# **EAMCET (E) – 2022**

### (Engineering and Agriculture Common Entrance Test)



Booklet No.: 69874

## **MODEL TEST**



**CENTRE FOR EDUCATIONAL DEVELOPMENT OF MINORITIES** OSMANIA UNIVERSITY (Sponsored by Minorities Welfare Department, Government of Telangana) Nizam College Campus, Gunfoundry, Hyderabad – 500001.

#### MATHS

1. If 
$$f(x)=3x-5$$
 then  $f^{-1}(x)=$   
1) $x+5$  2) $x+4$  3) $\frac{x+5}{3}$  4)  $\frac{x+4}{3}$   
2. Let  $X = \left\{ \begin{pmatrix} a \\ c \\ d \end{pmatrix} : a, b, c, d \in R \right\}$  Define f:  $X \to R$  by  $f(A) = \det(A)$ ,  $\forall A \in X$ . Then, f is  
1) One – one but not onto 2) Onto but not one – one  
3) One – one & onto 4) Neither one – one nor onto  
3. For all positive integers k, if the greatest divisor of  $25^{k} + 12k - 1$  is d, then  $4\sqrt{d} = 1$   
1)  $36$  2)  $8$  3)  $20$  4)  $24$   
4. The equations  $x-y+2z=4$ ,  $3x+y+4z=6$ ,  $x+y+z=1$ , have  
1) No solution 2) Unique solution  
3) Infinitely many solutions  
4) More than one but finite number of solutions  
5. If  $k > 1$ , & the determinant of the matrix  $A^2$ , where  $A = \begin{bmatrix} k & k\alpha & \alpha \\ 0 & \alpha & k\alpha \\ 0 & 0 & k \end{bmatrix}$  is  $k^2$  then  $|\alpha| = 1$   
1)  $k$  2)  $k^2$  3)  $1/k$  4)  $1/k^2$   
6.  $A(x) = \begin{bmatrix} x+1 & 2x+1 & 3x+1 \\ 3x+1 & x+1 & 2x+1 \end{bmatrix}$  then  $\int_{0}^{1} A(x) dx = 1$   
1)  $-15$  2)  $\frac{-15}{2}$  3)  $-30$  4)  $-5$   
7. If rank of  $\begin{bmatrix} x & x & x \\ x & x^2 & x \\ x & x & x+1 \end{bmatrix}$  is 1, then  
1)  $x = 0$  (or)  $x = 1$  2)  $x = 1$  3)  $x = 0$  4)  $x \neq 0$   
8.  $\frac{1t}{x-\alpha} (\frac{1+x)^{-\alpha_3}-1}{1+x^{-\alpha_3}-1} = 1$   
1)  $\alpha$  2)  $e$  3)  $e^4$  4)  $e^2$   
10. If  $y = \sqrt{\tan x + \sqrt{\tan x} + \sqrt{\tan x} \dots \cos \cos \cos \cos \frac{dy}{dx}} = 1$   
1)  $e^{-2x} x^2 x^2 (2y-1) 3)(2y-1) \cdot \sec^2 x$  4)(2y-1)/sec^2 x 1)  $-1$  2)  $-2$  3)  $1$  4)  $0$ 

CEDM

12. If 
$$y = 7an^{-1} \left[ \frac{5\cos x - 12\sin x}{12\cos x + 5\sin x} \right]$$
, then  $\frac{dy}{dx} =$   
1) 1 2) -1 3) -2 4)  $\frac{1}{2}$   
13. The subtament, ordinate and subnormal to the parabola  $y^2 = 4ax$  at a point (different from the origin) are in  
1) A.P. 2) G.P. 3) H.P. 4) none  
14. Find the maximum area of a rectangle, which can be inscribed in a circle of radius 5 cm.  
1)5 2) 10 3) 25 4) 50  
15. Let f(x) be continuous on [0, 6] & differentiable on [0, 6]. Let f(0) = 12 & f(6) = -4. If  
 $g(x) = \frac{f(x)}{x+1}$ , then for some Lagrange's constant  $c \in (0, 6), g'(c) =$   
1)  $-\frac{44}{3}$  2)  $-\frac{22}{21}$  3)  $\frac{32}{21}$  4)  $-\frac{44}{21}$   
16. If  $\int \frac{x^4}{x^4+1} dx = Ax^3 + Bx + C Tan^4x + then the descending order of A, B, C is
1) A, B, C 2) B, C, A 3) C, A, B 4) C, B, A
17.  $\int \frac{dx}{x^4+2x+2} = f(x) + c \Rightarrow f(x) = -$   
1)  $tan^4(x+1)$  2) 2 tan^4(x+1) 3) - tan^4(x+1) 4) 3 tan^4(x+1)$   
18. If  $\int \frac{e^{x}-1}{(e^x+1)} dx = f(x) + c$  Then  $f(x) = -$   
1)  $2\log(\log \sinh x) + c$  4)  $\log(\log(e^x + e^x) + c)$   
19.  $\int \frac{dx}{x(x^4+1)} =$   
1)  $\frac{1}{4} \log \left(\frac{x^4+1}{x^4}\right) + C$  2)  $\frac{1}{4} \log \left(\frac{x^4}{x^4+1}\right) + C$   
20.  $\int_{0}^{\frac{\pi}{9}} e^{-3x} \sin 4x dx =$   
1)  $3\pi$  2)  $3\pi/256$  3)  $3\pi/128$  4)  $4\pi/128$   
22.  $\int_{0}^{\frac{\pi^4}{9}} \sin^2 x \cos^4 x dx =$   
1)  $3\pi$  2)  $3\pi/256$  3)  $3\pi/128$  4)  $4\pi/128$   
23. The D.E. of family of parabolas having vertices at origin and foci on y-axis is -  
1)  $\frac{1}{19} \frac{10}{24}$  2)  $\frac{10g^27}{24}$   
24. CEDM 2 EAMCET (E)

- 24. The solution of  $cosy + (xsiny 1) \frac{dy}{dx} = 0$  is 1) tany - secy = cx 2) tany + secy = cx 3) xsecy + tany = c 4) xsecy = yany + c
- 25. The solution of the differential equations  $3xy'-3y+(x^2-y^2)^{1/2}=0$ , satisfying the condition y(1)=1 is

1) 
$$3\cos^{-1}\left(\frac{y}{x}\right) = In|x|$$
  
2)  $3\cos\left(\frac{y}{x}\right) = In|x|$   
3)  $3\cos^{-1}\left(\frac{y}{x}\right) = 2In|x|$   
4)  $3\sin^{-1}\left(\frac{y}{x}\right) = In|x|$ 

26. Match the following.

1) 5

I. If 
$$\frac{3x}{(x-6)(x+k)} = \frac{2}{x-6} + \frac{1}{x+k}$$
 then k= a)0  
II. If  $\frac{3x-6}{(x-6)(x+k)} = \frac{2}{x-6} + \frac{1}{x+k}$  then k= b)3  
III. If  $\frac{x-4}{x^2-5x-2k} = \frac{2}{x-2} - \frac{1}{x+k}$ , then k= c)-1  
IV. If  $\frac{3x^3-2x^2-1}{x^4+x^2+1} = \frac{Ax+B}{x^2+x+1} + \frac{Cx+D}{x^2+kx+1}$  then k= d)-3  
1)c,d,b,a 2)b,a,d,c 3)c,a,b,d 4)c,b,a,d

27. The median of the following frequency distribution is

|   | Xi               | 8 | 5 | 6 | 10 | 9 | 4 | 7 |      |
|---|------------------|---|---|---|----|---|---|---|------|
|   | $\mathbf{f}_{i}$ | 6 | 4 | 5 | 8  | 9 | 6 | 4 |      |
| 2 | 2)6              |   |   |   | 3) | 7 |   |   | 4) 8 |

- 28.
   If the roots of 24x<sup>3</sup>-26x<sup>2</sup>+9x-1=0 are in H.P then the roots are \_\_\_\_\_\_

   1)1/2,1/3,1/4
   2)1,1/3,1/5
   3)1,0,-2
   4)1,1,-2
- 29. If one root of the equation  $x^3 9x^2 + 26x 24 = 0$  is twice the other. Then, the sum of the cubes of those two roots is 1) 72 2) 253 3) 9 4) 9/64
- 30.If A = {-1, 2} & B = {1, -2} are two points & P is a variable point such that the area of<br/> $\Delta PAB$  is always one, then the equation of the locus of P is<br/>1)  $4x^2 + 4xy + y^2 = 1$ <br/>3)  $x^2 6xy + 22x 66y 23 = 0$ 2)  $x^2 + 10xy + 25y^2 34x 170y = 0$ <br/>4)  $16x^2 24xy + 9y^2 62x + 34y + 46 = 0$
- 31. The transformed equation of  $3x^2+3y^2+2xy = 2$  when the coordinate axes are rotated through an angle of  $45^0$  is 1)  $X^2+2Y^2 = 1$  2)  $2X^2+Y^2 = 1$  3)  $X^2+Y^2 = 1$  4)  $X^2+3Y^2 = 1$
- 32. The equation of the straight, line passing through origin and inclined at angle  $45^{0}$  to the line y = 2x+7 1)3x+y=0 2) x+3y=0 3) x+y=0 4) x - y = 0
- 33. If the area of the triangle formed by the st.lines x=0,y=0,3x+4y=a,(a>0) is one, then a= 1)  $5\sqrt{6}$  2)  $4\sqrt{6}$  3)  $3\sqrt{6}$  4)  $2\sqrt{6}$
- 34. If p & q are the perpendicular distances from the origin to the straight lines  $x \sec \theta y \csc \theta = a$  &  $x \cos \theta + y \sin \theta = a \cos 2\theta$ 1)  $4p^2 + q^2 = a^2$  2)  $p^2 + q^2 = a^2$  3)  $p^2 + 2q^2 = a^2$  4)  $4p^2 + q^2 = 2a^2$

- 35. If the two pairs of lines  $2x^2+6xy+y^2=0$  and  $4x^2+18xy+by^2=0$  are equally inclined , then b=\_\_\_\_\_
  - 1) 1 2)-1 3)2 4)-2
- 36. The equation of the line concurrent with the pair of lines  $x^2+2xy-35y^2-4x+44y-12=0$  is 1) 5x+2y-8=0 2) 5x-2y-8=0 3) 5x+2y+8=0 4) 5x-2y+8=0
- 37. If the lines represented by  $x^2 2hxy y^2 = 0$  are rotated about (0, 0) through an angle  $\alpha$  one in clockwise direction & the other in the counter clockwise direction, then the combined equation of the bisectors of the angle between the lines thus obtained is 1)  $x^2 - y^2 + hxy = 0$ 2)  $x^2 - 2hxy + y^2 = 0$ 3)  $hx^2 - hy^2 + 2xy = 0$  4)  $hx^2 + hy^2 - xy = 0$
- 38.The polar of (2, 3) w. r. t  $x^2 + y^2 + 6x + 8y 96 = 0$  is<br/>1) 5x + 7y 48 = 02) 5x + 7y + 78 = 03) 5x + 7y + 48 = 04) 5x + 7y 78 = 0
- 39. The equation of the circle through (1,0) and (0,1) and having smallest possible radius is 1)  $x^2+y^2-x-y=0$ 3)  $x^2+y^2+x+y=0$ 4)  $x^2+y^2+2x-2y-62=0$
- 40. Consider the circle  $x^2+y^2-6x+4y=12$ . The equation of a tangent to this circle that is parallel to the line 4x + 3y + 5 = 0 is 1) 4x + 3y + 10 = 0 2) 4x + 3y - 9 = 0 3) 4x + 3y + 9 = 0 4) 4x + 3y - 31 = 0
- 41. The locus of the mid-point of the line segment joining the focus to a moving point on the parabola  $y^2 = 4ax$  is a conic. The equation of the directrix of that conic is 1) y = a2) x = a3) y = 04) x = 0
- 42. The line x+y=6 is a normal to the parabola,  $y^2=8x$  at the point 1)(18,-12) 2) (4,2) 3) (2,4) 4) (3,3)
- 43. The distance of a point on the ellipse  $x^2/6+y^2/2=1$  from the centre is 2. The eccentric angle of the point is 1) $\pi/3$  2) $\pi/5$  3) $5\pi/4$  4) $\pi/2$
- 44. If 4x + y + p = 0 (p > 0) is a tangent to the ellipse  $x^2 + 3y^2 = 3 \& 16x + qy + 14 = 0$  (q > 0) is a normal to the ellipse  $x^2 + 8y^2 = 33$ , then p + q =1) 8 2) 5 3) 9 4) 6
- 45. The foci of the ellipse  $\frac{x^2}{16} + \frac{y^2}{b^2} = 1$  & the hyperbola  $\frac{x^2}{144} + \frac{y^2}{81} = \frac{1}{25}$  coinside, then the value of b<sup>2</sup> is 1) 5 2) 7 3) 9 4) 1
- 46. A and B are two possible events of an of an n experiment such that P(A)=0.3, P(AUB)=0.8, and P(B)=P. The value of p in order that A and B are independent is 1)2/10 2)3/10 3)2/7 4)5/7
- 47. The letters of the word "QUESTION" are arranged in a row at random. The probability that there are exactly two letters between Q & S is
  1) 1/14
  2) 5 / 7
  3) 1 / 7
  4) 5 / 28
- 48. In a battery manufacturing factory, machines P, Q & R manufacture 20%, 30% & 50% respectively of the total output. The changes that a defective battery is produced by these machines are 1%, 1.5% & 2% respectively. If a battery is selected as random from production, then the probability that it is defective is

|                     | 1) $\frac{69}{2000}$                                                      | 2) $\frac{33}{2000}$                      | 3) $\frac{1}{40}$                   | 4) $\frac{29}{2000}$                   |
|---------------------|---------------------------------------------------------------------------|-------------------------------------------|-------------------------------------|----------------------------------------|
| 49.                 | If a random variable then p=                                              | X follows a Binomial                      | distribution with n=6               | and if9P(X=4)=P(X=2),                  |
|                     | 1)1/4                                                                     | 2)2/4                                     | 3)3/4                               | 4)7/8                                  |
| 50.                 | If 3% of the electric that a sample of 100                                | bulbs manufactured bulbs has no defective | by a company are def<br>bulb is     | ective. The probability                |
|                     | 1)e <sup>-3</sup>                                                         | 2)1-e <sup>-3</sup>                       | 3)3e <sup>-3</sup>                  | 4)1+e <sup>-3</sup>                    |
| 51.                 | The number of 10 dig<br>1)46                                              | it numbers that can be<br>2)C(10,2)       | e formed by using the a 3)10!       | digits 1 and 2 is<br>4)2 <sup>10</sup> |
| 52.                 | The number of ways may not be next to ear                                 | in which 8 men be arr<br>ach other is     | anged round a table s               | o that 2 particular men                |
|                     | 1)1440                                                                    | 2)5040                                    | 3)2520                              | 4)3600                                 |
| 53.                 | If $\alpha \& \beta$ are the great                                        | est divisors of n(n <sup>2</sup> – 1      | L) & 2n(n <sup>2</sup> + 2) respect | ively for all $n \in N$ then           |
|                     | up –<br>1) 18                                                             | 2) 36                                     | 3) 27                               | 4) 9                                   |
| 54.                 | If $\tan B = \frac{2\sin ASinC}{\sin(A+C)}$                               | then tanA, tanB, tan                      | C are in                            |                                        |
|                     | 1) A.P                                                                    | 2)G.P                                     | 3)H.P                               | 4)A.G.P                                |
| 55.                 | Match the following:<br>List-I                                            | List-II                                   |                                     |                                        |
|                     | 1) sin18 <sup>0</sup>                                                     | a) $\frac{\sqrt{10-2\sqrt{5}}}{4}$        |                                     |                                        |
|                     | 2) $\cos 18^{\circ}$                                                      | b) $\frac{\sqrt{5+1}}{4}$                 |                                     |                                        |
|                     | 3) $\cos 36^{\circ}$                                                      | c) $\frac{\sqrt{5-1}}{4}$                 |                                     |                                        |
|                     | 4) sin36 <sup>0</sup>                                                     | d) $\frac{\sqrt{10+2\sqrt{5}}}{4}$        |                                     |                                        |
|                     | 1)1-d,2-a,3-c,4-b                                                         | 2)1-a,2-b,3-d,4-c                         | 3)1-b,2-c,3-a,4-d                   | 4)1-c,2-d,3-b,4-a                      |
| $\frac{\cos}{\cos}$ | $\frac{s^3 21^0 + \cos^3 39^0}{\cos 21^0 + \cos 39^0} =$                  |                                           |                                     |                                        |
| 56.                 | 1)3/2                                                                     | 2)2/3                                     | 3)3/4                               | 4)4/3                                  |
| 57.                 | The max.value of sin <sup>6</sup><br>1) 1                                 | x +cos <sup>6</sup> x is<br>2)3/4         | 3)1/4                               | 4)3/2                                  |
| 58.                 | If $\log_{\cos x} \sin x + \log_{\sin x}$<br>1) $\pi$                     | $x \cos x = 2$ then $x = 2$ ( $\pi/3$     | 3) π/4                              | 4) π/6                                 |
| 59.                 | $\frac{\tan^2(\tan^{-1}3) + \tan^3(1)}{\cot^2(\tan^{-1}1/5) + \cot^2(1)}$ | $\frac{(\tan^{-1} 5)}{(\cot^{-1} 3)} =$   |                                     |                                        |
|                     | 1) 17/67                                                                  | 2) -17/67                                 | 3) 67/17                            | 4) -67/17                              |

| <i>x</i> = | $log\left(\frac{1}{y} + \sqrt{1 + \frac{1}{y^2}}\right) \Rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <i>y</i> =                                                                                                                  |                                      |                                       |  |  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------|--|--|
| 00.        | 1) tanhx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2) cothx                                                                                                                    | 3) sechx                             | 4) cosechx                            |  |  |
| 61.        | If a:b:c =7:8:9 then co<br>1)7:8:9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | osA:cosB:cosC =<br>2) 14:16:18                                                                                              | 3) 14: 11: 6                         | 4) 14: 8:6                            |  |  |
| 62.        | In a triangle ABC, C =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 90°. Then $\frac{a^2 - b^2}{a^2 + b^2} =$                                                                                   |                                      |                                       |  |  |
|            | 1) Sin(A + B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2) sin(A – B)                                                                                                               | 3) cos(A + B)                        | 4) cos(A – B)                         |  |  |
| 63.        | Let ABC be an isoscel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | es triangle with BC as i $a^2$                                                                                              | its base. Then $rr_1 =$              |                                       |  |  |
|            | <b>1)</b> $a^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2) $\frac{u}{2}$                                                                                                            | 3) R <sup>2</sup> sin <sup>2</sup> A | 4) R <sup>2</sup> sin <sup>2</sup> 2B |  |  |
| 64.        | $\frac{1+\tan h\frac{x}{2}}{1-\tan h\frac{x}{2}} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                             |                                      |                                       |  |  |
| 1)         | e <sup>-x</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2) <i>e<sup>x</sup></i>                                                                                                     | 3)2 <i>e<sup>x/2</sup></i>           | 4)2 <i>e</i> <sup>-x/2</sup>          |  |  |
| 65.        | The perimeter of the 1) $\sqrt{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | triangle formed by the 2) $3\sqrt{14}$                                                                                      | e points (2,5,3),(5,3,2),<br>3) 3√6  | (3,2,5) is<br>4) 3√12                 |  |  |
| 66.        | If the direction cosine angle between them                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | es of two lines are suc<br>is                                                                                               | ch that $l + m + n = 0, l^2$         | $+ m^2 - n^2 = 0$ , then the          |  |  |
|            | 1) $\frac{\pi}{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2) $\frac{\pi}{4}$                                                                                                          | 3) $\frac{\pi}{3}$                   | 4) $\frac{\pi}{2}$                    |  |  |
| 67.        | Intersection point on x+2y+3z-14=0 is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | the line passing thro                                                                                                       | ough (-1,-1,-1) with DR              | :s (2,3,4) & the plane                |  |  |
|            | 1) (-3,-4,-5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2)(-1,-2,-3)                                                                                                                | 3) (3,4,5)                           | 4)(1,2,3)                             |  |  |
| 68.        | Assertion (A): a, b, c, d are position vectors of 4 points such that $2a - 3b + 7c - 6d = 0 \Rightarrow$<br>a, b, c, d are coplanar.<br>Reason (R): Vector equation of the plane passing through three points whose position<br>vectors area, b, c is $r = (1 - x - y)a + xb + yc$ . Which of the following is true?<br>1) Both (A) & (R) are true & (R) is the correct explanation of (A)<br>2) Both (A) & (R) are true, but (R) is not the correct explanation of (A)<br>3) (A) is true, but (R) is true<br>4) (A) is false, but (R) is true |                                                                                                                             |                                      |                                       |  |  |
| 69.        | If P, Q, R are the mid<br>BQ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | – points of the sides                                                                                                       | AB, BC & CA of $\triangle ABC$       | respectively, then PC –               |  |  |
|            | 1) CP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2) PQ                                                                                                                       | 3) BR                                | 4) AR                                 |  |  |
| 70.        | The unit vector ortho with a and b is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | gonal to a=2i+2j+k,b=                                                                                                       | 3i+4j-12k and forming                | a right handed system                 |  |  |
|            | 1)-28i+27j-2k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2)-28i+27j+2k                                                                                                               | $3)\frac{281-27j-2k}{\sqrt{1517}}$   | 4) $\frac{-281+27j+2k}{\sqrt{1517}}$  |  |  |
| 71.        | Match the following<br>I. The angle between<br>II. The angle between<br>III. The angle between<br>IV. The angle between<br>B=(1,-1,0),c=(-1,1,                                                                                                                                                                                                                                                                                                                                                                                                 | n the vectors 2i+j-k,i-4<br>n the vectors i+2j-k,2i+<br>n a, b if a,b,a+b are un<br>n AC, BD If A=(1,1,0),<br>0),D=(0,-1,1) | j-2k<br>-j+k<br>it vectors           | a)π/6<br>b)π/4<br>c)π/3<br>d)π/2      |  |  |

EAMCET (E)

|        | 1) a,c,e,b<br>e) 2π/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2) d,c,e,b                                                                                | 3) c,a,b,d                                                          | 4) d,e            | e,c,a          |                       |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------|----------------|-----------------------|
| 72.    | If the vectors $\overline{i} - 2x\overline{j}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\overline{i} - 3y\overline{k} \& \overline{i} + 3x\overline{j} + 2$                      | $y\overline{k}$ are orthogonal to e                                 | ach oth           | ner, ther      | n locus of            |
|        | the point (x, y) is<br>1) A circle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2) An ellipse                                                                             | 3) A parabola                                                       | 4) A s            | straight       | line                  |
| 73.    | Conjugate of $\frac{2-i}{(1-2i)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{1}{2}$ is                                                                          |                                                                     |                   |                |                       |
|        | 1)2+I<br>3) (-2/25) — (11i/25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4) 1+2i                                                                                   | 2) (-2/25) + (11i/25)                                               |                   |                |                       |
| 74.    | Solve (x+1) <sup>3</sup> =8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                           |                                                                     |                   |                | _                     |
|        | 1) 1,20, 20 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2) 1,2ω,ω <sup>2</sup> 3) 1                                                               | l, 2ω-1, 2ω <sup>2</sup> -1                                         |                   | 4) 1,2         | .ω,2ω <sup>2</sup> +1 |
| 75.    | If sinA+sinB+sinC=0 &<br>1) cos(A+B+C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | & cosA+cosB+cosC=0<br>2) 2                                                                | then cos(A+B)+cos(B+C<br>3) 1                                       | 2)+cos((<br>4) 0  | C+A)=          |                       |
| 76.    | The number of comp<br>first quadrant is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lex roots of the equa                                                                     | ation x <sup>11</sup> -x <sup>7</sup> +x <sup>4</sup> -1=0 wh       | ose arg           | uments         | lie in the            |
|        | 1) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2) 3                                                                                      | 3) 7                                                                | 4) 9              |                |                       |
| 77.    | I: The maximum valu<br>II: The minimum valu<br>1)only I is true<br>3)both I and II are tru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e of c+2bx -x <sup>2</sup> is c+b <sup>2</sup><br>e of x <sup>2</sup> +2bx+c is c-b<br>ie | 2<br>2 <sub>.</sub><br>2)only II is true<br>4)neither I nor II true | e.                |                |                       |
| 78.    | Let $\alpha$ and $\beta$ be the given below:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | roots of the quadrat                                                                      | ic equation $ax^2 + bx + bx$                                        | <i>c</i> = 0.     | Observe        | e the lists           |
| List I | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                           | List II                                                             |                   |                |                       |
|        | $a.\alpha = \beta \Longrightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                           | A. $(ac^2)^{1/3} + (a^2c)^{1/3} +$                                  | <i>b</i> = 0      |                |                       |
|        | $p.\alpha = 2p \rightarrow c \alpha = 3\beta $ |                                                                                           | b.20 - 900                                                          |                   |                |                       |
|        | $d \alpha = \beta^2 \rightarrow \beta^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                           | D $3b^2 = 16ac$                                                     |                   |                |                       |
|        | u.u − p →                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                           | $F_{\rm h}^2 = 4ac$                                                 |                   |                |                       |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           | F. $(ac^2)^{1/3} + (a^2c)^{1/3} =$                                  | = b               |                |                       |
|        | The correct match of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | List I from List II is                                                                    |                                                                     |                   |                |                       |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i                                                                                         | ii                                                                  | iii               | iv             |                       |
|        | i<br>A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ii<br>F                                                                                   |                                                                     | iv                | _              | 2)                    |
|        | 1)<br>F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E                                                                                         | B                                                                   | D                 | F              | 2)                    |
|        | C<br>2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D<br>F                                                                                    | A                                                                   | D                 | E              | 4)                    |
|        | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | В                                                                                         | D                                                                   | A                 | I              |                       |
| 79.    | If the coefficient of p<br>1)p+q-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | th term of (1+x) <sup>n</sup> is p<br>2)p+q-4                                             | and that of (p+1)th ter<br>3)p+q-1                                  | m is q t<br>4)noı | :hen n=_<br>ne | _                     |
| 80.    | $x = 1 + \frac{3}{11} \times \frac{1}{6} + \frac{3 \times 7}{2!} \left($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\left(\frac{1}{6}\right)^2 + \frac{3 \times 7 \times 11}{3!} \left(\frac{1}{6}\right)^3$ | $+ \dots \Rightarrow x^4 =$                                         |                   |                |                       |
|        | 1) 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2) 54                                                                                     | 3) 27                                                               | 4) 8              |                |                       |
| PHYS   | SICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                           |                                                                     |                   |                |                       |
| 81     | Which of the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ng is dimensionless                                                                       |                                                                     |                   |                |                       |
|        | (1) Force / acceleratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | on                                                                                        | (2) velocity / acceler                                              | ration            |                |                       |
|        | (3) volume / area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                           | (4) energy / work                                                   |                   |                |                       |
| CEDN   | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                                                         |                                                                     | EAN               | ACET (I        | E)                    |

- 82. Given  $\vec{F} = (4\hat{i} 10\hat{j})$  and  $\vec{r} = (5\hat{i} 3\hat{j})$  then torque  $\vec{T}$  is (1)  $-62\hat{j}$  (2)  $62\hat{k}$  (3)  $38\hat{i}$  (4)  $-38\hat{k}$
- 83. A man throws balls with same speed vertically upwards one after the other at an interval of 2s. What should be the speed of throw so that more than two balls are in the sky at any time?
  (1) only with speed 19.6 m/s
  (2) more than 19.6 m/s
  - (1) only with speed 19.0 m/s(2) more than 19.0 m/s(3) at lease 9.8 m/s(4) any speed less than 19.6 m/s
- 84. A road is 10m wide. Its radius of curvature is 50m. The outer edge is above the lower edge by a distance of 1.5m. This road is most suited for the velocity. (1) 2.5m/s
  (2) 4.5 m/s
  (3) 6.5 m/s
  (4) 8.5 m/s
- 85. A ball is rolled off along the edge of table (horizontal) with velocity 4 m/s. If hits the ground after time 0.4 sec. Which one of the following statement is wrong?
  - (1) The height of the table is 0.8m
  - (2) If hits the ground at an angle of  $60^{\circ}$  with the vertical
  - (3) It covers a horizontal distance 1.6m from the table
  - (4) It hits the ground with vertical velocity 4 m/s
- 86. A block of mass 2kg is placed on the floor. The coefficient of static friction is 0.4A force F of 3N is applied on the block as shown in the fig. The force of friction between the block and the floor is (take  $g = 10 \text{ m/s}^2$ )

87. Liquid of density  $\rho$  flows along horizontal pipe of uniform area of cross section *a* with a velocity *v* through a right angled bend. What force should be applied to the bend to hold it in equilibrium?

(3) 4N

(4) 6N

(1) 
$$2a\rho v^2$$
 (2)  $\frac{a\rho v^2}{\sqrt{2}}$  (3)  $\sqrt{2}a\rho v^2$  (4)  $a\rho v^2$ 

- 88. A chain of length L and mass M is held on a frictionless table with  $\left(\frac{1}{n}\right)^{\text{th}}$  part hanging over the edge. Work done in pulling the chain is directly proportional to (1)  $\sqrt{n}$  (2) n (3)  $n^{-3}$  (4)  $n^{-2}$
- 89. For the same mass which of the following will have the largest moment of inertia about an axis passing through the centre of gravity and perpendicular to the plane of the body? (1) A disc of radius a (2) A ring of radius a
  (3) A square lamina of side a
  (4) Four identical rods forming square of side a
- 91. When an elastic material with Young's modulus *Y* is subjected to a stretching stress *S*, the elastic energy stored per unit volume of the material is

(1) 
$$\frac{YS}{2}$$
 (2)  $\frac{S^2Y}{2}$  (3)  $\frac{S^2}{2Y}$  (4)  $\frac{S}{2Y}$ 

92. A spherical soap bubble of radius 1cm is formed inside another soap bubble of radius 3cm. The radius of a single soap bubble which maintains the same pressure difference as inside the smaller and outside the larger soap bubble as

(1) 0.75 cm
(2) 0.75m
(3) 7.5 cm
(4) 7.5 m

93. A ball of mass m and radius r is released in Viscous liquid. The value of its terminal velocity is proportional to 1/

(1) 
$$\frac{1}{r}$$
 only (2)  $\frac{m}{r}$  (3)  $\left(\frac{m}{r}\right)^{1/2}$  (4)  $m$  only

94. A vessel contains a mixture consisting of  $m_1 = 7g$  nitrogen ( $M_1 = 28$ ) and  $m_2 = 11g$  of carbon dioxide (( $M_2 = 44$ ) at temp T = 300K and pressure  $P_0 = 1$  atm. The density of mixture is (2) 2.567 g per lit (3) 3.752 g per lit (1) 1.446 g per lit (4) 4.572 g per lit

95. Two thermally insulated vessels 1 and 2 are filled with air at temperature  $(T_1, T_2)$ , volume  $(V_1, V_2)$  and pressure  $(P_1, P_2)$  respectively. If the valve joining the two vessels is opened the temperature inside the vessel at equilibrium will be

(1) 
$$T_1 + T_2$$
  
(2)  $\frac{T_1 + T_2}{2}$   
(3)  $\frac{T_1 T_2 (P_1 V_1 + P_2 V_2)}{P_1 V_1 T_1 + P_2 V_2 T_2}$   
(4)  $T_1 T_2 (P_1 V_1 + P_2 V_2)$ 

- 96. A steel meter scale is to be ruled so that the millimetre intervals are accurate within about  $5 \times 10^{-5}$  mm at a certain temperature. The maximum temperature variation allowable during the ruling of the millimetre marks is ( $\alpha$  for steel = 11 × 10<sup>-6</sup> / °C) (4) 10°C (1) 8°C (2) 9°C (3) 4.5°C
- 97. What is the relationship between time of flight *T* and horizontal Range *R*?

(1) 
$$R = \frac{gT}{\tan \theta}$$
 (2)  $R = \frac{gT^2}{2\tan \theta}$  (3)  $R = \frac{gT^2}{\tan \theta}$  (4)  $R = \frac{gT}{2\tan \theta}$ 

- 98. When a pentavalent impurity is added in Ge crystal then what type of semiconductor is obtained? (3) intrinsic (4) none of these
  - (2) *n*-type (1) *p*-type
- 99. A thin metal plate M is inserted between the plates of a parallel plate capacitor as shown in the fig. The new capacitance in terms of initial capacitance C is



- A voltmeter having a resistance of  $1800\Omega$  is employed to measure the potential difference 100. across a 20 $\Omega$  resistor which is connected to the terminals of a dc power supply having an e.m.f. of 50V and an internal resistance of  $20\Omega$ . What is the percentage decrease in the potential difference across the 200 $\Omega$  resistor or as a result of connecting the voltmeter across it?
  - (2) 5% (3) 10% (4) 25% (1) 1%
- 101. An galvanometer has a resistance of  $100\Omega$  and full scale range  $50\mu$ A. It can be used as a voltmeter or an ammeter provided a resistance is connected to it. Choose the correct combination in the following.
  - (1) 50V range with  $10k\Omega$  resistance in series
  - (2) 10V range with 200 k $\Omega$  resistance in series
  - (3) 5mA range with  $2\Omega$  resistance in parallel
  - (4) 10mA range with  $2\Omega$  resistance in parallel
- 102. A short conducting rod P of length 3.0cm is placed parallel to and near the centre of a long conducting rod Q of length 3.0m. Conductors P and Q carry currents of 3.0A and

4.0A respectively in the same direction. The two conductors are separated by a distance 2.0 cm in air. What is the force experienced by the long conductor Q? (1)  $1.6 \times 10^{-6}$  N (2)  $2.6 \times 10^{-6}$  N (3)  $3.6 \times 10^{-6}$  N (4)  $4.6 \times 10^{-6}$  N

103. A rectangular loop carrying a current i is situated near a long straight wire such that the wire is parallel to one of the sides of the loop. If a steady current I is established in the wire as shown in fig. the loop will be



- (1) Rotate about an axis parallel to the wire
- (2) Move away from the wire
- (3) Move towards the wire (4) Remains stationary

104.A rectangular coil of 20 turns and area of cross section 25 sqcm has a resistance of  $100\Omega$ .<br/>If a magnetic filed which is perpendicular to the plane of coil changes at a rate of 1000<br/>tesla per period *i.e.* second, the current in the coil is<br/>(1) 1A(2) 50A(3) 0.5A(4) 5A

- 105.For a perfectly coupled coils, the coupling coefficient should be equal to<br/>(1) one(2) zero(3) infinite(4) more than one
- 106. A 200μF capacitor in series with a 100Ω resistance is connected to a 240V, 50Hz supply. What is the maximum current in the circuit?
  (1) 1.4A
  (2) 3.4A
  (3) 4.4A
  (4) 2.4A
- 107. The efficiency of a transformer is 90%. The transformer is rated for output of 9000W. If the primary voltage is 1000V and resistance of primary is one ohm then the copper losses in the primary coil will be
  (1) 400W
  (2) 200W
  (3) 100W
  (4) 300W
- 108. In an experiment to find the focul length of a concave mirror a graph is drawn between the magnitudes of u and v. The group looks like



- 109. A person suffering from presbyobia should use as
  - (1) A concave lens
  - (2) A bifocal lens of which lower portion is convex
  - (3) A bifocal lens of which upper portion is convex
  - (4) A convex lens
- 110. In a reflecting astronomical telescope. If the objective (a spherical mirror) is replaced by a parabolic mirror of the same focal length and aperture, then

(1) the final image will be erect
(2) a large image will be obtained
(3) the telescope will gather more light
(4) spherical aberration will be absent

- 111. Which one of the following is a possible nuclear reaction? (1)  ${}^{10}_{5}B+{}^{4}_{2}He \rightarrow {}^{13}_{7}N+{}^{1}_{1}H$ (2)  ${}^{23}_{11}Na+{}^{1}_{1}H \rightarrow {}^{20}_{10}Ne+{}^{4}_{2}He$ (3)  ${}^{239}_{93}Np \rightarrow {}^{239}_{94}Pu+{}_{-1}B^{0}+\overline{\nu}$ (4)  ${}^{11}_{7}Np+{}^{1}_{1}H \rightarrow {}^{12}_{6}C_{-1}B^{0}+\overline{\nu}$
- 112. Which of the following doesnot increase regularly?
  (1) Mass number (2) Atomic number (3) Packing fraction (4) Binding energy
- 113. In a mass spectrometer used for measuring the masses of ions, the ions are initially accelerated by an electrical potential V and then made to describe semicircular paths of radius R using a magnetic field B. If V and B are kept constant the ratio  $\left(\frac{\text{charge of the ion}}{1000 \text{ cm}^2}\right)$  will be proportional to

$$($$
 mass of the ion  $)$ 

(1) 
$$\frac{1}{R^2}$$
 (2)  $R^2$  (3)  $R$  (4)  $\frac{1}{R}$ 

114. A 5 watt source emits monochromatic light of wavelength 5000°A. When placed 0.5m away. It liberates photoelectrons from a photosensitive metallic surface. When the source is moved to a distance of 10m, the number of photoelectrons liberate will be reduced by a factor of

(1) 8
(2) 16
(3) 2
(4) 4

115. A radioactive substance has half-life of four months three-fourth of substances will decay in

- 116. Which of the statements is not true
  - (1) The resistance of intrinsic semiconductor decreases with increase of temperature
  - (2) Doping pure Si with trivalent impurities give p-type semiconductor
  - (3) The majority charge carriers in *n*-type semiconductors are holes
  - (4) A *p*-*n* junction can act as a semiconductor diode
- 117. The transfer ratio  $\beta$  of a transistor is 50. The input resistance of the transistor when used in the common emitter configuration is 1 k $\Omega$ . The peak value of the collector a.c. current for an ac input voltage of 0.01 V peak is
  - (1)  $100\mu A$  (2)  $0.01 \mu A$  (3)  $0.25 \mu A$  (4)  $500 \mu A$
- 118. Given below are four logic gates symbols. NAND, NOR and OR are respectively



- 119. An AND gate
  - (1) Is equivalent to a parallel switching current
  - (2) Is equivalent to a series switching current
  - (3) Has two outputs and one input
  - (4) Has two outputs and two inputs
- 120. The VHF band ranges from (1) 30 to 300 MHz (2) 30 to 3000 MHz (3) 20 to 2000 MHz (4) 30 to 300 MHz

### CHEMISTRY

| 121. | Which o<br>(1) Aque<br>(2) Aque<br>(3) Aque<br>(4) Aque                          | f the for<br>eous so<br>eous so<br>eous so<br>eous so | ollowin<br>olutions<br>olutions<br>olutions<br>olutions | ag is a cor<br>s of $Cu^+ a$<br>s of $Cu^{+2} a$<br>s of $Fe^{2+}$ is<br>s of $MnO^-$ | rect stateme<br>nd Zn <sup>+2</sup> are<br>and Zn <sup>+2</sup> are<br>s green in c<br>4 is colourl | ent<br>colourless<br>e colourles<br>olour<br>ess                  | S<br>SS                                                        |                                  |                                 |                       |
|------|----------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------|---------------------------------|-----------------------|
| 122. | Match th<br>Column<br>A) $H_2SC$<br>B) $H_2S_2C$<br>C) $H_2S_2C$<br>D) $H_2S_2C$ | ne colu<br>– I<br>) <sub>5</sub><br>)8<br>)7<br>)6    | mn I w                                                  | ith colum                                                                             | in II                                                                                               | Colum<br>1) Dithi<br>2) Caro<br>3) Oleu<br>4) Mars<br>5) Poly     | <b>n – II</b><br>ionic a<br>'s acio<br>m<br>shall a<br>thionio | icid<br>1<br>cid<br>c acid       |                                 |                       |
|      | The corr                                                                         | ect ma                                                | tch is                                                  | D                                                                                     |                                                                                                     | Δ                                                                 | R                                                              | С                                | D                               |                       |
|      | (1) 2                                                                            | 4                                                     | 3                                                       | 1                                                                                     |                                                                                                     | (2) 4                                                             | <b>D</b><br>2                                                  | 3                                | 5                               |                       |
|      | (3) 2                                                                            | 4                                                     | 5                                                       | 1                                                                                     |                                                                                                     | (4) 3                                                             | 2                                                              | 1                                | 5                               |                       |
| 123. | In oxidiz<br>(1) ZnO-                                                            | zing roa<br>+ZnSC                                     | asting o<br>0 <sub>4</sub> +SO <sub>2</sub>             | of ZnS, pr<br>(2) Zr                                                                  | roducts are                                                                                         | (3) ZnC                                                           | 0+SO <sub>2</sub>                                              |                                  | (4) Zn+SC                       | <b>)</b> <sub>2</sub> |
| 124. | The cont<br>(1) $d^4$ (in<br>(3) $d^3$ (in                                       | figurati<br>strong<br>weak                            | ion for<br>g field l<br>as well                         | which the<br>igand)<br>as strong                                                      | e 'spin only<br>g field ligan                                                                       | ' magnetic<br>(2) d <sup>4</sup> (in<br>d) (4) d <sup>5</sup> (in | c mon<br>n weal<br>n stror                                     | nent of<br>k field l<br>ng field | 2.84BM is<br>ligand)<br>ligand) |                       |
| 125. | The lanth<br>(1) Zr an<br>(2) Zr an<br>(3) Zr an<br>(4) Zr an                    | hanoid<br>Id Y ha<br>Id Nb ł<br>Id Hf h<br>Id Zn h    | contra<br>ave abo<br>nave sin<br>ave ab<br>nave the     | ction is reput the sar<br>milar oxic<br>out the sa<br>e same ox                       | esponsible f<br>ne radius<br>lation state<br>me radius<br>idation stat                              | for the fact                                                      | t that                                                         |                                  |                                 |                       |
| 126. | Of the fo<br>(1) Nitro<br>(3) Dinit                                              | ollowin<br>ous Oxi<br>trogen                          | ng, whi<br>ide<br>Trioxic                               | ch has thr<br>le                                                                      | ee electron                                                                                         | bond in it<br>(2) Nitr<br>(4) Nitr                                | s struc<br>ic Oxi<br>ogen l                                    | cture?<br>de<br>Pentoxi          | de                              |                       |
| 127. | The order (1) $Cl_2O$                                                            | er of sta<br>0 > <i>ClC</i>                           | ability<br>$D_2 > Cl_2$                                 | of oxides<br>$O_6 > Cl_2 C$                                                           | of Chlorine<br>D <sub>7</sub>                                                                       | e (2) Cl <sub>2</sub> e                                           | $O_7 > C$                                                      | $Cl_2O_6 >$                      | $ClO_2 > Cl_2O$                 | )                     |
|      | (3) $Cl_2O$                                                                      | $P > Cl_2 Cl_2$                                       | $O_6 > Cl$                                              | $O_2 > Cl_2 C$                                                                        | $D_7$                                                                                               | (4) $Cl_2$                                                        | $O_7 > C$                                                      | $ClO_2 > C$                      | $Cl_2O > Cl_2O_6$               |                       |
| 128. | Which o<br>(1) Phys<br>(2) Phys<br>(3) Activ<br>(4) Entha                        | f the fo<br>ical ad<br>ical ad<br>vation o<br>alpy ch | ollowin<br>sorptio<br>sorptio<br>energy<br>nange o      | ng is not c<br>n decreas<br>n is multi<br>of physic<br>of physica                     | orrect<br>es in the ind<br>layered<br>al adsorption<br>l adsorption                                 | creases in<br>on is very<br>n is about 2                          | tempe<br>high<br>20KJ/1                                        | erature<br>mol                   |                                 |                       |
| 129. | Relative                                                                         | loweri                                                | ing of v                                                | apour pro                                                                             | essure is ma                                                                                        | aximum fo                                                         | or                                                             |                                  |                                 |                       |
| 120  | (1) 0.1m                                                                         | glucos                                                | se                                                      | (2) 0.2m                                                                              | glucose                                                                                             | (3) 0.3r                                                          | n gluc                                                         | ose                              | (4) equal i                     | n all cases           |
| 130. | Arrange                                                                          | the fol                                               | llowing                                                 | ; compou                                                                              | nds in ordei                                                                                        | of decrea                                                         | ising a                                                        | cidity                           | 011                             |                       |
|      |                                                                                  | ]                                                     |                                                         | OH<br>o                                                                               |                                                                                                     |                                                                   |                                                                |                                  | OH                              |                       |
|      | Cl                                                                               |                                                       |                                                         | CH₃                                                                                   |                                                                                                     | $NO_2$                                                            |                                                                |                                  | OCH <sub>3</sub>                |                       |
|      | Ι                                                                                |                                                       |                                                         | II                                                                                    |                                                                                                     | III                                                               |                                                                |                                  | IV                              |                       |
|      |                                                                                  |                                                       |                                                         |                                                                                       |                                                                                                     |                                                                   |                                                                |                                  |                                 |                       |

(1) II>IV>I>III (2) I>II>II>IV (3) III>I>IV (4) IV>III>I>II

| 131. | $\begin{array}{c} C_{6}H_{5}CH_{3} & \underline{Cro_{2}Cl_{2}}/c\\ H_{3}O^{+}\\ The conversion of A\\ (1) Cannizaro reaction$ | $\begin{array}{ccc} \underbrace{CS_2} & \xrightarrow{OH^{\Theta}} & (B) \\ \hline \text{to B is called as} \\ on(2) & \text{Aldol condensativ} \end{array}$ | on                                                                                                  |                                                   |
|------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------|
|      | (3) Clemmenson red                                                                                                            | uction                                                                                                                                                      | (4) Etard reaction                                                                                  |                                                   |
| 132. | The rate expression f                                                                                                         | for a reaction is $\frac{dx}{dt} = K$                                                                                                                       | $[A]^{\frac{1}{2}}[B]^{\frac{3}{2}}$ , the overall                                                  | order of the reaction is                          |
|      | (1) 2                                                                                                                         | (2) $\frac{1}{2}$                                                                                                                                           | $(3) \frac{3}{2}$                                                                                   | (4) 1                                             |
| 133. | $C_2H_5Cl \xrightarrow{KoH(aq)} A$                                                                                            | $1 \xrightarrow{Na} B \xrightarrow{C_2H_5Cl} C$                                                                                                             | Identify 'C' in the abo                                                                             | ove reaction                                      |
|      | (1) $C_2H_5ONa$                                                                                                               | (2) $C_2 H_5 OH$                                                                                                                                            | $(3) \ C_2 H_5 - O - C_2 H_5$                                                                       | (4) $C_4 H_{10}$                                  |
| 134. | $A + CH_3MgI \rightarrow Add$                                                                                                 | lition product — H-OH                                                                                                                                       | $CH_3CH_2OH$ . What is                                                                              | 'A'?                                              |
|      | (1) $CH_3CHO$                                                                                                                 |                                                                                                                                                             | (2) <i>HCHO</i>                                                                                     |                                                   |
|      | $(3) CH_3 - CH_2 - CH$                                                                                                        | 0                                                                                                                                                           | $(4) CH_3 - CO - CH_3$                                                                              |                                                   |
| 135. | Tollen's reagent can<br>The reagent mainly of                                                                                 | be obtained by mixing                                                                                                                                       | aqueous $AgNo_3$ with                                                                               | aqueous NH <sub>3</sub> Solution.                 |
|      | (1) $\left[Ag\left(NH_3\right)_2\right]^+$                                                                                    | (2) <i>AgOH</i>                                                                                                                                             | (3) <i>Ag</i>                                                                                       | (4) <i>CH</i> <sub>3</sub> <i>CHO</i>             |
| 136. | The amine that does<br>(1) Isopropyl amine<br>(3) Tertiary butyl am                                                           | not form hydrogen bor<br>ine                                                                                                                                | nd is<br>(2) Neopentyl amine<br>(4) N. N – Dimethyl                                                 | amino ethane                                      |
|      | (c) for any compression                                                                                                       |                                                                                                                                                             | (.) 1., 1. 2                                                                                        |                                                   |
| 137. | 100ml of 0.15M HC<br>resulting solution                                                                                       | <i>l</i> solution is mixed with                                                                                                                             | n 100ml of 0.005m HC                                                                                | l, what is the P <sup><math>n</math></sup> of the |
|      | (1) 2.5                                                                                                                       | (2) 1.5                                                                                                                                                     | (3) 2                                                                                               | (4) 1                                             |
| 138. | Electrode potential d<br>$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2}$                                                             | ata are given below<br>$(aq); E^{\circ} = +0.77V$                                                                                                           |                                                                                                     |                                                   |
|      | $Br_2(aq) + 2e^- \rightarrow Br^-$                                                                                            | (aq); E' = -1.66V                                                                                                                                           |                                                                                                     |                                                   |
|      | $Br_2(aq) + 2e^- \rightarrow Br^-$                                                                                            | (aq); E = +1.08V                                                                                                                                            | · . /                                                                                               |                                                   |
|      | (1) $Fe^{2+}$ is stronger                                                                                                     | reducing agent than Br                                                                                                                                      | -                                                                                                   |                                                   |
|      | (2) $Fe^{2+}$ is stronger                                                                                                     | reducing agent than Al                                                                                                                                      |                                                                                                     |                                                   |
|      | (3) $Al$ is stronger red                                                                                                      | ucing agent than $Fe^{2+}$                                                                                                                                  |                                                                                                     |                                                   |
|      | (4) Br <sup>–</sup> 1s stronger re                                                                                            | ducing agent than Al                                                                                                                                        |                                                                                                     |                                                   |
| 139. | Which of the following semiconductor?                                                                                         | ng elements on doping                                                                                                                                       | , with germanium, take                                                                              | s it a P-type                                     |
|      | (1) As                                                                                                                        | (2) Ga                                                                                                                                                      | (3) Bi                                                                                              | (4) Sb                                            |
| 140. | On mixing ethylaceta solution is                                                                                              | ate with aqueous sodiu                                                                                                                                      | m chloride, the compos                                                                              | sition of the resultant                           |
|      | (1) $CH_{3}COOC_{2}H_{5} +$                                                                                                   | NaCl                                                                                                                                                        | (2) $CH_{3}Cl + C_{2}H_{5}CC$                                                                       | DONa                                              |
|      | (3) $CH_3COCl + C_2H$                                                                                                         | $T_5OH + NaOH$                                                                                                                                              | (4) $CH_3COONa + C_2$                                                                               | H <sub>5</sub> OH                                 |
| 141. | In the Hofmanns me<br>(1) Acetyl chloride<br>(3) Diethyl oxalate                                                              | thod for separation of 1                                                                                                                                    | <ul> <li>1°, 2°, and 3° amines, t</li> <li>(2) Benzenesulphony</li> <li>(4) Nitrous acid</li> </ul> | he reagent used is<br>1 chloride                  |

| 142. | The vitamin, which p membrane is                                                                                                       | lays a role in transport                                                                                                                                                              | ation, of amino acids a                                                                          | cross the cell                                                     |
|------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
|      | (1) $B_1$                                                                                                                              | (2) B <sub>2</sub>                                                                                                                                                                    | $(3) B_3$                                                                                        | (4) $B_6$                                                          |
| 143. | Which of the following                                                                                                                 | ng polymers are therm                                                                                                                                                                 | oplastic?                                                                                        |                                                                    |
|      | (1) Teflon                                                                                                                             | (2) Natural rubber                                                                                                                                                                    | (3) Neoprene                                                                                     | (4) Polystyrene                                                    |
| 144. | Assertion(A): In Hyd<br>energy is emitted.                                                                                             | rogen atom which elec                                                                                                                                                                 | etron drops from 2P orb                                                                          | bital to 2S-orbital then                                           |
|      | Reason(R): In Hydro<br>(1) Both A and R true                                                                                           | gen atom all the orbita<br>e and R is the correct e                                                                                                                                   | ls of a given shell are d<br>xplanation of A                                                     | legenerate                                                         |
|      | (2) Bothe A and R are<br>(3) A is true but R is                                                                                        | e true and R is not the false                                                                                                                                                         | (4) A is false but R is                                                                          | A<br>true                                                          |
| 145. | Study the following s<br>I) Crystal radius is ap<br>II) Covalent radius ar<br>III) Vanderwaal's rad                                    | tatements<br>plicable for metal atom<br>nd vander waals radius<br>lius <crystal radius<co<="" td=""><td>ns<br/>is applicable to non-m<br/>valent radius.</td><td>etals</td></crystal> | ns<br>is applicable to non-m<br>valent radius.                                                   | etals                                                              |
|      | (1) I, II and III                                                                                                                      | (2) II, III and IV                                                                                                                                                                    | (3) I, II, III and IV                                                                            | (4) II and III only                                                |
| 146. | BF <sub>3</sub> and NF <sub>3</sub> are cova<br>(1) Atomic size of bo<br>(2) BF <sub>3</sub> is planar but 1<br>(3) Boron is a metal v | alent but BF <sub>3</sub> molecule<br>ron is smaller than tha<br>NF <sub>3</sub> is pyramidal<br>while nitrogen is a gas                                                              | is non polar while NF3<br>t of nitrogen                                                          | 3 is polar because                                                 |
|      | (4) B-F bonds have n                                                                                                                   | o dipole moment while                                                                                                                                                                 | e N-F bonds have dipol                                                                           | e moment                                                           |
| 147. | 'X' litres of carbon r<br>volume of CO <sub>2</sub> forme<br>(1) 22.414                                                                | nonoxide is present at<br>ed is 11.207 litres at ST<br>(2) 11.207                                                                                                                     | STP, It is completely o<br>TP. What is the value o<br>(3) 5.6035                                 | xidized to CO <sub>2</sub> . The<br>f 'X' in litres?<br>(4) 44.828 |
| 148. | Volume of O <sub>2</sub> gas lib solution is                                                                                           | erated at STP by the de                                                                                                                                                               | ecomposition of 15ml of                                                                          | of 20 volumes H <sub>2</sub> O <sub>2</sub>                        |
|      | (1) 150ml                                                                                                                              | (2) 300ml                                                                                                                                                                             | (3) 200ml                                                                                        | (4) 250ml                                                          |
| 149. | The following statem<br>(1) Alkali metals are<br>(2) The alkaline earth<br>(3) The alkalie metals<br>(4) The first ionization          | ent is correct<br>less electropositive that<br>metals are denser and<br>s are denser and harder<br>n potential of alkali m                                                            | n alkaline earth metals<br>hard than alkalimetals<br>than alkaline earth me<br>etals             | tals                                                               |
| 150. | Assertion: Potash alu<br>Reason: In alum, $Al^{3}$<br>(1) Both A and R are<br>(2) Bothe A and R are                                    | m is used in the purific<br><sup>+</sup> ion under goes hydro<br>true and R is the corre<br>e true and R is not the                                                                   | cation of water<br>lysis to form acidic sol<br>ct explanation of A<br>correct explanation of A   | ution<br>A                                                         |
|      | (3) A is true but K is                                                                                                                 | Ialse                                                                                                                                                                                 | (4) A is false but K is                                                                          | true                                                               |
| 151. | SiCl <sub>4</sub> is easily hydrol<br>(1) Bonding in SiCl <sub>4</sub><br>(3) Silicon can extend<br>(4) Silicon can form l             | ysed but C <i>Cl</i> <sub>4</sub> is not. T<br>is ionic<br>1 is coordination numb<br>1ydrogen bonds but ca                                                                            | This is because<br>(2) Silicon is non-mether<br>ber beyond four but carl<br>rbon cannot          | tallic<br>bon cannot                                               |
| 152. | Which of the followin (1) 1,2 dichloro 1-per                                                                                           | ng does not shows geo<br>ntene                                                                                                                                                        | metrical isomesism<br>(2) 1, 3 deichloro 2-p                                                     | entene                                                             |
| 153. | <ul><li>(3) 1, 1 dichloro 1-pe</li><li>The reaction conditio</li><li>(1) Zn, alcohol</li></ul>                                         | ntene<br>n used for converting<br>(2) KoH,alcohol                                                                                                                                     | <ul><li>(4) 1, 4 dichloro 2-per</li><li>1, 2-dibromoethane to a</li><li>(3) KoH, water</li></ul> | ntene<br>ethylene are<br>(4) Na, alcohol                           |
| 154. | Minamata disease is a (1) Methyl mercury                                                                                               | due to                                                                                                                                                                                | (2) Methyl isocyanide                                                                            | es                                                                 |

(3) Methyl isocyanate (4) Methyl magnesium chloride

- 155. Two elements X & Y have following electronic configurations  $X = 1S^2 2S^2 2P^6 3S^2 3P^6 4S^2$   $Y = 1S^2 2S^2 2P^6 3S^2 3P^5$  The expected compound formed by combination of X and Y is (1) XY<sub>2</sub> (2) X<sub>5</sub>Y<sub>2</sub> (3) X<sub>2</sub>Y<sub>5</sub> (4) XY<sub>5</sub>
- 156. Consider the following

$$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$$

- 157. The following proportional are quantized in Bohrs model of atom

  Angular momentum
  Energy difference between successive orbits
  Radial distance between successive orbits
  Kinetic energy of electron in the orbits
  The correct answer is

  1, 2 and 3
  2, 3 and 4
  2 and 4
- 158. Match the following:

| Colum    | n – I                                             |         |        | Column – II                                       |   |   |   |  |  |
|----------|---------------------------------------------------|---------|--------|---------------------------------------------------|---|---|---|--|--|
| A) Inter | rnal en                                           | ergy    |        | 1) State function                                 |   |   |   |  |  |
| B) Enth  | alpy                                              |         |        | 2) Depends on mass of system                      |   |   |   |  |  |
| C) Char  | nge int                                           | ernal e | energy | 3) Difference between heat content of products an |   |   |   |  |  |
|          |                                                   |         |        | reactants                                         |   |   |   |  |  |
| D) Cha   | Change in enthalpy 4) In a cyclic process is zero |         |        |                                                   |   |   |   |  |  |
|          |                                                   |         |        | 5) Is zero at constant volume                     |   |   |   |  |  |
| The cor  | rect m                                            | atch is |        |                                                   |   |   |   |  |  |
| Α        | В                                                 | С       | D      | Α                                                 | В | С | D |  |  |
| (1) 5    | 2                                                 | 3       | 4      | (2) 4                                             | 1 | 2 | 5 |  |  |
| (3) 2    | 1                                                 | 4       | 3      | (4) 3                                             | 2 | 5 | 1 |  |  |

159. In XeF<sub>4</sub> molecule, Xenon Undergoes

(1)  $Sp^{3}d$  hybridization in its second excited state

(2)  $Sp^3d^2$  hybridization in its second excited state

(3)  $Sp^3d^3$  hybridization in its third excited state

(4) Sp<sup>3</sup>d hybridization in its fourth excited state

160. 100cc of  $O_2$  diffuse in 100 minutes. Under similar conditions one litre of hydrogen diffuse in \_\_\_\_\_ minutes (1) 250 (2) 200 (3) 300 (4) 350