4

1) a d b c

2) a b d c

3) a b c d

- 4) d c b a
- 26. Wrong statement about BuNa - N is
 - 1) it is copolymer
- 2) 'N' stands for propenenitrile
- 3) its structure is

- 4) it is an addition polymer
- The monomer for polystyrene is 27.
 - 1) Ethane
- 2) Ethene
- 3) Ethyne
- 4) Vinyl benzene
- Structure of styrene butadine rubber is 28.

1)
$$\left(-CH_2 - CH = CH - CH_2 - CH_2 - CH_2 - CH_3\right)_n$$

2)
$$\left(-CH_2 - CH = CH - CH_2 - CH - CH_2 - \int_{C_6H_5}^{CH} CH_2 - CH_2$$

3)
$$\left(-CH_2 - CH = CH - CH = CH - \frac{CH}{c_{6}H_5}\right)_n$$

4)
$$\left(-CH = CH - CH = CH - CH - \frac{CH}{\int_{C_6H_5}^{C}}\right)_n$$

- 29. Which one of the following polymer molecule contain more double bonds in the polymer chain in the repeating unit.
 - 1) polystyrene 2) BuNa S
- 3) PVC
- 4) Polyethylene

Match the following 30.

<u>List-1</u> (polymer)

List - II (Structure)

- 1) Urea formalde hyde resin a) (-NH-(CH₂)₅-CO-)_n

2) Neoprene

b) $(-NH-(CH_2)_6-CO-)_n$

c)
$$\left(-CH_2 - C = CH - CH_2 - \int_{n}^{\infty} CH - CH_2 - \int_{n}^{\infty} CH - CH_2 - CH_2$$

$$d) \left(-CH_2 - CH - \right)_n$$

e)
$$(-NH-CO = NH-CH_2-)_n$$

The correct match is

<u>1</u> <u>2</u> <u>3</u> <u>4</u>

1) e d c b

2) e c d b

3) a c d b

- 4) e c d a
- 31. Which of the following alkene a most reactive towards cationic polymersation

1)
$$CH_2 = CHCH_3$$

$$2) H2C = CHC1$$

3)
$$H_2C = CHC_6H_5$$

4)
$$H_2C = CHC_0CH_3$$

Match the following: 32.

Polymer

1)
$$[CO(CH_2)_5 - (NH)]_n$$
 2) $(-CF_2 - CF_2)_n$

3)
$$-(CO-(CH_2)_4 -CO-NH-(CH_2)_6 -NH-)_n$$

4)
$$\left\{ OCH_2 - CH_2 - O - C - \bigcirc - C \right\}$$

<u>Monomer</u>

- A) Ethylene glycol and terpthalic acid
- B) Tetra fluoro ethylene
- C) Caprol actum
- D) Hexamethylene diamine and adipic acid

1 2 3 4

- 1) C D A B
- 2) C B A D
- 3) C B D A
- 4) C A B D
- 33. Buna N synthetic rubber is a copolymer of:

1)
$$H_2C = CH - CH = CH_2$$
 and $H_5C_6 - CH = CH_2$

2)
$$H_2C = CH - CN$$
 and $H_2C = CH - CH = CH_2$

3)
$$H_2C = CH - CN$$
 and $H_2C = CH - C = CH_2$

4)
$$H_2C = CH - C = CH_2$$
 and $H_2C = CH - CH = CH_2$

- Catalyst commonly used in free radical polymerisation is 34.
 - 1) MnC l_2
- 2) Fe-Mo
- 3) R-CO-O-R
- 4) R-O-O-R
- Number of steps in free radical polymerisation process 35.
 - 1) four
- 2) three
- 3) two
- 4) one

Acrylonitrile is the other name of 36.

1)
$$H_2C = CHC1$$

2)
$$H_2C = CHOH$$

3)
$$H_2C = CHC_6H_5$$

4)
$$H_2C = CHCN$$

- Which of the following is relative stiff and hard addition homopolymer? 37.
 - 1) Bekalite

- 2) Melamine-formaldehyde
- 3) Poly propelene
- 4) Urea-formaldehyde

38.	Number of nitrogen atoms present in melamine is x. The number of -imine and -amine groups is y and z. x, y and z are respectively							
	•	•	•	•	•			
	1) 3, 1,2	2) 6,	1,3	3) 6, 3,	3	4) 6, 3, 1	-	
39.	Hydrolys	is of the n	nonomer of	polyacrylo	nitrile give	es		
	1) Propa	namine		2) Etha	noic acid			
	3) Butan	amine		4) Prop	anoic acid			
40.	Free radi	cal polyme	erisation ma	ay be impor	tant for th	e polymeri	sation of:	
	A) HC ≡	A) HC \equiv CH, B) H ₂ C = CH ₂ and C) H ₂ C = CH - CH = CH ₂						
			and C			4) A, B a	and C	
41.	The poly	mer contai	ning strong	g interniole	cular force	s e.g. hydro	ogen bond	ling is
	1) natural rubber			2) teflo	2) teflon			
	3) nylon6, 6			4) poly	4) polystyrene			
42.	Bakelite	is prepared	d by the rea	ction betwe	een			
	1) Urea a	1) Urea and formaldehyde						
	2) Tetran	2) Tetramethylene glycol and hexamethylene diisocyanate						
	3) Pheno	3) Phenol and formaldehyde						
	4) Ethyle	4) Ethylene glycol and dimethyl terephthalate.						
43.	The hard plastic covers of telephones are made of polymers of							
	1) Acrylo	onitrile		2) Styr	2) Styrene			
	3) Fluoro	methane		4) Phe	4) Phenol formaldehyde			
44.	Vulchani	zed rubber	resists	,		•		
	1) Jerkin	1) Jerking movement			2) Cold temperature			
	3) Drops of acid rains		4) Wea	4) Wear and tear due to friction				
				— KI	V			
	1) 4	2) 3	3) 2	4) 3	5) 4	6) 4	7) 3	8) 2
		ŕ	,	,	,	,		
	9) 1	10) 4	11) 1	12) 3	13) 1	14) 1	15) 3	16) 3

			KE	Y			
1) 4	2) 3	3) 2	4) 3	5) 4	6) 4	7) 3	8) 2
9) 1	10) 4	11) 1	12) 3	13) 1	14) 1	15) 3	16) 3
17) 1	18) 4	19) 1	20) 4	21) 3	22) 1	23) 1	24) 4
25) 1	26) 3	27) 4	28) 1	29) 2	30) 4	31) 3	32) 3
33) 2	34) 4	35) 2	36) 4	37) 3	38) 3	39) 4	40) 2
41) 3	42) 3	43) 4	44) 4				

9. BIO-MOLECULES

Synopsis:

- 1. Carbohydrates ttr saccharides are the optically active polyhydroxy aldehydes or poly-hydroxy ketones. They include simple sugars, starch, glycogen, etc.
- 2. General formula of carbohydrates is $C_x(H_2O)_y$.
- 3. Glucose and galactose are aldohexoses but fructose is aketohexose.
- 4. Mono and oligo saccharides are called sugars due to their sweet taste. Sugars are crystalline solids and soluble in water.
- 5. All polysaccharides are non-sugars as they are tasteless. All non sugars are amorphous solids and insoluble in water.
- 6. Reducing sugars reduce Fehling's solution and Tollens' reagent. eg.Glucose, Fmctose, Maltose. Non-reducing sugars do not reduce Fehling solution and Tollens' reagent, eg. Sucrose.
- 7. All monosaccharides are reducing sugars. Some of the disaccharides are reducing sugars.
- 8. The simplest monosaccharides are glyceral- dehyde and dihydroxy acetone. Glyceraldehyde is an aldotriose and dihydroxy acetone is a ketotriose. These are functional isomers to each other.
- 9. Fructose is called fmit sugar. It is a ketohexose and possesses D-configuration and is also called leavulose. It is found in ripe fruits and honey. It is the sweetest sugar. It is obtained by the hydrolysis of sucrose. Naturally occurring fructose is laevo rotatory.
- 10. Glucose is present in sweet fruits like banana and honey. Ripened grapes contain 20% of glucose hence called grape sugar. It is obtained by the hydrolysis of cane sugar in the presence of alcohol using dilute acid. Glucose is also obtained by the hydrolysis of starch by boiling it with dilute sulphuric acid at 393K under a pressure of 2-3 bar.
- 11. Glucose on reduction with HI, it forms n-hexane. It confirms presence of all six carbons in straight chain.
- 12. Glucose reacts with acetic anhydride to form **a** penta acetyl derivative, which suggests the presence of five hydroxyl groups in the molecule of glucose.
- 13. Glucose reacts with hydroxylamine to give oxime, with HCN gives cyanohydrin, with phenyl hydrazine gives phenyl hydrazone which suggests the presence of carbonyl group.
- 14. Glucose reduces Tollen's reagent to give silver mirror, and Fehling's solution to give red cuprous oxide. It can be oxidised to gluconic acid with bromine water or alkaline solution of iodine. These reactions suggest the presence of aldehyde group.
- 15. On oxidation with HNO₃, glucose gives saccharic acid a dicarboxylic acid. This

- suggests the presence of one primary alcoholic group.
- 16. With cone NaOH solution, glucose turns to yellow then brown and finally resinifies.
- 17. With dil NaOH, glucose undergoes the following reversible isomerisation called Lobry de Bruyn-van Ekenstein rearrangment to give a mixture of D-glucose, D-nannose and D- fructose. Same mixture is also obtained even mannose or fructose when treated with alkali.
- 18. Based on chemical properties of glucose, Beyer proposed the open chain structure.
- 19. Spontaneous change in specific rotation of an optically active compound is mutarotation.
- 20. Aqueous solution of glucose has [α]_D= + 52.5° as it is equilibrium mixture of anomers.
- 21. Isomers which differ only in the spacial orientation of groups or atoms at first chiral carbon are called anomers. All anomers are diastereomers. Anomers differ in physical properties like melting point and specific rotation.
- Existance of anomers can be confirmed by treating glucose with CH₃OH and dry HCl which gives a mixture of methyl α D- glucoside and methyl $(\beta$ D glucoside.
- 23. α D- glucose is obtained by crystallization of glucose from its aqueous solution at 30°C. Whose $[\alpha]_D = +111^0$ withm.p = 146°C.
- 24. (3 -D-glucose is obtained by crystallisation of glucose from its aqueous solution at above 98°C whose $[\alpha]_D = +19.2^\circ$ and $m.p = 150^\circ$ C.
- 25. As per IUPAC system of nomenclature, open chain form of D-(+)-glucose is named as (2R, 3S, 4R, 5R) 2,3,4,5,6 pentahydroxyhexanal.
- 26. Disaccharides on hydrolysis give two mono saccharides.

Surcrose
$$\xrightarrow{\text{hydrolysis}}$$
 D-glucose + D- fructose
Lactose $\xrightarrow{\text{hydrolysis}}$ D-glucose + D- galactose
Maltose $\xrightarrow{\text{hydrolysis}}$ D- glucose + D- glucose

- 27. Sucrose is a non reducing sugar. Hemiacetal hydroxyl groups of both the mono saccharides are involved in glycosidic linkage.
- 28. In sucrose glycosidic linkage is formed between C_1 of α D-glucose and C_2 of β D-fructose.
- 29. In the hydrolysis of sucrose, there is a change in optical rotation from'd' to T. This change is known as 'inversion' and the mixture is called 'invert sugar'. The aqueous solution is laevo rotatory.
- 30. Maltose is obtained from starch by the hydrolysis process caried out by diastase enzyme present in malt.

- On hydrolysis maltose gives two molecules of D- glucose. The two glucose units are linked through a-glycosidic linkage between C_1 of one unit and the C_4 of the other.
- Lactose occurs in milk and is known as milk sugar. Lactose on hydrolysis gives D-galactose and D-glucose. Hydrolysis of lactose occurs by 'emulsin' which specifically hydrolyses β- glycosidic linkages. Glycosidic linkage is formed between C_1 of β- D- galactose and C_4 of β- D- glucose.
- 32. Starch or amylum is white amorphous powder almost insoluble in cold water but relatively more soluble in boiling water. Its solution gives blue colour with iodine solution in cold but the colour disappears on heating.
- 33. Starch consists of two components namely amylose (10 to 20%) (water soluble component) and amylopqctin (90 to 80%) (water insoluble component).
- 34. Amylose is a linear polymer of α -D(+) glucose units, linked at 1,4 positions. It gives blue colour with iodine solution.
- 35. Amylopectin has a branched chain structure composed of α -D(+) glucose units linked at 1,4 positions and branches at 1,6 positions. It does not give blue colour with iodine.
- 36. Starch easily hydrolyses in saliva by an enzyme amylase. The final product is α D(+) glucose.
- 37. Starch does not form osazone. It indicates that hemiacetal hydroxy groups of all glucose units at C-l are in glycosidic form.
- 38. Wood Contains 50% of cellulose, cotton contains 90-95% cellulose. It is the chief constitent of cell wall of plants.
- 39. Cellulose does not reduce Tollen's reagent or Fehiling's solution and also does not form osazone.
- 40. Cellulose is composed of large number of D-glucose units joined by β (1,4) glycosidic linkages. The rigidity of structure is due to multiple hydrogen bonds between the individual strands of cellulose.
- 41. Cellulolytic bacteria present in stomach (rumen) of ruminant mammals like cattle and sheep break down cellulose with the help of an enzyme cellulase.
- 42. The carbohydrates are stored in animal bodies as glycogen. It is also called animal starch because its structure is similar to amylopectin and is highly branched. When the body needs glucose, enzymes breakdown glycogens to glucose.
- 43. Carbohydrates are essential for the life of both plants and animals. Honey is an instant source of energy.
- 44. Antibiotics like Steptomycins, Kenomycins, Neomycins and Gentamycins that disrupt bacterial protein synthesis are carbohydrates. These are patricularly used against bacteria that are resistant to penicillins.
- 45. Amino acids contain both carboxylic acid group and amine group.
- 46. Amide linkages between amino acids are known as peptide bonds (– CO NH –).

- 47. The product obtained from two amino acid molecules through a peptide bond is called a dipeptide.
- 48. The product from three, four and many amino acid molecules through peptide bond are called tri, tetra and polypeptides respectively. A polypeptide chain formed from 'n' amino acids contain 'n-1' peptide bonds.
- 49. The numerical prefix (di, tri, tetra) of peptide is derived from number of amino acid molecules involved in bonding but not from number of peptide bonds. A tripeptide has two peptide bonds between three amino acid molecules.
- 50. Generally a- aminoacids form proteins. All α aminoacids contain a primary amino group except proline.
- 51. The aminoacids which can be synthesised in the body are called non essential amino acids and amino acids which cannot be synthesized in the body but must be supplied through diet are called essential amino acids.
- 52. Amino acids containing equal number of -NH₂ and -COOH groups are called neutral aminoacids.
- 53. Aminoacids containing more number of -NH₂ groups than -COOH groups are known as basic aminoacid and more number of -COOH groups than -NH₂ groups are known as acidic aminoacids.
- 54. Amino acids containing OH groups are tyrosine, serine and threonine. Amino acids containing benzene ring are phenylalanine, tyrosine and tryptophan.
- 55. Amino acids are generally colourless crystalline solids and are highly polar. In aqueous solution, the carboxyl group transfers a proton to -NH₂ group to give zwitter ion or inner salt.
- 56. In acidic solution, amino acid exists as positive and in basic solution as negative ion.
- 57. The pH at which dipolar ion acts as neutral ion and does not migrate either towards cathode or anode is known as. isoelectric point of the aminoacid.
- 58. The isoelectric point depends on different groups in the molecule of the amino acid. For neutral aminoacids, the pH range is 5.5 6.3
- 59. At isoelectric point, aminoacids have least solubility which helps in the separation of mixture of aminoacids obtained from the hydrolysis of proteins.
- 60. Except glycine all other naturally occurring aminoacids are optically active.
- 61. In Fisher projection formulae, all carbon atoms must be placed vertically with –COOH group at the top and amino grour is kept horizontally.
- 62. If–NH₂ group is on left hand side, it is L–form.

 If it is on right hand side it is D–form. Most of the naturally occurring amino acids have L– configuration.
- 63. In a polypeptide. free amino group N-terminal residue is written on the left hand side and the free carboxyl group cm the right hand side of the chain.

$$\mathbf{H_2N-CH-C-NH-CH_2-C-NH-CH-COOH}$$

N-terminal residue

C-terminal residue

Alanine

Glycine

Aanine

This is read as alanvl glycylalanine.

- 64. Shorter peptides are called oligopeptides and peptides are called polypeptides. Polypeptides are amphoteric.
- 65. Most of the toxins (poisonous substances) in animal and plant venoms are proteins. Oligopeptides are effective hormones.
- A dipeptide called aspartame being 160 times sweeter to sucrose is used as a substitute for sugar.
- 67. Proteins are naturally occurring polypeptides containing more than 100 amino acid units eg: Wool. Nail, silk, hair, skin, connective tissues, many hormones and enzymes.
- 68. Proteins are usually two types fibrous proteins nd globular proteins.
- 69. Primary structure of proteins refers to the sequence in which amino acids are arranged in protein and also location of disulphide bridges. Any two proteins will never have same primary structure.
- 70. If a protein is made up of 'm' amino acids of 'n' types, the possible different types of protiens are 'n''.
- 71. Secondary structure of proteins refers to shape of polypeptide chains.
- Maximum hydrogen bonding between CO group of one amino acid residue and the amide hydrogen of another, Minimum steric henderance between near by 'R' groups, Repulsions between like charges. These factors lower the energy and increases stability.
- 73. The shape of protien can be either α -helix, β -pleated sheet (or) coil conformation.
- 74. Tertiary structure of protein gives three dimensional folding of protein. It includes both primary and secondary structures. The three dimensional folding of protein leads to fibrous or globular shapes.
- 75. Quaternary structure of protein explains arrangement of differnt protein chains (sub units). It is possible only in oligomers.
- 76. In between protien chains, hydrogen bonding, electrostatic attractions and hydrophobic inter actions are present.
- 77. The process such as heating, treatment with acids that brings about changes in the physical as well as biological properties of the proteins is called denaturation.
- 78. Denaturation changes the secondary and tertiary structure of proteins but has no effect on the primary structure.
- 79. Denaturation may be reversible or irreversible. Coagulation of egg white on boiling is an example for irreversible clenatoration.

- 80. Reverse process of denaturation is called renaturation which is possible in deoxyribonucleic acid.
- 81. Most of enzymes are naturally occurring simple (or) conjugate proteins. They act as specific catalysts in biological reactions.
- 82. Enzymatic reaction may proceed through the following four stages. E+S \rightarrow ES complex \rightarrow El complex \rightarrow EP \rightarrow E+P
- 83. Nucleic acids are polymers present in living cells and viruses. They are of two types Deoxy ribonucleic acid (DNA) and Ribonucleic acid (RNA)
- 84. The DNA stores and transmits genetic information and the RNA is responsible for the synthesis of proteins in living cells.
- 85. Nucleic acids are polymers whose repeating units are nucleotides.
- 86. The nitrogen base in nucleic acids is of two kinds: pyrimidines and purines.
- 87. Purine bases, adenine and geianine are found in both RNA and DNA. Cytosine is found in both RNA and DNA but uracil is present only in RNA and thymine only in DNA.
- 88. Naturally occurring nucleic acids have (β -D- ribose in RNA and (β -D- deoxyribose in DNa
- 89. A nitrogen base attached to a sugar molecule M forms a nucleoside. A nucleoside joined to a phosphate group is called nucleotide.
- 90. Nucleic acids contain a chain of five membered ring sugars linked through phosphate groups and each sugar molecule is bonded to nitrogen atom of heterocyclic amine by a $(\beta$ N glycosidic bond.
- 91. Watson and Crick based on X-ray diffraction studies of DNA proposed a double helical structure for DNA.
- 92. The number of hydrogen bonds between thymine and adenine is 2, but in between the complimentary bases cytosine and guanine is 3.
- 93. Adenine pairs with thymine but not with cytosine because adenine forms two H-bonds with thymine but no bonds with cytoines.
- 94. Primary structure of DNA gives sequence of bases in the strands. Secondary structure of DNA is double helix.
- 95. The synthesis of identical copies of DNA is called replication. A nucleic acid can be synthesized only in the 5' 3' direction.
- 96. The amino acid specified by each three base sequence is called the genetic code. It is universal, it is commaless, it is degenerate and third base in the codon is not always specific.
- 97. Vitamins are certain organic compounds, required in small quantities in diet, but their defiency causes specific disease.
- 98. Vitamins are desisuated by alfabates A, B, C, D etc and some of them further named as subgroups like B₁, B₂, 6, B₁₂ etc.
- 99. Vitamins are classified into two groyps depending upon their solubility in water

or in fat.

- 100. Vitamins if B group and vitamins C are water soluble.
- 101. Vitamins A, D, E and K are fat and oil soluble. These are stored in liver and adiapose tissue.
- 102. Deficiency of vitamin A causes right blindness vitamin C causes scurvy and vitamin D causes rickets.
- 103. Deficiency of vitamin B, causes beri beri, B_2 causes cheilosis, B_6 causes convulsions and B_{12} causes pernicious anaemia.
- 104. Vitamin E is rich in oils and helps in fargility of RBCs and muscular strengthing.
- 105. Vitamin K is called green leafly vitamin and its deficiency leads to increased blood clothing time.
- 106. Hormones transfer biological information from one group of cells to distant tissues or organs. Hormones control metabolic activities and are effective in minute amounts.
- 107. Secretin produced by intestinal mucosa was first named as hormone. Hormones are all generally proteins but not all of them are proteins.
- 108. Hormones are classified into two types: Steroid hormones and non steroid hormones.
- 109. Steroid hormones are produced by the adrenal cortex, testis and ovary. These are male sex hormones are androgens and testosterone.
- 110. Testosterone produed by testis. This, is responsible for the development of male secondary sexual characteristics such as deep voice, facial hair, sturdy physical nature.
- 111. Estradiol is responsible for the development of secondary female sex characteristics like breast development, shril voice and long hair. They also take part in the control of menstrual cycle.
- 112. Progesterone is useful for preparing the uterus for the implantation of the fertilized egg. These are also useful as birth control agents.
- 113. Cortico steroids or adrenal cortical hormones are produced by adrenal cortex.
- 114. Insulin, peptide harmone is responsible for the entry of glucose and other sugars into the living cells. This helps in the decrease of glucose in the blood hence called hypoglycemic factor.
- 115. Amino acid derivative hormones are thyroidal hormones, eg: Thyroxin and triiodo thyronine. Thyroid gland is known as pace setter of the endocrine systems
- 116. Plant hormones are also called growth Hormones/ phyto hormones. They regulate growth and physiological functions.

Question Bank - I

Carbohydrates

Monosaccharides

1.	Which one o	f the following is a	pentose sugar?			
	1) Ribose	2) Arabinose	3) Lyxose	4) All the three		
2.	Monosaccha	rides contain				
	1) Six carbon	n atoms only	2) Five carbon at	oms only		
	3) Four carbo	on atoms only	4) May contain 3	to 7 carbon atoms.		
3.	Raffinose on	hydrolysis gives				
	1) glucose, fi	ructose and lactose	2) glucose, fructo	se and galactose		
	3) fructose, g	glucose and erythros	e 4) glucose, fructo	se and mannose		
4.	Which of the	following is not an	oligosac-charide?			
	1) Xylose	2) Maltose	3) Raffinose	4) Sucrose		
5.	A Laevorota	tory sugar present ir	n fruits is			
	1) Glucose	2) Fructose	3) Sucrose	4) Lactose		
6.	Glucose is no	ot				
	1) a hexose	2) a carbohydrate	3) an oligosaccha	ride 4) an aldose		
7.	On heating g	lucose with Fehling	solution, we get a	precipitate whose colour is		
	1) Orange	2) Red	3) Black	4) White		
8.	Glucose gives silver mirror test with Tollen's reagent. It shows the presence of					
	1) Carboxyli	c group	2) Alcoholic grou	ıp		
	3) Ketonic g	roup	4) Aldehydic grou	4) Aldehydic group		
9.	The reagent which forms crystalline osazone derivatives with glucose is					
	1) Fehling so	olution	2) Phenyl hydraz	2) Phenyl hydrazine		
	3) Benedict's	s solution	4) Hydroxylamin	e		
10.	When glucos	se is heated with nitr	ric acid the product	is		
	1) Lactic acid	d 2) Saccharic acid	3) Glycollic acid	4) Oxalic acid		
11.	Glucose who	en heated with CH ₃	OH in presence of	dry HC l gas gives α and β methyl		
	glycosides be	ecause it contains				
	1) –CHO gro	oup	2) a -CH ₂ OH group			
	3) a ring stru	cture	4) Five -OH grou	ps		
12.	When hemia	cetai reacts with alco	ohol the product is			
	1) dihemi ac	etal	2) alcohol			
	3) acetal		4) Peptide			
13.	Frfeshly prep	oared α –D–glucose	solution has specifi	ic rotation +lll° and after sometime it		
	becomes					
	1) +52°	2) +99°	3) -92°	4) None		
14.	Which does	not show mutarotati	on?			
	1) Glucose	2) Fructose	3) Maltose	4) Sucrose		

15.	Ring structure of glucose is due to	formation of hemiac	cetal and ring formation is in between		
	1) C_1 and C_5 2) C_1 and C_4	3) C_1 and C_3	4) C_2 and C_4		
16.	The wrong statement about gluco	ose is			
	1) It has one 1°- alcoholic group	2) It has four 2° -	alcoholic group		
	3) It has one aldehydic group	4) It has one 3° - a	alcoholic groups		
17.	Fructose contains				
	1) 3 Secondary alcoholic groups	2) One ketonic gro	2) One ketonic group		
	3) 2 Primary alcoholic groups	4) All the above			
18.	The fischer projection of glyceral	dehyde represents co	orrect configuration in terms of D &		
	L, R & S and d & l designations	respectively			
	1) D, R, d CHO				
	2) D, R, <i>l</i> H——OH				
	3) D, S, d				
	4) D, S, l $\dot{C}H_2OH$				
19.	Which of the following is called	as Laevulose ?			
	1) Glucose 2) Fructose	3) Lactose	4) Maltose		
20.	The sweetest sugar among the fo	llowing is			
	1) Fructose 2) Glucose	3) Sucrose	4) Galactose		
21.	For naturally occurring fructose, the	he configuration and	sign of specific rotation respectively		
	1) D, – 2) D, +	3) L, –	4) L,+		
22.	Glyceraldehyde and Dihydroxy ac	cetone are a pair of			
	1) Anomers 2) Enantiomeres	3) Functional isom	ners 4) Epimers		
23.	According to C1P rules, the conf	iguration of $(+)$ – g	lyceraldehyde can be designed as		
	1) R 2) S	3) D	4) L		
24.	Accroding to CIP rules, the config	guration of chiral ca	rbon atoms in $D - (+) - glucose$ are		
	1) 2S, 3S, 4R, 5R	2) 2S, 3R, 4S, 5R			
	3) 2R, 3R, 4S, 5S	4) 2R, 3S, 4R, 5R			
Disac	ccharides				
25.	Glucose and cane sugar can't be	distinguished by			
	1) Fehling's solution	2) Baeyer's reagen	nt		
	3) Tollens' reagent	4) Benedict's solu	tion		
26.	In which of the following all are	disaccharides?			
	1) Maltose, Sucrose, Lactose	2) Maltose, Lactose, Glucose			
	3) Glycogen, Lactose, Sucrose	4) Starch, Maltose	, Lactose		
27. A	disaccharide on hydrolysis gives				
	1) Two molecules of the same mo	ono-saccharide			
	2) Two diffemt monosaccharides				
	3) Three molecules of the same r	nono-saccharide			
	4) Two molecules of the same or	different monosacc	harides		

<i>2</i> 8.	Change in optical rotation of such	rose solution due to	nydrolysis is called		
	1) Specific rotation	2) Inversion			
	3) Rotatory motion	4) Mutarotation			
29.	Inverted sugar is				
	1) Optically inactive form of sugar	ar 2) Equimolecular	r mixture of glucose and fructose		
	3) Mixture of glucose and fructos	se 3) A variety of c	ane sugar		
30.	Wlpch of the following is not a re-	educing sugar?			
	1) Glucose 2) Sucrose	3) Lactose	4) Maltose		
31.	The glycosidic linkage in carbohy	ydrates is			
	1) Link between two carbon atom	ns in a carbohydrate	by a covalent bond		
	2) Link between a carbon atom a	nd an oxygen atom			
	3) Link between carbon atoms in	a carbo-hydrate thre	ough an oxygen atom formed by		
	elimination of water				
	4) None of these				
32.	Identify the one which does not b	elong to the class to	which the other three belong based		
	on hydrolysis				
	1) Sucrose 2) Fructose	3) Lactose	4) Maltose		
33.	Which among the following does				
	1) Fructose 2) Glucose	3) Galactose	4) Sucrose		
34.	Sucrose molecule contains				
	1) a glucopyranose and a fructop	yranose units			
	2) a glucopyranose and a fructofi	uranose units			
	3) a glucofuranose and a fructopy				
	4) a glucofuranose and a fructofu	ranose units			
35.	Maltose consists of				
	1) Only α-D glucose units	2) α - and β -D Glu	ucose units		
	3) Glucose and fructose	4) Fructose only			
	saccharides				
36.	Which of the following is animal				
	1) Amylopectin	2) Glycogen			
2.7	3) Amylose	4) Cellulose			
37.	Amylose consists of	•			
	1) Branched chain of α-D-glucose units				
	2) Unbranched chain of β -D-glucose units				
	3) Units of sucrose	•.			
20	4) Unbranched chain of α -D-glu	cose units			
38.	Amylopectin is a polymer of	2) or D = 1			
	1) β-D glucose	2) α-D glucose			
	3) β -D fructose	4) α - D fructose			

39.	In amylo	pectin the	linkage abs	sent is				
	1) C ₁ & 0	C ₄ 2) C	. & C ₆	3) C ₁ &	$^{2}C_{2}$	4) Both	$C_1 & C_6 a$	$\operatorname{nd} \operatorname{C}_2 \& C$
40.	Direct co	onversion o	of starch int	o glucose n	nay be carr	ried out by		
	1) ferme	ntation wi	th diastase	2) ferm	entation w	ith zymase	e	
	3) heating	g it with d	il HC <i>l</i>	4) ferm	entation w	ith maltase	e	
41.	The inter	mediate co	ompound in	the conver	rsion of sta	rch to gluc	cose is	
	1) Lactos	se 2) M	l altose	3) Fruc	tose	4) Sucro	se	
42.	Starch is	turned to	disaccharid	e in presenc	ee of			
	1) Maltas	se 2) Z	ymase	3) Dias	tase	4) Lacta	ase	
43.	Which or	ne of the f	ollowing sta	atements ab	out starch	is correct '	?	
	1) It occ	urs in the	cell wall of	plants 2) It	is a disacc	haride		
	3) It give	es a dark b	lue colour	with iodine	solution			
	4) It give	es an orang	ge red preci	pitate on bo	oiling with	Fehling's s	solution	
44.	Which of	f the follow	wing carbol	nydrates is t	he essentia	al constitue	ent of cell	wall?
	1) Starch	2) N	ſaltose	3) Cell	ulose	4) Sucre	ose	
45.	The mon	omer of c	ellulose is					
	1) L - fruo	ctose 2) D	-fructose	3) D - gl	ucose	4) Amy	lose	
46.	Cellulose is rigid due to							
	1) hydrogen Bonding			2) β (1,	,4) glycosi	dic linkage		
	3) cell wall material 4) Vegetable matter							
47.	Which of the following can act as food storage and structural materials?					?		
	1) Monosaccharides			2) Disa	ccharides			
	3) Oligo:	saccharide	S	4) Poly	saccharide	S		
48.	The carb	ohydrates	are stored	in animal bo	odies as			
	1) Starch	a 2) A	mylum	3) Glyc	ogen	4) Cellu	ılose	
49.	Which of	f the follow	wing is a br	anched cha	ir polysacc	haride?		
	1) Cellul	ose 2) R	affinose	3) Amy	lose	4) Glyce	ogen	
50.	Which of	f the follow	wing antise _l	otic is a car	bohydrate	?		
	A) Strept	tomycin B) Gentamyo	cin C) Neon	mycin			
	1) A, B	2) A	, C	3) B, C		4) A, B,	C	
				——KE	Y			
	1) 4	2) 4	3) 2	4) 1	5) 2	6) 3	7) 2	8) 4
	9) 2	10) 2	11) 3	12) 3	13) 1	14) 4	15) 1	16) 4
	17) 4	18) 1	19) 2	20) 1	21) 1	22) 3	23) 1	24) 4
	25) 2	26) 1	27) 4	28) 2	29) 2	30) 2	31) 3	32) 2
	33) 4	34) 2	35) 1	36) 2	37) 4	38) 2	39) 3	40) 3
	41) 2	42) 3	43) 3	44) 3	45) 3	46) 1	47) 4	48) 3
	49) 4	50) 4						

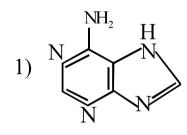
Question Bank - II

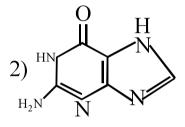
Amino Acids, Proteins and Nuclic Acids

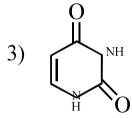
Amino Acids and Proteins

1.	The peptide	•		
	1) $-CH - CH$	COO – NH	2) - CH - CO - 4) - CH - NH	- NH –
	3) $-CH-C$	$H_2 - CO - NH_2$	$^{4)}$ $-CH-NH-N$	NH – CO –
2.		e following contains		
	1) Fats	2) Proteins	3) Carbohydrates	4) Hydrocarbons
3.	The building	unit of all proteins	is	
	1) monosacc	charides	2) lipids	
	3) amino aci	ds	4) primary amines	S
4.	Number of p	oeptide links in a trip	peptide	
	1) 3	2) 2	3) 6	4) 4
5.	The structur	al feature which dist	tinguishes proline fro	om α - amino acids is
	1) It is optic	ally inactive	2) It contains aron	matic group
	3) It is a dica	arboxylic acid	4) It is a secondar	ry amine
6.	Which of the	e following amino ac	cids possesses a non	n-polar side chain ?
	1) isoleucine	e 2) serine	3) cysteine	4) glutamic acid
7.	Which of the	e following amino ac	eids contains a thiol	group in the side chain?
	1) methionir	ne 2) cysteine	3) valine	4) serine
8.	The amino a	cid which contains a	a hydroxy group in t	the side chain
	1) cysteine	2) glutamine	3) serine	4) leucine
9.	Essential am	ino acid among the	following is	
	1) Glycine	2) Tryptophan	3) Alanine	4) Proline
10.	The number	of amino acids foun	d in proteins that a	human body can synthesize is
	1) 20	2) 10	3) 5	4) 14
11.	Which one c	of the following is no	ot an essential amino	o acid?
	1) Valine	2) Leucine	3) Lysine	4) Alanine
12.	Among the f	following the basic a	amino acid is	
	1) Glycine	2) Argenine	3) Proline	4) Cysteine
13.	Which of the	e following statemen	at is not correct?	
	1) proteins a	re polyamides forme	ed from amino aicds	S
	2) except gly	yeine, all other amin	o acids show optical	1 activity
	3) natural pr	oteins are made up	of L -isomers of ami	ino acids
	4) in α amino	o acids, - NH ₂ and	-COOH groups are	e attached to different carbon atoms
14.	For an amino	pacid 'X is		
	1) Acidic am	nino acid	2) Basic amino ac	eid
	3) Neutral a	mino acid	4) Acidic or basic	amino acid

15.	Which of the following statements is not correct?				
	1) amino acid can exist as inner salt				
	2) each polypeptide has one C - terminal and other N - terminal				
	3) enzymes are naturally occurri	ng simple proteins			
	4) the union of two amino acids	produces two peptide linkages			
16.	The primary structure of a protein	in tells about			
	1) 3D arrangement of all atoms	2) shape of poly peptide chain			
	3) specific sequence of amino ac	ids 4) 3D arrangement of oligo peptide chains			
17.	The dipeptide glycylalanine cont	tains			
	1) glycine as C-terminal residue	2) glycine as N-terminal residue			
	3) alanine as N-terminal residue	4) either (1) or (2)			
18.	β -pleated structure of proteins is	S			
	1) Primary structure	2) Secondary structure			
	3) Tertiary structure	4) Quaternary structure			
19.	The back bone for different segn	nents in a protein is in the following form			
	1) α -helix 2) α -pleated	3) coil 4) 1 or 3			
20.	The helical structure of proteins	is stabilized by			
	1) H-bonding	2) van der Waals' forces			
	3) ionic bond	4) peptide bond			
21.	Secondary structure of protein refers to				
	1) Mainly denatured proteins and structure of prosthetic groups				
	2) Three-dimensional structure, especially the bond between amino acid residues that are				
	distinct from each other in the	polypeptide chain			
	3) Linear sequence of amino acid	d residues in the polypeptide chain			
	4) Regular folding patterns of co	entinuous portions of the polypeptide chain			
22.	The bond that determines the sec	condary structure of a protein is			
	1) Co-ordinate bond	2) Covalent bond			
	3) Hydrogen bond	4) Ionic bond			
23.	Which of the following is a glob	ular protein?			
	1) Collagen	2) Myoglobin and Haemoglobin			
	3) Myosin	4) Enzymes			
24.	Tertiary structure of a protein wi	ll lead the polypeptide chains to get the following shapes			
	1) linear, octahedral	2) angular, tetrahedral			
	3) fibrous, globular	4) fibrous, planar			
25.	Maximum possible hydrogen bor	nds are present in			
	1) 3.6 ₁₃ Helix 2) Keratin	3) Silk fibroin 4) β - D - fructose			
26.	Mark the wrong statement about	denaturation of proteins			
	1) The primary structure of the p	rotein does not change			
	2) Globular proteins are converte	ed into fibrous proteins			
	3) Fibrous proteins are converted	d into globular proteins			
	4) The biological activity of the	protein is not cancelled			


27.	The restriction of the biological nature and activity of proteins by heat or chemical age is called					
	1) dehydration	2) denaturation	า			
	3) deoxidation	4) denitrogena				
28	,	, and the second				
28.	Addition of an electrolyte s	•	•			
	1) renaturation of proteins	•				
	2) denaturation of proteins	•	•			
	3) renaturation of proteins s		•			
• 0	4) denaturation of proteins					
29.		n example of Nucleic	acids "irreversible denaturation" of a			
	protein?	2) 1				
	1) boiling egg	2) change of a				
2.0	3) enzymatic action	4) its synthesis	}			
30.	Enzymes are	1	1			
	1) Complex nitrogenous su	•				
0.1	2) Steroids 3) Living org		4) Dead organisms			
31.	Nuclear types of proteins ba					
22	1) 1 2) 2	3) 3	4) 4			
32.	Structure that gives the sequence of the seque		•			
2.2	, , ,	3) Tertiary	•			
33.	The function of enzymes in the living system is to					
	1) transport oxygen	, .	•			
2.4	3) catalyse biochemical read	, ,	rgy			
34.	Which one of the following	•	4) DN 4			
25	1) Wool 2) Nail	3) Hair	4) DNA			
35.	Enzymes belong to which c	•	idaa			
	 Polysaccharides Polypeptides Polynitro heterocyclic compounds 4) Hydrocarbons 					
26		mpounds 4) Hydroca	TOORS			
36.	Enzymes are made up of	2) Proteins	s with specific structure			
	 Edible proteins Proteins with specific structure Nitrogen containing carbohydrates Carbohydrates 					
37.	, -		draics			
37.	Regarding enzymes, incorre					
		1) an enzyme is generally a protein				
		2) an enzyme may be a conjugated protein				
	3) ensyme gets deactivated					
.	4) enzyme gets activated du	iring reactions				
	leic acids					
38.	Which of the following con	•	aterial of the cell?			
	1) Nucleic acids	2) Proteins				
	3) Lipids	4) Carbohydrat	tes			


39.	Nucleic acids are called acids m	amly because of the	pres	sence of					
	1) -COOH group 2) - OH group of sugar unit								
	3) - OH group of the heterocyclic base 4) -OH group of phosphate unit								
40.	Wich of the following is not a pyrimidine base?								
	1) Uracil 2) Thymine	3) Cytosine	4)	Guanine					
41.	Th following does not belong to	o either purine or py	rimic	dines					
	1) Tryptophan 2) Cytosine	3) Uracil	4)	Adenine					
42.	Purine without ketonic group is								
	1) adenine 2) adenosine	3) cytidine	4)	thymidine					
43.	The purine base present in RNA is								
	1) Guanine 2) Thymine	3) Cytosine	4)	Uracil					
44.	6 - amino purine is commonly c	6 - amino purine is commonly called							
	1) Adenosine 2) Adenine	3) Cytosine	4)	Thymine					
45.	The bases that are common in bo	The bases that are common in both RNA and DNA are							
	1) adenine, guanine, cytosine	2) adenine, guani	ne, tl	hymine					
	3) adenine, uracil, cytosine 4) guanine, uracil, thymine								
46.	Adenosine monophosphae (AMP) is a								
	1) nucleotide 2) nucleoside	3) insecticide	4)	antibacterial					
47.	The phosphodiester linkage in a nucleotide is between								
	1) 5' and 1' carbons 2) 5' and 3' carbons								
	3) 1' and 5' carbons 4) 3' and 5' carbons								
48.	Which one of the following is not present in DNA?								
	1) adenine 2) ribose	3) cytosine	4)	guanine					
49.	The pentose sugar in DNA and RNA has								
	1) Open chain structure 2) Pyranose structure								
	3) Furanose structure 4) None of the above								
50.	Adenosine is an example of a								
	1) Nucleotide 2) Nucleoside	3) Purine base	4)	Pyridine base					
51.	Nucleoside on hydrolysis gives								
	1) Pentose sugar and purine base								
	2) Pentose sugar, phosphoric acid, purine or pyrimidine base								
	3) Pentose sugar and a heterocyclic base								
	4) Heterocyclic base and phosphoric acid								
52.	In nucleic acids, the sequence is represented as								
	1) Phosphate - base - sugar 2) Sugar - base - phosphate								
	3) Base - sugar - phosphate 4) Base - phosphate - sugar								
53.	In nucleic acids, the nucleotides are linked to one another through								
	1) Hydrogen bond	2) Peptide bond							
	3) Glycosidic linkage 4) Phosphate groups								


- 54. In a nucleotide the phosphate linkage is generally attached to
 - 1) C 1 of sugar
- 2) C 2 of sugar
- 3) C 5 of sugar
- 4) N of base
- 55. Adenine pairs with thymine through
 - 1) two hydrogen bonds
- 2) one hydrogen bond
- 3) three hydrogen bonds
- 4) four hydrogen bonds
- 56. Primary & secondary structures of Nucleic acid reveals
 - 1) Nucleotide sequence & Single or double helix structure
 - 2) Amino acid sequence & 3D-folding
 - 3) Amino acid sequence & shape of protein
 - 4) Single/double helix structure and Nucleotide sequence.
- 57. Hydrolysis of adenosine triphosphate involves rupture of
 - 1) Base-sugar bond
- 2) Sugar-phosphate bond

3) P-O-P bond

- 4) P-N-P bond
- 58. The base present in Cytidine:

- 4) NH₂
- 59. The backbone of a nucleotide strand contains the following sequence of arrangement
 - 1) Base-Sugar

- 2) Sugar-Phosphate
- 3) Base-Phosphate
- 4) Base₁-Base₂
- 60. The couplings between base units of DNA is through
 - 1) Hydrogen bonding
- 2) Electrostatic bonding
- 3) Covalent bonding
- 4) vander Waals forces
- 61. The main role of DNA in a living system is
 - 1) It is the structural material of cell walls
 - 2) It is an enzyme
 - 3) It carries the hereditary characteristics of the organism
 - 4) It participates in cellular respiration
- 62. Synthesis of identical copies of DNA is called
 - 1) transcription

2) replication

3) translation

4) reverse transcription

KEY								
1) 2	2) 2	3) 3	4) 2	5) 4	6) 1	7) 2	8) 3	
9) 2	10) 2	11) A	12) 2	13) 4	14) 3	15) 4	16) 3	
17) 2	18) 2	19) 4	20) 1	21) 4	22) 3	23) 2	24) 3	
25) 1	26) 4	27) 2	28) 2	29) 1	30) 1	31) 3	32) 1	
33) 3	34) 4	35) 2	36) 2	37) 4	38) 1	39) 4	40) 4	
41) 1	42) 1	43) 1	44) 2	45) 1	46) 1	47) 2	48) 2	
49) 3	50) 2	51) 3	52) 3	53) 4	54) 3	55) 1	56) 4	
57) 3	58) 4	59) 2	60) 1	61) 3	62) 2			

Question Bank - III

SET - I

- 1) Both A & R are true and R is the correct explanation of A
- 2) Bom A & R are true, but R is not the correct explanation of A + B
- 3) A is true. R is false
- 4) A is false, R is true
- 1. (A): Guanine unites with Cytosine but not with Thymine
 - (R): Guanine and Cytosine are purine bases while Thymine is a pyrimidine base
- 2. (A): Adenine pairs up with thymine but not with cytosine
 - (R): With cytosine, no hydrogen bonds are possible for adenine
- 3. (A): Proteins are made up of a -amino acids
 - (R): During denaturation, secondary and tertiary structures of proteins are destroyed.
- 4. (A): The pyrimidine base thymine is present in RNA
 - (R): RNA controls the synthesis of proteins.
- 5. (A): The simplest α -amino acid is optically inactive
 - (R): Simplest α -amino acid has no chiral carbon centre
- 6. (A): The folding of polypeptide chains leads to globular proteins
 - (R): Globular structure is a part of secondary structure of protein
- 7. (A): The synthesis of proteins is governed by DNA
 - (R): DNA has the deoxyribose sugar molecule as a part of the structural unit
- 8. (A): All DNA and RNA molecules contain adenine, guanine and cytosine base molecules
 - (R): Adenine, guanine and cytosine molecules are examples of the same base type
- 9. (A): Enzymes are globular proteins
 - (R): Enzymes are consumed during reactions.

SET - II

- 1) Both A and R are true and R is the correct explanation of A
- 2) Both A and R are true, but R is not the correct explanation of A
- 3) A is true but R is false
- 4) Both A and R are False

- 10. Denaturation of a protein can be done on heating or by adding a suitable solvent (A): (R): Denaturation of a protein effects its primary structure explanation of A (A): All enzymes are proteins but all proteins are not enzymes 11. (R): Keratin is an enzyme 12. (A): At isoelectric point an amino acid has highest solubility (R): Isoelectric point of an amino acid is usually at a pH value of 7. (A): 13. Amino acid that can be synthesised by human body is called essential amino acid (R): All a -amino acids are essential amino acids The acidic nature of glycine is due to $-NH_3^+$ group (A): 14. -NH₃⁺ group acts as a proton donor group (R): 15. (A): At isoelectric point, the amino group does not migrate under the influence of electric field. At isoelectric point, amino acid exists as a zwitter ion. (R): **KEY** 3) 3 4) 4 5) 1 1) 3 2) 2 6) 3 7) 4 8) 3 9) 3 10) 3 12) 4 13) 4 15) 1 14) 1 11) 3 **Question Bank - IV** Vitamins and Hormones 1. Water soluble vitamins are 1) A,D 2) E,K 3) D,E 4) C,B Which one of the following is not a source of vitamin "A" 2. 3) Yeast 1) Milk 2) Liver 4) Egg Night blindness is due to the deficiency of 3. 1) Vitamin A 2) Hormones 3) Vitamin B₁₂ 4) Riboflavin
- 4. The chief source of vitamin D is 1) Fish liver oil 2) Spinach 3) Cow dung 4) Citrous fruit 5. Antiricketic vitamin is 1) Vitamin A 2) Vitamin B₁₂ 3) Vitamin C 4) Vitamin D Deficiency of Vitamin E leads to 6. 1) Neurosis of heart muscles 2) Degeneration of lacrymal gland 4) Dermatitis 3) Beri-Beri In all green leaves and vegetables, which of the following vitamin is available? 7. 1) Vitamin A 2) Vitamin D 3) Vitamin K 4) Vitamin B₁₂ 8. Which of the following vitamin is Naphthaquinone derivative? 2) B 3) D 4) K 1) A 9. Anti haemorrhagic vitamin is 2) B 1) A 3) D 4) K

10.	Deficiency of	Vitamin B ₂ leads t	0					
	1) Bow legs	2) Cheilosis	3) Pellegra	4) Vision loss				
11.	The following	The following vitamin plays a role in transportation of amino acids across the cell						
	membrane.							
	1) B ₁	2) B ₂	3) B ₃	4) B ₆				
12.	Convulsion is	Convulsion is due to deficiency of vitamin						
	1) B ₁	2) B ₂	3) B ₅	4) B ₆				
13.	Which of the	Which of the following is not a source of vitamina-A						
	1) Fish oils	2) Carrots	3) Yeast	4) Milk				
14.	Vitamin B _{J2} is rich in							
	1) Sewage sludge		2) Liver of pig					
	3) Egg		4) all					
15.	Ascorbic acid	resembles the stru	cture of					
	1) Vitamin A	2) Glucose	3) Cellulose	4) Vitamin D				
16.	Deficiency of	Deficiency of Vitamin "C" leads to						
	1) gum swelling		2) blead easily and	d teeth become loose				
	3) delay in wound healing		4) all					
17.	Dark red tongue, fissuring at corner of mouth and lips are the symptoms of the deficiency							
	of which vitar	nin						
	1) C	2) A	3) B ₂	4) D				
18.	Vitamin B ₆ is 1							
	1) Pyridoxine	2) Thiamine	3) Tocopherol	4) Riboflavin				
19.	Vitamin D is	Vitamin D is called						
	1) Ascorbic acid		2) Calciferol or ergocalciferol					
	3) Thiamine		4) Riboflavin					
20.	Which of the following vitamins is nos soluble in water?							
	1) C	2) B ₁	3) B ₂	4) D				
21.	The best source	ce of vitamin C is						
	1) Cod liver oil		2) Egg yolk					
	3) Citrous fruits		4) Fish liver oil					
22.	The deficiency of vitamin K causes							
	1) Haemorrhage		2) Lengthening ti	me of blood clotting				
	3) Inflammation of tongue		4) Both (1) and (2	2)				
23.	Nervousness anaemia is caused by the deficiency of vitamin							
	1) B ₁	2) B ₂	3) B ₆	4) B ₁₂				
24.	· 1	vitamin E causes	7 0	7 12				
	1) Scurvy			2) Loss of appetite				
	3) Loss of sexual power and reproduction		roduction	4) Beri Beri				
25.	Which of the following is a fat soluble vitamin?							
		2) Riboflavin	3) Pyridoxine	4) Thiamine				
	,	,	, ·	/				

26.	The metal present in vitamin B_3 is						
	1) Iron 2) Manganese	3) Cobalt 4) Magnesium					
27.	The deficiency of which of the following vitamins adversely affects eye sight						
	1) A 2) D	3) B ₁₂ 4) E					
28.	Match List - I with List - II and s	select the correct answer using the codes given below.					
	List-I	List-II					
	I. Anti-beriberi factor	A. Vitamin C					
	II. Pancreas	B. Glycerides					
	1II. Palm oil	C. Vitamin B ₁					
	IV. L (+)— Asorbic acid	D. Insulin					
	1) I - C, II - D; III - B ; IV - A	2) I - C; II - D; III - A; IV - B					
	3) I - A; II - B; III - D ; IV - C	4) I - A; II - B; III - C ; IV - D					
29.	Match the following						
	List-I	List-II					
	A) B ₁	I) Riboflavin					
	B) B ₂	II) Retinol					
	C) A	III) Ascorbic acid					
	D) C	IV) Thiamine					
	The correct match is						
	A B C D	A B C D					
	1) IV I III II	2) IV III I II					
	3) III IV II I	4) IV I II III					
30.	Match List - I (name of vitamin)) with List - II (deficiency result/disease) and select the					
	correct answer using the codes given below.						
	List -I	List - II					
	I) Ascorbic acid	A) Beri-beri					
	II) It Retinol	B) Cracked lips					
	III) Riboflavin	C) Scurvy					
	IV) Thiamine	D) Night blindness					
	1) I - B; II - A; III-C; IV - D	2) I - A; II - B; III - C ; IV - D					
	3) I - D; II - C; III - III ; IV - A	4) I - C; II - D; III - B; IV -A					
Horr	nones						
31.	Which of the following substance	e acts as stimulator?					
	1) Vitamin 2) Enzyme	3) Hormone 4) Carbohydrate					
32.	Receptors of hormones are generated	rally					
	1) Carbohydrates 2) Vitamins	3) lipids 4) Protiens					
33.	Steroid hormones are produced by	by the					
	a) Adrenal cortex b) Pancreas	c) Thyroid d) Testis e) Pitutary					
	1) a and d 2) a, b, and c	3) c, d 4) d, e					

34.	Substances produced by endocrine glands are									
	1) Vitamir	ns 2) Ha	rmones	3) Herb)	4) Drug				
35. Which of the following is a derivative of amino acid?										
	1) Thyrox	in 2) Es	tradiol	3) Estro	ogene	4) Proge	esterone			
36.	Total num	ber of car	bon atoms	present in	stejoid nuc	leus.				
	1) H	2) 17		3) 10		4) 20				
37.	Which of	following	hormone is	s produced	by testis?	•				
	1) Progesterone			2) Estra	2) Estradiol					
	3) Testoste	erone		4) Estro	one					
38.	Harmone	containing	only keto	nic function	nal group i	S				
	1) Estradio	ol 2) Pro	ogresterone	e 3) Testo	osterone	4) Insul	in			
39.	Phosphory	lation of	glucose is 1	not increase	ed by					
	1) Auxins	2) Ins	sulin	3) Ethylene 4) Trausmatic aci						
40.	10. Thyroxin is									
	1) Protein type vitamin			2) Amii	2) Aminoacid type nucleic acid					
	3) Protein	type horn	none	4) Amii	4) Aminoacid type hormone					
г				KE	KEY					
	1) 4	2) 3	3) 1	4) 1	5) 4	6) 1	7) 3	8) 4		
	9) 4	10) 2	11) 4	12) 4	13) 4	14) 2	15) 2	16) 3		
	17) 3	18) 1	19) 2	20) 4	21) 3	22) 4	23) 4	24) 3		
	25) 1	26) 3	27) 1	28) 1	29) 4	30) 4	31) 3	32) 4		

36) 2

37) 3

38) 2

32) 4

40) 4

39) 2

35) 1

34) 2

33) 1

10. CHEMISTRY IN EVERY DAY LIFE

Synopsis:

- Page 247, 249, 250 (bit 62) IIC
- 1. According to 'WHO', a drug is defined as a substance or product which is used or intended to be used for modifying or exploring physiological systems or pathalogical states for the benefit of the recipient. Their molecular masses ~ ranging from 100-500 units
- 2. An ideal dmg should satisfy following conditions.
 - a) its action should be localised only at the site
 - b) it should not be toxic.
 - c) its side effects should be tolerable d) it should not injure host tissues.
- 3. The drugs which produce therapautic and useful biological response are called medicines. All medicines are drugs. But all drugs need not be medicines.
- 4. In living organism, histamine is synthesised from the naturally occurring a amino acid histidine by the loss of carboxyl group through bacterial (or) enzymatic decarboxylation. Histamine causes inflammation in the body. Antihistamines inhibit the action of histamine.
- 5. Drugs havig same stmctural features will have same physiological and pharmacological effects, eg. Morphine, Heroin and Codeine have same structural features and relieve from pain and produce sleep.
- 6. Alkaloids like morphine, codeine, papaverine and heroin are commonly used Narcotic drugs (opiates).
- 7. Narcotic drugs relieve pain by acting on central nervous system and produce sleep.
- 8. Morphine can be used to Check diarrhoea, ease dyspnea, suppress cough and induce sleep in the presence of pain.
- 9. Codeine can be obtained by methylation of one of the phenolic groups of morphine with phenyl trimethyl ammonium hydroxide.
- 10. The analgesic activity of codeine is relatively less than that of morphine.
- 11. Norcotic drugs tend to produce euphoria which is mainly responsible for their addictive property.
- 12. Non-norcotic analgesis act as analgesics without any addictive properties.
- Aspirin is acetyl salicylic acid (or) salicylic acid acetate(or) O acetyl salicylic acid. It was first prepared by Kolbe by refluxing salicylic acid with acetic anhydride or acetic acid in the presence of H₂SO₄ (cone).
- 14. Aspirin is analgesic (pain reliever) and antipyretic (body temperature reducer). It also acts as antirheumatic and anti-inflammatory. It inhibits platelet function.

- Used to minimize the incidence of myocardial intraction and t- transient ischemic attacks.
- 15. Chemically Ibuprofen is a methyl 4 (2-methyl propyl) benzene acetic acid.
- 16. Ibuprofen can be used as antinflammatory, antipyretic and analgesic. It can be used for the treatment of rheumatoid arthritis and osteoarthritis.
- 17. Antipyretics can be called as coal tar analgesics since they are obtained from coal tar. Amino phenols are relatively less toxic than aniline, p-aminophenol is least toxic with considerable antipyretic action.
- 18. Paracetamol is N-acetyl para aminophenol or 4- hydroxy acetanilide or N (4 hydroxy phenyl) acetamide.
- 19. Paracetmol is a synthetic non opiate and it is used as antipyretic and analgesic.lt is used for arthritic rheumatic condition linked with musculoskeletal pain, headache, neuralgias, myalgias and dysmenorrhea. Paracetamol is a < better drug than aspirin.
- 20. Phenacetin is [N (4 ethoxyphenyl)] acetamide.
- 21. Phenacetin can be used as analgesic and antipyretic. It is more toxic than paracetmol. Irreversible kidney damage has been established with its prolonged usage.
- Analgin (or Novalgin) is sodium 1,5- dimethyl 3-oxo-2 phenyl -4 pyrazoyl (methyl) aminomethane sulphonate. It is prepared from phenyl hydrazine and ethyl acetoacetate units.

 It can be used as antipyretic and analgesic.
- 23. KBr is a sedative but not hypnotic, Thiopentone sodium is a powerful hypnotic but not a sedative.
- 24. The sedatives and hypnotics are broadly classified into barbiturates and non barbiturates.
 - Derivatives of barbituric acid are called barbiturates which can act as hypnotic drugs. **eg.** veronal, amytal, nembutal, luminal and seconal.
- 25. Barbituric acid can be obtained by the condensation of malonyldichloride acid and urea in presence of $POCl_3$. Barbituric acid has no central nervous system (CNS) activity but its alkenyl and / or aryl derivatives have CNS activity.
- 26. Luminal (Phenobarbitone) is 5 ethyl-5 Phenyl-Barbituric acid. Seconal (Quinal barbitone) is sodium 5-allyl-5-(l-methyl butyl) barbiturate. Luminal is used as both hypnotic and sedative. It is used in treating grandmal and petimal epilepsy.
- Valium and serotonin are both tranquilizers. Tranquilizers are drugs essentially used in the management and treatment of psychoses and neuroses. Major tranquilizers are for psychoses and minor tranquilizers are for neuroses.
- 28. Diazepam is a benzodiazepine. It is used to relieve anxiety and provide sedation and light anaesthesia.
- 29. Abnormalities in the level of dopamine in the brain cause parkinson's disease.

- Abnormalities in the metabolism of serotonin cause schizophemia.
- 30. Adrenaline and noradrenaline are two hormones secreted in medulla of the adrenal gland. Adrenaline increases the blood pressure, strengthening of heart rate and widening of the passages of the lungs. All of these prepare the animal to fight or to flee.
- 31. If the level of noradrenaline is low the signal sending activity also would be low and the person suffers from depression. Iproniazid and phenalzine are anti depression drugs.
- 32. Several body secretions either kill microbes or inhibit their growth. Eg. Lysozyme (lipid splitting enzyme) present in tears, nasal secretion and saliva. Fatty acids and lactic acid in sweat and sebaceous secretions, HCl in stomach.
- 33. Antibiotics, antiseptics and disinfectants are antibacterial (or) antimicrobial drugs.
- 34. According to Wakesmann an antibiotic is a substance produced by the microorganisms which has the capacity of inhibiting the growth (or) destroying other micro organism.
- 35. In low concentrations antibiotics inhibit the growth or destroy the microorgansism by interfering in their metabolic process.
- Antibiotics are two types Bactericidal (they kill the microbes) eg. Penicillin, Amino glycosides, ofloxacin and Bacteriostatic (they inhibit the growth of microbes) eg. Erythromycin, Tetracycline, Chloramphenicol.
- Penicillin is the first antibiotic discoverd by Flemming. It is a mixture of natural compounds having molecular formula C₉ Hj O₄N₂SR.
- 38. Depending on the nature of R, the different penicillines are: If

R = pent - 2 - enyl - -- pencillin I or F

 $R = -CH_2 - C_6H_5$ benzyl penicillin (or) penicilline II or G

 $R = -CH_2 - C_6H_4 - OH$ it is P - hydroxy benzyl penicillin (or) penicillin III or X

 $R = -(CH_2)_6 - CH_3 - n$ -heptyl penicillin _v

 $R - (CH_2)_4 CH_3 - amyl penicillin l$

 $R = -CH_2 - O - C_6H_5$ phenoxy methyl - penicillin

- Sulphadiazine is a sulpha dmg. It has a benzene ring and a heterocylic aromatic 6 memberd ring. Its molecular formula is $C_6H_{10}N_4$ SO_2 ,
- 40. Broad spectrum antibiotics kill or inhibit a wide range of gram-positive and gram -negative bacteria. Eg.: Synthetic modifications of penicillins like ampicillin and amoxycillin, chloramphenicol, vancomycin, ofloxacin and dysidazirine.
- Chroamphenical is bacteriostatic and broad spectrum antibiotic. It is rapidly absorbed from gastrointestinal tract hence it can be given orally for typhoid, dysentery, acute fever, meningitis, pneumonia and for urinary infections.
- 42. Narrow spectmm antibiotics will kill (or) inhibit either gram positive or gram negative bacteria. Ex: penicillin-G.

- 43. Limited spectrum antibiotics are effective against a single organism or disease.
- 44. Antiseptics are applied to the living tissues such as wounds, cuts, ulcers and diseased skin surfaces. These are for external use only, cannot be ingested like antibiotics, eg. Dettol a mixture of chloroxylenol and terpineol, Bithionol added to soaps, Tincture of Iodine 2-3 % solution of I₂ in alcohol water mixture, Boric acid a weak antiseptic for eyes.
- Disinfectants are applied to floors, drinage system and such inanimate objects. 40% aq solution of formaladehyde is called formalin. It is used as disinfectant and for preservation of biological specimens. 0.2-0.4% chlorine water and S09 in very low concentrations can be used as disinfectants.
- 46. Same chemicals may be used as antiseptics as well as disinfectants. 0.2 % phenol can acts as antiseptic while 1% phenol is disinfectant.
- 47. Antifertility Drugs are compounds of progesterone and estrogen hormones. Norethindrone is progesteron derivative. Ethynylestradiol (novestrol) is estrogen derivative.
- 48. Mifepristone is a synthetic steroid that blocks the effects of progesterone. Hence it is a constituent of morning after pill.
- 49. Chemicals that remove the excess acid in the stomach and maintain the P^H to normal level are called antacids, MgCO₃, A1PO₄; NaHCO -. Magnesium trisilicate; omeprazole and lansoprazole. A mixture of Ah OH and Mg(OH)₂ or NaHCO- can be used as antacids as they neutralise the acids.
- 50. Excess of NaHCO₃ makes the stomach alkaline and triggers the over production of acids. Mg(OH)₂ and A1 (OH)₃ are insoluble and do not increase the pH above 7. Thus metal hydroxides are better antacids than NaHCO₃,
- Mixture of Mg $(OH)_2$ and A1 $(OH)_3$ relieve the patients temporarily from painful effects. It cannot cure ulcers and cannot stop the production of acids.
- 52. Omeprazole and lansoprazole are antacids used recently. These compounds do not allow the formation of acid in the stomach.
- 53. Cimetidine (tegament) and ranitidine are antihistanines used as antacids. Bromo or chloro pheniramine (dimetap or dimetane) and terfenadine (seldane) are antihistamines used as antiallergics.
- 54. Anti oxidants retard the action of oxygen on food since they are more reactive towards oxygen than the food materials. They reduce the rate of involvement of free radicals in the aging process. Generally used anti oxidants are Butylated Hydroxy Toluene (BHT) and Butylated Hydroxy Anisole (BHA). SO₂ and SO₃⁻² are used as antioxidants for wine, beer, sugar syrup, cut peeled, or dried fruits and vegetables.
- 55. Food dyes have no nutritive value but sometimes are harmful particularly for children, asthma patients etc.
- 56. Carotene is safe food colour tetrazine is one such highly used suspect.

- 57. Food preservatives prevent spoilage of food due to microbial growth. Eg.: NaCl, Sugar, Vegetable oils, Salts of sorbic acid & propionic acid.
- Natural sweetners like sucrose not only gives sweetness but also adds calories. Therefore the diabetic patients prefer to use artificial sweetners insted of sucrose.
- 59. Ortho-sulphobenzamide is called saccharine. It is 550 times sweeter than cane sugar.
- 60. Aspartame is 160 times sweeter than cane sugar. Chemically it is methyl ester of dipeptide formed from aspartic acid and phenylalanine
- Alitame is high potency sweetner which is 2000 times sweeter than sucrose and more stable than aspartame.
- 62. Sucralose is trichloro derivative of sucrose.

Cleansing Agents

In this Section, we will learn about **detergents**. Two types of detergents are used as cleansing agents. These are soaps and synthetic detergents. These improve cleansing properties of water. These help in removal of fats which bind other materials to the fabric or skin.

Soaps

Soaps are the detergents used since long. Soaps used for cleaning purpose are sodium or potassium salts of long chain fatty acids, e.g., stearic, oleic and palmitic acids. Soaps containing sodium salts are formed by heating fat (*i.e.*, glyceryl ester of fatty acid) with aqueous sodium hydroxide solution. This reaction is known as **saponification**.

In this reaction, esters of fatty acids are hydrolysed and the soap obtained remains in colloidal form. It is precipitated from the solution by adding sodium chloride. The solution left after removing the soap contains glycerol, which can be recovered by fractional distillation. Only sodium and potassium soaps are soluble in water and are used for cleaning purposes. Generally potassium soaps are soft to the skin than sodium soaps. These can be prepared by using potassium hydroxide solution in place of sodium hydroxide.

Types of soaps

Basically all soaps are made by boiling fats or oils with suitable soluble hydroxide. Variations are made by using different raw materials.

Toilet soaps are prepared by using better grades of fats and oils and care is taken to remove excess alkali. Colour and perfumes are added to make these more attractive.

Soaps that float in water are made by beating tiny air bubbles before their hardening. Transparent soaps are made by dissolving the soap in ethanol and then evaporating the excess solvent.

In *medicated soaps*, substances of medicinal value are added. In some soaps, deodorants are added. *Shaving soaps* contain glycerol to prevent rapid drying. A gum called, rosin is added while making them. It forms sodium rosinate which lathers well. *Laundry soaps* contain fillers like sodium rosinate, sodium silicate, borax and sodium carbonate.

Soap chips are made by running a thin sheet of melted soap onto a cool cylinder and scraping off the soaps in small broken pieces. Soap granules are dried miniature soap bubbles. Soap powders and scouring soaps contain some soap, a scouring agent (abrasive) such as powdered pumice or finely divided sand, and builders like sodium carbonate and trisodium phosphate. Builders make the soaps act more rapidly. The cleansing action of soap has been discussed in chapter 4.

Why do soaps not work in hard water?

$$2C_{17}H_{35}COONa + CaCl_2 \longrightarrow 2NaCl + (C_{17}H_{35}COO)_2Ca$$
Soap

Insoluble calcium stearate (Soap)

Hard water contains calcium and magnesium ions. These ions form insoluble calcium and magnesium soaps respectively when sodium or potassium soaps are dissolved in hard water.

These insoluble soaps separate as scum in water and are useless as cleansing agent. In fact these are hinderance to good washing, because the precipitate adheres onto the fibre of the cloth as gummy mass. Hair washed with hard water looks dull because of this sticky precipitate. Dye does not absorb evenly on cloth washed with soap using hard water, because of this gummy mass.

Synthetic Detergents

Synthetic detergents are cleansing agents which have all the properties of soaps, but which actually do not contain any soap. These can be used both in soft and hard water as they give foam even in hard water. Some of the detergents give foam even in ice cold water.

Synthetic detergents are mainly classified into three categories:

- (i) Anionic detergents (ii) Cationic detergents and (iii) Non-ionic detergents
 - (i) Anionic Detergents: Anionic detergents are sodium salts of sulphonated long chain alcohols or hydrocarbons. Alkyl hydrogensulphates formed by treating long chain alcohols with concentrated sulphuric acid are neutralised with alkali to form anionic detergents. Similarly alkyl

benzene sulphonates are obtained by neutralising alkyl benzene sulphonic acids with alkali.

In anionic detergents, the anionic part of the molecule is involved in the cleansing action. Sodium salts of alkylbenzenesulphonates are an important class of anionic detergents.

They are mostly used for household work. Anionic detergents are also used in toothpastes.

(ii) Cationic Detergents: Cationic detergents are quarternary ammonium salts of amines with acetates, chlorides or bromides as anions. Cationic part possess a long hydrocarbon chain and a positive charge on nitrogen atom. Hence, these

$$\begin{bmatrix} \operatorname{CH}_{3} \\ \operatorname{I} \\ \operatorname{CH}_{3}(\operatorname{CH}_{2})_{15} - \operatorname{N} - \operatorname{CH}_{3} \\ \operatorname{I} \\ \operatorname{CH}_{3} \end{bmatrix}^{+} \operatorname{Br}$$

hydrocarbon chain and a positive Control of the charge on nitrogen atom. Hence, these Cetyltrimethyl ammonium bromide are called cationic detergents. Cetyltrimethyl-ammonium bromide is a popular cationic detergent and is used in hair conditioners.

Cationic detergents have germicidal properties and are expensive, therefore, these are of limited use.

(iii) Non-ionic Detergents: Non-ionic detergents do not contain any ion in their constitution. One such detergent is formed when stearic acid reacts with polyethyleneglycol.

$$CH_{3}(CH_{2})_{16}COOH + HO(CH_{2}CH_{2}O)_{n}CH_{2}CH_{2}OH \xrightarrow{-H_{2}O} CH_{3}(CH_{2})_{16}COO(CH_{2}CH_{2}O)_{n}CH_{2}CH_{2}OH$$
Stearic acid Polyethyleneglycol

Liquid dishwashing detergents are non-ionic type. Mechanism of cleansing action of this type of detergents is the same as that of soaps. These also remove grease and oil by micelle formation.

Main problem that appears in the use of detergents is that if their hydrocarbon chain is highly branched, then bacteria cannot degrade this easily. Slow degradation of detergents leads to their accumulation. Effluents containing such detergents reach the rivers, ponds, etc. These persist in water even after sewage treatment and cause foaming in rivers, ponds and streams and their water gets polluted. So, branched chain detergants are non-biodegradable and unbranched hydrocarbon detergants are biodegradable and hence polution is prevented.

These days the branching of the hydrocarbon chain is controlled and kept to the minimum.

Question Bank – I

 An ideal drug should not have the following. Be toxic Be localized at invading gland 								
(3) Have tolerable side effects (4) Not injure host cells.2. Secretion of HCl is stimulated by								
(1) Histamine (2) Dopamin) Serotir	nine	
3. The substance which effort centr		•				-		
(1) Antipyretic (2) Analgesic					rs (4) Antise	ptic	
 4. The following can act only as sedative but not hypnotic. (1) Thio pentone (2) KBr (3) Barbiturates (4) Barbituric aci 								
(1) Thio pentone (2) KBr		(3)	Barbi	iturates	s (4) Barbiti	uric acid	
5. Substances which relieve body p		(2)	1 .	: .	(1	\ \	1	
(1) antipyretic (2) antibiotic		(3)	anaig	esic	(4) antima	lariais	
6. The drug given during hyper tens		(2)	Eano	n:1	(1) A amini	•	
(1) Streptomycin (2) Chloroxy		, ,	_		(4) Aspirii	11	
7. The following drugs cannot be us					(1) Disinfo	actont	
(1) antiseptic (2) antipyreti 8. Which of the following is natural		(3)	antio	Diotic	(4) Disinfo	Sciant	
(1) Asparine (2) Ibuprofer	-	(3)	Morn	hine	(1) Parace	tamol	
9. The anti oxidant for wine is	1	(3)	wiorp	illiic	(-) Taracc	taiiioi	
		(0)	~· ·					
(1) $So_2 \& So_3^{-2}$ (2) $BH^+ \& B$	HA	(3)	Citric	Acid	(4) Tetraz	ine	
10. Sucrolose structure is similar to								
(1) Alitame (2) Asportan	ne	(3)	Sacch	narin	(4) Sucros	e	
11. A moxillin is semi synthetic mo	dificatio	n of						
(1) pencillin (2) streptomy	ycin	(3)	Tetra	cycline	e (4) Chlora	mphenical	
12. A broad spectrum antibiotic is								
(1) Paracetamol (2) Pencillin-	-G	(3) Aspirin			(4	(4) Chloramphenicol		
13. 0.2% solution of phenol is								
(1) antiseptic (2) disinfecta	ınt	(3)	antibi	iotic	(4	antifer	tility	
14. Match the following.								
I		II						
1. Iodoform	A) An							
2. Methyl Salicylate	tisep							
3. Di ethyl ether C) Insecticide								
4. Hexa Chloro Cyclohexane D) Pain Balm								
(1) 2 1 3 4	` /	2		3				
(3) 2 4 1 3	(4) 3		1	2				
Radius ratio, the shape of the molecule and coordination number.								
KEY								
1) 1 2) 1 3) 3 4) 2	5) 3	6	3	7) 2	8) 3	9) 1	10) 4	
11) 1 12) 4 13) 1 14) 3	<i>5</i> , 5	J	, –	., -	0) 0	<i>)</i> , •	10)	

Question Bank - II

Chemistry in medicine

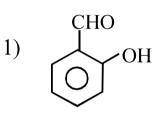
l.	The treatment of diseases by using	ng drugs is known as
	1) physiotherapy	2) magneto therapy
	3) chemotherapy	4) occupuncture
2.	The classification of drugs in the	e following manner is most conveniant for doctors
	1) Based on pharmacological eff	ect 2) Based on drug action
	3) Based on chemical structure	4) Based on molecular targets
3.	Molecular mass of drugs usually	is in the range of
	1) $10 - 100 \mu$ 2) $100 - 500 \mu$	3) 500 - 1000 μ 4) 1000 - 10000 μ
4.	An ideal drug should not have the	ne following quality
	1) Be toxic	2) Be localised at invading gland.
	3) Have tolerable side effects	4) Not injure host cells
5.	The following can be a drag targ	et
	1) Nucleic acid	2) Paracetmol
	3) Omeprazole	4) Terfenadine
Anta	acids	
5.	Secretion of HCl in the stomach	is stimulated by
	1) Histamine 2) Dopamine	3) Noradrenaline 4) Serotonine
7.	The following anti histamine doe	es not act as antacid
	1) Terfenadine 2) Lansoprazole	3) Cimitidine 4) Rantidine
Trar	nquilisers	
3.	Barbituric acid and its derivative	es are well knows as
	1) Tranquillizers	2) Antiseptics
	3) Antibiotics	4) Analgesics
9.	The substances which affect the	central nervous system and induce sleep are called
	1) antipyretics	2) tranquilizers
	3) analgesics	4) anti septic
10.	The enzyme which catalyses the	degradation of noradrenaline can be inhibited by
	1) Iproniazid 2) KBr	3) Ibuprofen 4) Barbituric acid
11.	Which of the following is not a	tranquilizer
	1) Luminal 2) Seconal	3) Valium 4) Alitame
12.	Which of the following substance	e may be used as antiseptic as well as disinfectant
	1) formal dehyde	2) chlorine
	3) KMnO ₄	4) Phenol
13.	The condensation product of ma	alonyl dichloride and urea in presence of $POCl_3$ is
	1) Barbituric acid	2) Ibuprofen
	3) Codine	4) Pencilline
14.	Barbiturates exert deppressant ac	ction on
	1) Gut 2) Heart	3) Cerebrospinal axis 4) All the above

Analgesics

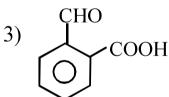
- Which of the following can possibly be used as analgesic without causing addiction and 15. any modification?
 - 1) Morphine

- 2) Diazepam
- 3) N- Acetyl para-aminophenol
- 4) Tetrahydrocatechol
- 2-Aeetoxy benzoic acid can be used as 16.
 - 1) Antiseptic 2) Antipyretic
- 3) Antibiotic
- 4) Mordant dye
- 17. Substances which relieve body pains are termed as
 - 1) antipyretics

2) antibiotics


3) analgesics

- 4) antimalarials
- The drug given during hyper tension is 18.
 - 1) Streptomycin
- 2) Chloroxylenol


3) Equanil

4) Aspirin

- Ibuprofen is a 19.
 - 1) non-narcotic drug
- 2) antibiotic drug
- 3) analgesic drug
- 4) 1 and 3
- Which of the following compounds give aspirin on reacting with acetic anhydride in the 20. presence of cone. H₂SO₄?

COOH OΗ 2)

- NH_{λ}
- 21. Substances which bring down the body temperature during fever are known as
 - 1) antibiotics 2) analgesics
- 3) antipyretics
- 4) antimalarial

- 22. Paracetamol is
 - 1) acetyl derivative of orthohydroxy benzoic acid
 - 2) acetyl derivative of p-amino phenol
 - 3) acetyl derivative of benzoic acid
 - 4) acetyl derivative of para hydroxy benzoic acid
- Functional groups in aspirin are
 - 1) carboxylic acid
- 2) ester

3) alcohol

- 4) 1 and 2
- The drug used for prevention of heart attacks is 24.
 - 1) Aspirin
- 2) Valium
- 3) Chloramphenicol
- 4) Cephalsoprin

- Which of the following is a natural 25.
 - 1) Asparine
- 2) Ibuprofen
- 3) Morphine
- 4) Paracetmol

26.	Which of the substance added to	soap to make it ant	iseptic
	1) Iodine 2) KMnO ₄	3) Bithional	4) Cl ₂
27.	Which of the following is an add	dictive drug?	
	1) Papaverine 2) Pencilline	3) Sulphadiazine	4) Aspirin
28.	An example for coal tar analges	ic	
	1) Acetanilide 2) Aniline	3) Analgin	4) Acetanilide + aniline
29.	Which of the following is an ant	tacid	
	1) Mg(OH) ₂ 2) Al(OH) ₃ gel	3) MgCO ₃	4) All
30.	Tincture of iodine (2-3% in water	er/alcohol) is	
	1) Antiseptic 2) Disinfectant	3) Analgesic	4) Antipyretic
31.	Sulpha drugs are derivatives of		
	1) Benzene sulphonic acid	2) Sulphanilic acid	d
	3) Sulphanilamide	4) p- Aminobenzo	ic acid
32.	The following drugs cannot be o	considered as anti m	icrobials
	1) Formalin 2) Dettol	3) Boric acid	4) Chlorine water
33.	Biological specimens can be pre	eserved in	
	1) Formalin 2) Dettol	3) Boric acid	4) Chlorine water
34.	Urinary infections can be cured	by using	
	1) Chloramphenicol	2) Novestrol	
	3) Sulphadiazine	4) Dysidazirine	
Che	micals in food		
35.	The anti oxidants forwine are		
	1) $SO_2 \& SO_3^{-2}$	2) BHT & BHA	
	3) Citric acid	4) Tetrazine	
36.	Metabolism of C ₆ H ₅ COONa fire	nally excreated as	
	1) Benzene 2) Hippuric acid	3) BHT	4) BHA
37.	The following substance is more	e reactive towards or	xygen than food meterial
	1) Antioxidant	2) Food colour	
	3) Food sweetner	4) Food nutrients	
38.	Control of sweetness of food is	difficult with	
	1) Asparatame	2) Sucrolose	
	3) Fructose	4) Alitame	
39.	Sucrolose structure is similar to		
	1) Saccharin 2) Sucrose	3) Fructose	4) Glucose
40.	More number of peptide bonds a	are present in	
	1) alitame 2) aspartame	3) saccharin	4) sucralose

Miscellaneous

- 41. Acetylation of the two OH groups of Morphine with acetic anhydride gives
 - 1) Codeine
- 2) Heroin
- 3) Cocaine
- 4) quinine

- Receptors are 42.
 - 1) Proteins
- 2) Lipids
- 3) Carbohydrates 4) Nucleic acids
- Drugs which supplement or substitute for chemical messengers are 43.
 - 1) antagonists 2) agonists
- 3) blocking chemicals 4) All
- List-I contains the names of compounds and List-II contains their functions. 44.

List -I

List - II

- A) heroin
- 1) used as artificial sweetener
- B) aspirin
- 2) used as analgesic and antipyretic
- C) analgin
- 3) to suppress headache, discomfort and fever due to cold
- D) barbituric 4) induces sleep in presence of pain
 - 5) used to prepare sedatives and hypnotics

The correct match is

	A	\mathbf{B}	\mathbf{C}	D
1)	4	3	1	2
2)	1	2	4	3
3)	4	3	2	5
4)	2	1	5	4

- The antiseptic used in good quality soaps is 45.
 - 1) Lysol
- 2) Bithional
- 3) Boric acid
- 4) Salol

KEY							
1) 3	2) 1	3) 2	4) 1	5) 1	6) 1	7) 1	8) 1
9) 2	10) 1	11) 4	12) 4	13) 1	14) 3	15) 3	16) 2
17) 3	18) 3	19) 4	20) 2	21) 3	22) 2	23) 4	24) 1
25) 3	26) 3	27) 1	28) 4	29) 4	30) 1	31) 3	32) 2
33) 1	34) 1	35) 1	36) 2	37) 1	38) 4	39) 2	40) 2
41) 2	42) 1	43) 2	44) 3	45) 2			

Question Bank - III

SET-I

- Both A & R sure tnie and R is the correct explanation of A 1)
- 2) Both A & R are true, bat R is not the correct explanation of A
- 3) A is true, R is false
- A is false. R is true 4)
- (A): Paracetamol is widely used as analgesic even it is an antipyretic. 1.
 - (R): It is administered to aspirin sensitive patients.

- 2. (A): The use of the substances isolated from opium poppy as drugs is limited.
 - (R): The side effects due to the prolonged use of opium products are respiratory depression, decreased gastrointestinal motility leading to constipation, increased biliary tract pressure and pruritus due to histamine release.
- 3. (A): Same chemicals may be used as antiseptics as well as disinfectants.
 - (R): A chemical which destroys micro-organism can be used as an antiseptic in higher concentration and as disinfectant in lower concentration.
- 4. (A): Morphine is an example for narcotic analgesic.
 - (R): Narcotic drugs have no addictive properties but is limited to mild aches and pains.
- 5. (A): A mixture of Mg(OH)₂ is better antacid than NaHCO₃.
 - (R): NaHCO₃ makes stomach alkaline and triggers the over production of acid where-as a mixture of Al(OH)₃ + Mg(OH)₂ does not increase the pH above 7 in stomach.
- 6. (A): Birth control pills suppress ovulation.
 - (R): Birth control pills contain progesterone.
- 7. (A): Heroin is morphine diacetate.
 - (R): Morphine is an alkaloid.
- 8. (A): Hair washed with soap and hard water looks dull.
 - (R): Calcium and magnesium salts soaps are insoluble in water.
- 9. (A): Bithional is added to soap for its beautification and solidification.
 - (R): Bithionol is a sulphadrug.
- 10. (A): Synthetic detergents do not contain any soap but exhibit all the properties of soaps.
 - (R): Synthetic detergents give foam even in hard water.
- 11. (A): Non-competitive inhibitors occupy allosteric site so that the substrate cannot attach at active site.
 - (R): Non-competitive inhibitors change the shape of active site of enzyme after binding at allosteric site.
- 12. (A): Detergent containing more branches in the hydrocarbon part are water polluting.
 - (R): Bacteria cannot degrade detergent containing highly branched hydrocarbon chain.
- 13. (A): The drugs which act on the central nervous system and help in reducing anxiety are called antibiotics.
 - (R): Pencillin is an antibiotic.

SET - II

- 1) Both A and B are true and R is the correct of explanation of A
- 2) Both A and R are true but R is the correct explanation of A
- 3) A is true but R is false
- 4) Both A and R are false
- 14. (A): Antacids decrease the pH value
 - (R): Antacids are basic in nature
- 15. (A): Food preservatives present the growth of microorganisms

- (R): Food preservatives are antioxidant
- 16. (A): Enzymes have active sites that hold substrate molecule for a chemical reaction.
 - (R): Drugs compete with natural substrate by attaching covalently to the active site of enzyme.
- 17. (A): Transparent soaps are made by dissolving soaps in ethanol.
 - (R): Ethanol makes things in the soap as invisible.
- 18. (A): Sodium chloride is added to precipitate soap after saponification.
 - (R): Hydrolysis of esters of long chain fatty acids by alkali produces soap in colloidal form.
- 19. (A): Competitive inhibitors compete with natural substrate for their attachment on the active sites of enzymes.
 - (R): In competitive inhibition, inhibitor binds to the allosteric site of the enzyme.
- 20. (A): Non-competitive inhibitor inhibits the catalyic activity of enzyme by binding with its active site.
- (R): Non-competitive inhibitor changes the shape of the active site in such a way that substrate can't recognise it.
- 21. (A): Chemical messenger gives message to le cell without entering the cell.
 - (R): Chemical messenger is received at the binding site of receptor proteins.
- 22. (A): Receptor proteins show selectivity for one chemical messenger over the other.
 - (R): Chemical messenger binds to the receptor site and inhibits its natural function.
- 23. (A): All chemicals added to food items are called food preservatives.
 - (R): All the food preservatives increase the nutritive value of the food.
- 24. (A): Artificial sweeteners are added to the food to control the intake of calories.
 - (R): Most of the artificial sweeteners are inert and do not metabolise in the body.
- 25. (A): Preservative are added to food items.
 - (R): Preservatives inhibit the growth of microorganisms.
- 26. (A): Ranitidine is used to control the attack of histamine.
 - (R): In controls the secretion of acid.
- 27 (A): Antiseptics are applied on living tissues.
 - (R): Iodine is a powerful antiseptic.
- 28. (A): Sulpha drug contains sulphonamide group.
 - (R): Salvarsan is a sulpha drug.

			—— KE				
1) 1	2) 1	3) 3	4) 3	5) 1	6) 1	7) 2	8) 2
9) 4	10) 1	11) 1	12) 2	13) 4	14) 4	15) 2	16) 3
17) 3	18) 1	19) 3	20) 4	21) 1	22) 3	23) 4	24) 1
25) 1	26) 1	27) 2	28) 3				

11. ORGANIC CHEMISTRY

Synopsis:

(a) Alkyl and Aryl halides

- 1. Depending upon the number of halogen atoms present in the structure, alkyl or aryl halides are classified as mono, di, tri or poly halogen compounds.
- 2. Alkyl halides are also classified as primary, secondary or tertiary depending upon the type of carbon to which halogen is attached.
- 3. The halogen atom of alkyl halide carries partial negative charge and carbon carries partial positive charge. The polarity of carbon-halogen bond of alkyl halides is responsible for their nucleophilic substitution, elimination and their reaction with metals.
- 4. Alkyl halides are prepared by the reaction of halogen acids or phosphorus halides or thionyl chloride with alcohols.
- 5. Alkyl halides are also prepared by the free radical halogenation of alkanes or by the addition of halogen acids to alkenes. Alkyl iodides can be prepared by halide exchange reaction.
- 6. The boiling points of alkyl halides are slightly higher than the corresponding hydrocarbons or ethers due to strong dipole-dipole interactions and van der Waals forces of attraction but lower than the corresponding alcohols and carboxylic acids.
- 7. Basing on the kinetic properties, nucleophilic substitution reactions are categorised as $S_{\rm N1}$ and $S_{\rm n2}$ type.
- 8. The order of reactivity of S_{N1} reactions is $3^{\circ} > 2^{\circ} > 1^{\circ} >$ methyl. S_{N1} reactions are characterised by recemisation.
- 9. The order of reactivity of S_{N2} reactions is methyl >1° >2° > 3°. S_{N2} reactions of chiral alkyl halides are characterised by the inversion of configuration.
- 10. Alcohols are formed from alkyl halides by hydrolysis with aqueous sodium or potassium hydroxide or moist silver oxide.
- 11. Alcoholic potassium cyanide reacts with alkyl halides to give alkyl cyanides and alcoholic silver cyanide reacts to give alkyl isocyanides as major products.
- 12. Alkyl halides react with sodium or potassium nitrite to give nitro alkane as the major product whereas silver nitrite gives alkyl nitrite as major product.
- 13. Ethers are formed by Williamson synthesis from alkyl halides and sodium alkoxide.
- 14. A mixture of amines and quaternary salt are formed when alkyl halides react with ammonia.
- 15. When alkyl halides react with alcoholic potassium hydroxide, alkenes are

- formed and ^y_E the products formed depend upon Saytzeff rule.
- 16. Alkyl halides react with metals like sodium, magnesium, lithium, zinc, etc. They are reduced to alkanes with nascent hydrogen.
- 17. Chloroform undergoes atmospheric oxidation to poisonous carbonyl chloride.
- 18. Iodoform is prepared by the reaction of ethyl alcohol or acetone with iodine and alkali.
- 19. Freons are chlorofluorocarbon compounds of methane and ethane. They are used for aerosol propellants and also for refrigeration.
- 20. Sandmeyer's reaction is used in the preparation of chlorobenzene form benzene diazonium chloride with cuprous chloride.
- 21. The formation of chlorobenzene from benzene diazonium chloride and copper metal in presence of hydrochloric acid is called Gattermann reaction.
- 22. Aryl halides are much less reactive towards nucleophilic substitution reactions than alkyl halides.
- 23. Chlorine atom in chlorobenzene can be replaced L by hydroxyl group, cyano group, amino group and methoxy group.
- 24. Wurtz-Fittig reaction is the reaction between aryl halide and alkyl halide in presence of sodium to form alkylarene. In Fittig reaction, biphenyl is formed from phenyl halide.
- 25. Chlorobenzene undergoes electrophilic substitution reactions. Chlorine atom in chlorobenzene is ortho and para directing and slightly deactivates benzene ring.

(b) Alcohols, Phenols and Ethers

- 1. Alcohols and phenols are hydroxy compounds. Phenols have -OH group connected to benzene ring.
- 2. Alcohols are prepared by hydration of alkenes in acid medium.
- 3. Alcohols are prepared by the action of Grignard reagent on aldehydes and ketones followed by hydrolysis or by the reduction of aldehydes and ketones.
- 4. Phenol is prepared by the hydrolysis of benzene sulphonic acid or by heating benzene diazonium chloride with water.
- 5. Phenol is prepared by the oxidation of cumene followed by hydrolysis.
- 6. Diethylether is prepared by heating ethyl alcohol with con H_2SO_4 at $140^{\circ}C$ or with Al_2O_3 at $260^{\circ}C$.
- 7. Ether is prepared by the action of alkali metal alkoxide on alkyl halides in Williamson's method.
- 8. Alcohols and phenols are acidic in nature. Phenols are more acidic than alcohols. Phenols are soluble in NaOH and are regenerated by CO₂. Alcohols are insoluble in NaOH.
- 9. Phenol gives violet colour with neutral ferric chloride.

- 10. Alcohols have higher boiling points than hydrocarbons, aldehydes, ketones and ethers due to intermolecular hydrogen bonding.
- 11. Alcohols are more soluble in water due to the formation of intermolecular hydrogen bonding with water.
- 12. Alcohols give aldehydes, ketones and carboxylic acids on oxidation.
- 13. Alcohols form esters with acids and also with acid derivatives.
- 14. Alcohols give alkyl halides on reaction with HX, PCl_5 , PCl_3 or $SOCl_2$.
- 15. Dehydration of alcohols produces alkenes and reduction of alcohols with HI/P gives alkanes.
- 16. Phenols undergo halogenation, nitration and sulphonation more easily than benzene. The OH group in phenols is ortho and para orienting and activating.
- 17. Phenol gives salicylaldehyde with chloroform and salicylic acid with $C0_2$ in alkali medium.
- 18. On heating with zinc dust, phenol gives benzene.
- 19. Both alcohols and phenols release hydrogen with active metals. Ethers cannot release hydrogen with sodium.
- 20. Ethers are degraded by HI to alcohol and alkyl iodide. On hydrolysis with dil. acid, ether gives alcohols.
- 21. Both hydroxy and alkoxy groups connected to benzene ring are ortho and paraorienting.
- 22. The peroxide formed by the oxidation of ether is destroyed by shaking with FeSO₄.
- 23. The three types of alcohols can be distinguished M with Lucas reagent.
- 24. Ethanol is used in beverages, solvent, antiseptic and as a component in fuel.
- 25. Diethylether is used as solvent, medium, anaesthetic and also as refrigerent.

(c) Aldehydes and Ketones

- 1. Aldehydes and ketones contain the carbonyl functional group.
- 2. According to IUPAC nomenclature, aldehydes are called as alkanals and ketones as alkanones.
- 3. Ketones having five or more carbons exhibit metamerism.
- 4. Primary alcohols on oxidation or on catalytic dehydrogenation give aldehydes and secondary alcohols on similar conditions yield ketones.
- 5. Dry distillation of calcium salts of fatty acids along with calcium formate give aldehydes and symmetrical ketones may be obtained when calcium salts of fatty acids alone are heated.
- 6. Vapours of fatty acids mixed with formic acid when passed over heated thoria or alumina or MnO give aldehydes. Vapours of a fatty acid alone give ketones.
- 7. Alkenes can be oxidised to carbonyl compounds by Wacker process by using

- aqueous palladium chloride in presence of cupric chloride catalyst.
- 8. Depending upon the structure of alkene, different carbonyl compounds are obtained by the reductive ozonolysis.
- 9. Carbonyls are obtained by the hydration of alkynes or by alkaline hydrolysis of gem dihalides.
- 10. Reduction of acid chloride with hydrogen in presence of Lindlar's catalyst to give aldehydes is called Rosenmund reduction. Ketones cannot be prepared by this method.
- 11. Carbonyl compounds are highly polar and boil at high temperatures than the weakly polar ethers of comparable molar masses.
- 12. Lower carbonyls are more soluble in water due to hydrogen bonding. Due to larger size of hydrophobic alkyl group, higher carbonyls are insoluble in water.
- 13. The characteristic reactions of carbonyl compounds are nucleophilic addition reactions. Aldehydes are more reactive than ketones. Aliphatic aldehydes are more reactive than aromatic aldehydes.
- 14. Ammonia reacts with aldehydes and ketones to form imines.
- 15. Carbonyl compounds condense with derivatives of ammonia, hydroxylamine, hydrazine, phenylhydrazine, 2,4-dinitrophenyl hydrazine, semicarbazide to form the corresponding oximes, hydrazones, phenyl hydrazones, 2,4- dinitrophenyl hydrazones and semicarbazones.
- 16. Carbonyl compounds react with PC/₅ or thionyl chloride to give gem dihalides.
- 17. Aldehydes are reduced to primary alcohols and ketones to secondary alcohols with LiAlH₄, NaBH₄ or by catalytic hydrogenation.
- 18. Carbonyl group is reduced to methylene group, by Clemmensen reduction or by Wolff Kishner reduction, thereby, carbonyl compounds are reduced to alkanes.
- 19. Aldehydes are easily oxidised to carboxylic acids by even mild oxidising agents like Tollen's reagent, Fehling's reagent and Benedict's solution. These oxidation reactions are used to distinguish aldehydes from ketones.
- 20. The a-hydrogens in carbonyl compounds are acidic. Carbonyl compounds having at least one a-hydrogen, undergo Aldol condensation.
- 21. Aldehydes with no a-hydrogen atom on reaction with concentrated alkali undergo Cannizzaro reaction in which aldehyde undergoes disproportionation to give alcohol and salt of carboxylic acid.
- 22. Compounds containing methyl keto group or which form these on treatment with halogens give haloform reaction.
- 23. Aromatic carbonyl compounds undergo electrophilic substitution reactions also. Carbonyl group present in aromatic ring is meta directing and deactivating.
- 24. Benzaldehyde can be obtained by the oxidation of toluene with chromyl chloride followed by hydrolysis. This is called Etard reaction. It is also obtained from benzene by Gattermann- Koch reaction.

(d) Carboxylic Acids

- 1. Carboxylic acids are compounds which contain COOH group as functional group with general formula $C_nH_{2n}O_2$ or C_nH_{2n+1} COOH.
- 2. Trivial names are given based on source, e.g; HCOOH is named as formic acid because it is obtained by distillation of ants (in Latin formica means ant).
- 3. The IUPAC name of carboxylic acids is Alkanoic acid.
- 4. Carboxylic acids release H⁺ ions in aqueous solution and so are acidic in nature
- 5. Carboxylic acids are prepared by oxidation of primary alcohols and aldehydes.
- 6. Carboxylic acids are prepared by the action of CO₂ on Grignard reagent followed by hydrolysis.
- 7. Carboxylic acids are prepared by the acidic or alkaline hydrolysis of alky! cyanides and amides.
- 8. Methyl alcohol on treatment with CO in presence of Co or Rh (catalyst) under high pressure and temperature gives acetic acid.
- 9. Acetic acid is commercially prepared by the oxidation of acetaldehyde by air in presence of manganous acetate [(CH₃COO)₂Mnl as catalyst
- 10. Acidic hydrolysis of esters gives directly carboxylic acids while basic hydrolysis gives carboxylates, which on acidification give the corresponding carboxylic acids.
- 11. Aromatic carboxylic acids are prepared by the oxidation of alkyl benzenes.
- 12. Acidified $KMnO_4$ or acidified $K_2Cr_2O_7$ oxidises alkenes to ketones and / or acids.
- 13. Carboxylic acids release H₂ with Na, release CO₂ with NaHCO₃ or Na₂CO₃.
- 14. Carboxylic acids dissolve in NaOH and are regenerated by HCl (not by CO₂).
- 15. Carboxylic acids form esters with alcohols, acid chlorides with PCl_3 , PCl_5 or $SOCl_2$ and amides with NH_3 .
- 16. On heating with Phosphorous pentoxide, Carboxylate acids give anhydrides, on reduction with LiA/H₄, they give primary alcohols.
- 17. Carboxylic acids give aldehydes and ketones when their calcium salts are heated with calcium formate and alone respectively.
- 18. Decarboxylation of carboxylic acids gives hydrocarbons in the presence of soda lime.
- 19. Carboxylic acids with a-hydrogen form a -chloroacids with Cl_2 in the presence of red phosphorus. This is called HVZ reaction.
- 20. A 6 10% dilute aqueous acetic acid is called vinegar. It is used in cooking.
- 21. Alcohols, phenols and carboxylic acids are acidic because they liberate hydrogen gas on reaction with sodium metal.
- 22. Alcohols have no reaction with NaOH but phenols and carboxylic acids react with NaOH. Thus alcohols are less acidic than phenols and carboxylic acids.
- 23. Phenols and carboxylic acids turn blue litmus to red litmus, alcohols cannot give this test.
- 24. Carboxylic acids decompose NaHCO₃ and liberate CO₂ gas, but phenol cannot decompose NaHCO₃. Thus phenols are less acidic than carboxylic acids.

- 25. Carboxylic acids are weaker than mineral acids. This can be proved from p^ka values.
- 26. The substituents which stabilise the carboxy-late ion will increase the acidic strength of carboxylic acids.
- 27. Electron withdrawing groups increase the acidic strength of carboxylic acids.
- 28. Electron donating groups decrease the acidic strength.
- 29. With increasing the electron withdrawing tendency of groups acidic strength increases. Electron withdrawing tendency of some groups is $CF_3 > NO_2 > CN > F > Cl > Br > I > C_6H_5$
- 30. With increasing number of electron withdrawing substituents, acidic strength increases.
- 31. With increasing the distance of electron I withdrawing group from COOH, acidic strength decreases.
- 32. Alkyl substituents have electrons donating nature; with increasing the number of carbons in alkyl substituent, electron donating tendency increases and acidic strength decreases.
- 33. Direct attachment of C_6H_5 -, CH_2 = CH- to carboxylic acids increases the acidity of respective carboxylic acid due to greater electronegativity of sp² carbon. This is contrary to the decrease expected due to resonance effect.
- 34. In benzoic acid also electron withdrawing substituents increases the acidic strength but electron donating substituents like -CH₃, -OH, -NH₂, etc decreases the acidic strength.
- 35. Among p- and m-isomers, p-isomer has more acidic character than m-isomer for electron with drawing group but for electron releasing group m-isomer is stronger acid than benzoic acid while p-isomer is weaker than benzoic acid.
 - a) o nitrobenozic acid > p nitrobenzoic acid > m nitrobenzoic acid > benzoic acid
 - b) salicyclic acid > m hydroxy benzoic acid > p hydroxy benzoic acid.
- 36. The ortho isomer of every substituted benzoic acid is stronger than benzoic acid. This is called ortho effect.

(e) Amines, Diazonium Salt, Cyanides and Isocyanides

- 1. Amines are alkyl or aryl derivatives of ammonia,
- 2. Amines are classified as primary (RNH_2) , secondary (R_2NH) and tertiary (R_3N) amines.
- 3. Amines are basic in nature, as they can donate a lone pair and accept proton.

- 4. Basic nature of amines depends on availability of lone pair for donation and stability of conjugate acid.
- 5. Electron-releasing groups increase the basic strength and electron-withdrawing groups decrease the basic strength.
- 6. Basic nature of amines in gaseous state :

$$3^{\circ} > 2^{\circ} > 1^{\circ} > NH_3$$

$$(CH_3)_3N > (CH_3)_2NH > CH_3NH_2 > NH_3$$

In aqueous solution, order of basic nature:

 $2^{\circ} > 3^{\circ} > 1^{\circ} > NH_3$ Ethyl derivatives:

$$(C_2H_5)_2NH > (C_2H_5)_3N > C_2H_5NH_2 > NH_3$$

7. Methyl derivatives:

$$(CH_3)_2NH > CH_3NH_2 > (CH_3)_3N > NH_3$$

- 8. Alipthatic amines are more basic compared to aromatic amines.
- 9. Cyclohexyl amine is more basic than aniline.

$$(C_2H_5)_2NH > C_2H_5NH_2 > NH_3 > C_6H_5NH_2$$

(CH₃CH₂)₂N-CH₂CN is more basic than (CH₃CH₂)₃N.

- 10. Destructive distillation of Indigo gives aniline.
- 11. Industrially aniline is prepared by the reduction of nitrobenzene with iron, water and small amount of HCl.
- 12. Nitrobenzene on reduction with Sn/HC/, Zn/HC/ or H₂/Ni gives aniline.
- 13. Phenol on heating with NH₃ at 300° C in presence of ZnC l_2 (catalyst) gives aniline.
- 14. Phenol, on heating with NH₃ at 200°C in presence of Cu₂O (catalyst) gives aniline.
- 15. Aniline can be purified by steam distillation.
- 16. Among isomeric amines, boiling points are in the order: $1^{\circ} > 2^{\circ} > 3^{\circ}$. This is due to decreasing ability to form hydrogen bonds.
- 17. Aniline is a Lewis base. It is almost neutral to litmus.
- 18. Aniline on treatment with HC/, it forms a salt named aniline hydrochloride.
- 19. Primary, secondary and tertiary amines form quaternary salts with alkyl halides.
- 20. Aniline, on treatment with acetyl chloride or acetic anhydride forms acetanilide.
- 21. Reactivity order of acylating agents is $CH_3COC/>(CH_3CO)_2O>CH_3COOC_2H_5$
- 22. With benzoyl chloride, in the presence of base aniline gives benzanilide.
- 23. Aniline, on treatment with benzene sulphonyl chloride gives N-phenyl benzene sulphonamide.
- 24. Aniline, with benzaldehyde in the presence of conc.H₂SO₄ forms benzylidene aniline known as Schiff's base (also called anil).
- 25. Primary amines give carbylamine reaction with chloroform and alcoholic potash. Phenyl isocyanide has awaful odour.

- 26. Aniline, on treatment with HNO_2 (NaNO₂ + HCl), undergoes diazotisation to give benzene diazonium chloride [$C_6H_5N_2^+$ Cl^-].
- 27. Aniline is used in the preparation of dyes, schiff's base and sulphonamide.
- 28. Primary, secondary and tertiary amines are distinguished using carbylamine test, Hinsberg test, Hoffmann mustard oil reaction.
- 29. Carbylamine reaction is given only by aliphatic primary amines and aromatic primary amines and not by secondary and tertiary amines.
- 30. Benzene sulphonyl chloride is called Hinsberg reagent.
- 31. In Hinsberg's test, primary amines with benzene sulphonyl chloride form N alkyl benzene sulphonamide which is soluble in alkali.
- 32. In Hinsberg's test, secondary amines with benzene sulphonyl chloride forms N, N dialkyl benzene sulphonamide, which is insoluble in alkali while tertiary amines do not react with Hinsberg reagent.
- 33. Hofmann mustard oil reaction is given only by primary amines. In this reaction alkyl isothiocyanate (smells like mustard oil) and black precipitate (HgS) are formed.
- 34. On oxidation with KMn0₄, primary amines give aldehydes and ketones, secondary amines form tetra alkyl hydrazine while tertiary amines do not react.
- 35. On oxidation with Caro's acid primary amines form amine, secondary amines form dialkyl hydroxyl amine and tertiary amines give amine oxide.
- 36. Aromatic diazonium salts like C_6H_5NNCl are stable (due to resonance) than aliphatic diazonium salts like CH_3NNCl .
- 37. Benzene diazonium chloride is colourless solid, highly soluble in water in dry state, easily decomposes but in the form of benzene diazonium fluoro borate it is water insoluble and stable at room temperature.
- 38. Benzene diazonium chloride, on treatment with Cu_2Cl_2 / HCl, Cu_2Br_2 / HBr and $Cu_2(CN)_2$, KCN forms chlorobenzene, bromobenzene and cyanobenzene respectively.; This is called Sandmeyer reaction.
- 39. Benzene diazonium chloride with Cu / HC/, Cu /HBr gives respectively chlorobenzene and bromo benzene. This is called Sandmeyer reaction.
- 40. Iodobenzene is formed when benzene diazonium chloride is treated with aqueous KI.
- 41. Benzene diazonium chloride with HBF₄ (fluoboric acid) gives benzene diazonium fluoroborate which on heating gives fluorobenzene.
- 42. Benzene diazonium chloride, on boiling with steam, forms phenol.
- 43. Benzene diazonium chloride on reduction with hypophosphorous acid solution or ethyl alcohol forms benzene.
- 44. Benzene diazonium fluoroborate on heating with NaNO₂ / Cu forms nitrobenzene.
- 45. Benzene diazonium chloride, on coupling with phenol in weakly alkaline medium, forms an orange coloured dye namely p hydroxy azobenzene (electrophilic substitution reaction).
- 46. Benzene diazonium chloride, on coupling with aniline in weakly alkaline medium, forms an yellow coloured dye namely, p aminoazobenzene.
- 47. The azoproducts have extended conjugate system with aromatic rings and N = N bond. Hence, these compounds are coloured and used as dyes.

48. The excess acid in diazotisation reaction is necessary to maintain proper acidic medium for -' the reaction and to prevent combination of diazonium salt formed with the undiazotised amine. **Question Bank - I** Alkyl and Aryl halides 1. SN¹ reaction occur through the intermediate formation of (2) carbanion (3) free radical (1) carbocation (4)None of these 2. An optically native halide when allowed to react with CN- gives a racemic mixture. The halide is most likely to be $(1) 1^{\circ}$ $(2) 2^{\circ}$ $(3) 3^{\circ}$ $(4) 4^{\circ}$ 3. A dexto rotatory optically active alkyl halide alcohol is (1) dexto rottory (2) levo rottory (4) racemic mixture (3) both 4. Aryl halides can be prepared by (1) Sand mayer's metod (2) Friedel – craft reaction (3) 1 & 3 (4) Gattermann's reaction 5. Heating chloro benzene with – yields containing an isocyanide group. (1) AgCN (2) KCN (3) HCN (4) HNo₃ 6. $C_6H_5 + 2Na + CH_3I \rightarrow C_6H_0CH_3 + 2NoI$ the reaction is (2) Fitting reaction (1) Wurtz reaction (3) Wurtz-Fittig reaction (4) Ullmann reaction 7. Chloro benzene on fusing with solid NaoH gives (2) benzoid acid (3) phenol (1) benzene (4) benzene chloride 8. First chlorinated insecticide is (4) Pyrene (1) DDT (2) Gammaxene (3) BHC 9. Pyrene is the trade name of _____ which is used as fire extinguisher (3) free radical (4)None of these (1) carbocation (2) carbanion 10. Which is wrong for chloro benzene. (1) more reactive than ethyl bromide (2) more reactive than isopropyl chloride (3) as reactive as methyl chloride (4) less reactive than benzyl chloride 11. In SN¹ reaction the racemization takes place due to (2) retention of configuration (1) inversion of configuration (3) conversion of configuration (4) both 1 & 2 **KEY** 1) **1** 2) **3** 3) **2** 5) 1 6) **3** 7) 3 8) 1 9) 3 10) 3 4) 4

11) 4

Question Bank - II

Alkyl and aryl halides

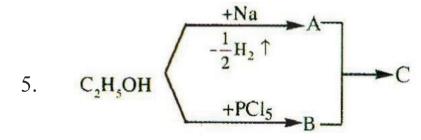
- 1. Allyl bromide is
 - 1) CH₂=CH-CH₂Br
 Br
- 2) C_6H_5 –Br

3) $H_2C = CH$

- 4) CH₃-CH=CH₂-Br
- 2. In which of the following, chlorine is least reactive?
 - 1) Ethyl chloride
- 2) Chlorobenzene
- 3) Allyl chloride
- 4) Methyl chloride
- 3. Which of the following statement is correct?
 - 1) Decreasing order of density of alkyl halides is RI > RBr > RCl > RF
 - 2) The stability order of alkyl halides is RF > RCl > RBr > RI
 - 3) Among isomeric alkyl halides the decrease in boiling point is $1^{\circ} > 2^{\circ} > 3^{\circ}$
 - 4) All are correct
- 4. Which of the following order is correct among the following?
 - I) C-X Bond length order is

$$H_3C-F < H_3C -Cl < H_3C-Br < H_3C-I$$

II) C-X Bond enthalapies order is


$$H_3C-F > H_3C -Cl > H_3C-Br > H_3C-I$$

- II) C-X Bond dipole moment order is $H_3C-Cl > H_3C-F > CH-Br > CH_3-I$
- 1) Only I & II

2) Only II & III

3) Only I & III

4) All are correct

Total number of hybrid orbitals involved in bonding in a molecule of 'C is

- 1)12
- 2) 0
- 3) 18
- 4) 6

6. $CH_3CH_2Cl \xrightarrow{Alc.KOH} X_{(Org)}$

Wrong statement about the above reaction

- 1) Hybridization of 'C' changed from sp³ to sp²
- 2) C–C bond length is decreased

3) C-H bond length is increased

4) Bond angle is increased

7. Identify Z in the following series

$$C_2H_5I \xrightarrow{\text{Alc.KOH}} X \xrightarrow{\text{Br}_2} Y \xrightarrow{\text{KCN}} Z$$

1) CH₃CH₂CN

- 2) NCCH₂-CH₂CN
- 3) BrCH₂-CH₂CN
- 4) BrCH = CHCN
- 8. Ethyl bromide reacts with lead-sodium alloy to form
 - 1) Tetraethyl lead
- 2) Tetramethyl bromide
- 3) Both (a) and (b)
- 4) None of these

ii)
$$X \frac{\text{Conc.H}_2\text{SO}_4}{170^{\circ}\text{C}} Y \frac{\text{Cl}_2/\text{H}_2\text{O}}{2} Z$$

What is 'Z'?

- 1) Ethylene glycol
- 2) Ethylene chlorohydrin
- 3) 1,2-Dichloroethane
- 4) Ethyl chloride

Compound A reacts with PCl₅ to give B which on treatment with KCN followed by 10. hydrolysis gave propionic acid. What are A & B respectively?

- 1) $C_3H_8 \& C_3H_7Cl$ 2) $C_2H_6 \& C_2H_5Cl$ 3) $C_2H_5OH \& C_2H_4Cl_2$ 4) $C_2H_5OH \& C_2H_5Cl$

What are X and Y respectively in the following reaction? 11.

$$X = \frac{PBr_3}{C_2H_5Br} = \frac{AgOH(Aq)}{C_2H_5Br} Y$$

- 1) CH₃OH; C₂H₆
- 2) C_2H_5OH ; C_2H_5Br
- 3) CH₃COOH; CH₃CH₂OH
 4) C₃H₂OH; C₃H₂OH

Consider following reaction 12.

$$X+HC1 \xrightarrow{Anhydrous\ AlCl_3} C_2H_5C1; Y \xrightarrow{Anhydrous\ ZnCl_2/HC1} C_2H_5C1$$

Y can be converted to X on heating with at temperature

- 1) ALO₃, 350°C
- 2) Cu, 300°C
- 3) $Ca(OH)_2 + CaOCl_2$, 60°C 4) NaOH / I_2 , 60°C

 $C_2H_5C\ell \cdot Mg \longrightarrow x \xrightarrow{H_2O} y$; $C_2H_5C\ell \xrightarrow{LiA\ell H_4} z$, then y and z are 13.

- 1) same alkenes
- 2) different alkanes
- 3) same alkanes

4) alkynes

l-Bromopropane on reaction with LiAlH₄ yields 14.

- 1) Propine
- 2) Hexane
- 3) Propone
- 4) Propyne

 $CH_3 - CH_2 - CH_2 - C\ell \xrightarrow{\text{Alc}} B \xrightarrow{\text{HBr}} C \xrightarrow{\text{Na}} D.$ 15.

In the above sequence of reactions, the D is

1) Propane

2) 2,3 - Dimethyl butane

3) Hexane

4) Allyl bromide

The carbon compound "A" forms "B" with sodium metal and again forms "C" with PCl_5 16. but "B" reacts with "C" to form diethyl ether. Therefore A, B and C are respectively.

- 1) C,H5OH, C,H5OCl, C,H5ONa 2) C,H5OH, C,H6,C,H5
- 3) C_2H_5Cl , C_2H_6 , C_2H_5Cl
- 4) C₂H₅OH, C₂H₅ONa,C₃H₅C*l*

17. $CH_4 + Cl_2 \xrightarrow{h\vartheta} A \xrightarrow{+Cl_2} B \xrightarrow{+Cl_2} C \xrightarrow{+Cl_2} D$

Correct order of Dipole moments is

	1) $D > C > B > A$	2) $C > B > A > D$
	3) $A > C > B > D$	4) $A > B > C > D$
18.	Which of the following is the cor	rect order of decreasing S_N^2 reactivity'? (X=a halogen)
	1) RCH, $X > R$, CHX $> R$, CX	2) $R_3CX > R_2CHX > RCH_2X$
	3) $R_2CHX > R_3CX > RCH_2X$	4) $RCH_2X > R_3CX > R_2CHX$
19. 7	The ratio of relative rates of isopro	pyl bromide and ethyl bromide in S_N^1 reaction is
	1) 11 : 1	2) 1 : 11
	3) 1:100	4) 1 : 1000
20.	Tertiary alkyl halides are practical	ally inert to substitution by S _N 2 mechanism because of
	1) Insolubility	2) Instability
	3) Inductive effect	4) Steric hinderance
21.	Of the five isomeric hexanes. the is	somer which can give two mono chlorinated compounds is
	1) n-hexane	2) 2,3-dimethyl butane
	3) 2,2-dimethyl pentane	4) 2-methyl pentane
22.	Which of the following reactions	will yield 2, 2 - dibramo propane?
	1) $CH_3 - CH = CH_2 + HBr \rightarrow$	2) $CH_3 - C \equiv CH + 2HBr \rightarrow$
	3) $CH_3CH = CHBr + HBr \rightarrow$	4) HC \equiv CH + 2 HBr \rightarrow
23.	Isopropyl chloride undergoes hyd	drolysis by
	1) SN¹ mechanism	2) SN ² mechanism
	3) SN¹ and SN² mechanisms	4) either SN¹ or SN² mechanism
24.	Among the following which one	has weakest carbon-halogen bond?
	1) Benzyl bromide	2) Bromobenzene
	3) Vinyl bromide	4) Benzyl chloride
25.	The order of reactivities of the fo	ollowing alkyl halides for a S _N 2 reaction is
	1) $RF > RCl > RBr > RI$	2) $RF > RBr > RCl > RI$
	3) $RCl > RBr > RF > RI$	4) $RI > RBr > RCl > RF$
26.	Incorrect statement about nudeo	philic substitution reaction is
	1) Reactivity of halides towar	ds SN¹ mechanism is 3°>2°>1° alkyl halides
	2) Polar solvents favour SN¹ read	etions
	3) Reactivity of halides towards	s SN ² mechanism is $1^{\circ} > 2^{\circ} > 3^{\circ}$ alkyl halide
	4) Low concentration of nucleop	$\text{ohile} \text{3)} \bigcirc^{\text{CH}_3}_{\text{Br}} > \bigcirc^{\text{CH}_3}_{\text{I}} > \bigcirc^{\text{CH}_3}_{\text{C}I} > \bigcirc^{\text{CI}}_{\text{I}}$
27.	Pick up the correct order of reac	
	1) $C^{I} < C^{I}_{13} < C^{H_3}_{14} < C^{H_3}_{14}$	$4) \bigcirc $

 $2) \bigcirc \overset{Cl}{<} \bigcirc \overset{CH_3}{\underset{Br}{<}} \bigcirc \overset{CH_3}{\underset{Cl}{<}} \bigcirc \overset{CH_3}{\underset{I}{<}} \bigcirc \overset{CH_3}{\underset{I}{<}}$ Arrangp the following

28.

 $\mathrm{CH_3CH_2C} + \mathrm{CH_3CH_2C} + \mathrm{CHC} + \mathrm{CH_3CH_3CH_3C} + \mathrm{CHCH_3C} + \mathrm{CH_3CH_2C} + \mathrm{CHCH_3C} + \mathrm{CHCH_3$ in order of decreasing tendency towards $\boldsymbol{S}_{\!\scriptscriptstyle N}^{\ \ \, 2}$ reaction

1)
$$I > III > IV$$
 2) $III > IV > II > I$ 3) $II > I > III > IV$ 4) $IV > III > I$

29. Which of the following will be the least reactive towards nucleophilic substitution?

1)
$$C_2H_5Cl$$
 2) Cl_2Cl 4) CH_3 CH_3

- 30. The correct order of reactivity of alkyl halides CH₃CH₂C1, CH₃CHClCH₃ and (CH₃)₃CCl towards dehydrohalogenation?
 - 1) $CH_3CH_2Cl > CH_3CHClCH_3 > (CH_3)_3CCl$
 - 2) $CH_3CHClCH_3 > (CH_3)_3CCl > CH_3CH_3Cl$
 - 3) $(CH_3)_3CCl > CH_3CH_2Cl > CH_3CHClCH_3$
 - 4) $(CH_3)_3CCl > CH_3CHClCH_3 > CH_3CH_2Cl$
- 31. Which of the following compounds will react readily with ethanolic KCN?
 - 1) Chlorobenzene
- 2) Vinyl Chloride
- 3) Allyl Chloride
- 4) 4-Chlorotoluene
- 32. The reaction of toulene with Cl_2 in presence of $FeCl_3$ gives predominently
 - 1) m Chloro toluene
- 2) Benzoyl chloride
- 3) Benzyl chloride
- 4) o & p Chloro toulenes
- 33. The IUPAC name of the compound shown below is

- 1) 1- bromo-3- chloro cyclohexene
- 2) 2- bromo-6- chloro cyclohex -1-ene
- 3) 6-bromo-2-chloro cyclohexene
- 4) 3-bromo-l-chloro cyclohexene
- 34. The structure of the major product fonned in the following reaction

$$\begin{array}{c}
\text{CH}_2\text{C}l \\
\xrightarrow{\text{NaCN}} \\
\text{DMF}
\end{array}$$

3)
$$CN$$
 CH_2Cl

4)
$$CH_2Ch$$

- Which of the following is least reactive towards mucleophilic displacement reaction when 35. treated with aqueous KOH?
 - 1) 2, 4, 6-Trinitrochlorobenzene 2) 2, 4-Diintrochlorobenzene
 - 3) 4- Nitrochlorobenzene
- 4) 3-Nitrochlorobenzene
- IUPAC name of DDT is 36.
 - 1) l, 1, l-Trichloro-2, 2-bis (4-chlorophenyl) ethane
 - 2) p, p' Dichloro diphenyl trichloro ethane
 - 3) p, p' Dichloro diphenyl trichloro benzene
 - 4) Dichloro diphenyl tetrachloro ethane
- In which one of the followine halides. C_{sp2} Xbond is present? 37.
 - 1) Allyl halides

2) Benzyl halide

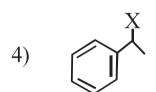
3) Arjyl halide

- 4) alkyl halide
- IUPAC name of the compound with the molecular ibimula C₄H₉Br and least possible 38. boiliig point is
 - 1) 2-Bromo-2-methylpropane
- 2) 2-Bromobutane
- 3) 1-Bromobutane
- 4) l-Bromo-2-methylpropane
- Match the following 39.

List - I

List - II

(type of halide)


a) Alkyl halide

b) Aryl halide

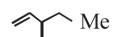
c) Vinyl halide

- d) Benzyl halide
- e) Allyl halide

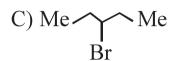
The correct match among the following is

- c b d 1) e
- 2) a C d e
- c d b 3) a
- 4) e b c
- In S_N^2 reactions the incorrect order of reactivity of nucleophiles is 40.
 - 1) $1^-> Br^-> C1^-> F^-$
- 2) CH₃O⁻ > CH₃OH
- 3) RS⁻> I⁻> CN⁻> NH_3 > Cl⁻
 4) F⁻> Cl⁻> Br⁻> I⁻

	2) Benzyl halides are more react3) Aryl halides are more reactive	11	
	4) Nucleophile has no influence	•	eactions
42.	In the reaction with CH_3I , the man I) $F^ I$ I I	ost reactive nucleop	shile among the following is
43.	Correct statement about the elec	,	, 3
	1) Halogens are benzene ring dea	-	
	2) Halogens are ortho and para d		
	3) Halogens are ortho and para of		
	4) Halogens are benzene ring dea		
44.	$CH_3 - Br \xrightarrow{Mg} X \xrightarrow{(CH_3)_3 C\text{-OH}}$	→A.	
	Product A is		
	1) CH ₄ 2) (CH ₃) ₃ CH	3) (CH ₃) ₃ C-O-Br	4) (CH ₃) ₃ C-O-CH ₃
45.	Halide most readily hydrolyses is	S	
	1) C_6H_5Cl 2) $(C_6H_5)_2CHCl$	3) $C_6H_5CH_2Cl$	$4) \left(C_{6}H_{5}\right)_{3}CCl$
46.	Which of the following compour	nds would be hydro	lysed most easily?
	1) C_2H_5Br 2) CH_3Br	3) $CH_2 = CH - Br$	4) $CH_2 = CH - CH_2Br$
47.	An alkyl halide on reaction with so	odium in the presence	e of ether gives 2, 2, 5, 5, - tetramethyl
	hexane. The alkyl halide possibly	y is	
	1) 1 - Chloropentane	2) 1 - Chlo	ro - 2, 2 - dimethyl propane
	3) 3 - Chloro - 2. 2 - dime thy lb	utane 4) 2 - Chlo	oro - 2 - methylbutane
48.	Neo Pentyl chloride on dehydrol	nalogenation (using	low conc, of base) yields mainly
	1) 2 - Methyl but - 2 - ene	2) 2 - Methyl but -	- 1 - ene
	3) 3 - Methyl but - 1 - ene	4) 2 - pentene	
49.	1 - Phenyl - 2 - chloropropane v product	when treated with a	lcoholic KOH gives as the major
	1) 1- Phenylpropene-1	2) 3 - Phenylprope	ene-1
	3) 1 - Phenyl - 2 - propanol	4) 3 - Phenyl - 1 -	propanol
50.	Identify 'Z' in the following sequ	uence of reactions:	
	$C_3H_7I \xrightarrow{\text{KOHalc.}} X - \xrightarrow{Br_2} Y -$	$\xrightarrow{\text{KCNalc.}} Z$	
	1) $(CH_3)_2$ CH-CN	2) Br-CH - CH-Cl	N
	3) $CH_2 = CH - CH_2CN$	<i>L</i>	
51.			OH to produce a hydrocarbon (C_4H_6) .
			propionaldehyde and one mole of
	formaldehyde. Suggest which org	anic structure among	g the following is the correct structure
	of the above alkyl halide (A)?		
	1) CH ₃ CH ₂ CH ₂ CH ₂ Br	2) CH ₃ CH(Br)CH	(Br)CH ₃
	3) CH ₃ CH ₂ CH(Br)CH ₃	$4) Br(CH_2)_4 Br$	
	_		


Incorrect statement about nucleophilic substituition reacitons is

1) A bulky nucleophile prefers elimination


41.

52.	Neopentyl alcohol — +HCl/anlydrous2	A; Here 'A' is				
	1) Neopentyl chloride	2) n-pentyl chloride				
	3} 2-chloropentane	4) ter-pentyl chloride				
53.	Allyl chloride on dehydrochlori	nation gives				
	1) Propadiene	2) propylene				
	3) Allyl alcohol	4) Acetone				
54.	and B for testing. A and B we solution. The end solution in e					
	2) A was C_6H_5I	3) A was CH_6CH_2I				
	4) B was C_6H_5I					
55.	'Pyrene' is the trade name of	which is used as fire extinguisher				
	1) CO ₂ 2) CHC <i>l</i> ₃	3) CCl_4 4) CH_5Cl_2				
56.	Which of the following is the co	orrect order of decreasing reactivity towards nucleophilic				
	substitution reaction?					
	1) n-Propyl chloride > Allyl chloride > Vinyl chloride					
	2) Allyl chloride > n-Propyl chl	oride > Vinyl chloride				
	3) Allyl chloride > Vinyl chlorid	le > n-Propyl chloride				
	4) Vinyl chloride > Allyl chlorid	le > n-Propyl chloride				
57.	S_N^2 reactions are					
	1) Stereospecific but not stereos	selective				
	2) Stereoselective but not stereo	ospecific				
	3) Stereoselective as well as ste	3) Stereoselective as well as stereospecific				
	4) Neither stereoselective nor stereospecific					
58.	Methyl butane on reacting with	bromine in the presence of sunlight gives mainly				
	1) 1-bromo -2-methyl butane	2) 2-bromo -2-methyl butane				
	3) 2-bromo -3-methyl butane	4) 1-bromo -3-methyl butane				
59.	Which of the following halides	would undergo nucleophilic substitution most readily?				
	1) 1 - Chloro -1 - butene	2) 2 - Chloro - 1 - butene				
	3) 3 - Clhloro - 1 - butene	4) 4 - Chloro - 1 - butene				
60.	Which branched chain isomer of	f the hydrocarbon with molecular mas 72u gives only one				
	isomer of mono substituted alky	y! halide ?				
	1) Tertiary butyl chloride	2) Neopentane				
	3) Isohexane	4) Neohexane				
61.	What is DDT among the follow	ring;				
	1) Greenhouse gas	2) A felrtilizer				
	3) Biodegradable pollutant	4) Non-biodegradable pollutant				

- 2-methylbutane on reacting with bromine in the presence of sunlight gives mainly: 62.
 - 1) l-bromo-3-methylbutane
- 2) 2-bromo-3-methylbutane
- 3) 2-bromo-2-methylbutane
- 4) l-bromo-2-methylbutane
- Consider the following bromides 63.
 - A) Me ABr

B)

The correct order of S_Nl reactivity is

- 1) A > B > C 2) B > C > A 3) B > A > C 4) C > B > A

KEY							
1) 1	2) 2	3) 4	4) 4	5) 3	6) 3	7) 2	8) 1
9) 2	10) 4	11) 4	12) 1	13) 3	14) 1	15) 2	16) 4
17)4	18)1	19)1	20) 4	21) 2	22) 2	23) 4	24) 1
25)4	26) 4	27) 1	28) 1	29) 4	30) 4	31) 3	32) 4
33) 4	34) 1	35) 4	36) 1	37) 3	38) 1	39) 2	40) 4
41) 3	42) 3	43) 4	44) 1	45) 4	46) 4	47) 2	48) 1
49) 1	50) 3	51) 1	52) 4	53) 1	54) 2	55) 3	56) 2
57) 3	58) 2	59) 3	60) 2	61) 4	62) 3	63) 2	

Question Bank - III Alcohols

1. Identify Z in the following sequence of reactions

$$Ethanol \xrightarrow{PBr_3} X \xrightarrow{Alc.KOH} Y \xrightarrow{i)Conc.H_2SO_4} Z$$

- 1) CH₂=CH₂ 2) CH₃CH₂OH 3) CH₃CH₂-O-CH₂CH₃ 4) CH₃CH₂-OSO₃H
- In India, ethyl alcohol is mainly manufactured by 2.
 - 1) Destructive distillation of wood 2) Hydrogenation of oils
 - 3) Fermentation of molasses
- 4) Catalytic oxidation of ethane
- $C_2H_4 \xrightarrow{HCl} A \xrightarrow{KOH(aq.)} B \xrightarrow{Conc.H_2SO_4} C$

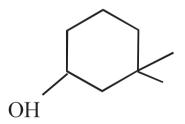
What is the final product?

- 1) C_2H_4 2) C_2H_5 O C_2H_5 3) C_2H_5OH 4) C_2H_5 O SO_3H
- The compound with formula $C_4H_{10}O$ yields a compound C_4H_8O on oxidation, the compound 4. C₄H₁₀O is
 - 1) an aldehyde

2) an alcohol

3) a ketone

- 4) an anhydride
- When a mixture containing PCl_3 and PCl_5 is heated with ethyl alcohol, a total of 4 moles 5. of ethyl chloride is formed. Mole ratio of PCl_3 and PCl_5 in the mixture is
 - 1)3:1
- 2) 1:1
- 3)1:3
- 4)2:1


6.	$A + SOCl_2 \rightarrow B \cdot SO_2 \cdot HCl$				
	$X + Na \rightarrow C + H_2$				
	$B+C \rightarrow (C_2H_5)O \cdot NaCl$				
	Then A and X are respectively				
	1) C ₂ H ₂ CI and C ₂ H ₂ ONa		d C ₂ H ₂ Cl		
	3) C_2H_5OH and C_3H_5OH	2 3	2 3		
7.	In the Lucas test, terbidity is no	2 3	2-5		
	1) l°Alcohol 2) 2°Alcohol	•	4) Phenol		
8.		ŕ	3,2,1 and zero alpha hydrogen atom(s)		
			e an alkene when heated with copper		
	1) P 2) Q	3) R	4) S		
9.	Which of the following alcohol	s on oxidation give	carboxylic acids with lesser number of		
	carbon atoms?				
	1) (CH ₃) ₃ C-CH ₂ OH	2) (CH ₃) ₃ COH			
	3) CH ₃ CH ₂ CHOHCH ₃	4) Both (2) and	(3)		
10.	Which of the following alcoho	ls will not be easily	oxidised by $K_2Cr_2O_7$ in dil. H_2SO_4 ?		
	1) CH ₃ OH 2) CH ₃ CH ₂ OH	3) $(CH_3)_3COH$	4) CH ₃ CHOHCH ₃		
11.	When vapours of an alcohol are passed over hot reduced copper, it gives an alkene. The				
	alcohol is				
	1) Primary 2) Secondary	3) Tertiary	4) None of these		
12.	A convenient reagent to disting	guish ethyl alcohol i	from <i>n</i> -propyl alcohol is		
	1) Lucas reagent	2) Tollen's reag	ent		
	3) Schiffs reagent	4) Iodine with a	q. NaOH solution		
13.	Which of the following compou	unds decol-ourises a	queous bromine and gives white fumes		
	of HCl on reaction with PCl_5 ?				
	1) CH ₃ CH ₂ CH ₂ CH ₂ OH	5 2			
	3) CH ₃ OCH ₂ CH ₂ CH ₂ OH	4) CH ₃ CH=CH	CH ₂ CH ₂ OH		
14.	The compound that does not re	espond to haloform	reaction is		
	1) C ₅ H ₁₁ CHOHCH ₃	2) CH ₃ CH ₂ CHO	OHC_2H_5		
	3) CH ₃ CHOHCH ₃	4) CH ₃ CH ₂ OH			
15.			the alkene thus formed is subjected to		
			with LiAlH ₄ . The final products is/are		
	1) 2-Methylpropan-2-ol	,	of methanol + ethanol		
	3) Mixture of 2-propanol + me	,			
16.	R-CH ₂ -CH ₂ -OH can be conver	ted into R-CH ₂ -CH	2-COOH by the following sequence of		
	steps				
	1) PBr ₃ ; KCN ; H ₃ O ⁺	2) PBr ₃ ; KCN; 1	_		
	3) KCN; H_3O	4) HCN; PBr_3 ;	H_3O^+		

- 17. When ethylhydrogen sulphate is heated with excess of alcohol at 410K, the product obtained is
- Ethane 2) Ethylene 3) Diethyl ether
 Maximum number of active hydrogens are present in
 - 1) Acetic acid 2) Methane
- 3) Glycerol
- 4) Methanol

4) Diethyl sulphate

- 19. How many primary structural alcohols isomers are possible for C₅H₁₁,OH?
 - 1) 5
- 2) 4
- 3) 2
- 4) 3
- 20. Methanol is industrially prepared by
 - 1) Oxidation of CH₄ by steam at 900°C
 - 2) Reduction of HCHO using LiAIH₄
 - 3) Reaction HCHO with a solution of NaOH
 - 4) Reduction of CO using H₂and ZnO-Cr₂O₃
- 21. For which of the following parameters, the structure! isomers C₂H₅OH and CH₃OCH₃ would be expected to have the same values? (Assume ideal behaviour)
 - 1) Heat df vaporization
 - 2) Gaseous densities at the same temperature and pressure
 - 3) Boiling points
 - 4) Vapour pressure at the same temperature
- 22. Among the following compounds which can be dehydrated very easily?
 - 1) CH₃CH₂CH₂CH₂CH₂OH
 - 2) CH₃ CH₂ OH OH
 - 3) CH₃ CH2 C—CH₂CH₃

 |
 CH₃
 OH
 - 4) CH₃CH₂CH₂CHCH₃
- 23. The IUPAC name of the compound is

- 1) 3,3-dimethyl-l -hydroxy cyclohexane 2) l, l-dimethyl-3-cyclohexane
- 3) 3,3-dimethyl-l-cyclohexanol
- 4) 1.1-dimethyl-3-hydroxy cyclohexane
- 24. Acid catalyzed hydration of alkenes except ethene leads to the formation of
 - 1) primary alcohol

- 2) secondary or tertiary alcohol
- 3) mixture of primary and secondary alcohols
- 4) mixture of secondary and tertiary alcohols

25.		at gives positive iodoform test upon reaction with I ₂ and			
	NaOH	a)			
	1) PhCHOHCH ₃	2) CH ₃ CH ₂ CH(OH)CH ₂ CH ₃			
	3) C ₆ H ₅ CH ₂ CH ₂ OH	4) $CH_3CH_2(CH_3)CH_2OH$			
26.	In the following sequence of rea	ctions			
	$C \xrightarrow{H_2O} D$. The compound is '	D'			
	1) n-butyl alcohol	2) n- propyl alcohol			
	3) propanal	4) butanal			
27.	Acid catalysed hydration of alke	enes is			
	1) Electrophilic addition and inte	ermediate is carb anion			
	2) Electrophilic addition and int	ermediate is carbonium ion			
	3) Nucleophilic addition and int	ermediate is carbonium ion			
	4) Freeradical addition				
28.	Ethyl alcohol acts as nucleophile	e when it reacts with			
	1) Conc.HC l /ZnC l_2 2) PC l_3	3) Cone. H ₂ SO ₄ 4) CH ₃ COOH/H ⁺			
29.	An organic compound 'A' with the	he molecular formula C ₄ H ₁₀ O on oxidation with acidified			
	K ₂ Cr ₂ O ₇ gives compound B' with the formula C ₃ H ₆ O. Again 'B' on oxidation with acidified				
	K ₂ Cr ₂ O ₇ gives 'C' with the mole	cular formula C ₂ H ₄ O ₂ . IUPAC name of 'A' is			
	1) 1-Butanol	2) 2-Butanol			
	3) 2-Methyl-2-propanol	4) 2-Methylbutanol-l			
30.	When phenyl magnesium bromid	le reacts with ter. butyl alcohol, which of the following is			
	formed?				
	1) Tert-butyl methyl ether	2) Benzene			
	3) Tert-butyl benzene	4) Phenol			
31.	$CH_3CH_2CH_2OH \xrightarrow{X} CH_3CH$	= CH ₂ ; The reagent 'X' is			
	1) 5% H ₂ SO ₄ at 50°C	2) 75% H ₂ SO ₄ at 100°C			
	3) 95% H_2SO_4 at 170°C	4) $A1_2O_3$, 170°C			
32.	$(CH_3)_3 C - OH \xrightarrow{H_2SO_4\Delta} (CH_3)_3 C$	₂ C - CH ₂ ; This reaction takes place through			
	1) S _N 1 mechanism	2) S _N 2 mechanism			
	3) Dehydration	4) Dehydrogenation			
33.	The final product in the ferments	ation of riped grapes in aerobic conditions is			
	1) Ethanoic acid	2) Ethanal			
	3) Ethanol	4) Ethane			
34.	Denaturation of ethyl alcohol is	made by adding			
	1) methanol only	2) Pyridine only			
	3) methanol and pyridine	4) zinc sulphate			
35.	$CH_3CH_2CH = CH CH_2OH $ PCC				
	5 2	OOH 2) $CH_3CH_2CH = CH - COOH$			
	3) CH ₃ CH ₂ CH(OH)CH(OH)CH	O 4) $CH_3CH_2CH = CHCHO$			

36.
$$CH_3$$
 – CH = CH_2

$$\xrightarrow{\text{dil.H}_2SO_4} X$$

$$\xrightarrow{\text{1. B}_2H_6} Y$$

Here, the products X and Y are

X

- 1) n propyl alcohol n propyl alcohol
- 2) iso propyl alcohol iso-propyl alcohol
- 3) n -propyl alcohol iso-propyl alcohol n-propyl alcohol
- 37. An organic compound 'X' with the molecular formula C₃H₆O, reacts with CH₃MgBr and then hydrolised to give 'Y', Y gives turbidity immediately with Lucas reagent. Structural formula of compounds X and Y are :

X

- 1) CH₃CH₂CHO CH₃CH₂CH(OH)CH₃
- 2) CH₃COCH₃ (CH₃)₃COH 3) CH₃CH₂CHO (CH₃)₃COH
- 4) CH_3COCH_3 $CH_3CH_2CH(OH)CH_3$

38.
$$CH_2COOC_2H_5$$
 NaBH₄

product(s) in the above reaction is (are)

2)
$$CH_2CH_2OH + C_2H_5OH$$

OH
$$CH_2CH_2OH$$
 CH_2COOH $+ C_2H_5OH$ 4) CH_2COOH $+ C_2H_5OH$

39.
$$CH_3 - CH_2 - C_1 - CHO - \frac{NaBH_4}{-} \rightarrow$$

Product(s) in the above reaction is (are)

- 1) CH₃CH₂COOH + CO₂
- 2) CH₃CH₂COCH₂OH
- 3) CH₃CH₂CH(OH)CH₂OH
- 4) CH₂CH₂CH(OH)CHO
- 40. Hydration of 3-phenylbut-l-ene with dil. H_2SO_4 mainly gives
 - 1) 3-Phenylbutan-l-ol
- 2) 3-Phenylbutan-2-ol
- 3) 2-Phenylbutan-l-ol
- 4) 2-Phenylbutan-2-ol
- 41. The bond cleavages during esterification reaction between
 - (A) = CH_3COOH and (B) C_2H_5OH
 - 1) C-OinB and O H in A
- 2) C O in A and O H in B
- 3) C O in A and O H in A
- 4) O H in B and O H in A

- 42. HBr reacts fastest with
 - 1) 2-Methylpropan -l-ol
- 2) 2-Methylpropan -2-ol

3) Propan-2-ol

- 4) propan-l-ol
- 43. $CH_3CH_2OH \xrightarrow{Conc.H_2SO_4,413K} C_2H_5OC_2H_5$

It follows which mechanism?

- $1) S_{N} 1$
- 2) S_{N}^{2}
- 3) E₁
- 4) E₂
- 44. The main product of the following reaction is $C_6H_5CH_2CH(OH)CH(CH_3)_2$ Conc. H_2SO_4

H₅C₆CH₂CH₂

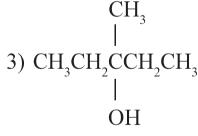
$$C = CH_2$$

$$H_3C$$

2)
$$H_5C_6$$
 $C = C$ $CH(CH_3)$

C₆H₅CH₂
$$C = C$$
 CH_3
 $C = C$
 CH_3

$$\begin{array}{c|c}
C_6H_5 & C = C \\
H & H
\end{array}$$


- 45. Among the following the one that give positive iodoform test upon reaction with NaOH is
 - 1) CH₃CH₂CH(OH)CH₂CH₃
- 2) C₆H₅CH₂CH₂OH

3)
$$H_3C$$
 \leftarrow OH

- 4) PhCHOHCH₃
- 46. Among the following compounds.which can be dehydrated very easily?
 - 1) CH₃CH₂CH₂CH₂CH₂OH

2) CH₃CH₂CH₂CHCH₃

4) CH₃CH₂CH CH₂CH₂OH

|
CH₃

			KE	Y			
1) 2	2) 3	3) 2	4) 2	5) 2	6) 3	7) 1	8) 4
9) 4	10) 3	11) 3	12) 4	13) 4	14) 2	15) 3	16) 1
17) 3	18) 3	19) 2	20) 4	21) 2	22) 3	23) 3	24) 2
25) 1	26) 2	27) 2	28) 4	29) 3	30) 2	31) 3	32) 3
33) 1	34) 3	35) 4	36) 4	37) 2	38) 1	39) 3	40) 4
41) 2	42) 2	43) 2	44) 2	45) 4	46) 3		

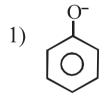
Question Bank - IV Phenol

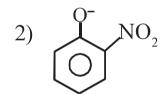
1.
$$C_6H_5OH + HCl_3 + NaOH \rightarrow C_6H_4$$
CHO
ONa⁺

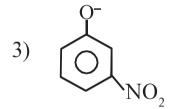
The electrophile involved in the above reaction is

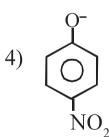
- 1) Dichloro carbene (:CCl₂)
- 2) Trichloro methyl anion $\left(CC_{l_3}^{(-)}\right)$
- 3) Formyl cation (C+HO)
- 4) Dichloro methyl cation (C^+HCl_2)
- 2. The reaction, $C_6H_5OH \xrightarrow{CH_3COCl} C_6H_5OCOCH_3$ is called
 - 1) Reimer-Tiemann reaction
- 2) Schotten-Baumann reaction

3) Acetylation


- 4) Benzoylation
- 3. Which of the following is most acidic?
 - 1) Phenol
- 2) CH₃CH₂OH
- 3) Picric acid
- 4) p-Nitrophenol
- 4. The increasing order of boiling points of below mentioned alcohols is
 - a) 1, 2 dihydroxy benzene
- b) 1, 3 dihydroxy benzene
- c) 1,4- dihydroxy benzene
- d) hydroxy benzene


1) a < b < c < d


2) a < b < d < c


3) d < a < b < c

- 4) d < b < a < c
- 5. The descending order of k_b values of the following compounds is

1) d > b > c > a

2) a > c > b > d

3) b > d > c > a

- 4) a > c > d > b
- 6. Phenols are more acidic than alcohols due to
 - a) In phenols. -OH is attached to sp^z hybri-dised carbon but in alcohols, -OH is attached to sp² hybridised carbon
 - b) Phenoxide ion is more stable than alkoxide due to resonance
 - c) Phenoxide ion is more stable than phenol
 - 1) only a
- 2) only b
- 3) only c
- 4) a, b and c

7.	7. Arrange the following compounds in the descending order of their pK_a value						
	a) 2, 4, 6-trinitrophenol	b) 3, 4-dimitrophe	enol				
	c) m-nitrophenol	d) p-cresol	e) phenol				
	1) $a > b > c > e > d$	2) $d > e > c > b >$	a				
	3) $a > b > c > d > e$	4) $e > d > c > b >$	a				
8.	Phenol $\xrightarrow{\text{conc.H}_2SO_4}$ A $\xrightarrow{\text{conc.HNO3}}$	\rightarrow B					
	Here A and B are respectively						
	1) P-Hydroxy benzenesulphonic	acid, P-nitrophenol					
	2) 4—Hydroxybenzene-1,3-disulphonic acid, picric acid						
	3) 4-Hydroxybenzene-1,3-disulpl	honic acid, 2,4-dini	trophenol				
	4) 3-Hydroxybenzene sulphonic	acid, picric acid					
9.	Phenol $\xrightarrow{\text{NaOH}} A \xrightarrow{1)\text{CO}_2} B$	$(CH_3CO)_2OH^+ \longrightarrow C$					
	Incorrect statement among the fo	ollowing is					
	1) Preparation of 'B' from pheno	ol is called Kolbe's r	reaction				
	2) 'B' is steam volatile						
	3) 'C' has a free - OH group of 'l	Β'					
	4) 'C' can be used as antiiflamma	atory, analgesic and	antipyretic.				
10.	Phenol $\xrightarrow{(CH_3CO)_2O.H^+}$ $A \xrightarrow{AlCl_3.\Delta}$	\rightarrow B+C					
	If 'B' is steam volatile, incorrect	s steam volatile, incorrect statement among the following is					
	1) Second step is called Fries rearrangement						
2) First step is called acetylation							
	3) Boiling point of B' is less man that of 'C'						
	4) 'C' is 3-Hydroxy acetophenon	e.					
11.	One mole of phenol is warmed w	vith sodium metal. I	f we assume 100% yield, volume of				
	H ₂ gas liberated at S.T.P is						
	1) 11.2L 2) 22.4 L	3) 33.6 L	4) 44.8 L				
12.	When phenol reacts with which of	one of the following	g reagents, a conjugate diketone will				
	be formed?						
	1) $Na_2Cr_2O_7$ 2) cone. HNO_3	3) Zn, Δ	4) Na2Cr2O7 + H2SO4				
13.	13. Benzene $\xrightarrow{\text{oleum}} A \xrightarrow{\text{NaOH}} B \xrightarrow{\text{HCl}} C$						
	Incorrect statement among the following is						
	1) Aqueous solutions of B is acid	as solutions of B is acidic 2) 'A' is Benzene sulphonic acid					
	3) 0.2% of 'C' can be used as and	rispectic 4) 'C' is more acidic than water.					
14.	Phenol gives characteristic colou	ration with					
	1) Iodine solution 2) Bromine water						
	3) Aqueous $FeCl_3$ solution	4) Ammonium hy	droxide				
15.	If we use carbon tetrachloride in	n Reimer-Tiemann i	reaction in place of chloroform, the				

product formed is

- 1) Salicylic acid
- 2) Salicylaldehyde
- 3) Cyclohexanol
- 4) Phenolphthalein
- When beozene sulphonic acid p-nitrophenol are treated with NaHCO₃ the gases released 16. respectively are
 - 1) SO₂, NO₂ 2) SO₂, NO
- 3) SO₂, CO₂ 4) CO₂, CO₂
- 17. Ortho-Nitrophenol is less soluble in water than p-and m-Nitrophenol because
 - 1) o-Nitrophenol is more volatile is steam than those of m- and p-isomers
 - 2) o-Nitrophenol shows Intramolecular H-bonding
 - 3) o-Nitrophenol shows Intermolecular H-bonding
 - 4) Melting point of o-Nitrophenol is lower than those of m- and p-isomers
- Phenol is heated with an aqueous solution of Bromine. The major product obtained in the 18. reaction is
 - 1) 2-Bromophenol
- 2) 3-Bromophenol
- 3) 4-Bromophenol
- 4) 2, 4, 6-Tribromophenol
- From amongst the following alcohols, the one that would react fastest with conc.HCl and 19. anhydrous ZnCl₂ is
 - 1) 1-Butanol

- 2) 2-Butanol
- 3) 2-Methylpropan-2-ol
- 4) 2-Methylpropanol-l

The elecrophile involved in the above reaction is:

- 1) dichloromethyl cation $(\overset{\oplus}{\operatorname{CH}} \operatorname{C1}_2)$ 2) dichlorocarbene (:CC1₂)
- 3) trichloromethyl anion $(\bar{C}C1_3)$ 4) fonnyl cation $(\bar{C}HO)$

			— KF	EY			
1) 1	2) 3	3) 3	4) 3	5) 2	6) 4	7) 2	8) 2
9) 3	10) 4		12) 4			15) 1	
17) 2	18) 4	19) 3	20) 2				

Question Bank - V Eather

- Anisole reacts with Br₂ in the presence of CS₂ as solvent to give 1.
 - 1) 2, 4, 6-Tribromoanisole
- 2) 2-Bromoanisole
- 3) 4-Bromoanisole
- 4) A mixture of 2-Bromoanisole and 4- Bromoanisole

2.	2. Anisole wfith HNO ₃ and cone H ₂ SO ₄ gives					
	1) Phenol 2) Nitrobenzene	3) o and p-nitro anisoles 4) o - nitro anisole				
3.	Ethyl phenyl etlier on reaction with excess HI yields					
	1) Ethyl iodide and iodobenzene	2) Ethyl iodide and phenol				
	3) Ethyl alcohol and phenol	4) Ethyl alcohol and iodobenzene				
4.	An ether is more volatile than an	alcohol leaving the same molecular formula. This is due				
	to					
	1) dipolar character of ethers	2) alcohols having resonance structures				
	3) inter-molecular hydrogen bond	ling in ethers				
	4) inter-molecular hydrogen bond	ding in alcohols				
5.	HBr reacts with $CH_2 = CH - OC$	H ₃ under anhydrous conditions at room temperature to				
	give					
	1) H ₃ C - CHBr - OCH ₃	2) CH ₃ CHO and CH ₃ Br				
	3) BrCH ₂ CHO and CH ₂ OH	4) BrCH ₂ - CH ₂ - OCH ₃				
6.	To prepare tert-butyl ethyl ether l	by Williamson synthesis, the reactants needed are				
	1) Sodium ethoxide and sodium t	ert butoxide				
2) Sodium ethoxide and tert-butyl bromide						
	l bromide					
	4) Ethyl alcohol and tert-butyl alc	cohol				
7.	The major product obtained when	n tert-butyl bromide is heated with sodium ethoxide is				
	1) 2-Methyl-l-propene	2) Ehene				
	3) tert-Butyl methyl ether	4) Diethyl ether				
8.		g with HI of one molar concentration gives				
	1) CH3OH + (CH3)3CI	2) $CH_3I + (CH_3)_3COH$				
	3) $CH_3I + (CH_3)_3CI$	4) None of these				
9.	9. $A + B \rightarrow CH_3 - OC(CH_3)_3 \xrightarrow{HI} X + Y$.					
	Correct statement among the following is 1) A and B are CH ₃ ONa and (CH ₃) ₃ CBr 2) X and Y are CH ₃ I and (CH ₃) ₃ COH					
	3) X and Y are CH ₃ OH and (CH ₃) ₃ CCI 4) A and B are CH ₃ OH and (CH ₃) ₃ COH				
10.	$P + Q \rightarrow Anisole \xrightarrow{HI} R + S.$					
	owing is					
	0 3 2	I_5Cl 2) R and S are C_6H_5I and CH_3OH				
	0 5	4) P and Q are C ₆ H ₅ Cl and CH ₃ ONa				
11.	$CH_3OCH_2CH_3 \xrightarrow{+HI} CH_3I + CH_3I$	H ₃ CH ₂ OH				
	It follows which mechanism?					
	1) $S_N 1$ 2) $S_N 2$	3) E_1 4) E_2				
12.		ents will form diethyl ether from ethanol?				
	1) H ₂ SO ₄ at 413 K	2) Cold HI solution				
	3) H ₂ SO ₄ at 443 K 4) Dilute H ₂ SO ₄ solution					

13. In the following reaction

$$C_2H_5OC_2H_5 + 4[H] \xrightarrow{\text{Red P+HI}} 2X + H_2O, X \text{ is}$$

- 1) Ethane
- 2) Ethylene
- 3) Butane
- 4) Propane
- 14. $(CH_3)_3 COCH_3 \xrightarrow{+HI} (CH_3)_3 CCI + CH_3OH$

It follows which mechanism?

- 1) $S_{N}1$
- 2) S_{N}^{2}
- 3) E₁
- 4) E₂

11			KE	ZV			
1) 4	2) 3	3) 2	4) 4		6) 3	7) 1	8) 1
9) 3	10) 3	11) 2	12) 1	13) 1	14) 1		

Question Bank - VI

Aldehydes and Ketones

SET-I

- 1) Both A & R are true and R is the correct explanation of A
- 2) Both A & R are true, but R is not the correct explanation of A
- 3) A is true, R is false
- 4) A is false, R is true
- 1. (A): Alcoholic fermentation involves conversion of sugar into ethanol by the action of yeast.
 - (R): Fermentation involves the liberation of CO₂ gas.
- 2. (A): Ethanol is miscible in all proportions with water.
 - (R): Hydrogen bonds are formed between wetter and alcohol molecules.
- 3. (A): Sojdium can't be used for drying ethyl alcohol.
 - (R): Sodium displaces hydrogen from ethyl alcohol.
- 4. (A): Ethyl alcohol is soluble in organic soli vents
 - (R): Etjhyl alcohol is having non polar ethyl group.
- 5. (A): The boiling point of C_2H_5OH is less than that of H_2O , though the molecular weight of $C_2H.OH$ is more than that of water.
 - (R): C₂H₅OH molecules are not highly associated through hydrogen bonding as in water.
- 6. (A) : Addition of C₂H₅OH to CH₃MgI gives methane.
 - (R): C₂H₅OH is more acidic than CH₄.
- 7. (A): Dehydration of alcohols can be carried out with cone H_2SO_4 but not with cone. HC1.
 - (R): H₂SO₄ is dibasic while HC1 is monobaisc.
- 8. (A): Alcohols on dehydration can produce ether as well as alkene under different conditions.
 - (R): Dehydration of alcohol takes place with conc.H₂SO₄ or A1₂O₃.
- 9. (A) Oxidation of tertiary alcohols requires strong oxidising agent and elevated temperature.
 - (R): Oxidation of tertiary alcohols involves cleavage of C C bond.

SET - II

- 1) Both A and R are true and R is the correct explanation of A
- 2) Both A and R are true, but R is not the correct explanation of A
- 3) A is the but R is false
- 4) Both A and R are

- (A): Primary and secondary alcohols can be distinguished by Lucas test. 10.
 - (R): An equimolar mixture of anhydrous ZnCl₂ and concentrated HCl is called Lucas reagent.
- (A) : Acetone and propenol-2 are tautomers. 11.
 - (R): Propanone and propenol-2 contain different functional groups.
- (A): Alcohols act as Bronsted Lowry bases. 12.
 - (R): In alcohols the lone pair of electrons on oxygen forms dative bond with H⁺.
- (A): Anhydrous ZnCl₂ is used in reaction of alcohols with HCl. 13.
 - (R): ZnCl₂ forms a complex with oxygen of alcohol and converts OH into a much better leaving group.

KEY							
1) 2 9) 1	2) 1 10) 2	3) 1 11) 2	4) 1	5) 1	6) 1	7) 2	8) 2

Question Bank - VII

Carboxylic Acid

- Which of the following can undergo neither aldol condensation nor iodoform reaction? 1.
 - 1) CH₃ CHO

- 2) CH₃ CO CH₃
- 3) CH₃ CO CH₂ CH₂ CH₃ 4) CH₃ CC*l*₂ CHO
- 2. Diacetone alcohol is obtained when
 - 1) 2 molecules of acetone condense in presence of barium hydroxide
 - 2) 3 molecules of acetone condense in presence of barium hydroxide
 - 3) 3 molecules of acetone polymerise in presence of conc H₂SO₄
 - 4) 3 molecules of acetone condense in presence of conc H₂SO₄
- I) CH₃OH 3.

- II) C₂H₅OH
- III) CH₃CH₂CH₂OH
- IV) $CH_3 CH(OH)CH_3$
- $V) (CH_3)_3 C OH$
- VI) CH₃CH(OH)C₂H₅
- VII) CH₃COCH₃
- VIII) CCl₃COCH₃

- IX) CH₃CHO

- XII) C_2H_5 CHO

Which of the above compounds cannot undergo iodoform reaction?

- 1) Only II, IV, VI, VII, VIII, IX
- 2) Only I, III, V, X, XI, XII
- 3) Only X, XI, XII
- 4) Only I, V, X, XII
- Number of σ bonds, π bonds and lone pairs of electrons present in acetone semicarbazone, 4. are

 - 1) 16, 2, 5 2) 16, 2, 2
- 3) 14, 2, 4
- 4) 16, 2, 4

- 5. IUPAC name of dehydration product of compound 'X' which is obtained of condensation of two molecules of acetone dilute NaOH solution is
 - 1) diacetone alcohol
- 2) mesityl oxide
- 3) 4 methyl pent 3 en 2 one 4) 4 hydroxy 4 methyl 2 pentanone
- Which of the following participate in aldol condensation 6.
 - 1) Formaldehyde
- 2) Benzaldehyde

3) Methanol

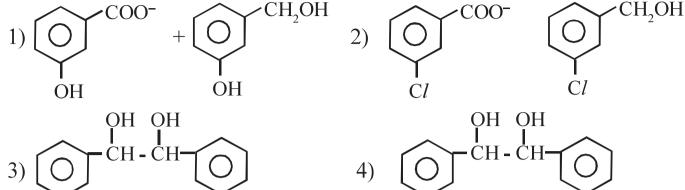
- 4) Acetaldehyde
- Acetaldehyde and acetone can be identified by 7.
 - 1) Schiff's reagent
- 2) 2,4-DNP test
- 3) Tollen's reagent
- 4) Lucas test
- 8.
- $A \xrightarrow{HBr} B \xrightarrow{AqKOH} C.$ $C \xrightarrow{PDC} CH_3COCH_3$

Identify the organic compounds A. B and C given in the above sequence.

- 1) CH₃CHO, C₂H₂Br, and CH₃COOH
- 2) $CH_3CH = CH_2$, $CH_3CHBrCH_3$ and $CH_3CH(OH)CH_3$
- 3) $CH_3CH = CH_2$, $CH_3CHBrCH_3$ and $CH_3CH(OH)CH_3$
- 4) $CH_3CH = CH_2$, $CH_3CHBrCH_3$ and
- Reduction of C = O to CH_2 can be carried out with 9.
 - 1) catalytic reduction
- 2) Na/C₂H₅OH
- 3) Wolff-Kishner reduction
- 4) LiAlH₄
- A carbonyl compound can be prepared by hydration of acetylene. It reacts with ammonia 10. to form (X) and with hydroxylamine to form (Y). It undergoes Wolff - Kishner reduction to form Z. X, Y and Z are
 - 1) Acetaldimine acetaldoxime and ethane
 - 2) Diacetone amine, acetoxime and propane
 - 3) Acetaldoxime, semicarbazone and propane
 - 4) Aldol, hydrazone and alcohol.
- $(CH_3)_2CO \xrightarrow{\text{NaCN}} A \xrightarrow{\text{H}_2O^+} B.$ 11.

In the above sequence of reactions. A and B are

- 1) (CH₂), C(OH)CN, (CH₃), C(OH)COOH
- 2) (CH₃), C(OH)CN, (CH₃), C(OH),
- 3) CH₃CHOHCN, (CH₃), CHCOOH
- 4) $(CH_3)_2 C(OH)CN, (CH_3)_2 C = O$
- Which one of the following is one of the cross end products formed when a mixture of 12. acetone and acetaldehyde is heated after treating with aqueous sodium hydroxide?
 - 1) $(CH_3)_2C = CH CHO$
- 2) (CH₃)C(OH) CHCOCH₃
- 3) $CH_3 CH = CH CHO$
- 4) $(CH_3)_2CH(OH)CH_2CO CH_3$


13.	$X+RMgX \rightarrow Y \xrightarrow{H_2O.H^+} Z.$							
	If Z is n-butyl alcohol, 'X' is							
	1) HCHO 2) CH ₃ CHO	3) RCHO	4) RCOR					
14.	·	When acetaldehyde undergoes reaction with Zn-HCl in the presence of Hg, the product						
	obtained is	2) mathana	1) butono					
15	1) propane 2) ethane	,	,					
15.	2, 3 - dimethyl - 2 - butene, on :	•						
16.	1) Acetone 2) Acetaldehyde	,	·					
10.	HCHO with conc. alkali forms two compounds. The change in oxidation number would be							
	•	1) (0 to -2) in both the compounds						
	2) (0 to +2) in both the compound a 3) (0 to +2) in one compound a		second compound					
	4) all the above are correct		second compound					
17.	Which of the following compou	ınde would undered	the Cannizzaro reaction ?					
1 / •	1) Acetaldehyde	2) Benzaldehyde						
	3) Propionaldehyde	4) Anisole						
18.	Benzaldehyde can be prepared by oxidation of toluene with							
10.	1) Acidic KMnO ₄	2) K ₂ Cr ₂ O ₇	iene with					
	3) Cr ₂ Cl ₂	4) All						
19.	Hydrogenation of benzoyl chlor	,	of Pd and BaSO gives					
	1) Benzyl Alcohol 2) Benzaldehyde							
	3) Benzoic acid	4) Phenol						
20.	Benzaldehyde is obtained from toluene by							
_ 。	1) Rosemnund's reduction 2) Cannizzaro reaction							
		4) Etard reaction						
21.	$C_6H_6 + CO + HCl \xrightarrow{Anhyd.AlCl_3} X \bullet HCl$ Compound X is							
	1) C ₆ H ₅ CH ₃ 2) C ₆ H ₅ CH ₂ Cl							
22.	In the reaction	7 6 3	7 6 3					
	$C_6H_5CH_3 \xrightarrow{(CH_3CO)_2O} M \xrightarrow{Alkaline} C_6H_5CHO$							
	Acetic anhydride is used							
	1) As a catalyst	2) As an oxidisir	ng agent					
	3) To form a non-oxidizable derivative of benzaldehyde							
	4) To help the reaction to proceed smoothly							
23.	Benzaldehyde undergoes oxidation and reduction in the presence of							
	1) NaHCO ₃	2) Concentrated NaOH						
	3) Na ₂ CO ₃	4) HC <i>l</i>						
24.	Reaction of C ₆ H ₅ CHO with CH ₃ NH ₂ gives							
	1) C ₆ H ₅ COOH	2) $C_6H_5 - N = N$	$Cl + 2H_2O$					
	3) $C_6H_5 - CH = N - CH_3$ 4) $C_6H_5NH_2$							

25.	Schiffs bases are formed when aniline reacts with		
	1) Aromatic aldehydes	2) Aryl ketones	
	3) Arylhalides	4) Aryl alcohols	
26.	CH ₃ CHO and C ₆ H ₅ CHO can be	distinguished by	
	1) Baeyers reagent	2) Tollens' reagent	
	3) Schiffs reagent	4) I ₂ + NaOH	
27.	Which does not react with Fehli	ng's solution	
	1) Acetaldehyde	2) Benzaldehyde	
	3) Glucose	4) Formic acid	
28.	A compound reduces Tollen's rea	gent but does not rec	luce Fehling's or Benedict solutions.
	It is		
	1) Glucose 2) Benzaldehyde	3) Acetophenone	4) Acetaldehyde
29.	Benzyl alcohol is obtained from	benzaldehyde by	
	1) Fittig reaction	2) Cannizzaro reac	etion
	3) Kolbe's reaction	4) Wurtz reaction	
30.	1 - Phenylethanol can be prepare	ed by reaction of ben	zaldehyde with
	1) Methyl bromide	2) Ethyl iodide and	d magnesium
	3) Methyl bromide and aluminiu	m bromide	
	4) Methyl iodide and magnesiun	ı	
31.	A substance A containing three car	rbon atoms gives whi	te crystalline precipitate with sodium
	bisulphite solution. But does not	give red precjpitate v	with Fehling solution. A on treatment
	with NH ₂ - NH ₂ / KOH will yield	d	
	1) Propene 2) Propane		
32.	A certain compound Y has a form	nula C_3H_6O . It combi	nes with hydroxylamine to form two
	compounds which are geometric		
	1) CH ₃ CHO 2) CH ₃ CH ₂ CHO	5	2 2
33.	Which of the following compour	nd will give yellow p	recipitate with I ₂ / Na ₂ CO ₃ (aq) but
	does not respond to Camiizarro		
	1) $(C_2H_5)_2CO$ 2) CH_3CHO	3) CH_2O	4) $C_2H_5CH_2OH$
34.	Vinyl alcohol and ethanal are		
	1) Metamers 2) Tautomers	3) Position isomer	s 4) chain isomers
35.	$C_3H_8O \xrightarrow{(O)} C_3H_6O \xrightarrow{I_2/I_2}$	\rightarrow CHI ₃	
	In this sequence, the starting cor	npound is	
	1) 1 - propanol	2) Propanal	
	3) 2- propanol	4) Ethyl methyl eth	ner
36.	Which among the following give	s positive iodoform t	est as well as positive Fehling test?
	1) Propanal 2) Ethanal	3) Propanone	4) Acetophenone
37.	The number of isomeric ketones	with formula C ₆ H ₁₂	O is
	1) six 2) two	3) five	4) four

38.	Cannizzaro reaction involves	
	1) oxidation of aldehydes	2) oxidation as well reduction of aldedhyde molecule
	3) Reduction of aldehyde molec	ule 4) Rearrangement in aldehyde molecule
39.	Whichof the following aldehyde	contains a -C atom but does not have any a -H atom?
	1) Propionaldehyde	2) Benzaldehyde
	3) Isobutyraldehyde	4) Formaldehyde
40.	Which of the following compou	nd will not undergo Cannizzaro reaction?
	1) Benzaledhyde	2) 2, 2 - Dimethyl propanal
	3) Formaldehyde	4) Phenylethanal
41.	The reagent used to bring about	ut the transformation: But-2-ene to ethylalcohol.
	1) Pyridinumchlorochromate	2) O ₃ , H ₂ O and Zn dust
	3) Chromium trioxide	4) Acidified dichromate
42.	A compound X has molecular	formula C_2Cl_3OH . It reduces Fehling solution and on
	oxidation it gives monocarboxyl	lic acid B. X can also be formed by the action of Cl_2 on
	ethanol. X is	
	1) Chloromethane	2) Chloroform
	3) Chloroacetic acid	4) Chloral
43.	In which of the following proces	ss acetone is one of the final products?
	1) Ozonolysis of ethyne	2) Oxidation of 2-butene with KMnO ₄ / H ₂ SO ₄
	3) Oxidation followed by hydro	lysis of cumene
	4) Dehydrogenation of 1 - propa	nnal
44.	Which of the following will sho	ow disproportionation when treated with 50% aqueous
	NaOH?	
	1) Benzyl alcohol 2) Ethano	1 3) Phenyl ethanol 4) m-Nitrobenzaldehyde
45.	Which reagent is suitable for one	e step preparation of n-pentane from 2-pentanone?
	1) Zn - Hg/HC <i>l</i>	2) LiAlH ₄
	3) K2Cr2O7/ H2SO4	4) One step conversion is not possible
46.	Which of the following can provi	de distinction between two functional isomers of C ₃ H ₆ O?
	1) NaHSO ₃ 2) HCN	3) $AgNO_3$ 4) $[Ag(NH_3)_2]^+OH^-$
47.	2-Pentanone and 3-Methylbutan	-2-one are
	1) optical isomers	2) geometrical isomers
	3) chain isomers	4) tautomers
48.	An alkene, C_7H_{14} on reductive oze	onolysis gave propanal and a ketone. The probable formula
	of ketone is	
	1) Acetone	2) Ethyl methylketone
	3) 2 - Pentanone	4) 3 - Pentanone
49.	Which ketone will form 3 - ethylp	pentan - 3-ol on treatment with ethyl magnesium bromide?
	1) Acetone	2) Ethylmethyl ketone
	3) Acetophenone	4) Diethyl ketone

50.	Acetone $\xrightarrow{\text{ethylencglycol}} X$.		
	The product X in this reaction is		
	1) Mesitylene 2) Acetylene	3) Ketol	4) Acetol
51.	Treatement of propionaldehyde w	rith dilute NaOH so	lution gives
	1) CH ₃ CH ₂ COOCH ₂ CH ₂ CH ₃		
	3) CH ₃ CH ₂ CH (OH) CH ₂ CH ₃ CHO	5 2	5
52.		5 2	out under Wolff - Kishner reduction?
	1) Benzaldehyde to benzyl alcoho	1 2) Cyclohexanol	to cyclohexane
	3) Cyclohexanone to cyclohexano	1 4) Benzophenon	e to diphenyl methane
53.	$C_6H_5CHO + HCN \rightarrow C_6H_5CH(C)$	N)OH. The product	would be
		2) Optically active	
	3) A meso compound	4) Ethyl formate	
54.	When acetone undergoes reducti	ion in presence of Z	Zn-HCl/Hg, it is known as
	1) Wolf Kishner's reduction	2) Rosenmund's re	eduction
	3) Clemmenson's reaction	4) Gatterman's rea	ction
55.	$C_6H_5CH_3 \longrightarrow C_6H_5CHO$. Which	one of the followi	ng reagents are not suitable for the
	conversion ?		
	1) treating with alkaline KMnO ₄ a	and heating	
	2) reaction with CrO ₂ Cl ₂ followed	ed by hydrdysis.	
	3) reaction with CrO ₃ in (CH ₃ CO)		droysis.
	4) both (2) and (3).	-	
56.	$R-COCl + R_3Cd \longrightarrow CdCl_2 + X_3$	K. The organic comp	pound 'X' is
	1) a ketone 2) an aldehyde		
57.	Cyanphydrin of which compound	on hydrolysis will	give lactic acid?
	1) C ₆ H ₅ CHO 2) HCHO	3) CH ₃ CHO	4) CH ₃ - CH ₂ - CHO
58.			zaldehyde is treated with CH ₃ MgBr
	and the addition product so obtain		
	1) A secondary alcohol	2) A primary alcoh	ol
	3) Phenol	4) Tert-butyl alcoh	ol
59.	Which of the following reacts with	h NaOH to produce	e an acid and an alcohol?
	1) HCHO 2) CH ₃ COOH	3) CH ₃ CH ₂ COOH	4) C ₆ H ₅ COOH
60.	The increasing order of the rate of	HCN addition to c	ompounds I to IV is
	І. НСНО	II. CH ₃ COCH ₃	
	III. PhCOCH ₃	IV. PhCOPh	
	1) III < IV < II < I	2) I < II < III < IV	
	3) IV < II < III < I	4) IV < III < II < I	
61.	Which one of following undergoes	s reaction with 50%	sodium hydroxide solution to give
	the corresponding alcohol and aci	d ?	
	1) Phenol 2) Benzoic acid	3) Butanal	4) Benzaldehyde

62. When m-chlorobenzaldehyde is treated with 50% KOH solution, the product(s) obtained is (are)

- OH OH
- 63. Which of the following does not undergo disproportionation with conc. KOH
 - 1) CH₃CHO 2) HCHO
- 3) C_6H_5CHO
- 4) Chloral

 $C_6H_6 \xrightarrow{CO,HCl} AICl_3 \rightarrow A \xrightarrow{conc.KOH} B+C$ 64.

Correct statement among the following is

- 1) First step is called Kolbe's reaction
- 2) B and C are benzaldehyde and benzyl alcohol.
- 3) Second step is called aldol condensation
- 4) A is benzene carbaldehyde
- $CH_3CHO + CH_3CH_2CHO \xrightarrow{NaOH, \Delta}$. 65.

Which one of the following compounds is not the product in the above reaction '.'

- 1) $CH_3CH = CHCHO$
- 2) $CH_3CH_2CH = CHCH_2CHO$
- 3) $CH_3CH = C(CH_3)CHO$
- 4) $CH_3CH_2CH = CHCHO$
- C_6H_5 CHO + C_6H_5 COCH₃ $OH^-,293K$ X; 66.

IUPAC name of cross condensation product X is

- 1) Benzalacetophenone
- 2) 1, 3-diphenylpropanone-l
- 3) 1,3-diphenylprop-2-en-l-one
- 4) 1,3-diphenyl prop-1 -en-3-one
- One mole of acetal on complete hydrolysis gives 67.
 - 1) 1 mole of aldehyde, 1 mole of alcohol
 - 2) 1 mole of aldehyde, 2 moles of alcohol
 - 3) 2 moles of aldehyde, 1 mole of alcohol
 - 4) 2 moles of aldehyde and 2 moles of alcohol
- 68. In Gatterman-Koch reaction, benzene is converted to benzaldehyde. The set of chemicals used for the convertion
 - 1) CO, HCl, anhydrous CuCl
- 2) CrO₃, (CH₃CO)₂)
- 3) C₆H₅MgBr, C₂H₅OC₂H₅
- 4) C0₂, HC*l*, anhydrous A*l*C*l*₃

			K	Y			
1) 4	2) 2	3) 2	4) 1	5) 3	6) 4	7) 2	8) 3
9) 3	10) 1	11) 1	12) 1	13) 1	14) 2	15) 1	16) 3
17) 2	18) 3	19) 2	20) 4	21) 3	22) 3	23) 2	24) 3
25) 1	26) 4	27) 2	28) 2	29) 2	30) 4	31) 2	32) 2
33) 2	34) 2	35) 3	36) 2	37) 1	38) 2	39) 2	40) 4
41) 2	42) 4	43) 3	44) 4	45) 1	46) 4	47) 3	48) 2
49) 4	50) 3	51) 2	52) 4	53) 2	54) 3	55) 1	56) 1
57) 3	58) 1	59) 1	60) 4	61) 4	62) 2	63) 1	64) 4
65) 2	66) 3	67) 2	68) 1				

	Que	stion Bank - V	'III
	Amines, Diazonium	Salt, Cyanide	es and Isocyanides
	Which of the following is used a		·
	1) acetic anhydride		acid
	3) ethyl acetate	4) anhydrous sod	iumacetate
	The compound which is widely	used as acetylating	agent is
	1) glacial acetic acid	2) ethyl acetate	
	3) acetic anhydride	4) anhydrous sodi	ium acetate
	The organic compounds A and	B react with sodiun	n metal and release H_2 gas. A and B
react together to give ethyl acetate. Then A and B ar		ite. Then A and B ar	re
	1) HCOOH and C ₂ H ₅ OH 2) C ₂ H ₅ OH and CH ₃ COO		CH ₃ COOH
	3) CH ₃ COOH and CH ₃ OH		
	Heating a mixture of ethyl alcohol	ol and acetic acid in	presence of cone. H ₂ SO ₄ produces a
	fruity smelling compound A. Th	en A is	
	1) Ether 2) Ester	3) Aldehyde	4) Ketone
	Hydrolysis of acetamide produce	es	
	1) Acetic acid 2) Acetaldehyde	3) Methyl amine	4) Formic acid
	Cyanohydrin of which of the fol	loiwng forms lactic	acid?
	1) HCHO 2) CH ₃ COCH ₃	3) CH ₃ CHO	4) CH ₃ CH ₂ CHO
	$CaC_2 \xrightarrow{H_2O} A+B. A \xrightarrow{HgSO_4+H_2}$	$\xrightarrow{SO_4}$ C. C $\xrightarrow{K_2Cr_2O_7+F}$	$\xrightarrow{H_2SO_4} D$
	Here A. B, C and D are respective	vely	
	1) CH \equiv CH, Ca(OH) ₂ , CH ₃ CH	O and CH ₃ COOH	
	2) $Ca(OH)_2$, $CH \equiv CH$, CH_3CH	5	Ca
	3) CH \equiv CH, Ca(OH), CH ₃ CH	5 2	
	4) CH \equiv CH, CH ₃ CHO, Ca(OH	3	
	Identify Z in the following seque	2 3 2	

 $CH_3COONH_4 \xrightarrow{\Delta} X \xrightarrow{P_2O_5} Y \xrightarrow{H_2O/H} Z$

1) CH₃CH₂CONH₂ 2) CH₃CN 3) (CH₃CO)₂O 4) CH₃COOH

9.	$(CH_3)_2CO \xrightarrow{NaCN} X \xrightarrow{H_3O} Y$	•		
	Here X and Y are respectively			
	1) (CH ₃) ₂ C(OH)CN. (CH ₃) ₂ C(OH	H)COOH 2) $(CH_3)_2C(OH)CN$, $(CH_3)_2C(OH)_2$		
		OH 4) $(CH_3)_2C(OH)CN$, $(CH_3)_2C=O$		
10.	Which reagent will bring about the	he conversion of carboxylic acids into esters?		
	1) C_2H_5OH	2) Dry HCl+ C ₂ H ₅ OH		
	3) LiAIH ₄	4) $Al(OC_2H_5)_3$		
11.	$R - COCH_3 \xrightarrow{X_2/OH^-} CHX_3 +$	Carboxylate ion \xrightarrow{H} Carboxylic acid. In the above		
	sequence, the carboxylic acid obtained is			
	1) CH ₃ COOH	2) HCOOH		
12.	3) RCOOH The reaction of acetaldehyde wi	4) RCH ₂ COOH th HCN followed by hydrolygic gives a product which		
12.	exhibits ?	th HCN followed by hydrolysis gives a product which		
	1) Metamerism	2) Tautomerism		
	3) Enantiomerism	4) Geometrical isomerism		
13.	,	nagnesium bromide is treated with carbon dioxide and		
	followed by hydrolysis			
	1) C ₃ H ₇ COOH	2) C ₂ H ₅ COOH		
	3) CH ₃ COOC ₂ H ₅	2 3		
14.	What are A and B in the following			
	I) $CH_3CO_2H \xrightarrow{HI \text{Red P}} A$	II) $2CH_3CO_2H \xrightarrow{P_4O_{10}} B$		
	1) CH_3COCH_3 $(CH_3CO)_2O$			
	2) C ₂ H ₆ CH ₃ COCH ₃			
	3) C_2H_6 (CH ₃ CO) ₂ O			
	$4) \left(CH_3 CO \right)_2 \qquad C_2 H_6$			
15.	Which of the following reactions	of acetic acid involves C-OH bond?		
	I) Action of Na	II) Formation of acid chloride		
	III) Action with NaHCO ₃	IV) Formation of an ester		
	1) I,II 2) II,III	3) III, IV 4) II, IV		
16.	In which of the following, the car	rbon-oxygen bonds are of equal lengths?		
	1) CH ₃ COO—	2) CH ₃ COOH		
	3) CH ₃ COOC ₂ H ₅	4) CH ₃ COC <i>l</i>		
17.	Propanoic acid is slightly weaker	than acetic acid because		
	1) methyl group is electron with	drawing		
	2) +1 effect of C ₂ H ₅ is more than	-CH ₃		
	3) acetic acid is stronger than pro	opanoic acid		
	4) propanoic acid has three carbon atoms			

18.	When compo	ound X is oxidised b	y acidified potassium	n dichromate, compound Y is formed.
	Compound Y	on reduction with	LiAlH ₄ gives X .X	and Y respectively are
	1) C_2H_5OH ,	CH ₃ COOH	2) CH ₃ COCH ₃ , C	CH ₃ COOH
	3) C ₂ H ₅ OH,	CH ₃ COCH ₃	4) CH ₃ CHO, CH ₃	СООН
19.	The correct a	acidic strength orde	er of the following co	ompounds is
	a) CH ₃ COOH	H b) H ₂ CO ₃	c) C ₂ H ₅ OH	d) C ₆ H ₅ OH
	e) H ₂ O	f) C_2H_2		
	1) $a > b > d > a > a > b > a > b > d > a > a > b > a > b > d > a > a > b > a > a > a > a > a > a > a$	> e > c > f	2) $a > d > c > b >$	e > f
	3) $a > b > c >$	> d > e > f	4) $a > b > d > c >$	e > f
20.	TolueneK	$\xrightarrow{\text{MnO}_4 + \text{KOH}} A \xrightarrow{\text{H}_3\text{O}^+}$	\rightarrow C. n-propyl benz	tene $\xrightarrow{\text{KMnO}_4 + \text{KOH}} P \xrightarrow{\text{H}_3\text{O}^+} Q$.
	,	re different but C are different and C a		
		re same and C and		
	4) C and Q a	re benzaldehyde		
21.	$C_6H_5Br + M$	$g \xrightarrow{\text{dry ether}} A \xrightarrow{\text{CO}}$	$\xrightarrow{2}$ B $\xrightarrow{\text{H}_3\text{O}^+}$ C. IU	JPAC name of C is
	1) Benzene o	carboxylic acid	2) Benzene carba	ldehyde
22	3) Phenyl me		4) Phenyl ethanoi	ic acid
22.	•	the following sequ		
		$I_4 \xrightarrow{\Delta} A \xrightarrow{P_2O_5}$		
	1) CH ₃ CH ₂ C	-	2) CH ₃ CN	
	3) $(CH_3CO)_2$		2) CH ₃ COOH	
23.		B, C in the following		
	CH ₃ CO ₂ Na-	$\xrightarrow{\text{Soda lime } / \Delta} A$, C	$H_3CO_2H \xrightarrow{LiAlH_4} E$	$3, CH_3CO_2Na \xrightarrow{Kolbe's selectrolysis} C$
	A	В	C	
	$1) C_2H_6$	C_2H_5OH	CH_4	
	2) CH ₄	C_2H_5OH	C_2H_6	
	$3) C_2H_5$	CH ₃ COCH ₃	C_3H_8	
	4) $(CH_3CO)_2$	$O C_2H_6$	C_2H_6	
24.	Identify A, B	and C in the follow	wing reactions:	
	CH ₃ Cl KCN	$A \xrightarrow{\text{Hydrolysis}} B$	$\xrightarrow{\text{C2H}_5\text{OH/H}^+}$ \rightarrow C	
	A	В	C	
	1) CH ₃ NC	CH ₃ NHCH ₃	$CH_3N(CH_3)C_2H_5$	
	•	CH ₃ CONH ₂	_	
	_	CH_3CO_2H		
	J	CH_3CO_2H	3 2	
25.		0 1	ence of reactions?	
	Phenol — Znd	$\xrightarrow{\text{lust}} X \xrightarrow{\text{CH}_2\text{Cl}} \xrightarrow{\text{anhyd.AlCl}_3} X$	Y . $Y = \frac{Alkaline}{KMnO_4}$	\rightarrow Z
	1) Toluene	2) Benzne	3) Benzoic acid	4) Benzaldehyde

26.	The major product of nitration	of benzoic acid is	
	1) 3 - Nitro benzoic acid	2) 4 - Nitro benzo	pic acid
	3) 2 - Nitro benzoic acid	4) 2, 4 - Dinitro b	enzoic acid
27. Which of the following compounds does not have a carboxyl group?			carboxyl group?
	1) methanoic acid	2) ethanoic acid	
	3) picric acid	4) benzoic acid	
28.	Which of the following substan	ices will not give silv	er mirror with Tollen's reagent?
	1) Ethanal 2) Methanoic ac	id 3) Acetone	4) Propanal
29.	Chlorinatton of Toluene in the	presence of light an	nd heat followed by treatment with
	aqueous NaOH gives		
	1) o - Cresol 2) p - Cresol	3) 2, 4 - Dihydrox	xytoluene 4) Benzoic acid
30.	When $CH_2 = CH - COOH$ is re	duced with LiAlH ₄ , T	The compound obtained will be
	1) CH2 = CH - CH2 - OH	2) $CH_3 - CH_2 - C$	CH ₂ OH
	3) $CH_3 - CH_2 - CHO$	4) $CH_3 - CH_2 - C$	СООН
31.	In the following reaction. (A) a	nd (B) are respective	ly
	$CH_3COOH + NH_3 \longrightarrow (A) -$	$\Delta \rightarrow (B) + H_2O$	
	1) CH ₃ CONH ₂ , CH ₄	2) CH ₃ COONH ₄ ,	CH ₃ CONH ₂
	3) CH ₃ CONH ₂ , CH ₃ COOH	4) CH ₃ NH ₂ , CH ₃ C	CONH ₂
32.	Acetic anhydride may be prepar	red by the reaction of	f acetic acid with
	1) Soda-lime 2) LiAlH ₄	3) P2O5	4) Na
33.	A fruity smell is produced by the		
	1) PCl ₅ 2) CH ₃ COCH ₃	3) CH ₃ COOH	4) NaOH
34.	Consider an esterification of ise	otopically labelled ca	rboxylic acid:
	Ö		
	$CH_3 - C - OH + CH_3CH_2OH$	H^+ . (A) and (B)	
	Compounds (A) and (B) respec	O O	
	1) $CH_3 - C - OC_2H_5$; H_2O	2) CH = C = OC	$^{\circ}$ H $^{\circ}$ H $^{\circ}$ H $^{\circ}$
	O	O	2^{11}_{2} , 11_{2}
	O 3) CH ₃ - C -OC ₂ H ₅ ; H ₂ O	18	11 11 0 10
	3) $CH_3 - C - OC_2H_5$; H_2O	4) CH ₃ - C - OC	C_2H_5 ; H_2O^{10}
35.	The end product in the following	ng series of reactions	
	is $CH_3COOH \xrightarrow{NH_3} (A) \xrightarrow{\Delta}$	\rightarrow (B) $\xrightarrow{P_2O_5}$ (C)	
	1) CH ₄ 2) CH ₃ OH	` ′	4) ammonium acetate
36.	Hoffmann bromamide or hypot		
	1) amines 2) esters		
37.			o nucleopbilic attack at the carbony
	carbon is	_	·
	1) CH ₃ COCl 2) CH ₃ CHO	3) CH ₃ COOCH ₃	4) CH ₃ COOCOCH ₃
38.	Acetamide produces primary an	mine with	
	1) NaOH 2) HC <i>l</i>	3) NaOH/Br.	4) HgO

			— KE	E Y			
1) 1	2) 3	3) 2	4) 2	5) 1	6) 3	7) 1	8) 4
9) 1	10) 2	11) 3	12) 3	13) 1	14) 3	15) 4	16) 1
17) 2	18) 1	19) 1	20) 3	21) 1	22) 4	23) 2	24) 3
25) 3	26) 1	27) 3	28) 3	29) 4	30) 1	31) 2	32) 3
33) 3	34) 2	35) 3	36) 4	37) 1	38) 3		

Question Bank - IX

Aniline is not the major product in one of the following reactions. Identify that reaction 1.

1)
$$C_6H_5OH + NH_3 \frac{ZnCl_2}{300^9c}$$

1)
$$C_6H_5OH + NH_3 \xrightarrow{ZnCl_2 \atop 300^0c}$$
 2) $C_6H_5NO_2 + Zn powder \xrightarrow{alcoholic KOH}$

3)
$$C_6H_5Cl + NH_3 \xrightarrow{200^0} 4) C_6H_5NO_2 + Fe + H_2O \xrightarrow{HCl}$$

2. Which of the following is obtained in a carbyl amine reaction?

3)
$$C_6H_5CN$$

4)
$$C_6H_5NC$$

Most basic among the following is 3.

1) benzyl amine

2) aniline

3) acetanilide

4) p-nitro aniline

In-correct statement about aniline is 4.

1) it is less basic than ethyl amine 2) it is steam volatile

3) on reaction with Na, it gives H₂ 4) it is highly soluble in water

On reduction, primary amine is formed by 5.

1) 1 -nitroethane

2) ethylnitrite

3) azobenzene

4) ethylcarbylamine

Carbylamine reaction is answered by 6.

1) methanamine

2) nitromethane

3) acetamide

4) trimethylamine

The sequence of reactions required to convert benzene to p-choronitrobenzene are 7.

- 1) Nitration followed by treatment with Cl_2 in presence of light
- 2) Nitration followed by treatment with $Cl_{1}/AlCl_{3}$.
- 3) Chlorination with Cl₂/AlCl₃ followed by nitration.
- 4) Chlorination with $Cl/h\vartheta$ followed by nitration.

8. The descending order of boiling points of the following compounds is

a) 1-Butanamine

b) N-Ethylethanamine

c) N,N-Dimethyl ethanamine

d) n-Butyl alcohol e) iso Pentane

1) d > a > b > c > e

2) d > c > b > a > e

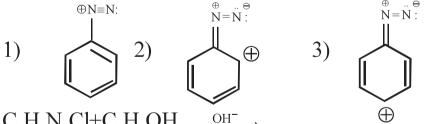
3) a > d > b > c > e

4) a > b > c > d > e

9. In gaseous state, the correct basic strength among the following is

1) $(C_2H_5)_3N>(C_2H_5)_2NH>C_2H_5NH_2>NH_3$

2) $(C_2H_5)_2NH>(C_2H_5)_3N>C_2H_5NH_2>NH_3$


3) $(C_2H_5)_2NH>C_2H_5NH_2>(C_2H_5)_3N>NH_3$

4) (C₂H₅)₃N>C₂H₅NH₂>(C₂H₅)₂NH>NH₂

- An organic compound 'X' with the molecular formula C₄H₁₁N reacts with C₆H₅SO₂Cl and 10. forms die compound 'Y' If 'Y' is soluble in alkali, 'X' may be
 - 1) N-Methyl propanamine
- 2) N,N-Dimethyl ethanamine
- 3) 1-Pentanamine
- 4) Sec-butyl amine
- $(CH_3)_2NH \xrightarrow{KMnO_4} A$, $(CH_3)_2N \xrightarrow{H_2SO_4} B$. Here A and B are 11.
 - 1) Tetramethylhydrazine, dimethyl hydroxyl amine
 - 2) Dimethylhydroxyl amine, tetramethyl hydrazine
 - 3) Tetramethylhydrazine, Tetramethyl hydrazine
 - 4) Dimethylhydroxyl amine, Dimethyl hydroxyl amine
- A and B are the compounds with the molecular formula C₃H₉N. These are oxidised by 12. KMnO_4 and subjected to hydrolysis. If A gives propanal and B gives propanone, A and B are respectively
 - 1) N-propanamine, 2-propanamine
 - 2) N-methyl ethanamine, 2-propanamine
 - 3) Isopropyl amine, N-methyl ethanamine
 - 4) N-methyl ethanamine, trimethyl amine
- An organic compound 'X' gives foul odour on heating with CHCl₃ and alc.KOH. Correct 13. statements) among the following is (are)
 - b) 'X' reacts with C₆H₅SO₂Cl give a compound which is insoluble in alkali
 - b) 'X' on reaction with CS₂ followed by treatment with HgCl₂ gives a mustard oil smell compound
 - 3) 'X' on oxidation with KMnO₄ followed by hydrolysis gives a carbonyl compound
 - 1) a, b and c are correct
- 2) b and c are correct
- 2) only a and b are correct
- 3) only b is correct
- $R-NC + HgO \longrightarrow Hg + X$. Here, the compound X is
 - 1) R ONC 2) R CON
- 3) R CNO
- 4) R NCO
- Which one of the following is water insoluble and stable at room temperature? 15.
 - 1) $C_6H_5N_2C1$ 2) $C_6H_5N_2HSO_4$ 3) $C_6H_5N_2BF_4$ 4) $C_6H_5N_2Br$

.. ⊕ N≡N :

Among the following incorrect resonance structure of benzene diazonium ion is 16.

 $C_6H_5N_2Cl+C_6H_5OH \xrightarrow{OH^-}$ 17.

Correct statement among the following

- 1) 'X' is an yellow dye
- 2) The reaction is electrophilic substitution in C₆H₅N₂Cl
- 3) The reaction is electrophilic substution in phenol
- 4) The reaction is nucleophilic substituion in phenol

I8.	$C_6H_5N_2Cl + X + H_2O \longrightarrow C_6H_5$	$H_6 + N_2 + Y + HCl$. Here X and Y are respectively
	1) H_3PO_3 , H_3 , PO_4	2) H3PO2, H3PO3
	3) H3PO2, H3PO4	4) H3PO3, H3PO2
19.	I) $C_6H_5N_2Cl \xrightarrow{\text{CuCl/HCl}} C_6H_5Cl$	$1+N_2$
	II) $C_6H_5N_2Cl \xrightarrow{Cu/HCl} C_6H_5Cl$	$+N_2 \cdot CuCl$
	Incorrect statement among the fe	following is
	1) Reaction 'I' is Sandmeyers re	action
	2) Reaction 'II' is Gattermann re	eaction
	3) Yield of chlorobenzene is mor	re in reaction 'II'
	4) Yied of chlorobenzene is mor	e in reaction 'I'
20.	Benzamide can be converted int	o aniline by the action of
	1) Br_{γ}/CCl_{4} 2) $Br_{\gamma}/water$	3) Br_2/KOH 4) $Br_2/red P$
21.	The process that does not yield	an amine is
	1) action of ammonia on RX	2) reduction of aldoxime with Na/alcohol
	3) acid hydrolysis of alkyl cyanic	de 4) reduction of amide with LAH
22.	Among different aliphatic amine	s, correct order of basic strengths in vapour state is
	1) 3°>2°>1° 2) 1°>2°>3°	3) 2°>1°>3° 4) 3°>1°>2°
23.	Conversion of a primary amide	into a primary amine is called
	1) Gabriel's pthalimide reaction	2) Hoffmann bromamide reaction
	3) Carbyl amine reaction	4) Hinsberg's reaction
24.	Ethanamine can be obtained from	m methyl iodide by the action of alc.KCN followed by
	1) hydrolysis 2) oxidation	3) reduction 4) action of NH ₃ /heat
25.	The following amide does not us	ndergo Hoffmann's degradation
	A) Propionamide	B) N-methyl butanamide
	C) Butanamide	D) N,N-dimethyl butanamide
	1) D only 2) C only	3) C and D 4) B and D
26.	Incorrect statement among the fe	following is
	I) LiAH ₄ can reduce an amide in	to amine without change in the number of carbon atoms
	II) a primary amide can be reduced	to a primary amine by Br ₂ /KOH with same number of carbons
	III) a primary amide can be reduce	d to a primary amine by LiAlH ₄ with (n-1) carbon atoms
	IV) Hoffmann's bromamide read	ction is useful to prepare aniline from benz amide
	1) II only 2) I only	3) III and IV 4) II and III
27.	N,N-dimethyl ethanamide on red	duction with LiAlH ₄ gives
	1) N-methylethanamine	2) N, N-dimethylethanamine
	3) ethanamine	4) trimethyl amine
28.	Most reactive towards electroph	niilic substitution is
	1) aniline hydrochloride	2) aniline
	3) nitro benzene	4) N-acetyl aniline

29.	On reduction, primary amine is for	formed by
	1) nitroethane 2) ethylnitrite	3) azobenzene 4) ethylcarbyl amine
30.	Butanone oxime on reduction wit	th Na / C ₂ H ₅ OH gives
	1) 3° amine 2) 1° amine	3) 2° amine 4) 4° amine
31.	Which of the following groups w	vill increase basic strength of aniline?
	1) -NO ₂ in ortho or para	2) -CHO in ortho or para
	3) $-SO_3H$ in ortho or para	4) -OH in ortho or para
32.	Aniline gives meta derivative as a	major product with
	1) CH ₃ COC <i>l</i> /pyridine	2) $HNO_3 + H_2SO_4$
	3) Br,/water	4) CH ₃ Cl/pyridine
33.	Bromination of aniline in acid me	edium results as major product
	1) 2,4,6-tri bromo aniline	2) 3-bromo aniline
	3) 2-bromo aniline	4) 4-bromo aniline
34.	Ethyl amine can be distingished f	from aniline by
	1) Tollens' reagent	2) Schiff's reagent
	3) Azodye test	4) Carbylamine test
35.	Which of the following on Hoffn	nann's bromamide reaction gives alkanamine?
	1) RCH ₂ NH ₂ 2) RCONHR'	3) RCONH ₂ 4) RCOONH ₄
36.	filtered. B is obtained in the filtera	and C is treated with benzene sulphonyl chloride and te. The mixture containing A and C is treated with KOH
	so that A becomes soluble while (1) aliphatic primary, secondary ar	
	2) aliphatic secondary, tertiary an	•
	3) aliphatic primary, tertiary and	
	4) aliphatic tertiary, secondary an	nd primary
37.	Match the following:	
	Set-A	Set-B
	1) acetanilde	A) acidic
	2) benzonitrile	B) basic
	3) trimethyl amine	C) neutral
	4) phenol	
	1 2 3 4	1 2 3 4
	1) C C B A	2) B C C A
	3) C B B C	4) A A C B
38.	Dye test is used to distinguish	
	1) ethanamine and methanamine	2) methanamine and propanamine-1
20	3) benzenamine and ethanamine	4) urea and acetanilide
39.	Aniline is 1) more basic than ammonia	2) more basic than p-amino phenol
	3) more basic than p-nitro aniline	· •

40. Acetanilide on nitration followed by hydrolysis yields — as main product.			ls — as main product.		
	1) 4-nitro aniline	2) 2,4,6-trinitro a	niline		
	3) 2-nitro aniline	4) 4-nitro aniline			
41.	Among the following, strongest	base is			
	1) aniline 2) p-nitro aniline	3) m-nitro aniline	4) benzyl amine		
42.	Phenyl isocyanides are prepared	from which of the	following reaction?		
	1) Rosenmund's reaction	2) Carbylamine re	eaction		
	3) Reimer - Tiemann	4) Wurtz reaction			
43.	Gabriel synthesis is used for the	preparation of			
	1) Primary aromatic amines	2) Primary alipha	tic amines		
	3) Secondary amines	4) Tertiary amines	S		
44.	Hydrolysis of acetonitrile in acid	dic medium gives			
	1) CH ₃ CH ₂ OH	2) CH ₃ NC			
	3) CH ₃ CH ₂ CHO	4) CH ₃ COOH			
45. Alkyl isocyanide on reduction with Zn - Hg / HCl / gives			gives		
	1) Primary amine	2) Tertiary amine			
	3) N- Alkyl alkanamine	4) N - Methyl alk	anamine		
46.	Cyanide is an				
	1) Zwitter ion	2) Cation			
	3) Ambident nulceophile	4) Electrophile			
47.	Match the following				
	List - I		List- II		
	A) Conversion of amide to amin	A) Conversion of amide to amine			
	B) $C_6H_5SO_2Cl$		2) Hoffmann's bromamide reaction		
	C) Conversion of primary amine	to isocyanide	3) Hoffmann's method		
	D) Diethyl oxalate		4) Carbylamine reaction		
			5) Hoffmann mustard oil reaction		
	The correct match is				
	A B C D	A B C D			
	1) 2 1 4 3	2) 2 3 4 1			
	3) 1 5 4 2	4) 3 4 1 2			
48.	Which of the following reagents can be used to prepare ethyl carbylamine (as a major				
	product) from ethyl iodide				
	1) HCN 2) KCN	3) CuCN	4) AgCN		
49.	Treatment of ammonia with exc	cess of ethyl chlorid	le will yield		
	1) diethylamine	2) methylamine			
	3) tetraethylammoniumchloride	•			
50.		enerally employed fo	r the separation of primary, secondary		
	and tertiary amines?				
	1) Fractional distillation	2) Hinsberg's met	thod		
	3) Hoffmann's method	4) Filtration			

KEY												
1) 2	2) 4	3) 1	4) 4	5) 1	6) 1	7) 3	8) 1					
9) 1	10) 4	11) 1	12) 1	13) 2	14) 4	15) 3	16) 4					
17) 3	18) 2	19) 3	20) 3	21) 3	22) 1	23) 2	24) 3					
25) 4	26) 4	27) 2	28) 2	29) 1	30) 2	31) 4	32) 2					
33) 2	34) 3	35) 3	36) 3	37) 1	38) 3	39) 3	40)1					
41) 4	42) 2	43) 2	44) 4	45) 4	46) 3	47)1	48) 4					
49) 3	50) 4											

Question Bank - X

SET - I

- 1) Both A & R are true and R is the correct explanation of A
- 2) Both A & R are true but R is not the correct explanation of A
- 3) A is true, R is false
- 4) A is false, R is true
- 1. (A): Carbylamine reaction involves chemical reaction between primary amines, chloroform in basic medium.
 - (R): In carbylamine reaction, NH₂ group changes into NC group.
- 2. (A): In strong acidic solutions aniine becomes more reactive toward electrophilic reagents.
 - (R): The amino group is completely protonated in strong acidic solution, the pair of electrons on the nitrogen no longer available for resonance.
- 3. (A): Methyl isocyanide can be easily hydrolysed by acids but not by alkalies.
 - (R): The carbon atom of isocyinide group in methyl isocyanide carried a negative charge which readily accept the proton and repels the OH⁻ ion.
- 4. (A): Aniline does not undergo Friedal-Crafts reaction.
 - (R): -NH₂ group of aniline reacts with A1C1₃.
- 5. (A): Isocyanides are prepared by carbylamine reaction.
 - (R): Carbylamine on reduction aljways gives 2° amines.
- 6. (A): Aniline is a weak Lewis base than benzylamine.
 - (R): In aniline, there is mesomeric effect between benzene ring and amino group.
- 7. (A): Cyclohexanamine is more basic than aniline.
 - (R): pK_b of cyclohexanamine is less than that of aniline.
- 8. (A): With Br₂ water, aniline giyes 2,4,6- tribromoaniline.
 - (R): In aniline, NH, group is ring activating and ortho and para directing group.

SET - II

- 1) Both A and R are true and R is me correct explanation of A
- 2) Both A and R are true but R is not the correct explanation of A
- 3) A is true but R is false
- 4) Both A and R are false

- 9. (A): Aniline reacts with CHC1₃ in alcoholic KOH solution to give phenyl isocyanide.
 - (R): Aniline is a primary aromatic amine.
- 10. (A): Aromatic diazonium salts are stable.
 - (R): Benzene diazonium ion is stabilised by resonance.
- 1 l. (A): Only a small amount of HC1 is required in the reduction of nitro compounds with iron scrap and HC1 in the presence of steam.
 - (R): FeCl₃ formed gets hydrolysed to release HC1 during the reaction.
- 12. (A): Acetanilide is less basic than aniline.
 - (R): Acetylation of aniline results in decrease of electron density on nitrogen.
- 13. (A): Methyl cyanide has higher boiling point than methyl isocyanide.
 - (R): Both alkyl cyanides and isocyanides are soluble in C₆H₆.
- 14. (A): Anilinehydrogensulphate on heating forms p-aminobenzenesulphonic acid.
 - (R): The sulphonic acid group is electron- withdrawing and ring deactivating group.

ı	KEY										
	1) 2	2) 1	3) 1	4) 1	5) 2	6) 1	7) 2	8) 1			
	9) 1	10) 1	11) 2	12) 2	13) 2	14) 2					